

| SAR Evaluation Report    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                                                                                        |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|----------------------------------------------------------------------------------------|--|
| DUT Information          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                                                                                        |  |
| Manufacturer             | Datalogic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                          |                                                                                        |  |
| Model Name               | TASKBOOK SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>1</del> 7                   |                          |                                                                                        |  |
| FCC ID                   | U4FTBII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                          |                                                                                        |  |
| IC Number                | 3862D-TBII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                          |                                                                                        |  |
| Type / Category          | tablet PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | □ portable               | $\hfill\Box$ mixed mobile/portable                                                     |  |
| Intended Use             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$ next to the ear        | $\square$ body-worn      | ☐ limb-worn                                                                            |  |
|                          | ☐ hand-held                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ front-of-face                  | ⋈ body supported         | ☐ clothing-integrated                                                                  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prepared by                      |                          |                                                                                        |  |
|                          | IMST GmbH, To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est Center                       |                          |                                                                                        |  |
| Testing Laboratory       | Carl-Friedrich-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gauß-Str. 2 – 4                  |                          |                                                                                        |  |
| resting Laboratory       | 47475 Kamp-Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntfort                           |                          |                                                                                        |  |
|                          | Germany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                          |                                                                                        |  |
|                          | DAKKS  Desistate  Desi | the German National 'Deuts       | sche Akkreditierungsstel | IMST GmbH is accredited by le GmbH (DAkkS)' for testing certificate: D-PL-12139-01-00. |  |
| Laboratory Accreditation | The German Bundesnetzagentur (BNetzA) recognizes IMST GmbH as CAI on the basis of the Council Decision of 22. June 1998 concerning the con of the MRA between the European Community and the United States of A (1999/178/EC) in accordance with § 4 of the Recognition Ordinance January 2016. The recognition is valid until 20. July 2021 under the regis number: BNetzA-CAB-16/21-14.  IMST GmbH is recognized as a wireless testing laboratory to perform equivalent to the canada-EU Comprehensive and the control of the Canada-EU Comprehensive and the Canada |                                  |                          |                                                                                        |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Economic and Trade Agreen        | nent (CETA) under CAB    | 3 identifier: DE0010.                                                                  |  |
|                          | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prepared for                     |                          |                                                                                        |  |
|                          | 7layers GmbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Datalogic S.r.l.         |                                                                                        |  |
| Applicant / Manufacturer | Borsigstraße 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Via San Vitalino, 13     |                                                                                        |  |
| ,,                       | 40880 Ratinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n .                              | 40012 Lippo di Calde     | erara di Reno – Bologna                                                                |  |
|                          | Germany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | Italy                    |                                                                                        |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Specification               |                          |                                                                                        |  |
| Applied Rules/Standards  | IEEE 1528-201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3, FCC CFR 47 § 2.1093, RSS      | S-102 Issue 5            |                                                                                        |  |
| Exposure Category        | general publ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lic / uncontrolled exposure      | occupational / co        | ntrolled exposure                                                                      |  |
| Test Result              | ⊠ PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | ☐ FAIL                   |                                                                                        |  |
|                          | Report Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                          |                                                                                        |  |
| Data Stored              | 60320_6190898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                |                          |                                                                                        |  |
| Issue Date               | August 05, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                                                                                        |  |
| Revision Date            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                                                                                        |  |
| Revision Number          | (A new revisio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n replaces all previous revision | ns and thus, become inv  | valid herewith)                                                                        |  |
| Remarks                  | This report relates only to the item(s) evaluated. This report shall not be reproduced, except in its entirety, without the prior written approval of IMST GmbH. The results and statements contained in this report reflect the evaluation for the certain model described above. The manufacturer is responsible for ensuring that all production devices meet the intent of the requirements described in this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                          |                                                                                        |  |



## **Table of Contents**

|    |                | pject of Investigation                                                      |    |
|----|----------------|-----------------------------------------------------------------------------|----|
|    | 1.1            | Technical Data of DUT                                                       | 3  |
|    | 1.2            | Picture of the DUT and Antenna Location                                     | 4  |
|    | 1.3            | Test Specification / Normative References                                   | 5  |
|    | 1.4            | Attestation of Test Results                                                 | 5  |
| 2  | Exp            | oosure Criteria and Limits                                                  | 6  |
|    | 2.1            | SAR Limits                                                                  | 6  |
|    | 2.2            | Exposure Categories                                                         | 6  |
|    | 2.3            | Distinction between Maximum Permissible Exposure and SAR Limits             | 6  |
| 3  | The            | Measurement System                                                          | 7  |
|    | 3.1            | Phantoms                                                                    | 8  |
|    | 3.2            | E-Field-Probes                                                              | 9  |
| 4  | Me             | asurement Procedure                                                         | 10 |
|    | 4.1            | General Requirement                                                         | 10 |
|    | 4.2            | Measurement Procedure                                                       | 10 |
|    | 4.3            | Additional Information for IEEE 802.11 (WiFi) Transmitters                  | 11 |
|    | 4.4            | Measurement Variability                                                     | 12 |
| 5  | Sys            | stem Verification and Test Conditions                                       | 13 |
|    | 5.1            | Date of Testing                                                             | 13 |
|    | 5.2            | Environment Conditions                                                      | 13 |
|    | 5.3            | Tissue Simulating Liquid Recipes                                            | 13 |
|    | 5.4            | Tissue Simulating Liquid Parameters                                         | 14 |
|    | 5.5            | Simplified Performance Checking                                             | 15 |
| 6  | Me             | asurement Conditions                                                        | 15 |
|    | 6.1            | SAR Test Conditions                                                         | 15 |
|    | 6.2            | Tune-Up Information                                                         | 16 |
|    | 6.3            | Measured Output Power                                                       | 19 |
|    | 6.4            | Standalone SAR Test Exclusion                                               | 22 |
|    | 6.5            | SAR Test Exclusion Consideration according to RSS-102                       | 24 |
| 7  | SA             | R Test Results                                                              | 25 |
| 8  | Sin            | nultaneous Transmission Consideration                                       | 28 |
|    | 8.1            | SPLSR Evaluation Analysis                                                   | 30 |
| 9  | Adı            | ministrative Measurement Data                                               | 31 |
|    | 9.1            | Calibration of Test Equipment                                               | 31 |
|    | 9.2            | Uncertainty Assessment                                                      | 32 |
| 10 | Re             | oort History                                                                | 34 |
|    | Appen          | dix A - Pictures                                                            | 36 |
|    | Appen          | dix B - SAR Distribution Plots                                              | 39 |
|    | Annen          | dix C - System Verification Plots                                           | 47 |
|    | прроп          |                                                                             |    |
|    |                | dix D – Certificates of Conformity                                          | 51 |
|    | Appen          | dix D – Certificates of Conformitydix E – Calibration Certificates for DAEs |    |
|    | Appen<br>Appen | •                                                                           | 54 |



# 1 Subject of Investigation

The TASKBOOK SH7 is tablet PC operating in 2.4 GHz and 5 GHz frequency range. It has two integrated antennas which are able to transmit simultaneously.

Revision Date:

### 1.1 Technical Data of DUT

| Product Specifications    |                                                            |  |  |
|---------------------------|------------------------------------------------------------|--|--|
| Manufacturer              | Datalogic                                                  |  |  |
| Model Name / Number       | TASKBOOK SH7                                               |  |  |
| Brand Name                | TASKBOOK                                                   |  |  |
| Serial Number of DUT      | T19B00959 (SAR testing) / T19B00957 (output power testing) |  |  |
| IMST DUT Number           | 01 (SAR testing) / 02 (output power testing)               |  |  |
| Hardware Version          | 7L1B (SAR testing) / 7L1C(output power testing)            |  |  |
| Integrated Transmitter    | SparkLAN Instruments WINFQ-258ACN(BT)                      |  |  |
| Operation Mode            | BT, BTLE, IEEE 802.11 b/g/a/ac                             |  |  |
| Operation Frequency Range | 2.4 GHz, 5 GHz                                             |  |  |
| TX Antenna Type           | 2x integrated (1x WLAN/BT, 1x WLAN)                        |  |  |
| Usage Configuration       | body-supported conditions                                  |  |  |
| Max. Output Power         | refer to chapter 6.2                                       |  |  |
| Power Supply              | internal Li-lon                                            |  |  |
| DUT Stage                 | ☐ production unit ☐ identical prototype                    |  |  |
| Notes: -                  |                                                            |  |  |



## 1.2 Picture of the DUT and Antenna Location

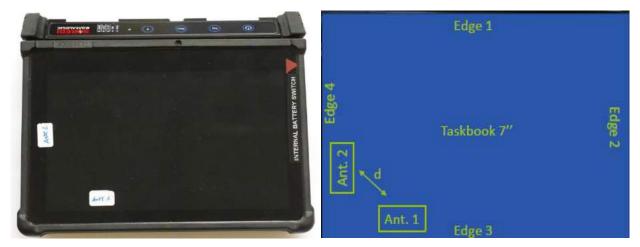



Fig. 1: Front view and antenna location of the DUT.

| Antenna Type and Location |                    |        |  |  |
|---------------------------|--------------------|--------|--|--|
| Antenna                   | BT/WLAN            | WLAN   |  |  |
| Reference                 | Ant. 1             | Ant. 2 |  |  |
|                           | Configuration Edge |        |  |  |
| Distance to [mm]          | Ant. 1             | Ant. 2 |  |  |
| Edge 1                    | 105                | 82     |  |  |
| Edge 2                    | 103                | 172    |  |  |
| Edge 3                    | 15                 | 31     |  |  |
| Edge 4                    | 40                 | 7      |  |  |
| Ant. 1 <> Ant. 2 (d)      | 5                  | 51     |  |  |

Table 1: Antenna location.



## 1.3 Test Specification / Normative References

The tests documented in this report were performed according to the standards and rules described below.

|             | Test Specifications                                                                                             |                                                                                                                                                                                          |                  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
|             | Test Standard / Rule                                                                                            | Description                                                                                                                                                                              | Issue Date       |  |  |
|             | IEEE 1528-2013                                                                                                  | IEEE Recommended Practice for Determining the Peak Spatial-<br>Average Specific Absorption Rate (SAR) in the Human Head from<br>Wireless Communications Devices: Measurement Techniques. | June 14, 2013    |  |  |
|             | Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: <b>Mobile Devices.</b>     |                                                                                                                                                                                          | October 01, 2010 |  |  |
| $\boxtimes$ | Code of Federal Regulations; Title 47.  Radiofrequency radiation exposure evaluation: <b>Portable Devices.</b>  |                                                                                                                                                                                          | October 01, 2010 |  |  |
| $\boxtimes$ | RSS-102, Issue 5 Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) |                                                                                                                                                                                          | March, 2015      |  |  |
|             |                                                                                                                 | Measurement Methodology KDB                                                                                                                                                              |                  |  |  |
|             | KDB 865664 D01 v01r04                                                                                           | SAR measurement 100 MHz to 6 GHz                                                                                                                                                         | August 07, 2015  |  |  |
|             | KDB 865664 D02 v01r01                                                                                           | Exposure Reporting                                                                                                                                                                       | October 23, 2015 |  |  |
|             | Product KDB                                                                                                     |                                                                                                                                                                                          |                  |  |  |
|             | KDB 447498 D01 v06                                                                                              | General RF Exposure Guidance                                                                                                                                                             | October 23, 2015 |  |  |
| $\boxtimes$ | ✓ KDB 616217 D04 v01r02 SAR for Laptop and Tablets                                                              |                                                                                                                                                                                          | October 23, 2015 |  |  |
|             | Technology KDB                                                                                                  |                                                                                                                                                                                          |                  |  |  |
|             | KDB 248227 D01 v02r02                                                                                           | 802.11 Wi-Fi SAR                                                                                                                                                                         | October 23, 2015 |  |  |

Table 2: Normative references.

### 1.4 Attestation of Test Results

| Highest Reported SAR1g [W/kg] |                    |                       |                       |                         |                         |
|-------------------------------|--------------------|-----------------------|-----------------------|-------------------------|-------------------------|
|                               | Equipment Class    |                       |                       | CAD Limit               |                         |
| Exposure Conditions           | DSS<br>(Bluetooth) | DTS<br>(WLAN 2.4 GHz) | U-NII<br>(WLAN 5 GHz) | − SAR₁g Limit<br>[W/kg] |                         |
| Standalone Transmission       | 0.400*             | 0.360                 | 1.042                 | 1.6                     | PASS                    |
| Simultaneous Transmission     | 0.400*             | 0.465                 | 1.826                 | 1.6                     | PASS refer to chapter 8 |

**Notes:** Engineering test software has been used for WLAN measurements. All measured SAR results and considered configurations are shown in chapter 7. \*Estimated SAR values according to Table 22.

Table 3: Highest reported SAR results.

Prepared by:

Alexander Rahn Test Engineer Reviewed by:

Dessislava Patrishkova Quality Assurance



### 2 Exposure Criteria and Limits

#### 2.1 SAR Limits

| Human Exposure Limits                                    |                                                  |                |                                       |                |  |
|----------------------------------------------------------|--------------------------------------------------|----------------|---------------------------------------|----------------|--|
| Condition                                                | Uncontrolled Environment<br>(General Population) |                | Controlled Environment (Occupational) |                |  |
| Condition                                                | SAR Limit<br>[W/kg]                              | Mass Avg.      | SAR Limit<br>[W/kg]                   | Mass Avg.      |  |
| SAR averaged over the whole body mass                    | 0.08                                             | whole body     | 0.4                                   | whole body     |  |
| Peak spatially-averaged SAR for the head, neck & trunk   | 1.6                                              | 1g of tissue*  | 8.0                                   | 1g of tissue*  |  |
| Peak spatially-averaged SAR in the limbs                 | 4.0                                              | 10g of tissue* | 20.0                                  | 10g of tissue* |  |
| Note: *Defined as a tissue volume in the shape of a cube |                                                  |                |                                       |                |  |

Table 4: SAR limits specified in IEEE Standard C95.1-2005 and Health Canada's Safety Code 6.

In this report the comparison between the exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded.

### 2.2 Exposure Categories

### **General Public / Uncontrolled Exposure**

General population comprises individuals of all ages and of varying health status, and may include particularly susceptible groups or individuals. In many cases, members of the public are unaware of their exposure to electromagnetic fields. Moreover, individual members of the public cannot reasonably be expected to take precautions to minimize or avoid exposure.

#### **Occupational / Controlled Exposure**

The occupationally exposed population consists of adults who are generally exposed under known conditions and are trained to be aware of potential risk and to take appropriate precautions.

Table 5: RF exposure categories.

#### 2.3 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity  $\sigma$  and the mass density  $\rho$  of the biological tissue:

$$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \bigg|_{t \to 0+} \tag{1}$$

The specific absorption rate describes the initial rate of temperature rise  $\partial T/\partial t$  as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, E and E have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.



### 3 The Measurement System

DASY is an abbreviation of "Dosimetric Assessment System" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 2. Additionally, Fig: 3 shows the equipment, similar to the installations in other laboratories.

- Fully compliant with all current measurement standards as stated in Fig. 4
- High precision robot with controller
- Measurement server (for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and filtering)
- Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- · Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

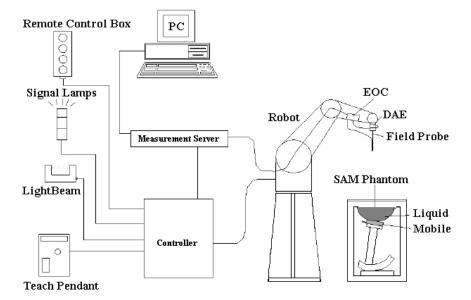



Fig. 2: The DASY4 measurement system.





Fig. 3: The measurement set-up with a DASY system and phantoms containing tissue simulating liquid.

The DUT operating at the maximum power level is placed by a non-metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity  $\sigma$  and the mass density  $\rho$  of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR afterwards the averaged SAR is measured in a second scan within the shape of a cube.

#### 3.1 Phantoms

| TWIN SAM PHANTOM V4.0 |                                                                                                                                                                                                                                                                                                                                    |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| . ,                   | Specific Anthropomorphic Mannequin defined in IEEE 1528 and IEC 62209-1 and delivered by Schmid & Partner Engineering AG. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region.  The details and the Certificate of conformity can be found in Fig. 5. |  |  |
| Shell Thickness       | 2 ± 0.2 mm (6 ± 0.2 mm at ear point)                                                                                                                                                                                                                                                                                               |  |  |
| Dimensions            | Length: 1000 mm; Width: 500 mm<br>Height: adjustable feet                                                                                                                                                                                                                                                                          |  |  |
| Filling Volume        | approx. 25 liters                                                                                                                                                                                                                                                                                                                  |  |  |

| ELI PHANTOM V4.0 |                                                                                                                                                                                               |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz.  The details and the Certificate of conformity can be found in Fig. 8 |  |  |
| Shell Thickness  | $2.0 \pm 0.2 \text{ mm (bottom plate)}$                                                                                                                                                       |  |  |
| Dimensions       | Major axis: 600 mm<br>Minor axis: 400 mm                                                                                                                                                      |  |  |
| Filling Volume   | approx. 30 liters                                                                                                                                                                             |  |  |



### 3.2 E-Field-Probes

For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC and IEEE 1528-2013 recommendations annually by Schmid & Partner Engineering AG.

| ET3DV6R           |                                                                                                                                                                                                                            |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Construction      | Symmetrical design with triangular core  Built-in optical fiber for surface detection system (ET3DV6 only)  Built-in shielding against static charges  PEEK enclosure material (resistant to organic solvents, e.g., DGBE) |  |  |
| Dimensions        | Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm                                                                                                   |  |  |
| Frequency         | 10 MHz to 2.3 GHz<br>Linearity: ± 0.2 dB (30 MHz to 2.3 GHz)                                                                                                                                                               |  |  |
| Directivity       | Axial isotropy: ± 0.2 dB in TSL (rotation around probe axis)  Spherical isotropy: ± 0.4 dB in TSL (rotation normal to probe axis)                                                                                          |  |  |
| Dynamic Range     | 5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB                                                                                                                                                                                  |  |  |
| Calibration Range | 450 MHz / 750 MHz / 835 MHz / 1750 MHz / 1900 MHz for head and body simulating liquid                                                                                                                                      |  |  |

| EX3DV4            |                                                                                                                                                       |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Construction      | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) |  |  |
| Dimensions        | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm                        |  |  |
| Frequency         | 10 MHz to > 6 GHz<br>Linearity: ± 0.2 dB (30 MHz to 6 GHz)                                                                                            |  |  |
| Directivity       | Axial isotropy: ± 0.3 dB in TSL (rotation around probe axis)  Spherical isotropy: ± 0.5 dB in TSL (rotation normal to probe axis)                     |  |  |
| Dynamic Range     | 10 μW/g to > 100 mW/g<br>Linearity: $\pm$ 0.2 dB (noise: typically < 1 μW/g)                                                                          |  |  |
| Calibration Range | 2450 MHz / 2600 MHz / 5250 MHz / 5600 MHz / 5800 MHz for head and body simulating liquid                                                              |  |  |



### 4 Measurement Procedure

#### 4.1 General Requirement

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity. All tests have been conducted according the latest version of all relevant KDBs.

#### 4.2 Measurement Procedure

The following steps are used for each test position:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with resolution settings for area scan and zoom scan according KDB 865664 D01 as shown in Table 6.
- The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].
- Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than  $\pm$  0.21dB.

|                                                                               |                                                                               |                                                                                                                                                                                                                                                                        | ≤ 3 GHz                                                        | ≥ 3 GHz                                                       |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|
|                                                                               | ance fro                                                                      | m closest measurement point ensors) to phantom surface                                                                                                                                                                                                                 | 5 ± 1 mm                                                       | ½·δ·ln(2) ± 0.5 mm                                            |
| Maximum probe at the measurement                                              | •                                                                             | probe axis to phantom surface normal                                                                                                                                                                                                                                   | 30° ± 1° 20° ± 1°                                              |                                                               |
|                                                                               |                                                                               |                                                                                                                                                                                                                                                                        | ≤ 2 GHz: ≤ 15 mm<br>2 - 3 GHz: ≤ 12 mm                         | 3 - 4 GHz: ≤ 12 mm<br>4 - 6 GHz: ≤ 10 mm                      |
| Maximum area scan spatial resolution: Δx <sub>Area</sub> , Δy <sub>Area</sub> |                                                                               | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                                |                                                               |
| Maximum zoom s                                                                | Maximum zoom scan spatial resolution: ΔX <sub>Zoom</sub> , ΔY <sub>Zoom</sub> |                                                                                                                                                                                                                                                                        | ≤ 2 GHz: ≤ 8 mm<br>2 - 3 GHz: ≤ 5 mm*                          | 3 - 4 GHz: ≤ 5 mm*<br>4 - 6 GHz: ≤ 4 mm*                      |
| Maximum zoom scan spatial Uniform grid: ΔZ zoom(n)                            |                                                                               | ≤ 5 mm                                                                                                                                                                                                                                                                 | 3 - 4 GHz: ≤ 4 mm<br>4 - 5 GHz: ≤ 3 mm<br>5 - 6 GHz: ≤ 2 mm    |                                                               |
| resolution,<br>normal to<br>phantom<br>surface                                | graded                                                                        |                                                                                                                                                                                                                                                                        | ≤ 4 mm                                                         | 3 - 4 GHz: ≤ 3 mm<br>4 - 5 GHz: ≤ 2.5 mm<br>5 - 6 GHz: ≤ 2 mm |
| Sundoo                                                                        | grid $\Delta Z_{Zoom}(n>1)$ : between subsequent points                       |                                                                                                                                                                                                                                                                        | ≤ 1.5· ΔZ <sub>Zoom</sub> (n-1)                                |                                                               |
| Minimum zoom scan volume X, y, z                                              |                                                                               | ≥ 30 mm                                                                                                                                                                                                                                                                | 3 - 4 GHz: ≥ 28 mm<br>4 - 5 GHz: ≥ 25 mm<br>5 - 6 GHz: ≥ 22 mm |                                                               |

Note:  $\delta$  is the penetration depth of a plane-wave at normal incidence to the tissue medium: see EEE 1528-2013 for details. \* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is  $\leq$  1.4 W/kg,  $\leq$  8 mm,  $\leq$  7 mm and  $\leq$  5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz

Table 6: Parameters for SAR scan procedures.



#### 4.3 Additional Information for IEEE 802.11 (WiFi) Transmitters

For both DSSS and OFDM wireless modes an Initial Test Position must be established for each applicable exposure configuration using either:

- Design implementation defined by the manufacturer, or
- Investigative results by the test lab based on:
  - o Exclusions based on the distance from the antenna to the surface, or
  - Highest measured SAR from the area-scan-only measurements on all applicable test positions at the Initial Test Configuration, if found to require SAR tests.

Then, the initial test position procedure defines the required complete SAR scan measurements on each exposure configuration as following:

- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurements is not required for the remaining test positions in that configuration as well as 802.11 transmission mode combinations within the frequency or aggregated band.
- When the reported SAR of the initial test position is > 0.4 W/kg, further SAR measurements is required in the initial test position or next closest/smallest test separation distance based on manufacturer justification, on the following highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
- When the reported SAR for all initial and subsequent test positions is > 0.8 W/kg, further SAR measurements is required on these positions on the subsequent next highest measured output power channels, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.

For OFDM transmission configurations in 2.4 GHz and 5 GHz bands, it is important to determine SAR Initial Test Configuration for each stand alone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units. The procedure is as following:

- Highest output power channel is chosen; if there are channels with same maximum output power
  then the closest to the mid-band frequency is preferred. If there are more than one channel with
  same maximum output power and same distance to the mid-band frequency, then the channel with
  the higher frequency is preferred.
- When SAR measurement is required for a subsequent test configuration and the channel bandwidth
  is smaller than that in the initial test configuration, all channels in the subsequent test configuration
  that overlap with the larger bandwidth channel tested in the initial test configuration should be used
  to determine the highest maximum output power channel in the subsequent test configuration.

Along with the initial test position reduction guidelines, the following procedures are also applied to SAR measurement requirements when multiple OFDM configurations are supported:

When the reported SAR of the initial test configuration with the highest output power channel is > 0.8
 W/kg, further SAR measurements is required for next highest output power channel in the initial test configuration, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.





- When the reported SAR of the subsequent test configuration with the highest output power channel is > 1.2 W/kg, further SAR measurements is required for next highest output power channel in this test configuration, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.
- When the reported SAR of the subsequent test configuration is > 1.2 W/kg, further SAR measurements for the following subsequent test configurations are required.

#### 4.4 Measurement Variability

According KDB 865664 repeated measurements are required only when the measured SAR is  $\geq$  0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with  $\leq$  20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥
   1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.



# 5 System Verification and Test Conditions

## 5.1 Date of Testing

| Date of Testing  |                    |                      |                         |  |  |  |  |
|------------------|--------------------|----------------------|-------------------------|--|--|--|--|
| Band             | Frequency [MHz]    | Date of System Check | Date of SAR Measurement |  |  |  |  |
| IEEE 802.11 b/g  | 2450               | July 04, 2019        | July 04 - 05, 2019      |  |  |  |  |
| IEEE 802.11 a/ac | 5250 / 5600 / 5800 | July 23, 2019        | July 23 - 24, 2019      |  |  |  |  |

Table 7: Date of testing.

## 5.2 Environment Conditions

| Environment Conditions                      |                                               |                                      |  |  |  |  |
|---------------------------------------------|-----------------------------------------------|--------------------------------------|--|--|--|--|
| Ambient Temperature[°C]                     | Liquid Temperature [°C]                       | Humidity [%]                         |  |  |  |  |
| 22.0 ± 2                                    | $\textbf{22.0} \pm \textbf{2}$                | 40.0 ± 10                            |  |  |  |  |
| Notes: To comply with the required noise le | vel (less than 12 mW/kg) periodically measure | ements without a DUT were conducted. |  |  |  |  |

Table 8: Environment Conditions.

## 5.3 Tissue Simulating Liquid Recipes

|             |              |       | Tis      | ssue Simulat | ing Liquid |           |       |              |  |  |
|-------------|--------------|-------|----------|--------------|------------|-----------|-------|--------------|--|--|
| Fre         | quency Range | Water | Tween 20 | Tween 80     | Salt       | Preventol | DGME  | Triton X/100 |  |  |
|             | [MHz]        | [%]   | [%]      | [%]          | [%]        | [%]       | [%]   | [%]          |  |  |
| Head Tissue |              |       |          |              |            |           |       |              |  |  |
|             | 300          | 50.4  | 47.3     | -            | 2.2        | 0.1       | -     | -            |  |  |
|             | 450          | 50.8  | 47.5     | -            | 1.6        | 0.1       | -     | -            |  |  |
|             | 700 - 1000   | 52.8  | 46.0     | -            | 1.1        | 0.1       | -     | -            |  |  |
|             | 1600 - 1800  | 55.4  | 44.1     | -            | 0.4        | 0.1       | -     | -            |  |  |
|             | 1850 - 1980  | 55.2  | 44.5     | -            | 0.2        | 0.1       | -     | -            |  |  |
|             | 2000 - 2700  | 55.7  | 45.2     | -            | -          | 0.1       | -     | -            |  |  |
|             | 5000 - 6000  | 65.5  | -        | -            | -          | -         | 17.25 | 17.25        |  |  |
|             |              |       |          | Body Tis     | sue        |           |       |              |  |  |
|             | 300          | 70.3  | 28.6     | -            | 1.0        | 0.1       | -     | -            |  |  |
|             | 450          | 71.0  | 28.0     | -            | 0.9        | 0.1       | -     | -            |  |  |
|             | 700 - 1000   | 71.2  | 28.0     | -            | 0.7        | 0.1       | -     | -            |  |  |
|             | 1600 - 1800  | 71.4  | 28.0     | -            | 0.5        | 0.1       | -     | -            |  |  |
|             | 1850 - 1980  | 71.5  | 28.0     | -            | 0.4        | 0.1       | -     | -            |  |  |
| $\boxtimes$ | 2000 - 2700  | 71.6  | 28.0     | -            | 0.3        | 0.1       | -     | -            |  |  |
| $\boxtimes$ | 5000 - 6000  | 79.9  | -        | 20.0         | -          | 0.1       | -     | -            |  |  |

Table 9: Recipes of the tissue simulating liquid.



### 5.4 Tissue Simulating Liquid Parameters

For the measurement of the following parameters the Speag DAK-3.5 dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure.

Recommended values for the dielectric parameters of the tissue simulating liquids are given in IEEE 1528 and FCC published RF Exposure KDB Procedures. All tests were carried out using liquids with dielectric parameters within +/- 5% of the recommended values. The dielectric properties of the tissue simulating liquid have been measured within 24 h before SAR testing. The depth of the tissue simulant was at least 15.0 cm for all system check and device tests, measured from the ear reference point in case of the SAM phantom and from the inner surface of the flat phantom.

|          |                  | Tiss                 | sue Simulatii | ng Liquid   | S         |              |           |           |
|----------|------------------|----------------------|---------------|-------------|-----------|--------------|-----------|-----------|
|          | Ambient / Liquid | Temperature(C): 22.0 | ) ± 2         |             |           | Humidity     | (%): 40.0 | ± 10      |
|          | _                |                      | P             | ermittivity |           | Conductivity |           |           |
| Band     | Frequency        | Channel              | Measured      | Target      | Delta     | Measured     | Target    | Delta     |
|          | [MHz]            |                      | ε'            | ε'          | +/- 5 [%] | σ [S/m]      | σ [S/m]   | +/- 5 [%] |
|          | 2450             | System Check         | 51.5          | 52.7        | -2.3      | 2.00         | 1.95      | 2.6       |
| WLAN 2.4 | 2412             | 1                    | 51.6          | 52.8        | -2.1      | 1.95         | 1.91      | 2.2       |
| GHz      | 2437             | 6                    | 51.5          | 52.7        | -2.2      | 1.98         | 1.94      | 2.4       |
|          | 2462             | 11                   | 51.5          | 52.7        | -2.3      | 2.01         | 1.96      | 2.5       |
|          | 5250.0           | System Check         | 49.2          | 48.9        | 0.4       | 5.39         | 5.36      | 0.5       |
|          | 5180.0           | 36                   | 49.3          | 49.0        | 0.6       | 5.29         | 5.28      | 0.2       |
|          | 5240.0           | 48                   | 49.3          | 49.0        | 0.6       | 5.32         | 5.30      | 0.4       |
|          | 5260.0           | 52                   | 49.1          | 48.9        | 0.4       | 5.40         | 5.37      | 0.7       |
|          | 5320.0           | 64                   | 49.0          | 48.9        | 0.3       | 5.51         | 5.44      | 1.2       |
|          | 5600.0           | System Check         | 48.3          | 48.5        | -0.3      | 5.93         | 5.77      | 2.8       |
|          | 5500.0           | 100                  | 48.6          | 48.6        | -0.1      | 5.76         | 5.65      | 2.0       |
|          | 5520.0           | 104                  | 48.5          | 48.6        | -0.2      | 5.80         | 5.67      | 2.2       |
|          | 5580.0           | 116                  | 48.3          | 48.5        | -0.3      | 5.90         | 5.74      | 2.7       |
|          | 5600.0           | 120                  | 48.3          | 48.5        | -0.3      | 5.93         | 5.77      | 2.8       |
| 02       | 5620.0           | 124                  | 48.3          | 48.4        | -0.4      | 5.96         | 5.79      | 2.9       |
|          | 5680.0           | 136                  | 48.1          | 48.4        | -0.6      | 6.05         | 5.86      | 3.3       |
|          | 5700.0           | 140                  | 48.0          | 48.3        | -0.6      | 6.09         | 5.88      | 3.5       |
|          | 5800.0           | System Check         | 47.8          | 48.2        | -0.8      | 6.24         | 6.00      | 4.0       |
|          | 5745.0           | 149                  | 48.0          | 48.3        | -0.7      | 6.16         | 5.94      | 3.7       |
|          | 5765.0           | 153                  | 47.9          | 48.2        | -0.7      | 6.19         | 5.96      | 3.9       |
|          | 5785.0           | 157                  | 47.9          | 48.2        | -0.8      | 6.22         | 5.98      | 4.0       |
|          | 5805.0           | 161                  | 47.8          | 48.2        | -0.8      | 6.25         | 6.01      | 4.1       |
|          | 5825.0           | 165                  | 47.7          | 48.2        | -0.9      | 6.28         | 6.03      | 4.2       |

Table 10: Parameters of the tissue simulating liquid.



## 5.5 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kit. The input power of the dipole antenna was 250 mW (CW) and it was placed under the flat part of the SAM phantom. The target and measured results are listed in the Table 11 and shown in Appendix C - System Verification Plots. The target values were adopted from the calibration certificates found also in the appendix.

| System Check Results |               |        |       |        |           |            |           |       |       |             |
|----------------------|---------------|--------|-------|--------|-----------|------------|-----------|-------|-------|-------------|
|                      |               |        |       | SAR V  | alues wit | h Body TSI | _ [W/kg]  |       |       |             |
| Frequency            | Dinala #SN    |        | Meas  | sured  |           | Tar        | get       | De    | lta   |             |
| [MHz]                | Dipole #SN    | with 2 | 50 mW | scaled | to 1 W    | normaliz   | ed to 1 W | +/- 1 | 0 [%] | Date        |
|                      |               | 1g     | 10g   | 1g     | 10g       | 1g         | 10g       | 1g    | 10g   |             |
| 2450                 | D2450V2 #709  | 13.60  | 6.31  | 54.40  | 25.24     | 51.20      | 24.00     | 6.25  | 5.17  | July 17, 19 |
| 5250                 | D5GHzV2 #1028 | 17.90  | 5.01  | 71.60  | 20.04     | 74.90      | 21.10     | -4.41 | -5.02 | July 31, 19 |
| 5600                 | D5GHzV2 #1028 | 19.20  | 5.35  | 76.80  | 21.40     | 79.10      | 22.20     | -2.91 | -3.60 | July 31, 19 |
| 5800                 | D5GHzV2 #1028 | 17.90  | 4.96  | 71.60  | 19.84     | 76.40      | 21.30     | -6.28 | -6.85 | July 31, 19 |

Table 11: Dipole target and measured results.

#### **6 Measurement Conditions**

### 6.1 SAR Test Conditions

| Test Conditions                      |                                                                       |              |                   |  |  |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------|--------------|-------------------|--|--|--|--|--|
| Band                                 | TX Range [MHz]                                                        | Crest Factor | Phantom           |  |  |  |  |  |
| IEEE 802.11 b/g                      | 2412 - 2462                                                           | 1            | SAM               |  |  |  |  |  |
| IEEE 802.11 a/ac                     | 5180 - 5825                                                           | 1            | Twin Phantom V4.0 |  |  |  |  |  |
| Notes: Engineering test software has | Notes: Engineering test software has been used for WLAN measurements. |              |                   |  |  |  |  |  |

Table 12: Used frequency range and crest factors during the test.



## 6.2 Tune-Up Information

## **6.2.1 Maximum Transmitting Output Power Values**

|            | Output Power Tune-Up Information for Bluetooth |                 |           |                                   |               |  |  |  |
|------------|------------------------------------------------|-----------------|-----------|-----------------------------------|---------------|--|--|--|
| Band       | Mode                                           | Frequency Range | Channel - | Averaged Output Power (RMS) [dBm] |               |  |  |  |
| Ballu      | Wode                                           | [MHz]           |           | Nominal Target                    | Tune-Up Limit |  |  |  |
|            |                                                | 2402            | 0         | 5.0                               | 6.0           |  |  |  |
|            | Classic + EDR                                  | 2441            | 39        | 5.0                               | Tune-Up Limit |  |  |  |
| Bluetooth  |                                                | 2480            | 78        | 5.0                               | 6.0           |  |  |  |
| Biuetootii |                                                | 2402            | 0         | 0.0                               | 1.0           |  |  |  |
|            | Low Energy                                     | 2440            | 19        | 0.0                               | 1.0           |  |  |  |
|            |                                                | 2480            | 39        | 0.0                               | 1.0           |  |  |  |
| Notes:     | Notes:                                         |                 |           |                                   |               |  |  |  |

Table 13: Maximum transmitting output power for Bluetooth declared by the manufacturer.

| Dand /          | Mada            | Frequency Range Channel |                 | Averaged Output Power (RMS) [dB |               |  |
|-----------------|-----------------|-------------------------|-----------------|---------------------------------|---------------|--|
| Band / Mode     |                 | [MHz]                   | Channel         | Nominal Target                  | Tune-Up Limit |  |
|                 |                 | 2412                    | 1               | 19.0                            | 19.5          |  |
|                 |                 | 2437                    | 6               | 20.0                            | 20.5          |  |
| 2.4 GHz<br>DSSS | 802.11b         | 2462                    | 11              | 19.0                            | 19.5          |  |
| 2000            |                 | 2467                    | 12              | /                               | /             |  |
|                 |                 | 2472                    | 13              | /                               | /             |  |
|                 |                 | 2412                    | 1               | 17.0                            | 17.5          |  |
|                 |                 | 2437                    | 6               | 20.0                            | 20.5          |  |
|                 | 802.11g         | 2462                    | 11              | 17.0                            | 17.5          |  |
|                 |                 | 2467                    | 12              | /                               | /             |  |
|                 |                 | 2472                    | 13              | /                               | /             |  |
|                 |                 | 2412                    | 1               | 16.5                            | 17.0          |  |
| 2.4 GHz         |                 | 2437                    | 6               | 20.0                            | 20.5          |  |
| OFDM            | 802.11n<br>HT20 | 2462                    | 11              | 16.0                            | 16.5          |  |
|                 |                 | 2467                    | 12              | /                               | /             |  |
|                 |                 | 2472                    | 13              | /                               | /             |  |
|                 |                 | 2422                    | 3               | 14.0                            | 14.5          |  |
|                 | 802.11n         | 2437                    | 6               | 19.0                            | 19.5          |  |
|                 | HT40            | 2452                    | 9               | 11.0                            | 11.5          |  |
|                 |                 | 2457                    | 10              | 11.0                            | 11.5          |  |
|                 | Product hard    | ware has the capability | to operate on c | hannel 12 and 13.               |               |  |

Table 14: Maximum transmitting output power for 2.4 GHz WLAN declared by the manufacturer.



|                             | Outpu             | ut Power Tune-Uբ | Information | on for WLAN 5.2 GHz |                   |
|-----------------------------|-------------------|------------------|-------------|---------------------|-------------------|
| Band / Mo                   | da                | Frequency Range  | Channel     | Averaged Output I   | Power (RMS) [dBm] |
| Band / Mid                  | oae               | [MHz]            | Channel     | Nominal Target      | Tune-Up Limit     |
|                             |                   | 5180             | 36          | 13.5                | 14.0              |
|                             | 802.11a           | 5200             | 40          | 15.5                | 16.0              |
|                             | 002.11a           | 5220             | 44          | 15.5                | 16.0              |
|                             |                   | 5240             | 48          | 15.0                | 15.5              |
|                             |                   | 5180             | 36          | 14.0                | 14.5              |
| 5.2 GHz<br>Sub-1 / U-NII-1  | 802.11ac          | 5200             | 40          | 15.5                | 16.0              |
| Sub-1 / U-NII-1             | VHT20             | 5220             | 44          | 15.5                | 16.0              |
|                             |                   | 5240             | 48          | 15.0                | 15.5              |
|                             | 802.11ac<br>VHT40 | 5190             | 38          | 10.5                | 11.0              |
|                             |                   | 5230             | 46          | 15.5                | 16.0              |
|                             | 802.11ac<br>VHT80 | 5210             | 42          | 10.5                | 11.0              |
|                             |                   | 5260             | 52          | 15.0                | 15.5              |
|                             | 802.11a           | 5280             | 56          | 13.5                | 14.0              |
|                             | 002.11a           | 5300             | 60          | 15.5                | 16.0              |
|                             |                   | 5320             | 64          | 15.0                | 15.5              |
|                             |                   | 5260             | 52          | 15.0                | 15.5              |
| 5.3 GHz<br>Sub-2 / U-NII-2A | 802.11ac          | 5280             | 56          | 13.5                | 14.0              |
| Sub-2 / U-INII-2A           | VHT20             | 5300             | 60          | 15.5                | 16.0              |
|                             |                   | 5320             | 64          | 15.0                | 15.5              |
|                             | 802.11ac          | 5270             | 54          | 15.0                | 15.5              |
|                             | VHT40             | 5310             | 62          | 13.0                | 13.5              |
|                             | 802.11ac<br>VHT80 | 5290             | 58          | 12.5                | 13.0              |
| Notes:                      |                   |                  |             |                     |                   |

Table 15: Maximum transmitting output power for 5.2 GHz WLAN declared by the manufacturer

| Band / Mo                          | do                | Frequency Range | Channel                                                                                                                                                                                                                                                             | Averaged Output P | ower (RMS) [dBm] |
|------------------------------------|-------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|
| Band / Mc                          | oue               | [MHz]           | Channel                                                                                                                                                                                                                                                             | Nominal Target    | Tune-Up Limit    |
|                                    |                   | 5500            | 100                                                                                                                                                                                                                                                                 | 13.5              | 14.0             |
|                                    |                   | 5520            | 104                                                                                                                                                                                                                                                                 | 12.0              | 12.5             |
|                                    |                   | 5540            | 108                                                                                                                                                                                                                                                                 | 12.5              | 13.0             |
|                                    |                   | 5560            | 112                                                                                                                                                                                                                                                                 | 12.5              | 13.0             |
|                                    |                   | 5580            | 116                                                                                                                                                                                                                                                                 | 13.5              | 14.0             |
|                                    | 802.11a           | 5600            | 120                                                                                                                                                                                                                                                                 | 15.5              | 16.0             |
|                                    | 002.11a           | 5620            | 124                                                                                                                                                                                                                                                                 | 14.5              | 14.5             |
|                                    |                   | 5640            | 128                                                                                                                                                                                                                                                                 | 14.5              | 14.5             |
|                                    |                   | 5660            | 132                                                                                                                                                                                                                                                                 | 15.0              | 15.5             |
|                                    |                   | 5680            | 136                                                                                                                                                                                                                                                                 | 15.0              | 15.5             |
|                                    |                   | 5700            | 140                                                                                                                                                                                                                                                                 | 13.5              | 14.5             |
|                                    |                   | 5720            | 144                                                                                                                                                                                                                                                                 | 9.5               | 10.0             |
|                                    |                   | 5500            | 100                                                                                                                                                                                                                                                                 | 14.0              | 14.5             |
|                                    |                   | 5520            | 104                                                                                                                                                                                                                                                                 | 12.0              | 12.5             |
|                                    |                   | 5540            | 108                                                                                                                                                                                                                                                                 | 12.5              | 13.0             |
| <b>5</b> 5 011                     |                   | 5560            | 112                                                                                                                                                                                                                                                                 | 12.5              | 13.0             |
| <b>5</b> .5 GHz<br>ub-3 / U-NII-2C |                   | 5580            | 116                                                                                                                                                                                                                                                                 | 14.5              | 15.0             |
|                                    | 802.11ac          | 5600            | 5540     108       5560     112       5580     116       5600     120       5620     124       5640     128       5660     132       5680     136       5700     140       5720     144       5500     100       5540     108       5560     112       5580     116 | 15.5              | 16.0             |
|                                    | VHT20             | 5620            | 124                                                                                                                                                                                                                                                                 | 14.5              | 14.5             |
|                                    |                   | 5640            | 128                                                                                                                                                                                                                                                                 | 14.5              | 14.5             |
|                                    |                   | 5660            | 132                                                                                                                                                                                                                                                                 | 14.5              | 14.5             |
|                                    |                   | 5680            | 136                                                                                                                                                                                                                                                                 | 14.5              | 14.5             |
|                                    |                   | 5700            | 140                                                                                                                                                                                                                                                                 | 13.5              | 14.0             |
|                                    |                   | 5720            | 144                                                                                                                                                                                                                                                                 | 9.5               | 10.0             |
|                                    |                   | 5510            | 102                                                                                                                                                                                                                                                                 | 10.5              | 11.0             |
|                                    |                   | 5550            | 110                                                                                                                                                                                                                                                                 | 11.5              | 12.0             |
|                                    | 802.11ac          | 5590            | 118                                                                                                                                                                                                                                                                 | 14.5              | 15.0             |
|                                    | VHT40             | 5630            | 126                                                                                                                                                                                                                                                                 | 14.5              | 15.0             |
|                                    |                   | 5670            | 134                                                                                                                                                                                                                                                                 | 13.5              | 14.0             |
|                                    |                   | 5710            | 142                                                                                                                                                                                                                                                                 | 10.0              | 10.5             |
|                                    | 000 44            | 5530            | 106                                                                                                                                                                                                                                                                 | 12.5              | 13.0             |
|                                    | 802.11ac<br>VHT80 | 5610            | 122                                                                                                                                                                                                                                                                 | 14.0              | 14.5             |
|                                    |                   | 5690            | 138                                                                                                                                                                                                                                                                 | 11.0              | 11.5             |

Table 16: Maximum transmitting output power for 5.5 GHz WLAN declared by the manufacturer

SAR\_Report\_FCC\_ISED\_Body\_v2.1



|                 | Outpu             | ıt Power Tune-Uբ | Information | on for WLAN 5.8 GHz |                   |  |  |  |
|-----------------|-------------------|------------------|-------------|---------------------|-------------------|--|--|--|
| Band / Mo       | .do               | Frequency Range  | Channel     | Averaged Output F   | Power (RMS) [dBm] |  |  |  |
| Band / Wid      | Balla / Mode      |                  | Channel     | Nominal Target      | Tune-Up Limit     |  |  |  |
|                 |                   | 5745             | 149         | 13.5                | 14.5              |  |  |  |
|                 |                   | 5765             | 153         | 15.5                | 16.0              |  |  |  |
|                 | 802.11a           | 5785             | 157         | 15.5                | 16.0              |  |  |  |
|                 |                   | 5805             | 161         | 15.5                | 16.0              |  |  |  |
|                 |                   | 5825             | 165         | 15                  | 15.5              |  |  |  |
|                 |                   | 5745             | 149         | 12.5                | 13.0              |  |  |  |
| 5.8 GHz         |                   | 5765             | 153         | 15.5                | 16.0              |  |  |  |
| Sub-4 / U-NII-3 | 802.11ac<br>VHT20 | 5785             | 157         | 15.5                | 16.0              |  |  |  |
|                 |                   | 5805             | 161         | 15                  | 15.5              |  |  |  |
|                 |                   | 5825             | 165         | 14.5                | 15.0              |  |  |  |
|                 | 802.11ac          | 5755             | 151         | 10.0                | 10.5              |  |  |  |
|                 | VHT40             | 5795             | 159         | 15.0                | 15.5              |  |  |  |
|                 | 802.11ac<br>VHT80 | 5775             | 155         | 10.5                | 11.0              |  |  |  |
| Notes:          |                   |                  |             |                     |                   |  |  |  |

Table 17: Maximum transmitting output power for 5.8 GHz WLAN declared by the manufacturer.

## 6.3 Measured Output Power

## 6.3.1 Conducted Output Power for WLAN 2.4 GHz

|          | M                                                                                                                                                                                                                                                                                                              | easured Avg. C    | utput Po    | wer for 2.4 GHz [c      | IBm]  |               |      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------------------------|-------|---------------|------|
| Band     | Mode                                                                                                                                                                                                                                                                                                           | Fraguenov         |             | ANT 1                   |       | ANT 2         |      |
| Danu     | Mode                                                                                                                                                                                                                                                                                                           | Frequency         | СН          | Measured Avg.           | Note  | Measured Avg. | Note |
| [GHz]    | IEEE 802.11                                                                                                                                                                                                                                                                                                    | [MHz]             |             | Power                   | 11010 | Power         | Note |
|          |                                                                                                                                                                                                                                                                                                                | 2412              | 1           | 18.50                   |       | 17.50         |      |
| 2.4 DSSS | b                                                                                                                                                                                                                                                                                                              | 2437              | 6           | 19.10                   | 1     | 19.00         | 1    |
|          | , D333                                                                                                                                                                                                                                                                                                         | 2462              | 11          | 18.90                   |       | 18.20         |      |
| 2.4 OFDM | g/n                                                                                                                                                                                                                                                                                                            |                   |             |                         | 2     |               | 2    |
| Note 1:  | Note 1: SAR Test reduction according to KDB 248227, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11 a/g/n/ac mode is used for SAR measurement. |                   |             |                         |       |               |      |
| Note 2:  | SAR test reduction acc<br>ratio of OFDM to DSSS<br>D01 SAR test exclusion                                                                                                                                                                                                                                      | specified maximum | output powe | er and the adjusted SAF |       |               |      |

Table 18: Conducted output power of DUT for WLAN 2.4 GHz.



|                 |                                                                                                                                                                                                                                                                                                        | Me          | easured Avg. O | utput Po | wer for 5.2 GHz [ | dBm] |               |      |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|----------|-------------------|------|---------------|------|--|--|
| Band            |                                                                                                                                                                                                                                                                                                        | Mode        | Frequency      |          | ANT 1             |      | ANT 2         |      |  |  |
| Ballu           |                                                                                                                                                                                                                                                                                                        | Wode        | Frequency      | СН       | Measured Avg.     | Note | Measured Avg. | Note |  |  |
| [GHz]           | IEE                                                                                                                                                                                                                                                                                                    | EE 802.11   | [MHz]          |          | Power             | Note | Power         | Note |  |  |
|                 |                                                                                                                                                                                                                                                                                                        |             | 5180           | 36       | 12.70             |      | 12.90         |      |  |  |
|                 |                                                                                                                                                                                                                                                                                                        | а           | 5200           | 40       | 14.70             | 1    | 14.70         | ] ,  |  |  |
| 5.2<br>U-NII-1  |                                                                                                                                                                                                                                                                                                        | a           | 5220           | 44       | 14.50             | ] '  | 14.50         | ] '  |  |  |
|                 |                                                                                                                                                                                                                                                                                                        |             | 5240           | 48       | 14.00             |      | 13.90         |      |  |  |
|                 | ac                                                                                                                                                                                                                                                                                                     | VHT20/40/80 |                |          |                   | 2    |               | 2    |  |  |
|                 | •                                                                                                                                                                                                                                                                                                      |             | 5260           | 52       | 14.40             |      | 13.90         |      |  |  |
|                 |                                                                                                                                                                                                                                                                                                        |             | 5280           | 56       | 10.80             | 1    | 10.30         | 1    |  |  |
| 5.3<br>U-NII-2A |                                                                                                                                                                                                                                                                                                        | a           | 5300           | 60       | 14.20             | ] '  | 14.50         |      |  |  |
|                 |                                                                                                                                                                                                                                                                                                        |             | 5320           | 64       | 12.90             |      | 12.30         |      |  |  |
|                 | ac                                                                                                                                                                                                                                                                                                     | VHT20/40/80 |                |          |                   | 2    |               | 2    |  |  |
| Note 1:         | SAR Test reduction according to KDB 248227, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11 a/g/n/ac mode is used for SAR measurement. |             |                |          |                   |      |               |      |  |  |
| Note 2:         | SAR test reduction according to KDB 248227, Sec. 5.2.2., when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg or when KDB 447498 D01 SAR test exclusion applies to the OFDM configuration.                |             |                |          |                   |      |               |      |  |  |

Table 19: Conducted output power of DUT for WLAN 5.2 GHz.

|          | N                                                                                                                                                                                                                                                                                                      | leasured Avg. | Output Po | ower for 5.5 GHz | [dBm] |               |          |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------------------|-------|---------------|----------|--|--|--|
| Band     | Mode                                                                                                                                                                                                                                                                                                   | Frequency     |           | ANT 1            |       | ANT 2         |          |  |  |  |
| Danu     | Mode                                                                                                                                                                                                                                                                                                   | rrequency     | СН        | Measured Avg.    | Note  | Measured Avg. | Note     |  |  |  |
| [GHz]    | IEEE 802.11                                                                                                                                                                                                                                                                                            | [MHz]         |           | Power            | 14016 | Power         | Note     |  |  |  |
|          | a                                                                                                                                                                                                                                                                                                      | 5500          | 100       | 13.40            |       | 12.60         |          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5520          | 104       | 11.40            |       | 9.90          |          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5540          | 108       | 11.80            |       | 10.70         | 1        |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5560          | 112       | 11.10            |       | 10.40         |          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5580          | 116       | 12.70            |       | 11.50         | -<br>- 1 |  |  |  |
| 5.5      |                                                                                                                                                                                                                                                                                                        | 5600          | 120       | 14.50            | 1     | 14.00         |          |  |  |  |
| U-NII-2C |                                                                                                                                                                                                                                                                                                        | 5620          | 124       | 14.00            |       | 13.30         |          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5640          | 128       | 14.20            |       | 13.90         |          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5660          | 132       | 15.50            |       | 14.60         |          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5680          | 136       | 15.50            |       | 14.80         |          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5700          | 140       | 13.70            |       | 13.00         |          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                        | 5720          | 144       | 9.10             |       | 9.10          |          |  |  |  |
| Note 1:  | SAR Test reduction according to KDB 248227, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11 a/g/n/ac mode is used for SAR measurement. |               |           |                  |       |               |          |  |  |  |
| Note 2:  | SAR test reduction according to KDB 248227, Sec. 5.2.2., when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg or when KDB 447498 D01 SAR test exclusion applies to the OFDM configuration.                |               |           |                  |       |               |          |  |  |  |

Table 20: Conducted output power of DUT for WLAN 5.5 GHz.

| ( |   | ١ | , |
|---|---|---|---|
|   | , |   | 2 |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
| , |   |   |   |
| ŀ |   |   |   |
| , | , |   | , |
| ŀ |   |   |   |
| L |   | Ļ |   |
| ( | j |   |   |
| - |   |   |   |
| , |   |   | , |
|   |   |   |   |
|   |   |   | , |
|   |   | L |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   | , |
|   |   |   |   |
|   |   | 1 |   |
|   |   | ۲ | , |

|         |            | М                                                                                                                                                                                                                                                                                                      | easured Avg. C | Output Po | wer for 5.8 GHz[c | dBm] |               |      |  |  |  |
|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-------------------|------|---------------|------|--|--|--|
| Band    |            | Mode                                                                                                                                                                                                                                                                                                   | Frequency      |           | ANT 1             |      | ANT 2         |      |  |  |  |
| Danu    |            | Wode                                                                                                                                                                                                                                                                                                   | rrequency      | СН        | Measured Avg.     | Note | Measured Avg. | Note |  |  |  |
| [GHz]   | IEE        | E 802.11                                                                                                                                                                                                                                                                                               | [MHz]          |           | Power             | Note | Power         | Note |  |  |  |
|         |            |                                                                                                                                                                                                                                                                                                        | 5745           | 149       | 13.70             |      | 13.40         |      |  |  |  |
|         |            |                                                                                                                                                                                                                                                                                                        | 5765           | 153       | 15.30             |      | 15.30         | 1    |  |  |  |
| 5.8     |            | а                                                                                                                                                                                                                                                                                                      | 5785           | 157       | 15.30             | 1    | 15.30         |      |  |  |  |
| U-NII-3 |            |                                                                                                                                                                                                                                                                                                        | 5805           | 161       | 14.80             |      | 14.80         |      |  |  |  |
|         |            |                                                                                                                                                                                                                                                                                                        | 5825           | 165       | 14.70             |      | 14.60         |      |  |  |  |
|         | ас         | VHT20/40/80                                                                                                                                                                                                                                                                                            |                |           |                   | 2    |               | 2    |  |  |  |
| Note 1: | transmiss  | SAR Test reduction according to KDB 248227, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11 a/g/n/ac mode is used for SAR measurement. |                |           |                   |      |               |      |  |  |  |
| Note 2: | ratio of C | SAR test reduction according to KDB 248227, Sec. 5.2.2., when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg or when KDB 447498 D01 SAR test exclusion applies to the OFDM configuration.                |                |           |                   |      |               |      |  |  |  |

Table 21: Conducted output power of DUT for WLAN 5.8 GHz.



#### 6.4 Standalone SAR Test Exclusion

SAR test exclusion is determined for the DUT according to KDB 447498 D01 with 1g SAR exclusion thresholds for 100 MHz to 6GHz at test separation distances  $\leq$  50 mm determined by:

[(max power of channel. incl. tune-up tolerance. mW) / (min test separation distance. mm)] \* [ $\sqrt{f(GHz)}$ ]  $\leq 3.0$  for 1g SAR and  $\leq 7.5$  for 10g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

|                   | Transmission Scenario for Test Exclusion Considerations  Antenna  ANT / CHAIN 1 |       |                  |           |          |            |          |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------|-------|------------------|-----------|----------|------------|----------|--|--|--|--|--|
|                   | Antenna                                                                         |       |                  | ANT / CHA | dN 1     |            |          |  |  |  |  |  |
|                   | Mode                                                                            | BT    | IEEE 802.11b/g/n |           | IEEE 802 | 2.11a/n/ac |          |  |  |  |  |  |
| Exposure Position | Frequency [GHz]                                                                 | 2.440 | 2.437            | 5.200     | 5.300    | 5.600      | 5.785    |  |  |  |  |  |
|                   | Frame Avg. Power [dBm]                                                          | 6.0   | 20.5             | 16.0      | 16.0     | 16.0       | 16.0     |  |  |  |  |  |
|                   | Frame Avg. Power [mW]                                                           | 4.0   | 112.2            | 39.8      | 39.8     | 39.8       | 39.8     |  |  |  |  |  |
|                   | Antenna to user [mm]                                                            | 5.0   | 5.0              | 5.0       | 5.0      | 5.0        | 5.0      |  |  |  |  |  |
| Back              | SAR exclusion threshold                                                         | 1.2   | 35.0             | 18.2      | 18.3     | 18.8       | 19.2     |  |  |  |  |  |
| Back              | SAR testing required?                                                           | no    | yes              | yes       | yes      | yes        | yes      |  |  |  |  |  |
|                   | Estimated SAR [W/kg]                                                            | 0.17  | measured         | measured  | measured | measured   | measured |  |  |  |  |  |
|                   | Antenna to user [mm]                                                            | 105.0 | 105.0            | 105.0     | 105.0    | 105.0      | 105.0    |  |  |  |  |  |
| Edge 1            | SAR exclusion threshold                                                         | 646.0 | 646.1            | 615.8     | 615.2    | 613.4      | 612.4    |  |  |  |  |  |
| Luge              | SAR testing required?                                                           | no    | no               | no        | no       | no         | no       |  |  |  |  |  |
|                   | Estimated SAR [W/kg]                                                            | 0.40  | 0.40             | 0.40      | 0.40     | 0.40       | 0.40     |  |  |  |  |  |
|                   | Antenna to user [mm]                                                            | 103.0 | 103.0            | 103.0     | 103.0    | 103.0      | 103.0    |  |  |  |  |  |
| Edge 2            | SAR exclusion threshold                                                         | 626.0 | 626.1            | 595.8     | 595.2    | 593.4      | 592.4    |  |  |  |  |  |
| Luge 2            | SAR testing required?                                                           | no    | no               | no        | no       | no         | no       |  |  |  |  |  |
|                   | Estimated SAR [W/kg]                                                            | 0.40  | 0.40             | 0.40      | 0.40     | 0.40       | 0.40     |  |  |  |  |  |
|                   | Antenna to user [mm]                                                            | 15.0  | 15.0             | 15.0      | 15.0     | 15.0       | 15.0     |  |  |  |  |  |
| Edge 3            | SAR exclusion threshold                                                         | 0.4   | 11.7             | 6.1       | 6.1      | 6.3        | 6.4      |  |  |  |  |  |
| Euge 3            | SAR testing required?                                                           | no    | yes              | yes       | yes      | yes        | yes      |  |  |  |  |  |
|                   | Estimated SAR [W/kg]                                                            | 0.06  | measured         | measured  | measured | measured   | measured |  |  |  |  |  |
|                   | Antenna to user [mm]                                                            | 40.0  | 40.0             | 40.0      | 40.0     | 40.0       | 40.0     |  |  |  |  |  |
| Edge 4            | SAR exclusion threshold                                                         | 0.2   | 4.4              | 2.3       | 2.3      | 2.4        | 2.4      |  |  |  |  |  |
| Luge 4            | SAR testing required?                                                           | no    | yes              | no        | no       | no         | no       |  |  |  |  |  |
|                   | Estimated SAR [W/kg]                                                            | 0.02  | measured         | 0.30      | 0.31     | 0.31       | 0.32     |  |  |  |  |  |

Table 22: Antenna 1: SAR test exclusion for body-supported exposure configuration against different device edges according to KDB 447498.



|                      | Transmission            | Scenario for Test | Exclusion C | onsideratio | ns         |          |
|----------------------|-------------------------|-------------------|-------------|-------------|------------|----------|
|                      | Antenna                 |                   | AN          | T / CHAIN 2 |            |          |
|                      | Mode                    | IEEE 802.11b/g/n  |             | IEEE 802    | 1.11a/n/ac |          |
| Exposure<br>Position | Frequency [GHz]         | 2.437             | 5.200       | 5.300       | 5.600      | 5.785    |
|                      | Frame Avg. Power [dBm]  | 20.5              | 16.0        | 16.0        | 16.0       | 16.0     |
|                      | Frame Avg. Power [mW]   | 112.2             | 39.8        | 39.8        | 39.8       | 39.8     |
|                      | Antenna to user [mm]    | 5.0               | 5.0         | 5.0         | 5.0        | 5.0      |
| Back                 | SAR exclusion threshold | 35.0              | 18.2        | 18.3        | 18.8       | 19.2     |
| Dack                 | SAR testing required?   | yes               | yes         | yes         | yes        | yes      |
|                      | Estimated SAR [W/kg]    | measured          | measured    | measured    | measured   | measured |
|                      | Antenna to user [mm]    | 82.0              | 82.0        | 82.0        | 82.0       | 82.0     |
| Edge 1               | SAR exclusion threshold | 416.1             | 385.8       | 385.2       | 383.4      | 382.4    |
| Euge i               | SAR testing required?   | no                | no          | no          | no         | no       |
|                      | Estimated SAR [W/kg]    | 0.40              | 0.40        | 0.40        | 0.40       | 0.40     |
|                      | Antenna to user [mm]    | 172.0             | 172.0       | 172.0       | 172.0      | 172.0    |
| Edge 2               | SAR exclusion threshold | 1316.1            | 1285.8      | 1285.2      | 1283.4     | 1282.4   |
| Euge 2               | SAR testing required?   | no                | no          | no          | no         | no       |
|                      | Estimated SAR [W/kg]    | 0.40              | 0.40 0.40   |             | 0.40       | 0.40     |
|                      | Antenna to user [mm]    | 31.0              | 31.0        | 31.0        | 31.0       | 31.0     |
| Edge 3               | SAR exclusion threshold | 5.7               | 2.9         | 3.0         | 3.0        | 3.1      |
| Euge 3               | SAR testing required?   | yes               | no          | no          | yes        | yes      |
|                      | Estimated SAR [W/kg]    | measured          | 0.39        | 0.39        | measured   | measured |
|                      | Antenna to user [mm]    | 7.0               | 7.0         | 7.0         | 7.0        | 7.0      |
| Edge 4               | SAR exclusion threshold | 25.0              | 13.0        | 13.1        | 13.5       | 13.7     |
| Luge 4               | SAR testing required?   | yes               | yes         | yes         | yes        | yes      |
|                      | Estimated SAR [W/kg]    | measured          | measured    | measured    | measured   | measured |

Table 23: Antenna 2: SAR test exclusion for body-supported exposure configuration against different device edges according to KDB 447498.

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas the standalone SAR must be estimated according to KDB 447498 in order to determine simultaneous transmission SAR test exclusion:

(max. power of channel including tune-up tolerance. mW)/(min. test separation distance. mm)]·[√f(GHz)/x]
 W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

• 0.4 W/kg for 1g SAR and 1.0 W/kg for 10g SAR. when the test separation distance is > 50 mm



## 6.5 SAR Test Exclusion Consideration according to RSS-102

|                      | Transmission Scenario for Test Exclusion Considerations |       |                  |           |       |       |       |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------|-------|------------------|-----------|-------|-------|-------|--|--|--|--|--|--|
|                      | Antenna                                                 |       |                  | ANT / CHA | IN 1  |       |       |  |  |  |  |  |  |
|                      | Mode                                                    | ВТ    | IEEE 802.11b/g/n |           |       |       |       |  |  |  |  |  |  |
| Exposure<br>Position | Frequency [GHz]                                         | 2.440 | 2.437            | 5.200     | 5.300 | 5.600 | 5.785 |  |  |  |  |  |  |
|                      | Frame Avg. Power [dBm]                                  | 6.0   | 20.5             | 16.0      | 16.0  | 16.0  | 16.0  |  |  |  |  |  |  |
|                      | Frame Avg. Power [mW]                                   | 4.0   | 112.2            | 39.8      | 39.8  | 39.8  | 39.8  |  |  |  |  |  |  |
|                      | Antenna to user [mm]                                    | 5.0   | 5.0              | 5.0       | 5.0   | 5.0   | 5.0   |  |  |  |  |  |  |
| Back                 | SAR exclusion threshold                                 | 4.0   | 4.0              | 2.1       | 2.0   | 1.5   | 1.0   |  |  |  |  |  |  |
|                      | SAR testing required?                                   | no    | yes              | yes       | yes   | yes   | yes   |  |  |  |  |  |  |
|                      | Antenna to user [mm]                                    | 105.0 | 105.0            | 105.0     | 105.0 | 105.0 | 105.0 |  |  |  |  |  |  |
| Edge 1               | SAR exclusion threshold                                 | 310.0 | 310.0            | 278.0     | 258.0 | 179.0 | 112.0 |  |  |  |  |  |  |
|                      | SAR testing required?                                   | no    | no               | no        | no    | no    | no    |  |  |  |  |  |  |
|                      | Antenna to user [mm]                                    | 103.0 | 103.0            | 103.0     | 103.0 | 103.0 | 103.0 |  |  |  |  |  |  |
| Edge 2               | SAR exclusion threshold                                 | 310.0 | 310.0            | 278.0     | 258.0 | 179.0 | 112.0 |  |  |  |  |  |  |
|                      | SAR testing required?                                   | no    | no               | no        | no    | no    | no    |  |  |  |  |  |  |
|                      | Antenna to user [mm]                                    | 15.0  | 15.0             | 15.0      | 15.0  | 15.0  | 15.0  |  |  |  |  |  |  |
| Edge 3               | SAR exclusion threshold                                 | 15.1  | 15.1             | 18.8      | 18.5  | 16.8  | 15.1  |  |  |  |  |  |  |
|                      | SAR testing required?                                   | no    | yes              | yes       | yes   | yes   | yes   |  |  |  |  |  |  |
|                      | Antenna to user [mm]                                    | 40.0  | 40.0             | 40.0      | 40.0  | 40.0  | 40.0  |  |  |  |  |  |  |
| Edge 4               | SAR exclusion threshold                                 | 173.5 | 173.5            | 166.0     | 157.0 | 119.5 | 87.9  |  |  |  |  |  |  |
|                      | SAR testing required?                                   | no    | no               | no        | no    | no    | no    |  |  |  |  |  |  |

Table 24: Antenna 1: SAR test exclusion for the applicable transmitter according to RSS-102, section 2.5.1.

|                      | Transmission            | Scenario for Test | Exclusion C | onsideratio       | ns    |       |  |  |
|----------------------|-------------------------|-------------------|-------------|-------------------|-------|-------|--|--|
|                      | Antenna                 |                   | AN          | T / CHAIN 2       |       |       |  |  |
|                      | Mode                    | IEEE 802.11b/g/n  |             | IEEE 802.11a/n/ac |       |       |  |  |
| Exposure<br>Position | Frequency [GHz]         | 2.437             | 5.200       | 5.300             | 5.600 | 5.785 |  |  |
|                      | Frame Avg. Power [dBm]  | 20.5              | 16.0        | 16.0              | 16.0  | 16.0  |  |  |
|                      | Frame Avg. Power [mW]   | 112.2             | 39.8        | 39.8              | 39.8  | 39.8  |  |  |
|                      | Antenna to user [mm]    | 5.0               | 5.0         | 5.0               | 5.0   | 5.0   |  |  |
| Back                 | SAR exclusion threshold | 4.0               | 2.1         | 2.0               | 1.5   | 1.0   |  |  |
|                      | SAR testing required?   | yes               | yes         | yes               | yes   | yes   |  |  |
|                      | Antenna to user [mm]    | 82.0              | 82.0        | 82.0              | 82.0  | 82.0  |  |  |
| Edge 1               | SAR exclusion threshold | 310.0             | 278.0       | 258.0             | 179.0 | 112.0 |  |  |
|                      | SAR testing required?   | no                | no          | no                | no    | no    |  |  |
|                      | Antenna to user [mm]    | 172.0             | 172.0       | 172.0             | 172.0 | 172.0 |  |  |
| Edge 2               | SAR exclusion threshold | 310.0             | 278.0       | 258.0             | 179.0 | 112.0 |  |  |
|                      | SAR testing required?   | no                | no          | no                | no    | no    |  |  |
|                      | Antenna to user [mm]    | 31.0              | 31.0        | 31.0              | 31.0  | 31.0  |  |  |
| Edge 3               | SAR exclusion threshold | 83.0              | 86.4        | 83.0              | 69.0  | 112.0 |  |  |
|                      | SAR testing required?   | yes               | no          | no                | no    | no    |  |  |
|                      | Antenna to user [mm]    | 7.0               | 7.0         | 7.0               | 7.0   | 7.0   |  |  |
| Edge 4               | SAR exclusion threshold | 4.0               | 2.1         | 2.0               | 1.5   | 1.0   |  |  |
|                      | SAR testing required?   | yes               | yes         | yes               | yes   | yes   |  |  |

Table 25: Antenna 2: SAR test exclusion for the applicable transmitter according to RSS-102, section 2.5.1.



### 7 SAR Test Results

The tables below contain the measured SAR values averaged over a mass of 1g. SAR assessment was conducted in the worst case configuration with output power values according to Table 18 – Table 21. According to KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance limit shown in Table 14 – Table 17.

Reported SAR is calculated by the following formulas:

- Scaling factor tune up limit = tune-up limit power (mW) / RF power (mW)
- Scaling factor max. duty cycle = max. possible duty cycle / used duty cycle for SAR measurement
- Reported SAR = measured SAR \* scaling factor tune up limit \* scaling factor max. duty cycle

The plots with the highest measured SAR values are shown in Appendix B - SAR Distribution Plots

|             | SAR Results for WLAN 2.4 GHz                                                                                                                                                                                                                                                                           |                |         |             |           |             |                             |          |       |                             |      |      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-------------|-----------|-------------|-----------------------------|----------|-------|-----------------------------|------|------|
|             |                                                                                                                                                                                                                                                                                                        |                |         |             |           | ANT 1       |                             |          |       |                             |      |      |
| Band        | Mode                                                                                                                                                                                                                                                                                                   | Frequency      | СН      | DUT Test    | Gap       | Picture     | Measured                    | Drift    | Tune- | Reported                    | Plot | Nata |
| [GHz]       | 802.11                                                                                                                                                                                                                                                                                                 | [MHz]          | СН      | Position    | [mm]      | No.         | SAR <sub>1g</sub><br>[W/kg] | [dBm]    | Up SF | SAR <sub>1g</sub><br>[W/kg] | No.  | Note |
|             |                                                                                                                                                                                                                                                                                                        |                |         | back        | 0         | 3           | 0.207                       | -0.050   | 1.380 | 0.286                       |      |      |
|             |                                                                                                                                                                                                                                                                                                        | 2437           | 6       | edge 3      | 0         | 3           | 0.029                       | 0.015    | 1.380 | 0.040                       |      |      |
| 2.4<br>DSSS | b                                                                                                                                                                                                                                                                                                      |                |         | edge 4      | 0         | 5           | 0.008                       | 0.165    | 1.380 | 0.011                       |      | 1    |
|             |                                                                                                                                                                                                                                                                                                        | 2412           | 1       | back        | 0         | 3           | 0.251                       | -0.018   | 1.259 | 0.316                       | 1    |      |
|             |                                                                                                                                                                                                                                                                                                        | 2462           | 11      | back        | 0         | 3           | 0.189                       | -0.026   | 1.259 | 0.238                       |      |      |
|             | ANT 2                                                                                                                                                                                                                                                                                                  |                |         |             |           |             |                             |          |       |                             |      |      |
| Band        | Mode                                                                                                                                                                                                                                                                                                   | Frequency      | 011     | DUT Test    | Gap       | Picture     | Measured                    | Drift    | Tune- | Reported                    | Plot |      |
| [GHz]       | 802.11                                                                                                                                                                                                                                                                                                 | [MHz]          | СН      | Position    | [mm]      | No.         | SAR <sub>1g</sub><br>[W/kg] | [dBm]    | Up SF | SAR <sub>1g</sub><br>[W/kg] | No.  | Note |
|             |                                                                                                                                                                                                                                                                                                        |                |         | back        | 0         | 3           | 0.127                       | 0.040    | 1.413 | 0.179                       |      |      |
|             |                                                                                                                                                                                                                                                                                                        | 2437           | 6       | edge 3      | 0         | 3           | 0.063                       | 0.142    | 1.413 | 0.089                       |      |      |
| 2.4<br>DSSS | b                                                                                                                                                                                                                                                                                                      |                |         | edge 4      | 0         | 5           | 0.255                       | 0.050    | 1.413 | 0.360                       |      | 1    |
|             |                                                                                                                                                                                                                                                                                                        | 2412           | 1       | edge 4      | 0         | 5           | 0.246                       | 0.051    | 1.585 | 0.390                       | 2    |      |
|             |                                                                                                                                                                                                                                                                                                        | 2462           | 11      | edge 4      | 0         | 5           | 0.155                       | -0.182   | 1.349 | 0.209                       |      |      |
| Note*:      | Channels                                                                                                                                                                                                                                                                                               | s 12 and 13 ar | e disab | ed by manuf | acturer a | nd will not | be accessible               | to user. |       |                             |      |      |
| Note 1:     | SAR Test reduction according to KDB 248227, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11 a/g/n/ac mode is used for SAR measurement. |                |         |             |           |             |                             |          |       |                             |      |      |

Table 26: SAR results for WLAN 2.4 GHz.



|                 | SAR Results for WLAN 5.2 GHz                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                        |    |          |      |         |                             |        |       |                             |      |      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|------|---------|-----------------------------|--------|-------|-----------------------------|------|------|
|                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                        |    |          |      | ANT 1   |                             |        |       |                             |      |      |
| Band            | Mode                                                                                                                                                                                                                                                                                                      | Frequency                                                                                                                                                                                                              |    | DUT Test | Gap  | Picture | Measured                    | Drift  | Tune- | Reported                    | Plot |      |
| [GHz]           | 802.11                                                                                                                                                                                                                                                                                                    | [MHz]                                                                                                                                                                                                                  | CH | Position | [mm] | No.     | SAR <sub>1g</sub><br>[W/kg] | [dBm]  | Up SF | SAR <sub>1g</sub><br>[W/kg] | No.  | Note |
| 5.3             | а                                                                                                                                                                                                                                                                                                         | 5300                                                                                                                                                                                                                   | 60 | back     | 0    | 3       | 0.517                       | 0.078  | 1.514 | 0.783                       | 3    | 1,2  |
| U-NII-2A        | а                                                                                                                                                                                                                                                                                                         | 5300                                                                                                                                                                                                                   | 60 | edge 3   | 0    | 3       | 0.073                       | 0.099  | 1.514 | 0.110                       |      | 1,2  |
| ANT 2           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                        |    |          |      |         |                             |        |       |                             |      |      |
| Band            | Mode                                                                                                                                                                                                                                                                                                      | Frequency                                                                                                                                                                                                              |    | DUT Test | Gap  | Picture | Measured                    | Drift  | Tune- | Reported                    | Plot |      |
| [GHz]           | 802.11                                                                                                                                                                                                                                                                                                    | [MHz]                                                                                                                                                                                                                  | СН | Position | [mm] | No.     | SAR <sub>1g</sub><br>[W/kg] | [dBm]  | Up SF | SAR <sub>1g</sub><br>[W/kg] | No.  | Note |
|                 |                                                                                                                                                                                                                                                                                                           | 5300                                                                                                                                                                                                                   | 60 | back     | 0    | 3       | 0.555                       | -0.120 | 1.413 | 0.784                       | 4    |      |
| 5.3<br>U-NII-2A | а                                                                                                                                                                                                                                                                                                         | 5300                                                                                                                                                                                                                   | 60 | edge 3   | 0    | 3       | 0.011                       | 0.038  | 1.413 | 0.016                       |      | 1,2  |
|                 |                                                                                                                                                                                                                                                                                                           | 5300                                                                                                                                                                                                                   | 60 | edge 4   | 0    | 5       | 0.253                       | 0.038  | 1.413 | 0.357                       |      |      |
| Note 1:         | 1: SAR Test reduction according to KDB 248227, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11 a/g/n/ac mode is used for SAR measurement. |                                                                                                                                                                                                                        |    |          |      |         |                             |        |       |                             |      |      |
| Note 2:         |                                                                                                                                                                                                                                                                                                           | When the same max. output power is specified for both bands, begin SAR measurement in U-NII-2A by applying the OFDM SAR requirements. If the highest reported SAR is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band. |    |          |      |         |                             |        |       |                             |      |      |

Table 27: SAR results for WLAN 5.2 GHz.

|                 |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                           |     | SAR      | Results | s for WL | .AN 5.5 GH                  | Z      |       |                             |      |      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|---------|----------|-----------------------------|--------|-------|-----------------------------|------|------|
|                 |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                           |     |          |         | ANT 1    |                             |        |       |                             |      |      |
| Band            | Mode                                                                                                                                                                                                                                                                                                   | Frequency                                                                                                                                                                                                                 |     | DUT Test | Gap     | Picture  | Measured                    | Drift  | Tune- | Reported                    | Plot |      |
| [GHz]           | 802.11                                                                                                                                                                                                                                                                                                 | [MHz]                                                                                                                                                                                                                     | СН  | Position | [mm]    | No.      | SAR <sub>1g</sub><br>[W/kg] | [dBm]  | Up SF | SAR <sub>1g</sub><br>[W/kg] | No.  | Note |
|                 |                                                                                                                                                                                                                                                                                                        | 5600                                                                                                                                                                                                                      | 120 | back     | 0       | 3        | 0.738                       | -0.216 | 1.413 | 1.042                       | 5    |      |
| 5.5<br>U-NII-2C | а                                                                                                                                                                                                                                                                                                      | 5600                                                                                                                                                                                                                      | 120 | edge 3   | 0       | 3        | 0.066                       | -0.059 | 1.413 | 0.093                       |      | 1,2  |
|                 |                                                                                                                                                                                                                                                                                                        | 5660                                                                                                                                                                                                                      | 132 | back     | 0       | 3        | 0.472                       | 0.004  | 1.000 | 0.472                       |      |      |
| ANT 2           |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                           |     |          |         |          |                             |        |       |                             |      |      |
| Band            | Mode                                                                                                                                                                                                                                                                                                   | Frequency                                                                                                                                                                                                                 |     | DUT Test | Gap     | Picture  | Measured                    | Drift  | Tune- | Reported                    | Plot |      |
| [GHz]           | 802.11                                                                                                                                                                                                                                                                                                 | [MHz]                                                                                                                                                                                                                     | СН  | Position | [mm]    | No.      | SAR <sub>1g</sub><br>[W/kg] | [dBm]  | Up SF | SAR <sub>1g</sub><br>[W/kg] | No.  | Note |
|                 |                                                                                                                                                                                                                                                                                                        | 5600                                                                                                                                                                                                                      | 120 | back     | 0       | 3        | 0.307                       | 0.165  | 1.585 | 0.487                       | 6    |      |
| 5.5<br>U-NII-2C | а                                                                                                                                                                                                                                                                                                      | 5600                                                                                                                                                                                                                      | 120 | edge 3   | 0       | 3        | 0.008                       | -0.186 | 1.585 | 0.013                       |      | 1,2  |
|                 |                                                                                                                                                                                                                                                                                                        | 5600                                                                                                                                                                                                                      | 120 | edge 4   | 0       | 5        | 0.166                       | 0.032  | 1.585 | 0.263                       |      |      |
| Note 1:         | SAR Test reduction according to KDB 248227, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11 a/g/n/ac mode is used for SAR measurement. |                                                                                                                                                                                                                           |     |          |         |          |                             |        |       |                             |      |      |
| Note 2:         | When the reported SAR is > 0.8 W/kg, SAR measurement is tested for the subsequent next highest output power channels until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.                                                                                                         |                                                                                                                                                                                                                           |     |          |         |          |                             |        |       |                             |      |      |
| Note 3:         |                                                                                                                                                                                                                                                                                                        | When the highest reported SAR for the initial test configuration is > 1.2 W/kg, SAR measurement is tested for the subsequent test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. |     |          |         |          |                             |        |       |                             |      |      |

Table 28: SAR results for WLAN 5.5 GHz.



|                |                                                                                                                                                                                                                                                                                                        |           |     | SAR      | Result | s for WL | .AN 5.8 GH                  | z      |       |                             |      |      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|----------|--------|----------|-----------------------------|--------|-------|-----------------------------|------|------|
|                |                                                                                                                                                                                                                                                                                                        |           |     |          |        | ANT 1    |                             |        |       |                             |      |      |
| Band           | Mode                                                                                                                                                                                                                                                                                                   | Frequency |     | DUT Test | Gap    | Picture  | Measured                    | Drift  | Tune- | Reported                    | Plot |      |
| [GHz]          | 802.11                                                                                                                                                                                                                                                                                                 | [MHz]     | СН  | Position | [mm]   | No.      | SAR <sub>1g</sub><br>[W/kg] | [dBm]  | Up SF | SAR <sub>1g</sub><br>[W/kg] | No.  | Note |
| 5.8            |                                                                                                                                                                                                                                                                                                        | 5785      | 157 | back     | 0      | 3        | 0.431                       | 0.135  | 1.175 | 0.506                       | 7    | 1.2  |
| U-NII-3        | а                                                                                                                                                                                                                                                                                                      | 5785      | 157 | edge 3   | 0      | 3        | 0.041                       | -0.120 | 1.175 | 0.048                       |      | 1,2  |
| ANT 2          |                                                                                                                                                                                                                                                                                                        |           |     |          |        |          |                             |        |       |                             |      |      |
| Band           | Mode                                                                                                                                                                                                                                                                                                   | Frequency |     | DUT Test | Gap    | Picture  | Measured                    | Drift  | Tune- | Reported                    | Plot | Note |
| [GHz]          | 802.11                                                                                                                                                                                                                                                                                                 | [MHz]     | CH  | Position | [mm]   | No.      | SAR <sub>1g</sub><br>[W/kg] | [dBm]  | Up SF | SAR <sub>1g</sub><br>[W/kg] | No.  |      |
|                |                                                                                                                                                                                                                                                                                                        | 5785      | 157 | back     | 0      | 3        | 0.265                       | 0.170  | 1.175 | 0.311                       | 8    |      |
| 5.8<br>U-NII-3 | а                                                                                                                                                                                                                                                                                                      | 5785      | 157 | edge 3   | 0      | 3        | 0.008                       | 0.166  | 1.175 | 0.009                       |      | 1,2  |
|                |                                                                                                                                                                                                                                                                                                        | 5785      | 157 | edge 4   | 0      | 5        | 0.169                       | 0.066  | 1.175 | 0.199                       |      |      |
| Note 1:        | SAR Test reduction according to KDB 248227, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11 a/g/n/ac mode is used for SAR measurement. |           |     |          |        |          |                             |        |       |                             |      |      |
| Note 2:        | When the reported SAR is > 0.8 W/kg, SAR measurement is tested for the subsequent next highest output power channels until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.                                                                                                         |           |     |          |        |          |                             |        |       |                             |      |      |

Table 29: SAR results for WLAN 5.8 GHz.

|           |        |               | Results fo                                               | r SAR Mea                   | surement         | Variability                 |                |                             |              |
|-----------|--------|---------------|----------------------------------------------------------|-----------------------------|------------------|-----------------------------|----------------|-----------------------------|--------------|
|           |        |               |                                                          | AN                          | T 1              |                             |                |                             |              |
| Frequency | Mode   | DUT Test      | Highest<br>Measured                                      |                             | peated<br>rement | 2nd Re<br>Measu             |                | 3rd Repeated<br>Measurement |              |
| Band      | Wode   | Position      | SAR <sub>1g</sub> [W/kg]                                 | SAR <sub>1g</sub><br>[W/kg] | SAR<br>Ratio     | SAR <sub>1g</sub><br>[W/kg] | SAR<br>Ratio   | SAR <sub>1g</sub><br>[W/kg] | SAR<br>Ratio |
| 2450      | b      | back          | 0.251                                                    | NR                          | /                |                             |                |                             |              |
| 5300      | а      | back          | 0.517                                                    | NR                          | /                |                             |                |                             |              |
| 5600      | а      | back          | 0.738                                                    | NR                          | /                |                             |                |                             |              |
| 5800      | а      | back          | 0.431                                                    | NR                          | /                |                             |                |                             |              |
|           |        |               |                                                          | AN                          | T 2              |                             |                |                             |              |
| Frequency | Mada   | DUT Test      | Highest<br>Measured                                      |                             |                  | 2nd Repeated<br>Measurement |                | 3rd Repeated<br>Measurement |              |
| Band      | Mode   | Position      | SAR <sub>1g</sub> [W/kg]                                 | SAR <sub>1g</sub><br>[W/kg] | SAR<br>Ratio     | SAR <sub>1g</sub><br>[W/kg] | SAR<br>Ratio   | SAR <sub>1g</sub><br>[W/kg] | SAR<br>Ratio |
| 2450      | b      | edge 4        | 0.255                                                    | NR                          | /                |                             |                |                             |              |
| 5300      | а      | back          | 0.555                                                    | NR                          | /                |                             |                |                             |              |
| 5600      | а      | back          | 0.307                                                    | NR                          | /                |                             |                |                             |              |
| 5800      | а      | back          | 0.265                                                    | NR                          | /                |                             |                |                             |              |
| Note:     | 2nd an | d 3rd repeate | variability according d measurement ar rement is < 1.20. |                             |                  | io of the larges            | st to smallest | SAR for the o               | riginal and  |

Table 30: Results for SAR measurement variability.



#### 8 Simultaneous Transmission Consideration

| Simultaneous Transmission Capabilities of DUT                                                |                |           |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------------|-----------|--|--|--|--|--|--|
| ANT1 WLAN                                                                                    | ANT1 Bluetooth | ANT2 WLAN |  |  |  |  |  |  |
| V                                                                                            | X              | V         |  |  |  |  |  |  |
| X                                                                                            | V              | V         |  |  |  |  |  |  |
| Notes: Only WLAN of Ant1 + Ant 2, or BT of Ant1 + Ant 2 are able to transmit simultaneously. |                |           |  |  |  |  |  |  |

Table 31: Simultaneous transmission capabilities.

For the following simultaneous transmission analysis the worst case SAR results shown in Table 26 – Table 29 have been used.

According to KDB 447498, the following table gives an overview about the  $\Sigma$ SAR for simultaneous transmitting modes. When  $\Sigma$ SAR > 1.6 W/kg. a SAR test exclusion is determined by the SAR to peak location separation ratio. The ratio is determined by  $(SAR1 + SAR2)^{1.5}/Ri$  rounded to two decimal digits and must be  $\leq 0.04$  for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion. Where Ri is the separation distance between the peak SAR locations for the antenna pair in mm. When SAR is measured for both antennas in a pair the peak location separation distance is computed by the square root of  $[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2]$  where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the area scans or extrapolated peak SAR locations in the zoom scans as appropriate.

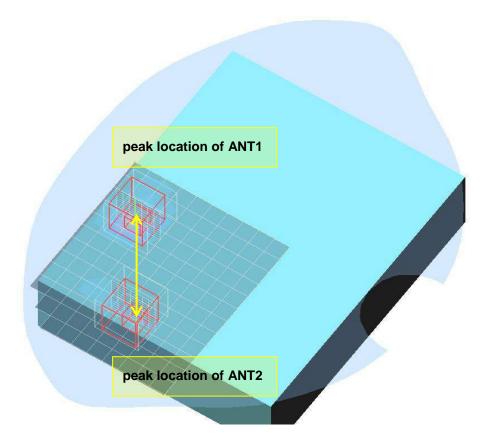
| SAR for Standalone Transmission |          |                               |            |                                      |            |  |  |  |  |  |
|---------------------------------|----------|-------------------------------|------------|--------------------------------------|------------|--|--|--|--|--|
| Exposure Position               | Hig      | ANT 1<br>hest reported SAR [\ | N/kg]      | ANT 2<br>Highest reported SAR [W/kg] |            |  |  |  |  |  |
| of DUT                          | DSS [T1] | DTS [T2]                      | U-NII [T3] | DTS [T4]                             | U-NII [T5] |  |  |  |  |  |
| back                            | 0.400*   | 0.286                         | 1.042      | 0.179                                | 0.784      |  |  |  |  |  |
| edge 1                          | 0.400*   | 0.400*                        | 0.400*     | 0.400*                               | 0.400*     |  |  |  |  |  |
| edge 2                          | 0.400*   | 0.400*                        | 0.400*     | 0.400*                               | 0.400*     |  |  |  |  |  |
| edge 3                          | 0.400*   | 0.040                         | 0.110      | 0.089                                | 0.016      |  |  |  |  |  |
| edge 4                          | 0.400*   | 0.011                         | 0.320*     | 0.360                                | 0.357      |  |  |  |  |  |

Table 32: Highest reported SAR for standalone transmission.



| Simultaneous Transmission Analysis |          |                      |            |          |                        |         |          |  |  |  |
|------------------------------------|----------|----------------------|------------|----------|------------------------|---------|----------|--|--|--|
| Exposure Position of DUT           | Highest  | ANT 1<br>reported SA | R [W/kg]   |          | IT 2<br>ted SAR [W/kg] | Σ SAR1g | SPLSR    |  |  |  |
| or DO I                            | DSS [T1] | DTS [T2]             | U-NII [T3] | DTS [T4] | U-NII [T5]             | [W/kg]  | Analysis |  |  |  |
|                                    | 0.400*   |                      |            | 0.179    |                        | 0.579   | NO       |  |  |  |
|                                    | 0.400*   |                      |            |          | 0.784                  | 1.184   | NO       |  |  |  |
| back                               |          | 0.286                |            | 0.179    |                        | 0.465   | NO       |  |  |  |
| back                               |          | 0.286                |            |          | 0.784                  | 1.070   | NO       |  |  |  |
|                                    |          |                      | 1.042      | 0.179    |                        | 1.221   | NO       |  |  |  |
|                                    |          |                      | 1.042      |          | 0.784                  | 1.826   | YES      |  |  |  |
|                                    | 0.400*   |                      |            | 0.400*   |                        | 0.800   | NO       |  |  |  |
|                                    | 0.400*   |                      |            |          | 0.400*                 | 0.800   | NO       |  |  |  |
| odgo 1                             |          | 0.400*               |            | 0.400*   |                        | 0.800   | NO       |  |  |  |
| edge 1                             |          | 0.400*               |            |          | 0.400*                 | 0.800   | NO       |  |  |  |
|                                    |          |                      | 0.400*     | 0.400*   |                        | 0.800   | NO       |  |  |  |
|                                    |          |                      | 0.400*     |          | 0.400*                 | 0.800   | NO       |  |  |  |
|                                    | 0.400*   |                      |            | 0.400*   |                        | 0.800   | NO       |  |  |  |
|                                    | 0.400*   |                      |            |          | 0.400*                 | 0.800   | NO       |  |  |  |
| adaa O                             |          | 0.400*               |            | 0.400*   |                        | 0.800   | NO       |  |  |  |
| edge 2                             |          | 0.400*               |            |          | 0.400*                 | 0.800   | NO       |  |  |  |
|                                    |          |                      | 0.400*     | 0.400*   |                        | 0.800   | NO       |  |  |  |
|                                    |          |                      | 0.400*     |          | 0.400*                 | 0.800   | NO       |  |  |  |
|                                    | 0.400*   |                      |            | 0.089    |                        | 0.489   | NO       |  |  |  |
|                                    | 0.400*   |                      |            |          | 0.016                  | 0.416   | NO       |  |  |  |
| - de- 0                            |          | 0.040                |            | 0.089    |                        | 0.129   | NO       |  |  |  |
| edge 3                             |          | 0.040                |            |          | 0.016                  | 0.056   | NO       |  |  |  |
|                                    |          |                      | 0.110      | 0.089    |                        | 0.199   | NO       |  |  |  |
|                                    |          |                      | 0.110      |          | 0.016                  | 0.126   | NO       |  |  |  |
|                                    | 0.400*   |                      |            | 0.360    |                        | 0.760   | NO       |  |  |  |
|                                    | 0.400*   |                      |            |          | 0.357                  | 0.757   | NO       |  |  |  |
| ade - 4                            |          | 0.011                |            | 0.360    |                        | 0.371   | NO       |  |  |  |
| edge 4                             |          | 0.011                |            |          | 0.357                  | 0.368   | NO       |  |  |  |
|                                    |          |                      | 0.320*     | 0.360    |                        | 0.680   | NO       |  |  |  |
|                                    |          |                      | 0.320*     |          | 0.357                  | 0.677   | NO       |  |  |  |

**Notes:** Analysis taken into consideration of the simultaneous transmission capabilities is shown in Table 31. \*Estimated SAR values according to Table 22.


Table 33: SAR for simultaneous transmission scenario.



# 8.1 SPLSR Evaluation Analysis

| SPLSR Analysis       |                                                                                               |                 |          |              |          |         |            |       |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------|-----------------|----------|--------------|----------|---------|------------|-------|--|--|--|
| Exposure Position    | TX ANT                                                                                        | Highest         | Coordina | ates of Peak | Location | Pair of | Calculated | SPLSR |  |  |  |
| of DUT               | IA ANI                                                                                        | Reported<br>SAR | х        | Y            | z        | TX ANT  | Ri (mm)    | SPLSK |  |  |  |
| back                 | 1                                                                                             | 1.042           | 212.055  | 653.105      | -746.391 | 1+2     | 63.3       | 0.039 |  |  |  |
| back                 | 2                                                                                             | 0.784           | 263.952  | 689.283      | -745.734 | 1+2     |            | 0.039 |  |  |  |
| Notes: Volume SAR so | Notes: Volume SAR scan for simultaneous transmission is not required because SPLSR is < 0.04. |                 |          |              |          |         |            |       |  |  |  |

Table 34: Results of SPLSR analysis.





## 9 Administrative Measurement Data

# 9.1 Calibration of Test Equipment

|                   | Test Equipment Overview               |                        |            |                  |                     |                     |  |  |  |
|-------------------|---------------------------------------|------------------------|------------|------------------|---------------------|---------------------|--|--|--|
|                   | Test Equipment                        | Manufacturer           | Model      | Serial<br>Number | Last<br>Calibration | Next<br>Calibration |  |  |  |
| DA                | SY System Components                  | -                      |            |                  |                     |                     |  |  |  |
| $\boxtimes$       | Software Versions DASY4               | SPEAG                  | V4.7       | N/A              | N/A                 | N/A                 |  |  |  |
|                   | Software Versions SEMCAD              | SPEAG                  | V1.8       | N/A              | N/A                 | N/A                 |  |  |  |
|                   | Dosimetric E-Field Probe              | SPEAG                  | ET3DV6R    | 1579             | 02/2018             | 02/2019             |  |  |  |
|                   | Dosimetric E-Field Probe              | SPEAG                  | ET3DV6R    | 1669             | 02/2019             | 02/2020             |  |  |  |
| $\boxtimes$       | Dosimetric E-Field Probe              | SPEAG                  | EX3DV4     | 3536             | 09/2018             | 09/2019             |  |  |  |
|                   | Dosimetric E-Field Probe              | SPEAG                  | EX3DV4     | 3860             | 09/2017             | 09/2018             |  |  |  |
|                   | Data Acquisition Electronics          | SPEAG                  | DAE 3      | 335              | 02/2019             | 02/2020             |  |  |  |
|                   | Data Acquisition Electronics          | SPEAG                  | DAE 4      | 631              | 09/2018             | 09/2019             |  |  |  |
|                   | Phantom                               | SPEAG                  | SAM        | 1059             | N/A                 | N/A                 |  |  |  |
|                   | Phantom                               | SPEAG                  | SAM        | 1176             | N/A                 | N/A                 |  |  |  |
| $\overline{\Box}$ | Phantom                               | SPEAG                  | SAM        | 1340             | N/A                 | N/A                 |  |  |  |
| $\overline{\Box}$ | Phantom                               | SPEAG                  | SAM        | 1341             | N/A                 | N/A                 |  |  |  |
|                   | Phantom                               | SPEAG                  | ELI4       | 1004             | N/A                 | N/A                 |  |  |  |
| Dip               | ooles                                 | 0. 2.7.0               |            | 1001             | 14/71               | 14//                |  |  |  |
| П                 | System Validation Dipole              | SPEAG                  | D450V2     | 1014             | 03/2018             | 03/2021             |  |  |  |
| П                 | System Validation Dipole              | SPEAG                  | D835V2     | 470              | 03/2018             | 03/2021             |  |  |  |
| П                 | System Validation Dipole              | SPEAG                  | D1640V2    | 311              | 09/2018             | 09/2021             |  |  |  |
| $\overline{\Box}$ | System Validation Dipole              | SPEAG                  | D1750V2    | 1005             | 03/2018             | 03/2021             |  |  |  |
| П                 | System Validation Dipole              | SPEAG                  | D1900V2    | 535              | 03/2018             | 03/2021             |  |  |  |
|                   | System Validation Dipole              | SPEAG                  | D2450V2    | 709              | 11/2018             | 11/2021             |  |  |  |
|                   | System Validation Dipole              | SPEAG                  | D2600V2    | 1019             | 11/2018             | 11/2021             |  |  |  |
|                   | System Validation Dipole              | SPEAG                  | D5GHzV2    | 1028             | 05/2017             | 05/2020             |  |  |  |
|                   | terial Measurement                    | U ENO                  | D0011212   | 1020             | 00/2017             | 00/2020             |  |  |  |
| $\boxtimes$       | Network Analyzer                      | Agilent                | E5071C     | MY46103220       | 08/2017             | 08/2019             |  |  |  |
|                   | Dielectric Probe Kit                  | SPEAG                  | DAK-3.5    | 1234             | 02/2018             | 02/2020             |  |  |  |
|                   | Thermometer                           | LKMelectronic          | DTM3000    | 3511             | 02/2018             | 02/2020             |  |  |  |
|                   | wer Meters and Sensors                |                        | 2          | 33               | 52,25.5             | 0=/=0=0             |  |  |  |
| $\boxtimes$       | Power Meter                           | Anritsu                | ML2487A    | 6K00002319       | 06/2018             | 06/2020             |  |  |  |
|                   | Power Sensor                          | Anritsu                | MA2472A    | 990365           | 06/2018             | 06/2020             |  |  |  |
|                   | Power Meter                           | Anritsu                | ML2488A    | 6K00002078       | 06/2018             | 06/2020             |  |  |  |
|                   | Power Sensor                          | Anritsu                | MA2472A    | 002122           | 06/2018             | 06/2020             |  |  |  |
|                   | Spectrum Analyzer                     | Rohde & Schwarz        | FSP7       | 100433           | 04/2018             | 04/2020             |  |  |  |
|                   | Sources                               |                        |            |                  | - · · · - · · ·     |                     |  |  |  |
| $\boxtimes$       | Network Analyzer                      | Agilent                | E5071C     | MY46103220       | 08/2017             | 08/2019             |  |  |  |
|                   | RF Generator                          | Rohde & Schwarz        | SM300      | 100142           | N/A                 | N/A                 |  |  |  |
| Am                | plifiers                              |                        |            |                  |                     |                     |  |  |  |
|                   | Amplifier 10 MHz – 4200 MHz           | Mini Circuits          | ZHL-42-42W | D080504-1        | N/A                 | N/A                 |  |  |  |
| $\boxtimes$       | Amplifier 2 GHz – 6 GHz               | Ciao Wireless          | CA26-451   | 37452            | N/A                 | N/A                 |  |  |  |
| Rad               | dio Tester                            |                        |            |                  |                     |                     |  |  |  |
|                   | Radio Communication Tester            | Anritsu                | MT8815B    | 6200576536       | 04/2018             | 04/2020             |  |  |  |
|                   | Radio Communication Tester            | Anritsu                | MT8820C    | 6200918336       | 04/2018             | 04/2020             |  |  |  |
| Not               | tes: Used test equipment for measurer | nent is checked above. |            |                  |                     |                     |  |  |  |

Table 35: Calibration of test equipment.



# 9.2 Uncertainty Assessment

| Uncertainty Bud                  | get for SAR Meas<br>(300      | surements aco<br>MHz - 6 GHz) | cording to | ) IEEE | 1528- | 2013 |                        |                   |
|----------------------------------|-------------------------------|-------------------------------|------------|--------|-------|------|------------------------|-------------------|
| Error Sources                    | Uncertainty<br>Value<br>[± %] | Probability<br>Distribution   | Divisor    | ci     | ci    | Unce | idard<br>rtainty<br>%] | vi²<br>or<br>veff |
| Measurement System               | ·                             |                               |            | 1g     | 10g   | 1g   | 10g                    |                   |
| Probe calibration                | 6.7                           | Normal                        | 1          | 1      | 1     | 6.7  | 6.7                    | ×                 |
| Axial isotropy                   | 0.3                           | Rectangular                   | √3         | √0.5   | √0.5  | 0.1  | 0.1                    | ∞                 |
| Hemispherical isotropy           | 1.3                           | Rectangular                   | √3         | √0.5   | √0.5  | 0.5  | 0.5                    | ×                 |
| Boundary effects                 | 1.0                           | Rectangular                   | √3         | 1      | 1     | 0.6  | 0.6                    | ×                 |
| Linearity                        | 0.3                           | Rectangular                   | √3         | 1      | 1     | 0.2  | 0.2                    | ×                 |
| System detection limit           | 1.0                           | Rectangular                   | √3         | 1      | 1     | 0.6  | 0.6                    | ×                 |
| Modulation response              | 4.0                           | Rectangular                   | √3         | 1      | 1     | 2.3  | 2.3                    | ∞                 |
| Readout electronics              | 0.3                           | Normal                        | 1          | 1      | 1     | 0.3  | 0.3                    | ∞                 |
| Response time                    | 0.8                           | Rectangular                   | √3         | 1      | 1     | 0.5  | 0.5                    | ∞                 |
| Integration time                 | 1.4                           | Rectangular                   | √3         | 1      | 1     | 0.8  | 0.8                    | oc                |
| RF ambient conditions - noise    | 3.0                           | Rectangular                   | √3         | 1      | 1     | 1.7  | 1.7                    | oc                |
| RF ambient conditions - refl.    | 3.0                           | Rectangular                   | √3         | 1      | 1     | 1.7  | 1.7                    | ∞                 |
| Probe positioner mech. tol.      | 0.4                           | Rectangular                   | √3         | 1      | 1     | 0.2  | 0.2                    | $\infty$          |
| Probe positioning                | 2.9                           | Rectangular                   | √3         | 1      | 1     | 1.7  | 1.7                    | ∞                 |
| Algorithms for max SAR eval.     | 4.0                           | Rectangular                   | √3         | 1      | 1     | 2.3  | 2.3                    | $\infty$          |
| Test Sample Related              | <u> </u>                      |                               |            | •      |       |      | •                      | •                 |
| Test sample positioning          | 2.9                           | Normal                        | 1          | 1      | 1     | 2.9  | 2.9                    | 145               |
| Device holder uncertainty        | 3.6                           | Normal                        | 1          | 1      | 1     | 3.6  | 3.6                    | 5                 |
| SAR drift measurement (< 0.2 dB) | 4.7                           | Rectangular                   | √3         | 1      | 1     | 2.7  | 2.7                    | ∞                 |
| SAR scaling                      | 2.0                           | Rectangular                   | √3         | 1      | 1     | 1.2  | 1.2                    | ∞                 |
| Phantom and Set-up               | <u> </u>                      |                               |            | •      | •     |      | •                      | •                 |
| Phantom uncertainty              | 4.0                           | Rectangular                   | √3         | 1      | 1     | 2.3  | 2.3                    | ∞                 |
| SAR correction for perm./cond.   | 1.9                           | Normal                        | 1          | 1      | 0.84  | 1.9  | 1.6                    | ∞                 |
| Liquid conductivity (meas.)      | 5.0                           | Normal                        | 1          | 0.78   | 0.71  | 3.9  | 3.6                    | ×                 |
| Liquid permittivity (meas.)      | 5.0                           | Normal                        | 1          | 0.23   | 0.26  | 1.2  | 1.3                    | ×                 |
| Liquid conductivity temp. unc.   | 2.9                           | Rectangular                   | √3         | 0.78   | 0.71  | 1.3  | 1.2                    | ∞                 |
| Liquid permittivity temp. unc.   | 1.8                           | Rectangular                   | √3         | 0.23   | 0.26  | 0.2  | 0.3                    | ×                 |
| Combined Standard Uncertainty    |                               |                               | •          | •      |       | 11.1 | 11.0                   |                   |
| Coverage Factor for 95%          |                               |                               |            |        |       | kp   | )=2                    |                   |
| Expanded Standard Uncertainty    |                               |                               |            |        |       | 22.2 | 21.9                   |                   |

Table 36: Uncertainty budget for SAR measurements.



| Uncertainty Probability Standard vi²    |                |                             |         |      |      |      |        |            |  |  |
|-----------------------------------------|----------------|-----------------------------|---------|------|------|------|--------|------------|--|--|
| Error Sources                           | Value<br>[± %] | Probability<br>Distribution | Divisor | ci   | ci   |      | tainty | or<br>veff |  |  |
| Measurement System                      |                |                             |         | 1g   | 10g  | 1g   | 10g    |            |  |  |
| Probe calibration                       | 6.7            | Normal                      | 1       | 1    | 1    | 6.7  | 6.7    | 8          |  |  |
| Axial isotropy                          | 0.3            | Rectangular                 | √3      | 1    | 1    | 0.1  | 0.1    | 8          |  |  |
| Hemispherical isotropy                  | 1.3            | Rectangular                 | √3      | 0    | 0    | 0.0  | 0.0    | 8          |  |  |
| Boundary effects                        | 1.0            | Rectangular                 | √3      | 1    | 1    | 0.6  | 0.6    | ×          |  |  |
| Linearity                               | 0.3            | Rectangular                 | √3      | 1    | 1    | 0.2  | 0.2    | × ×        |  |  |
| System detection limit                  | 1.0            | Rectangular                 | √3      | 1    | 1    | 0.6  | 0.6    | ×          |  |  |
| Modulation response                     | 0.0            | Rectangular                 | √3      | 0    | 0    | 0.0  | 0.0    | ×          |  |  |
| Readout electronics                     | 0.3            | Normal                      | 1       | 1    | 1    | 0.3  | 0.3    | ×          |  |  |
| Response time                           | 0.0            | Rectangular                 | √3      | 0    | 0    | 0.0  | 0.0    | ×          |  |  |
| Integration time                        | 0.0            | Rectangular                 | √3      | 0    | 0    | 0.0  | 0.0    | ×          |  |  |
| RF ambient conditions - noise           | 1.0            | Rectangular                 | √3      | 1    | 1    | 0.6  | 0.6    | ×          |  |  |
| RF ambient conditions - refl.           | 1.0            | Rectangular                 | √3      | 1    | 1    | 0.6  | 0.6    | ×          |  |  |
| Probe positioner mech. tol.             | 0.4            | Rectangular                 | √3      | 1    | 1    | 0.2  | 0.2    | ×          |  |  |
| Probe positioning                       | 2.9            | Rectangular                 | √3      | 1    | 1    | 1.7  | 1.7    | ×          |  |  |
| Algorithms for max SAR eval.            | 4.0            | Rectangular                 | √3      | 1    | 1    | 2.3  | 2.3    | ×          |  |  |
| Validation Dipole                       |                |                             |         |      | II.  |      | u .    |            |  |  |
| Dev. of exp. dipole from num.           | 5.0            | Normal                      | 1       | 1    | 1    | 5.0  | 5.0    | ×          |  |  |
| Input power and SAR drift (< 0.2 dB)    | 4.7            | Rectangular                 | √3      | 1    | 1    | 2.7  | 2.7    | ∞          |  |  |
| Dipole axis to liquid distance (< 2deg) | 2.0            | Rectangular                 | √3      | 1    | 1    | 1.2  | 1.2    | ×          |  |  |
| Phantom and Set-up                      |                |                             |         | •    |      |      | •      | ,          |  |  |
| Phantom uncertainty                     | 4.0            | Rectangular                 | √3      | 1    | 1    | 2.3  | 2.3    | ×          |  |  |
| SAR correction for perm./cond.          | 1.9            | Normal                      | 1       | 1    | 0.84 | 1.9  | 1.6    | ×          |  |  |
| Liquid conductivity (meas.)             | 5.0            | Normal                      | 1       | 0.78 | 0.71 | 3.9  | 3.6    | ×          |  |  |
| Liquid permittivity (meas.)             | 5.0            | Normal                      | 1       | 0.23 | 0.26 | 1.2  | 1.3    | $\infty$   |  |  |
| Liquid conductivity temp. unc.          | 2.9            | Rectangular                 | √3      | 0.78 | 0.71 | 1.3  | 1.2    | 00         |  |  |
| Liquid permittivity temp. unc.          | 1.8            | Rectangular                 | √3      | 0.23 | 0.26 | 0.2  | 0.3    | $\infty$   |  |  |
| Combined Standard Uncertainty           |                |                             |         |      |      | 10.7 | 10.6   |            |  |  |
| Coverage Factor for 95%                 |                |                             |         |      |      | kp   | )=2    |            |  |  |
| Expanded Standard Uncertainty 2         |                |                             |         |      |      |      | 21.2   |            |  |  |

Table 37: Uncertainty budget for SAR system validation.



## 10 Report History

|          | Revision History        |                 |              |            |  |  |  |  |  |  |
|----------|-------------------------|-----------------|--------------|------------|--|--|--|--|--|--|
| Revision | Description of Revision | Date            | Revised Page | Revised By |  |  |  |  |  |  |
| /        | Initial Release         | August 05, 2019 | -            | -          |  |  |  |  |  |  |

#### **END OF THE SAR REPORT**

Please refer to separated appendix file for the following data:

- Appendix A Pictures
- Appendix B SAR Distribution Plots
- Appendix C System Verification Plots
- Appendix D Certificates of Conformity
- Appendix E Calibration Certificates for DAEs
- Appendix F Calibration Certificates for E-Field Probes
- Appendix G Calibration Certificates for Dipoles



| Appendixes for           |                        |                         |              |                                            |                               |  |  |  |  |  |
|--------------------------|------------------------|-------------------------|--------------|--------------------------------------------|-------------------------------|--|--|--|--|--|
| SAR                      | _Report_FC0            | C_ISED_60               | 320          | )_6190898_S                                | SH7                           |  |  |  |  |  |
| DUT Information          |                        |                         |              |                                            |                               |  |  |  |  |  |
| Manufacturer             | Datalogic              |                         |              |                                            |                               |  |  |  |  |  |
| Model Name               | TASKBOOK SH7           |                         |              |                                            |                               |  |  |  |  |  |
| FCC ID                   | U4FTBII                |                         |              |                                            |                               |  |  |  |  |  |
| IC Number                | 3862D-TBII             |                         |              |                                            |                               |  |  |  |  |  |
| Type / Category          | tablet PC              |                         |              | □ portable                                 | ☐ mixed mobile/portable       |  |  |  |  |  |
| Intended Use             |                        | ☐ next to the ear       |              | □ body-worn                                | ☐ limb-worn                   |  |  |  |  |  |
|                          | ☐ hand-held            | $\square$ front-of-face |              | oxtimes body supported                     | $\square$ clothing-integrated |  |  |  |  |  |
|                          | Prepared by            |                         |              |                                            |                               |  |  |  |  |  |
|                          | IMST GmbH, Test Cer    | nter                    |              |                                            |                               |  |  |  |  |  |
| Testing Laboratory       | Carl-Friedrich-Gauß-S  | tr. 2 – 4               |              |                                            |                               |  |  |  |  |  |
| resting Laboratory       | 47475 Kamp-Lintfort    |                         |              |                                            |                               |  |  |  |  |  |
|                          | Germany                |                         |              |                                            |                               |  |  |  |  |  |
| Prepared for             |                        |                         |              |                                            |                               |  |  |  |  |  |
|                          | 7layers GmbH           |                         |              | Datalogic S.r.l.                           |                               |  |  |  |  |  |
| Applicant / Manufacturer | Borsigstraße 11        |                         |              | Via San Vitalino, 13                       |                               |  |  |  |  |  |
| Applicant / manufacturer | 40880 Ratingen         |                         |              | 40012 Lippo di Calderara di Reno – Bologna |                               |  |  |  |  |  |
|                          | Germany                |                         |              | Italy                                      |                               |  |  |  |  |  |
|                          | Т                      | est Specificati         | on           |                                            |                               |  |  |  |  |  |
| Applied Rules/Standards  | IEEE 1528-2013, FCC    | CFR 47 § 2.1093,        | RSS-         | 102 Issue 5                                |                               |  |  |  |  |  |
| Exposure Category        | general public / und   | controlled exposure     | <del>)</del> | occupational / cor                         | ntrolled exposure             |  |  |  |  |  |
| Test Result              | ☑ PASS                 |                         |              | ☐ FAIL                                     |                               |  |  |  |  |  |
|                          | R                      | eport Informat          | ion          |                                            |                               |  |  |  |  |  |
| Data Stored              | 60320_6190898          |                         |              |                                            |                               |  |  |  |  |  |
| Issue Date               | August 05, 2019        |                         |              |                                            |                               |  |  |  |  |  |
| Revision Date            |                        |                         |              |                                            |                               |  |  |  |  |  |
| Revision Number          | (A new revision repla  | ces all previous rev    | /isions      | and thus, become inv                       | alid herewith)                |  |  |  |  |  |
|                          | Appendix A - Pictures  |                         |              |                                            |                               |  |  |  |  |  |
|                          | Appendix B - SAR Dis   | tribution Plots         |              |                                            |                               |  |  |  |  |  |
|                          | Appendix C - System    | Verification Plots      |              |                                            |                               |  |  |  |  |  |
| Appendixes               | Appendix D – Certifica | ates of Conformity      |              |                                            |                               |  |  |  |  |  |
|                          | Appendix E – Calibrati | ion Certificates for I  | DAEs         |                                            |                               |  |  |  |  |  |
|                          | Appendix F – Calibrati | on Certificates for I   | E-Field      | d Probes                                   |                               |  |  |  |  |  |
|                          | Appendix G – Calibrat  | ion Certificates for    | Dipole       | es                                         |                               |  |  |  |  |  |



#### **Appendix A - Pictures**

## **Pictures of the DUT**



Pic.1: Front viewsof DUT.



Pic. 2: Back view of DUT.



## Pictures of Test Positions of the DUT





Pic. 3: Test position, back of DUT towards the phantom, 0 mm distance.





Pic. 4: Test position, edge 3 of DUT towards the phantom, 0 mm distance.



Pic. 5: Test position, edge 4 of DUT towards the phantom, 0 mm distance.

Revision No.:

#### **Appendix B - SAR Distribution Plots**

#### Worst Case Plots for SAR Measurement per Technology

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SH7\_7L1B\_tx19\_CH1b\_back\_chain1.da4

DUT: Datalogic; Type: SH 7 TaskBook; Serial: T19B00959

Program Name: IEEE 802.11 b

Communication System: WLAN 2450; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 51.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

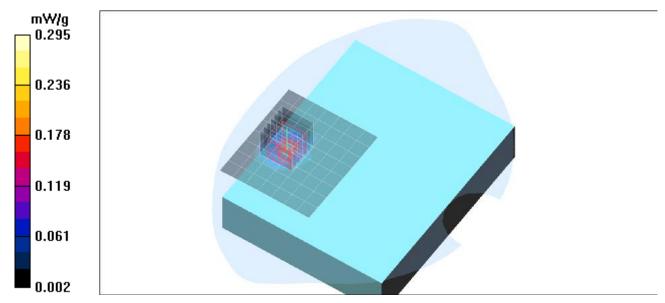
#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.66, 7.66, 7.66); Calibrated: 9/14/2018
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Flat/Area Scan (8x9x1):** Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.257 mW/g

Flat/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 7.26 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 0.524 W/kg

SAR(1 g) = 0.251 mW/g; SAR(10 g) = 0.108 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.295 mW/g



Plot. 1: SAR distribution plot for WLAN 2.4 GHz, ANT 1, channel 1, back, 0 mm to phantom.



Revision No.:

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SH7\_7L1B\_tx19\_CH1b\_edge4\_chain2.da4

DUT: Datalogic; Type: SH 7 TaskBook; Serial: T19B00959

Program Name: IEEE 802.11 b

Communication System: WLAN 2450; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 51.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

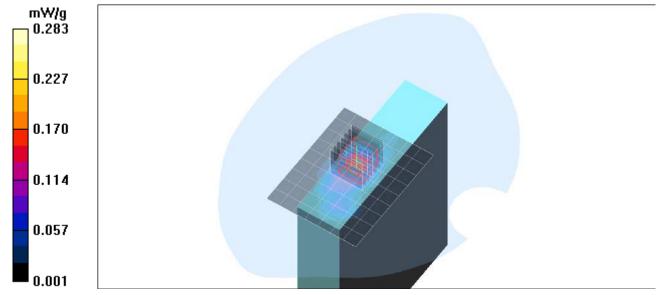
- Probe: EX3DV4 SN3536; ConvF(7.66, 7.66, 7.66); Calibrated: 9/14/2018
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (8x10x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.205 mW/g

Flat/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 6.29 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 0.546 W/kg

SAR(1 g) = 0.246 mW/g; SAR(10 g) = 0.104 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.283 mW/g



Plot. 2: SAR distribution plot for WLAN 2.4 GHz, ANT 2, channel 1, edge 4, 0 mm to phantom.



Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SH7\_7L1B\_tx16\_CH60a\_back\_chain1.da4

DUT: Datalogic; Type: SH 7 TaskBook; Serial: T19B00959

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5300 MHz; Duty Cycle: 1:1

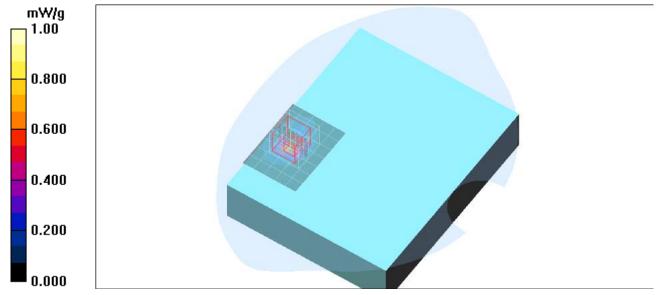
Medium parameters used: f = 5300 MHz;  $\sigma = 5.47 \text{ mho/m}$ ;  $\varepsilon_r = 49$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.92, 4.92, 4.92); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (6x8x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.683 mW/g

Flat/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.36 V/m; Power Drift = 0.078 dB

Peak SAR (extrapolated) = 1.97 W/kg

SAR(1 g) = 0.517 mW/g; SAR(10 g) = 0.160 mW/g Maximum value of SAR (measured) = 1.00 mW/g



Plot. 3: SAR distribution plot for WLAN 5.2 GHz, ANT 1, channel 60, back, 0 mm to phantom.



Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SH7\_7L1B\_tx17\_CH60a\_back\_chain2.da4

DUT: Datalogic; Type: SH 7 TaskBook; Serial: T19B00959

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5300 MHz; Duty Cycle: 1:1

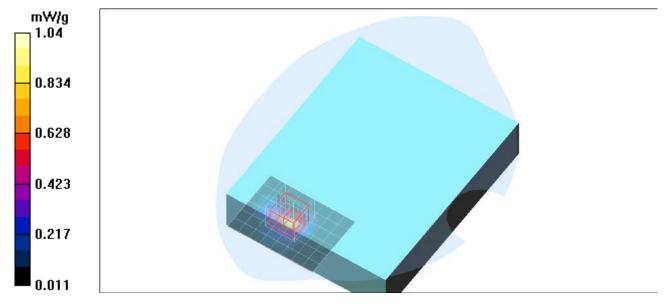
Medium parameters used: f = 5300 MHz;  $\sigma = 5.47 \text{ mho/m}$ ;  $\varepsilon_r = 49$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.92, 4.92, 4.92); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (9x7x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 1.01 mW/g

Flat/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.6 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 0.555 mW/g; SAR(10 g) = 0.199 mW/g Maximum value of SAR (measured) = 1.04 mW/g



Plot. 4: SAR distribution plot for WLAN 5.2 GHz, ANT 2, channel 60, back, 0 mm to phantom.



Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SH7\_7L1B\_tx16\_CH120a\_back\_chain1.da4

DUT: Datalogic; Type: SH 7 TaskBook; Serial: T19B00959

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5600 MHz; Duty Cycle: 1:1

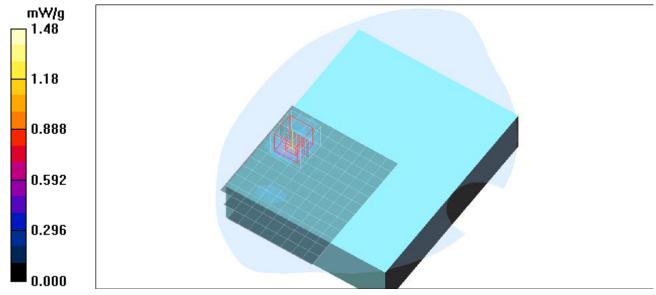
Medium parameters used: f = 5600 MHz;  $\sigma = 5.93 \text{ mho/m}$ ;  $\varepsilon_r = 48.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.37, 4.37, 4.37); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (11x13x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 1.05 mW/g

Flat/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.22 V/m; Power Drift = -0.216 dB

Peak SAR (extrapolated) = 3.13 W/kg

SAR(1 g) = 0.738 mW/g; SAR(10 g) = 0.219 mW/g Maximum value of SAR (measured) = 1.48 mW/g



Plot. 5: SAR distribution plot for WLAN 5.5 GHz, ANT 1, channel 120, back, 0 mm to phantom.



Revision No.:

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SH7\_7L1B\_tx16\_CH120a\_back\_chain2.da4

DUT: Datalogic; Type: SH 7 TaskBook; Serial: T19B00959

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5600 MHz; Duty Cycle: 1:1

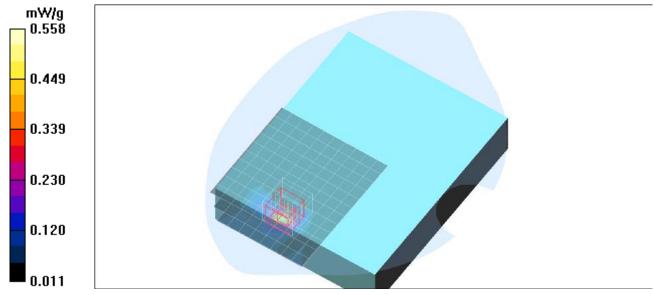
Medium parameters used: f = 5600 MHz;  $\sigma = 5.93 \text{ mho/m}$ ;  $\varepsilon_r = 48.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.37, 4.37, 4.37); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (11x13x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.503 mW/g

Flat/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.77 V/m; Power Drift = 0.165 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.307 mW/g; SAR(10 g) = 0.115 mW/g Maximum value of SAR (measured) = 0.558 mW/g



Plot. 6: SAR distribution plot for WLAN 5.5 GHz, ANT 2, channel 120, back, 0 mm to phantom.



Revision No.:

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SH7\_7L1B\_tx16\_CH157a\_back\_chain1.da4

DUT: Datalogic; Type: SH 7 TaskBook; Serial: T19B00959

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5785 MHz; Duty Cycle: 1:1

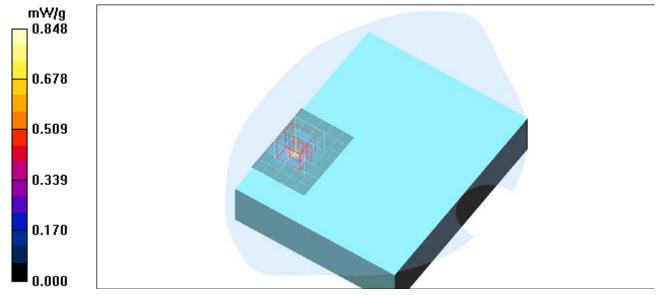
Medium parameters used: f = 5785 MHz;  $\sigma = 6.22$  mho/m;  $\varepsilon_r = 47.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.55, 4.55, 4.55); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (6x8x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.757 mW/g

Flat/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.42 V/m; Power Drift = 0.135 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.431 mW/g; SAR(10 g) = 0.127 mW/g Maximum value of SAR (measured) = 0.848 mW/g



Plot. 7: SAR distribution plot for WLAN 5.8 GHz, ANT 1, channel 120, back, 0 mm to phantom.



Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SH7\_7L1B\_tx16\_CH157a\_back\_chain2.da4

DUT: Datalogic; Type: SH 7 TaskBook; Serial: T19B00959

Program Name: IEEE 802.11 a

Communication System: 5 GHz; Frequency: 5785 MHz; Duty Cycle: 1:1

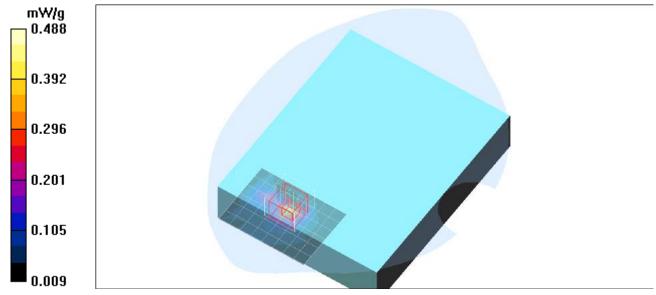
Medium parameters used: f = 5785 MHz;  $\sigma = 6.22$  mho/m;  $\varepsilon_r = 47.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.55, 4.55, 4.55); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (9x7x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.430 mW/g

Flat/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.09 V/m; Power Drift = 0.170 dB

Peak SAR (extrapolated) = 0.981 W/kg

SAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.103 mW/g Maximum value of SAR (measured) = 0.488 mW/g



Plot. 8: SAR distribution plot for WLAN 5.8 GHz, ANT 2, channel 120, back, 0 mm to phantom.



#### **Appendix C - System Verification Plots**

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: <u>17072019\_1Db\_2450b\_3536\_631.da4</u>

DUT: Dipole 2450 MHz SN: 709; Type: D2450V2; Serial: D2450V2 - SN:709

Program Name: System Performance Check at 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

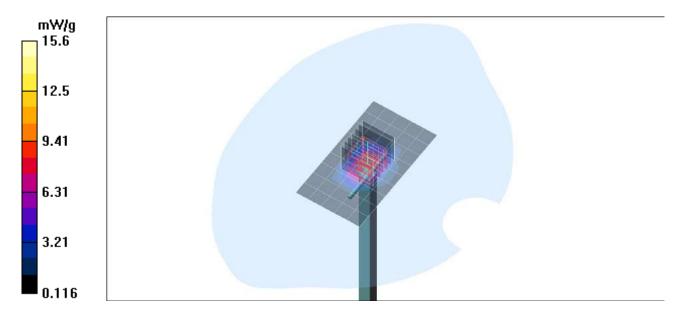
Medium parameters used: f = 2450 MHz;  $\sigma = 2 \text{ mho/m}$ ;  $\epsilon_r = 51.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.66, 7.66, 7.66); Calibrated: 9/14/2018
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 12.4 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.4 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 27.8 W/kg

**SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.31 mW/g** Maximum value of SAR (measured) = 15.6 mW/g



Plot. 1: System verification measurement 2450 MHz, body (July 17, 2019).



Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 31072019\_1Db\_5250b\_3536\_631.da4

DUT: Dipole 5GHz SN: 1028; Type: D5GHzV2; Serial: D5GHzV2 - SN:1028

Program Name: System Performance Check at 5250 MHz

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

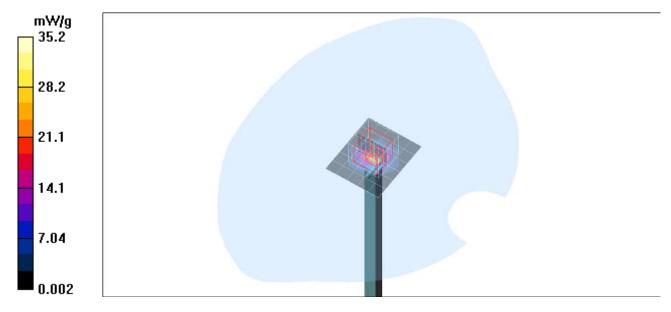
Medium parameters used: f = 5250 MHz;  $\sigma = 5.39 \text{ mho/m}$ ;  $\varepsilon_r = 49.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.92, 4.92, 4.92); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 28.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 91.9 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 70.9 W/kg

SAR(1 g) = 17.9 mW/g; SAR(10 g) = 5.01 mW/g Maximum value of SAR (measured) = 35.2 mW/g



Plot. 2: System verification measurement 5250 MHz, body (July 31, 2019).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 31072019 1Db 5600b 3536 631.da4

DUT: Dipole 5GHz SN: 1028; Type: D5GHzV2; Serial: D5GHzV2 - SN:1028

Program Name: System Performance Check at 5600 MHz

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

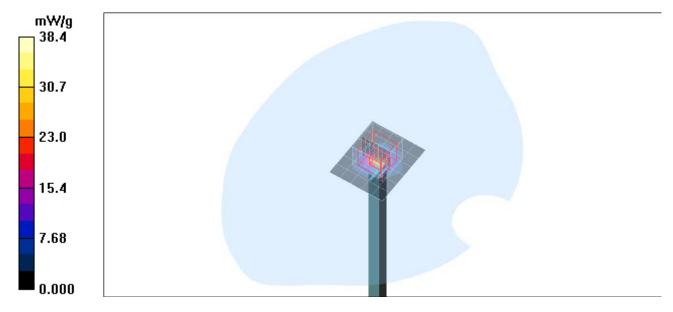
Medium parameters used: f = 5600 MHz;  $\sigma = 5.93 \text{ mho/m}$ ;  $\varepsilon_r = 48.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.37, 4.37, 4.37); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 31.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 91.2 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 82.1 W/kg

SAR(1 g) = 19.2 mW/g; SAR(10 g) = 5.35 mW/g Maximum value of SAR (measured) = 38.4 mW/g



Plot. 3: System verification measurement 5600 MHz, body (July 31, 2019).





Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 31072019 1Db 5800b 3536 631.da4

DUT: Dipole 5GHz SN: 1028; Type: D5GHzV2; Serial: D5GHzV2 - SN:1028

Program Name: System Performance Check at 5800 MHz

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

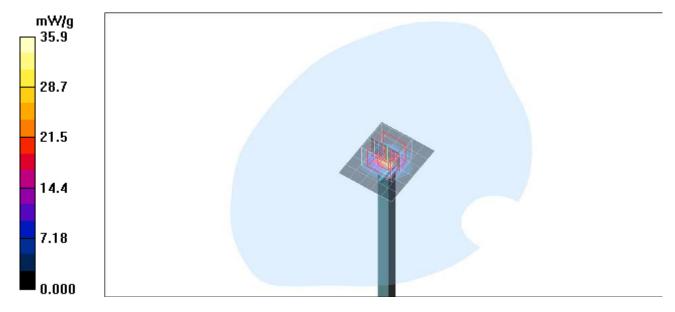
Medium parameters used: f = 5800 MHz;  $\sigma = 6.24 \text{ mho/m}$ ;  $\varepsilon_r = 47.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.55, 4.55, 4.55); Calibrated: 9/14/2018
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 9/13/2018
- Phantom: SAM 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 29.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 86.2 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 79.9 W/kg

SAR(1 g) = 17.9 mW/g; SAR(10 g) = 4.96 mW/g Maximum value of SAR (measured) = 35.9 mW/g



Plot. 4: System verification measurement 5800 MHz, body (July 31, 2019).



#### Appendix D – Certificates of Conformity

Schmid & Partner Engineering AG

е а q S

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Cortificate of conformity

| Item                  | Dosimetric Assessment System DASY4                                              |  |
|-----------------------|---------------------------------------------------------------------------------|--|
| Type No               | SD 000 401A, SD 000 402A                                                        |  |
| Software Version No   | DASY 4.7                                                                        |  |
| Manufacturer / Origin | Schmid & Partner Engineering AG Zeughausstrasse 43, CH-8004 Zürich, Switzerland |  |

#### References

- [1] IEEE 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz -Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- IEC 62209 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation and Procedures, Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and multiple transmitters", March 2010
- KDB 865664. "SAR Measurement Requirements for 100 MHz to 6 GHz"
- ANSI-C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids", May 2011

#### Conformity

We certify that this system is designed to be fully compliant with the standards [1 - 5] for RF emission tests of wireless devices.

The uncertainty of the measurements with this system was evaluated according to the above standards and is documented in the applicable chapters of the DASY4 system handbook and in Chapter 27 of the DASY5 system handbook.

The uncertainty values represent current state of methodology and are subject to changes. They are applicable to all laboratories using DASY4 provided the following requirements are met (responsibility of the system end user):

- the system is used by an experienced engineer who follows the manual and the guidelines taught during the training provided by SPEAG,
- the probe and validation dipoles have been calibrated for the relevant frequency bands and media 2) within the requested period,
- the DAE has been calibrated within the requested period,
- 4) the "minimum distance" between probe sensor and inner phantom shell and the radiation source is selected properly,
- the system performance check has been successful, 5)
- the operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136, PDC) and the measurement/integration time per point is ≥ 500 ms,
- if applicable, the probe modulation factor is evaluated and applied according to field level, modulation and frequency,
- the dielectric parameters of the liquid are conform with the standard requirement,
- the DUT has been positioned as described in the manual.
- the uncertainty values from the calibration certificates, and the laboratory and measurement equipment dependent uncertainties, are updated by end user accordingly.

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 eag.com, http://www.speag.com Signature / Stamp 19.09.2016 Date

Doc No 880 - SD00040XA-Standards\_1609 - G

Certificate of conformity for the used DASY4 system:

KP/FB

Page 1 (1)

Fig. 4:



Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

#### Certificate of Conformity / First Article Inspection

| Item         | SAM Twin Phantom V4.0 and V5.0                                          |  |  |
|--------------|-------------------------------------------------------------------------|--|--|
| Type No      | QD 000 P40 C                                                            |  |  |
| Series No    | TP-1150 and higher                                                      |  |  |
| Manufacturer | Untersee Composites<br>Knebelstrasse 8, CH-8268 Mannenbach, Switzerland |  |  |

#### Tests

Complete tests were made on the pre-series QD 000 P40 A, # TP-1001, on the series first article QD 000 P40 B # TP-1006. Certain parameters are retested on series items.

| Test                        | Requirement                                                                         | Details                                           | Units tested                              |
|-----------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|
| Dimensions                  | Compliant with the geometry according to the CAD model.                             | IT'IS CAD File *                                  | First article,<br>Samples                 |
| Material thickness of shell |                                                                                     |                                                   | First article,<br>Samples,<br>TP-1314 ff. |
| Material thickness at ERP   | 6mm +/- 0.2mm at ERP                                                                |                                                   | First article, All items                  |
| Material parameters         | rel. permittivity 2 – 5,<br>loss tangent ≤ 0.05, at f ≤ 6 GHz                       | rel. permittivity 3.5 +/- 0.5 loss tangent ≤ 0.05 | Material samples                          |
| Material resistivity        | Compatibility with tissue simulating liquids .                                      | Compatible with SPEAG liquids. **                 | Phantoms,<br>Material sample              |
| Sagging                     | Sagging of the flat section in tolerance when filled with tissue simulating liquid. | < 1% for filling height up<br>to 155 mm           | Prototypes,<br>Sample testing             |

The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

#### Standards

- [1] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209–1 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", 2005-02-18
- [4] IEC 62209–2 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", 2010-03-30

#### Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of **hand-held** SAR measurements and system performance checks as specified in [1-4] and further standards. **s** p e a g

Date 25.07.2011

Signature / Stamp

Schmid & Partner Engineering AG Zeughausstrasse 43, 8094 Zurich, 8 witzerlan

Doc No 881 - QD 000 P40 C - H

Page

1 (1)

AR Report FCC ISED Body

<sup>\*\*</sup> Note: Compatibility restrictions apply certain liquid components mentioned in the standard, containing e.g. DGBE, DGMHE or Triton X-100. Observe technical note on material compatibility.



Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

#### Certificate of Conformity / First Article Inspection

| Item         | Oval Flat Phantom ELI 4.0                                    |  |
|--------------|--------------------------------------------------------------|--|
| Type No      | QD OVA 001 B                                                 |  |
| Series No    | 1003 and higher                                              |  |
| Manufacturer | SPEAG<br>Zeughausstrasse 43<br>CH-8004 Zürich<br>Switzerland |  |

#### Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff.

| Test                                                                                                                                                                                                                    | Requirement                                                                                                                               | Details                                                                                                                                                          | Units tested                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Dimensions                                                                                                                                                                                                              | Compliant with the standard IEC 62209 – 2 [1] requirements                                                                                | Dimensions of bottom<br>for 300 MHz – 6 GHz:<br>longitudinal = 600 mm<br>(max. dimension)<br>width= 400 mm (min<br>dimension)<br>depth= 190 mm<br>Shape: ellipse | Prototypes,<br>Samples                        |
| Material thickness                                                                                                                                                                                                      | Compliant with the standard IEC<br>62209 – 2 [1] requirements                                                                             | Bottom plate:<br>2.0mm +/- 0.2mm                                                                                                                                 | Prototypes,<br>All items                      |
| Material<br>parameters                                                                                                                                                                                                  | Dielectric parameters for required<br>frequencies                                                                                         | 300 MHz – 6 GHz<br>Rel. permittivity = 4 +/-1,<br>Loss tangent ≤ 0.05                                                                                            | Material<br>sample                            |
| Material resistivity  The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions.  Observe Technical Note for material compatibility. |                                                                                                                                           | DEGMBE based<br>simulating liquids                                                                                                                               | Equivalent<br>phantoms,<br>Material<br>sample |
| Sagging                                                                                                                                                                                                                 | Compliant with the requirements<br>according to the standard.<br>Sagging of the flat section when filled<br>with tissue simulating liquid | < 1% typical < 0.8% if<br>filled with 155mm of<br>HSL900 and without<br>DUT below                                                                                | Prototypes,<br>Sample<br>testing              |

#### Standards

[1] IEC 62209 – 2, Draft Version 0.9, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and multiple transmitters", December 2004

#### Conformity

Based on the sample tests above, we certify that this item is in compliance with the standard [1].

Date

07.07.2005

Schmill & Section Tinging bring AG Zeugnac Serasso 43, 8004 Zurich Switzs Phone 41 1-245 2004 Fak 4412 244 224

Signature / Stamp

Phone 41 1-245-200; Fax 441-2 245-627 info dispag.com, http://www.speeg.com

Doc No 881 - QD OVA 001 B - C

Page

1 (1)

Fig. 8: Certificate of conformity for the ELI phantom.



#### **Appendix E – Calibration Certificates for DAEs**

**DAE 4 - SN: 631** 

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client IMST

Certificate No: DAE4-631 Sep18

Accreditation No.: SCS 0108

| Object                                                                                                                                                          | DAE4 - SD 000 D                                                                  | 04 BM - SN: 631                                                                                     |                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                        | QA CAL-06.v29                                                                    |                                                                                                     |                                                                      |
|                                                                                                                                                                 | Calibration proces                                                               | dure for the data acquisition elec                                                                  | ctronics (DAE)                                                       |
|                                                                                                                                                                 |                                                                                  |                                                                                                     |                                                                      |
| Calibration date:                                                                                                                                               | September 13, 20                                                                 | 18                                                                                                  |                                                                      |
| This calibration certificate docum                                                                                                                              | nents the traceability to natio                                                  | nal standards, which realize the physical un                                                        | nits of measurements (SI).                                           |
| The measurements and the unce                                                                                                                                   | ertainties with confidence pro                                                   | obability are given on the following pages ar                                                       | nd are part of the certificate.                                      |
| All calibrations have been condu                                                                                                                                | cted in the closed laboratory                                                    | facility: environment temperature (22 ± 3)°                                                         | C and humidity < 70%.                                                |
|                                                                                                                                                                 |                                                                                  |                                                                                                     |                                                                      |
| Calibration Equipment used (M&                                                                                                                                  | TE critical for calibration)                                                     |                                                                                                     |                                                                      |
| Primary Standards                                                                                                                                               | ID#                                                                              | Cal Date (Certificate No.)                                                                          | Scheduled Calibration                                                |
| Primary Standards                                                                                                                                               | Comment                                                                          | Cal Date (Certificate No.)<br>03-Sep-18 (No:23488)                                                  | Scheduled Calibration<br>Sep-19                                      |
| Primary Standards<br>Keithley Multimeter Type 2001                                                                                                              | ID#                                                                              |                                                                                                     |                                                                      |
| Primary Standards  Keithley Multimeter Type 2001  Secondary Standards  Auto DAE Calibration Unit                                                                | ID # SN: 0810278 ID # SE UWS 053 AA 1001                                         | 03-Sep-18 (No:23488)  Check Date (in house)  04-Jan-18 (in house check)                             | Sep-19                                                               |
| Calibration Equipment used (M&<br>Primary Standards<br>Keithley Multimeter Type 2001<br>Secondary Standards<br>Auto DAE Calibration Unit<br>Calibrator Box V2.1 | ID # SN: 0810278 ID # SE UWS 053 AA 1001                                         | 03-Sep-18 (No:23488)<br>Check Date (in house)                                                       | Sep-19<br>Scheduled Check                                            |
| Primary Standards  Keithley Multimeter Type 2001  Secondary Standards  Auto DAE Calibration Unit                                                                | ID # SN: 0810278 ID # SE UWS 053 AA 1001                                         | 03-Sep-18 (No:23488)  Check Date (in house)  04-Jan-18 (in house check)                             | Sep-19 Scheduled Check In house check: Jan-19                        |
| Primary Standards  Keithley Multimeter Type 2001  Secondary Standards  Auto DAE Calibration Unit  Calibrator Box V2.1                                           | ID # SN: 0810278 ID # SE UWS 053 AA 1001                                         | 03-Sep-18 (No:23488)  Check Date (in house)  04-Jan-18 (in house check)                             | Sep-19 Scheduled Check In house check: Jan-19                        |
| Primary Standards  Keithley Multimeter Type 2001  Secondary Standards  Auto DAE Calibration Unit  Calibrator Box V2.1                                           | ID #<br>SN: 0810278<br>ID #<br>SE UWS 053 AA 1001<br>SE UMS 006 AA 1002          | 03-Sep-18 (No:23488)  Check Date (in house)  04-Jan-18 (in house check)  04-Jan-18 (in house check) | Sep-19 Scheduled Check In house check: Jan-19 In house check: Jan-19 |
| Primary Standards  Keithley Multimeter Type 2001  Secondary Standards  Auto DAE Calibration Unit                                                                | ID #   SN: 0810278     ID #   SE UWS 053 AA 1001     SE UMS 006 AA 1002     Name | 03-Sep-18 (No:23488)  Check Date (in house)  04-Jan-18 (in house check)  04-Jan-18 (in house check) | Sep-19 Scheduled Check In house check: Jan-19 In house check: Jan-19 |

Certificate No: DAE4-631\_Sep18

Page 1 of 5



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

### Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-631\_Sep18

Page 2 of 5



## **DC Voltage Measurement**

A/D - Converter Resolution nominal

| Calibration Factors | x                     | Y                     | z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.319 ± 0.02% (k=2) | 404.282 ± 0.02% (k=2) | 406.220 ± 0.02% (k=2) |
| Low Range           | 3.94611 ± 1.50% (k=2) | 3.92898 ± 1.50% (k=2) | 3.95869 ± 1.50% (k=2) |

#### **Connector Angle**

| Connector Angle to be used in DASY system | 33.5 ° ± 1 ° |
|-------------------------------------------|--------------|

Certificate No: DAE4-631\_Sep18

Page 3 of 5



## Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

| High Range        | Reading (μV) | Difference (μV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 199997.59    | 0.38            | 0.00      |
| Channel X + Input | 20005.07     | 3.55            | 0.02      |
| Channel X - Input | -19995,84    | 5.96            | -0.03     |
| Channel Y + Input | 199997.06    | 0.12            | 0.00      |
| Channel Y + Input | 20001.74     | 0.32            | 0.00      |
| Channel Y - Input | -20001.02    | 0.91            | -0.00     |
| Channel Z + Input | 199997.23    | 0.28            | 0.00      |
| Channel Z + Input | 19998.21     | -3.18           | -0.02     |
| Channel Z - Input | -20003.93    | -2.00           | 0.01      |

| Low Range         | Reading (μV) | Difference (μV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 2001.06      | 0.03            | 0.00      |
| Channel X + Input | 201.98       | 0.65            | 0.32      |
| Channel X - Input | -198.32      | 0.21            | -0.11     |
| Channel Y + Input | 2001.63      | 0.70            | 0.04      |
| Channel Y + Input | 200.62       | -0.54           | -0.27     |
| Channel Y - Input | -199.28      | -0.50           | 0.25      |
| Channel Z + Input | 2001.32      | 0.49            | 0.02      |
| Channel Z + Input | 199.08       | -2.00           | -0.99     |
| Channel Z - Input | -199.15      | -0.39           | 0.19      |

#### 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 1.76                               | 0.23                              |
|           | - 200                             | 1.72                               | -0.01                             |
| Channel Y | 200                               | 18.14                              | 18.32                             |
|           | - 200                             | -19.97                             | -20.58                            |
| Channel Z | 200                               | 3.87                               | 3.91                              |
|           | - 200                             | -5.80                              | -5.82                             |

#### 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                |                | -0.33          | -3.25          |
| Channel Y | 200                | 9.44           |                | 0.60           |
| Channel Z | 200                | 6.77           | 6.86           | S <del>a</del> |

Certificate No: DAE4-631\_Sep18

Page 4 of 5

AR Report FCC ISED Body v2.1

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15991            | 15875           |
| Channel Y | 15459            | 16158           |
| Channel Z | 16650            | 17058           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) |
|-----------|--------------|------------------|------------------|---------------------|
| Channel X | 0.76         | -0.32            | 2.12             | 0.47                |
| Channel Y | -0.55        | -1.79            | 0.70             | 0.50                |
| Channel Z | -0.76        | -2.09            | 0.72             | 0.55                |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |
|----------------|-------------------|
| Supply (+ Vcc) | +7.9              |
| Supply (- Vcc) | -7.6              |

9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

Certificate No: DAE4-631\_Sep18



#### Appendix F - Calibration Certificates for E-Field Probes

#### Probe EX3DV4 - SN3536

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

IMST

Certificate No: EX3-3536\_Sep18

#### **CALIBRATION CERTIFICATE**

Object

EX3DV4 - SN:3536

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

September 14, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103245       | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 30-Dec-17 (No. ES3-3013_Dec17)    | Dec-18                 |
| DAE4                       | SN: 660          | 21-Dec-17 (No. DAE4-660_Dec17)    | Dec-18                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 |

|                | Name            | Function              | Signature                  |
|----------------|-----------------|-----------------------|----------------------------|
| Calibrated by: | Claudio Leubler | Laboratory Technician | W.                         |
| Approved by:   | Katja Pokovic   | Technical Manager     | select                     |
|                |                 |                       | Issued: September 18, 2018 |

Certificate No: EX3-3536\_Sep18

Page 1 of 11



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP

CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization o φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", June 2013
  IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3536 Sep18

Page 2 of 11

EX3DV4 - SN:3536

September 14, 2018

# Probe EX3DV4

SN:3536

Manufactured: Calibrated:

April 30, 2004

September 14, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3536\_Sep18

Page 3 of 11



EX3DV4-SN:3536

September 14, 2018

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3536

#### **Basic Calibration Parameters**

| 122000                                     | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.43     | 0.41     | 0.35     | ± 10.1 %  |
| DCP (mV) <sup>8</sup>                      | 99.7     | 103.1    | 99.6     |           |

#### **Modulation Calibration Parameters**

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 188.6    | ±3.5 %                    |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 175.9    |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 192.0    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3536\_Sep18

Page 4 of 11

A The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.



EX3DV4-SN:3536

September 14, 2018

#### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3536

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 2450                 | 39.2                       | 1.80                    | 7.56    | 7.56    | 7.56    | 0.26               | 1.02                       | ± 12.0 %     |
| 2600                 | 39.0                       | 1.96                    | 7.41    | 7.41    | 7.41    | 0.40               | 0.85                       | ± 12.0 %     |
| 5250                 | 35.9                       | 4.71                    | 5.24    | 5.24    | 5.24    | 0.40               | 1.80                       | ± 13.1 %     |
| 5600                 | 35.5                       | 5.07                    | 4.78    | 4.78    | 4.78    | 0.40               | 1.80                       | ± 13.1 %     |
| 5800                 | 35.3                       | 5.27                    | 4.85    | 4.85    | 4.85    | 0.40               | 1.80                       | ± 13.1 %     |

<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

\*\*All frequencies below 3 GHz, the validity of tissue parameters (and of) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (and of) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

\*\*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3536\_Sep18

Page 5 of 11



EX3DV4-SN:3536

September 14, 2018

#### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3536

#### Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 2450                 | 52.7                                  | 1.95                    | 7.66    | 7.66    | 7.66    | 0.38               | 0.85                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                    | 7.57    | 7.57    | 7.57    | 0.34               | 0.90                       | ± 12.0 %     |
| 5250                 | 48.9                                  | 5.36                    | 4.92    | 4.92    | 4.92    | 0.50               | 1.90                       | ± 13.1 %     |
| 5600                 | 48.5                                  | 5.77                    | 4.37    | 4.37    | 4.37    | 0.50               | 1.90                       | ± 13.1 %     |
| 5800                 | 48.2                                  | 6.00                    | 4.55    | 4.55    | 4.55    | 0.50               | 1.90                       | ± 13.1 %     |

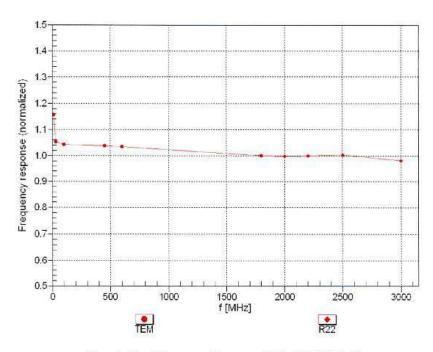
<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3536\_Sep18

Page 6 of 11


diameter from the boundary.



EX3DV4- SN:3536

September 14, 2018

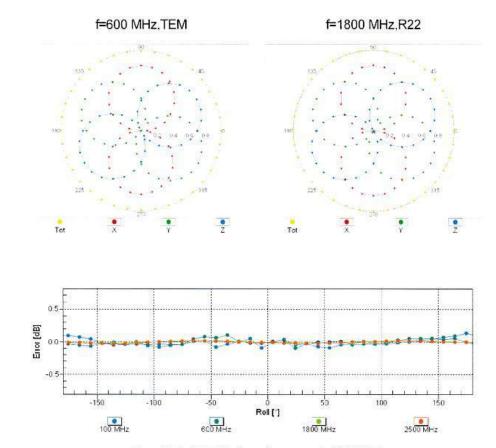
## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3536\_Sep18

Page 7 of 11


Revision No.:



EX3DV4- SN:3536 September 14, 2018

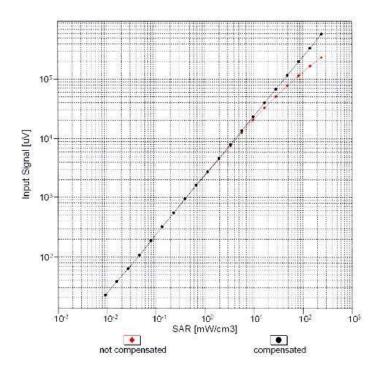
Revision Date:

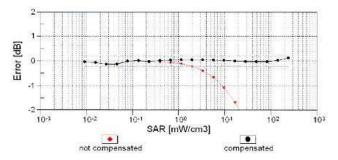
## Receiving Pattern ( $\phi$ ), $9 = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3536\_Sep18


Page 8 of 11




EX3DV4- SN:3536

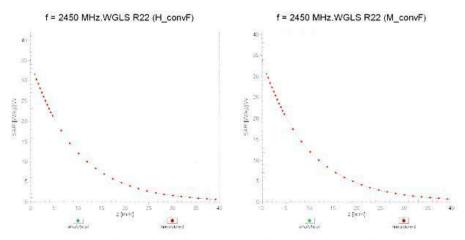
September 14, 2018

## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)

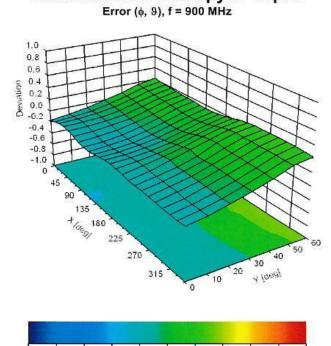




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3536\_Sep18

Page 9 of 11




EX3DV4- SN:3536 September 14, 2018

## **Conversion Factor Assessment**



## Deviation from Isotropy in Liquid



-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.
Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3536\_Sep18

Page 10 of 11

EX3DV4- SN:3536

September 14, 2018

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3536

#### Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -5.5       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Certificate No: EX3-3536\_Sep18

Page 11 of 11



### Appendix G – Calibration Certificates for Dipoles

## 10.1.1 Dipole 2450 MHz - SN709

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

IMST

Certificate No: D2450V2-709\_Nov18

| CALIBRATION C                                                                       | ERIIFICALE                                      |                                                 |                                 |
|-------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------|
| Object                                                                              | D2450V2 - SN:709                                |                                                 |                                 |
| Calibration procedure(s)                                                            | QA CAL-05.v10<br>Calibration proce              | edure for dipole validation kits abo            | ove 700 MHz                     |
|                                                                                     |                                                 |                                                 |                                 |
| Calibration date:                                                                   | November 12, 20                                 | 018                                             |                                 |
| This calibration certificate docume                                                 | nts the traceability to nat                     | ional standards, which realize the physical ur  | site of managements (CI)        |
| The measurements and the uncert                                                     | ainties with confidence p                       | orobability are given on the following pages ar | nd are part of the certificate. |
| All calibrations have been send and                                                 | ad in the elected laborate                      | . fo 10h                                        | A                               |
| All calibrations have been conducte                                                 | ad in the closed laborato                       | ry facility: environment temperature (22 ± 3)°  | C and humidity < 70%.           |
| Calibration Equipment used (M&TE                                                    | critical for calibration)                       |                                                 |                                 |
| Primary Standards                                                                   | ID#                                             | Cal Date (Certificate No.)                      | Scheduled Calibration           |
| Power meter NRP                                                                     | SN: 104778                                      | 04-Apr-18 (No. 217-02672/02673)                 | Apr-19                          |
| Power sensor NRP-Z91                                                                | SN: 103244                                      | 04-Apr-18 (No. 217-02672)                       | Apr-19                          |
| Power sensor NRP-Z91                                                                | SN: 103245                                      | 04-Apr-18 (No. 217-02673)                       | Apr-19                          |
| Reference 20 dB Attenuator                                                          | SN: 5058 (20k)                                  | 04-Apr-18 (No. 217-02682)                       | Apr-19                          |
| Type-N mismatch combination                                                         | SN: 5047.2 / 06327                              | 04-Apr-18 (No. 217-02683)                       | Apr-19                          |
| Reference Probe EX3DV4                                                              | SN: 7349                                        | 30-Dec-17 (No. EX3-7349_Dec17)                  | Dec-18                          |
| DAE4                                                                                | SN: 601                                         | 04-Oct-18 (No. DAE4-601_Oct18)                  | Oct-19                          |
| Secondary Standards                                                                 | ID#                                             | Check Date (in house)                           | Scheduled Check                 |
| Power meter EPM-442A                                                                | SN: GB37480704                                  | 07-Oct-15 (in house check Oct-18)               | In house check: Oct-20          |
| Power sensor HP 8481A                                                               | SN: US37292783                                  | 07-Oct-15 (in house check Oct-18)               | In house check: Oct-20          |
|                                                                                     | SN: MY41092317                                  | 07-Oct-15 (in house check Oct-18)               | In house check: Oct-20          |
| Power sensor HP 8481A                                                               | SN: 100972                                      | 15-Jun-15 (in house check Oct-18)               | In house check: Oct-20          |
|                                                                                     |                                                 | 31-Mar-14 (in house check Oct-18)               | In house check: Oct-19          |
| RF generator R&S SMT-06                                                             | SN: US41080477                                  | 31-Wall-14 (ITTIOUSE CHECK OCI-18)              |                                 |
| Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A | SN: US41080477<br>  Name                        | Function                                        | Signature                       |
| RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A                          | . January 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 |                                                 | Signature                       |
| RF generator R&S SMT-06                                                             | Name                                            | Function                                        | Signature                       |
| RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A                          | Name                                            | Function                                        | Signature                       |

Certificate No: D2450V2-709\_Nov18

Page 1 of 8



## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-709\_Nov18

Page 2 of 8



#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.9 ± 6 %   | 1.86 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.7 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 53.5 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.34 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.0 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.4 ± 6 %   | 2.02 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | ****         |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.1 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 51.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.07 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.0 W/kg ± 16.5 % (k=2) |

Certificate No: D2450V2-709\_Nov18

Page 3 of 8



#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | $53.5 \Omega + 0.9 j\Omega$ |  |
|--------------------------------------|-----------------------------|--|
| Return Loss                          | - 29.2 dB                   |  |

Revision Date:

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | $50.1 \Omega + 2.5 j\Omega$ |  |
|--------------------------------------|-----------------------------|--|
| Return Loss                          | - 32.2 dB                   |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.160 ns |  |
|----------------------------------|----------|--|
|----------------------------------|----------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG         |  |
|-----------------|---------------|--|
| Manufactured on | July 05, 2002 |  |

Certificate No: D2450V2-709\_Nov18



### **DASY5 Validation Report for Head TSL**

Date: 12.11.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:709

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.86$  S/m;  $\epsilon_r = 37.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

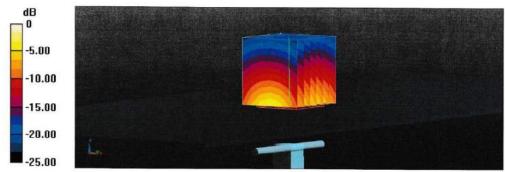
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

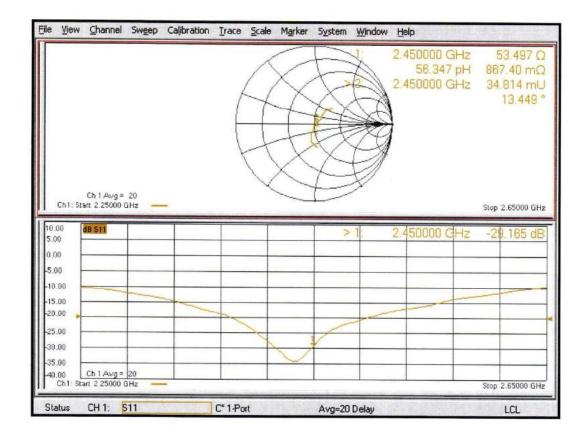
Reference Value = 118.6 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.34 W/kg

Maximum value of SAR (measured) = 22.9 W/kg




0 dB = 22.9 W/kg = 13.60 dBW/kg

Certificate No: D2450V2-709\_Nov18

Page 5 of 8



#### Impedance Measurement Plot for Head TSL



Certificate No: D2450V2-709\_Nov18

Page 6 of 8

Revision Date:



#### **DASY5 Validation Report for Body TSL**

Date: 12.11.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:709

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 2.02 \text{ S/m}$ ;  $\varepsilon_r = 51.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

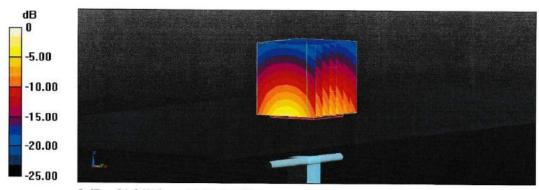
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

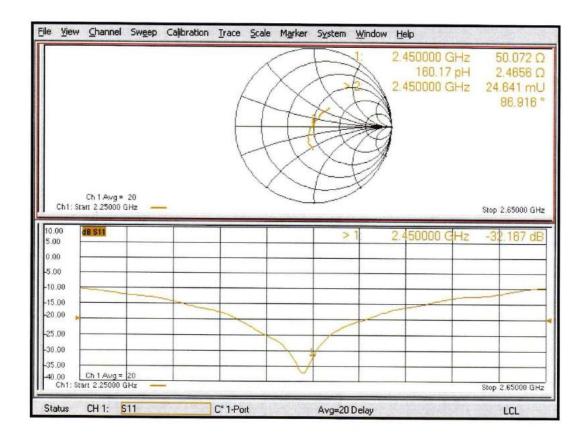

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.7 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 21.8 W/kg




0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: D2450V2-709\_Nov18



### Impedance Measurement Plot for Body TSL



Certificate No: D2450V2-709\_Nov18

#### 10.1.2 Dipole 5 GHz - SN1028

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

| ALIBITATION                                                                                                                                                                                                                                    | ERTIFICATE                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Object                                                                                                                                                                                                                                         | D5GHzV2 - SN:10                                                                                                                                                                 | 028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                 |
| Calibration procedure(s)                                                                                                                                                                                                                       | QA CAL-22.v2<br>Calibration proces                                                                                                                                              | dure for dipole validation kits bet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ween 3-6 GHz                                                                                                                                                    |
|                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |
| Calibration date:                                                                                                                                                                                                                              | May 17, 2017                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |
| The measurements and the uncer                                                                                                                                                                                                                 | rtainties with confidence p                                                                                                                                                     | onal standards, which realize the physical un<br>robability are given on the following pages ar<br>ry facility: environment temperature $(22\pm3)^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd are part of the certificate.                                                                                                                                 |
| Primary Standards                                                                                                                                                                                                                              | ID#                                                                                                                                                                             | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scheduled Calibration                                                                                                                                           |
| Power meter NRP                                                                                                                                                                                                                                | SN: 104778                                                                                                                                                                      | 04-Apr-17 (No. 217-02521/02522)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Apr-18                                                                                                                                                          |
|                                                                                                                                                                                                                                                | 011 100011                                                                                                                                                                      | 04-Apr-17 (No. 217-02521)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Apr-18                                                                                                                                                          |
| Power sensor NRP-Z91                                                                                                                                                                                                                           | SN: 103244                                                                                                                                                                      | 5 1 1 pr 1 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                | SN: 103244<br>SN: 103245                                                                                                                                                        | 04-Apr-17 (No. 217-02522)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Apr-18                                                                                                                                                          |
| Power sensor NRP-Z91                                                                                                                                                                                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Apr-18                                                                                                                                                          |
| Power sensor NRP-Z91<br>Reference 20 dB Attenuator                                                                                                                                                                                             | SN: 103245                                                                                                                                                                      | 04-Apr-17 (No. 217-02522)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (UM UM 1993)                                                                                                                                                    |
| Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination                                                                                                                                                              | SN: 103245<br>SN: 5058 (20k)                                                                                                                                                    | 04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Apr-18                                                                                                                                                          |
| Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4                                                                                                                                    | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327                                                                                                                              | 04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)<br>07-Apr-17 (No. 217-02529)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr-18<br>Apr-18                                                                                                                                                |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4                                                                                                                                        | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601                                                                                                       | 04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)<br>07-Apr-17 (No. 217-02529)<br>31-Dec-16 (No. EX3-3503_Dec16)<br>28-Mar-17 (No. DAE4-601_Mar17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Apr-18<br>Apr-18<br>Dec-17                                                                                                                                      |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards                                                                                                                    | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601                                                                                                       | 04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)<br>07-Apr-17 (No. 217-02529)<br>31-Dec-16 (No. EX3-3503_Dec16)<br>28-Mar-17 (No. DAE4-601_Mar17)<br>Check Date (In house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Apr-18<br>Apr-18<br>Dec-17<br>Mar-18                                                                                                                            |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A                                                                                               | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601<br>ID #<br>SN: GB37480704                                                                             | 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr-18<br>Apr-18<br>Dec-17<br>Mar-18<br>Scheduled Check                                                                                                         |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A                                                                         | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601                                                                                                       | 04-Apr-17 (No. 217-02522)<br>07-Apr-17 (No. 217-02528)<br>07-Apr-17 (No. 217-02529)<br>31-Dec-16 (No. EX3-3503_Dec16)<br>28-Mar-17 (No. DAE4-601_Mar17)<br>Check Date (In house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18                                                                                              |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A                                                   | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783                                                           | 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)  Check Date (In house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18                                                                       |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A                                                                         | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317                                         | 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18                                                |
| Type-N mismatch combination Reference Probe EX3DV4 DAE4  Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06                                                                          | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US37390585         | 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)  Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18                         |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292763<br>SN: MY41092317<br>SN: 100972<br>SN: US37390585<br>Name | 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr-18 Apr-18 Dec-17 Mar-18  Scheduled Check In house check: Oct-18 |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06                           | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US37390585         | 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)  Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Apr-18 Apr-18 Dec-17 Mar-18  Scheduled Check In house check: Oct-18 |
| Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 103245<br>SN: 5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 3503<br>SN: 601<br>ID #<br>SN: GB37480704<br>SN: US37292763<br>SN: MY41092317<br>SN: 100972<br>SN: US37390585<br>Name | 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. EX3-3503_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr-18 Apr-18 Dec-17 Mar-18  Scheduled Check In house check: Oct-18 |

Certificate No: D5GHzV2-1028\_May17

Page 1 of 13



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

|  | Certificate | No: | D5GI | IzV2- | 1028_ | May 1 | ľ |
|--|-------------|-----|------|-------|-------|-------|---|
|--|-------------|-----|------|-------|-------|-------|---|

Page 2 of 13



## **Measurement Conditions**

stem configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V52.10.0                         |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, $dy = 4.0$ mm, $dz = 1.4$ mm                         | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

## Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

| The following parameters and sales and sales | Temperature     | Permittivity | Conductivity     |
|----------------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters                  | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters                 | (22.0 ± 0.2) °C | 34.8 ± 6 %   | 4.59 mho/m ± 6 % |
| Head TSL temperature change during test      | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 8.02 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 79.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.32 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.0 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1028\_May17

Page 3 of 13



#### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

| le following parameters and calculations were appri | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters                         | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters                        | (22.0 ± 0.2) °C | 34.2 ± 6 %   | 4.95 mho/m ± 6 % |
| Head TSL temperature change during test             | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 8.32 W/kg                  |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.5 W / kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.40 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.7 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

| ne following parameters and calculations were appli | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters                         | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters                        | (22.0 ± 0.2) °C | 34.0 ± 6 %   | 5.16 mho/m ± 6 % |
| Head TSL temperature change during test             | < 0.5 °C        |              | 2220             |

#### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.94 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 78.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.6 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1028\_May17

Page 4 of 13



### Body TSL parameters at 5250 MHz

| ne following parameters and calculations were appli | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                         | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters                        | (22.0 ± 0.2) °C | 47.5 ± 6 %   | 5.50 mho/m ± 6 % |
| Body TSL temperature change during test             | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.53 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 74.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.12 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 21.1 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

| ne following parameters and calculations were appro- | Temperature     | Permittivity | Conductivity     |
|------------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                          | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters                         | (22.0 ± 0.2) °C | 46.9 ± 6 %   | 5.98 mho/m ± 6 % |
| Body TSL temperature change during test              | < 0.5 °C        |              | 4.000            |

## SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.95 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 79.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.24 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.2 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1028\_May17

Page 5 of 13

# Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

| te following parameters and carearanters are app | Temperature     | Permittivity | Conductivity     |
|--------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                      | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters                     | (22.0 ± 0.2) °C | 46.5 ± 6 %   | 6.26 mho/m ± 6 % |
| Body TSL temperature change during test          | < 0.5 °C        |              | 1007             |

## SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.68 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 76.4 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |  |
|---------------------------------------------------------|--------------------|--------------------------|--|
| SAR measured                                            | 100 mW input power | 2.15 W/kg                |  |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.3 W/kg ± 19.5 % (k=2) |  |

Certificate No: D5GHzV2-1028\_May17

Page 6 of 13



## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 50.0 Ω - 9.0 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 21.0 dB       |  |  |

#### Antenna Parameters with Head TSL at 5600 MHz

| 55.0 $\Omega$ - 2.8 j $\Omega$ |  |  |  |
|--------------------------------|--|--|--|
| - 25.2 dB                      |  |  |  |
|                                |  |  |  |

## Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 56.7 $\Omega$ - 5.8 j $\Omega$ |  |  |
|--------------------------------------|--------------------------------|--|--|
| Return Loss                          | - 21.7 dB                      |  |  |

## Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 50.6 Ω - 6.9 jΩ |  |  |  |
|--------------------------------------|-----------------|--|--|--|
| Return Loss                          | - 23.2 dB       |  |  |  |

### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | $57.5 \Omega - 1.6 j\Omega$ |  |  |  |
|--------------------------------------|-----------------------------|--|--|--|
| Return Loss                          | - 22.9 dB                   |  |  |  |

## Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 58.4 Ω - 4.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.0 dB       |

#### General Antenna Parameters and Design

|                                  | A MATERIAL CONTRACTOR OF THE PROPERTY OF THE P |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrical Delay (one direction) | 1. <b>1</b> 97 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Libotiton Doiny (evening)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG         |  |  |
|-----------------|---------------|--|--|
| Manufactured on | July 09, 2004 |  |  |

Certificate No: D5GHzV2-1028\_May17

Page 7 of 13



#### DASY5 Validation Report for Head TSL

Date: 17.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1028

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5250 MHz;  $\sigma=4.59$  S/m;  $\epsilon_r=34.8$ ;  $\rho=1000$  kg/m³ , Medium parameters used: f=5600 MHz;  $\sigma=4.95$  S/m;  $\epsilon_r=34.2$ ;  $\rho=1000$  kg/m³ , Medium parameters used: f=5800 MHz;  $\sigma=5.16$  S/m;  $\epsilon_r=34$ ;  $\rho=1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.01, 5.01, 5.01); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.0(1444); SEMCAD X 14.6.10(7416)

## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.19 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.58 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 32.1 W/kg

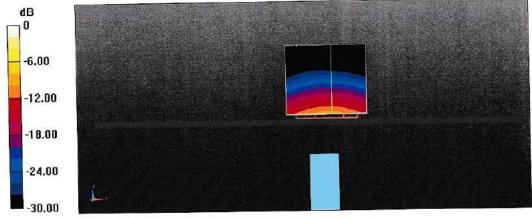
SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.06 V/m; Power Drift = -0.07 dB

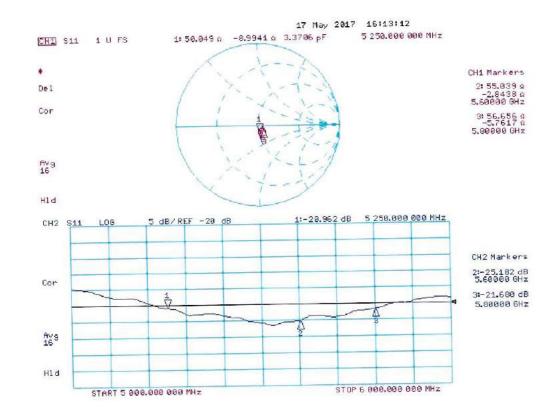

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: D5GHzV2-1028\_May17

Page 8 of 13




0 dB = 18.9 W/kg = 12.76 dBW/kg

Certificate No: D5GHzV2-1028\_May17

Page 9 of 13

## Impedance Measurement Plot for Head TSL



0

Certificate No: D5GHzV2-1028\_May17

Page 10 of 13

### **DASY5 Validation Report for Body TSL**

Date: 16.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1028

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz;  $\sigma = 5.5$  S/m;  $\epsilon_r = 47.5$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma = 5.98$  S/m;  $\epsilon_r = 46.9$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5800 MHz;  $\sigma = 6.26$  S/m;  $\epsilon_r = 46.5$ ;  $\rho = 1000$  kg/m³

Revision Date:

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.48, 4.48, 4.48); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1444); SEMCAD X 14.6.10(7416)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.60 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.57 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.24 W/kg

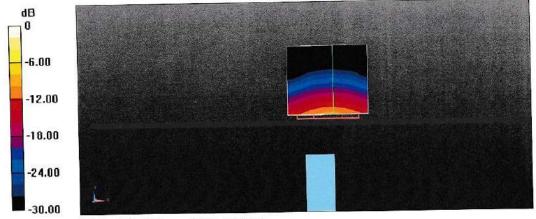
Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.73 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 33.7 W/kg


SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.15 W/kg

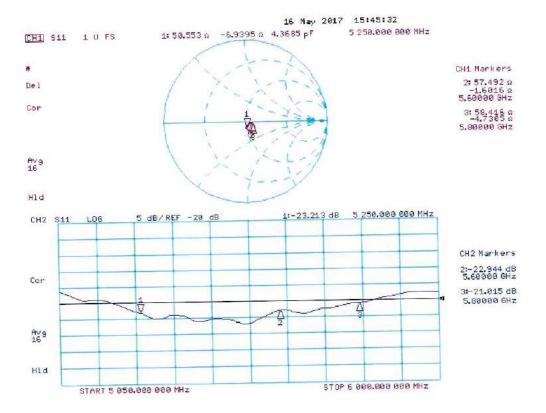
Maximum value of SAR (measured) = 18.5 W/kg

Certificate No: D5GHzV2-1028\_May17

Page 11 of 13






0 dB = 18.5 W/kg = 12.67 dBW/kg

Certificate No: D5GHzV2-1028\_May17

Page 12 of 13



## Impedance Measurement Plot for Body TSL



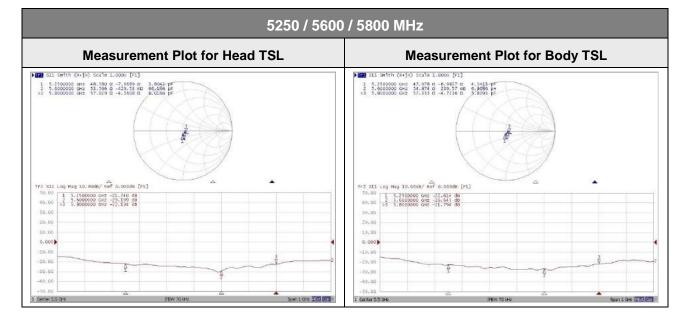
Certificate No: D5GHzV2-1028\_May17

Page 13 of 13



## Extended Dipole Calibration Verification for the D5GHzV2, SN: 1028

Referring to section 3.2.2 of KDB 865664 D01, the tables below contain the measurement results for the impedance and return loss of the dipole.


| Justi                               | fication of t | he Extende                | ed Calibration   | on           |         |        |  |
|-------------------------------------|---------------|---------------------------|------------------|--------------|---------|--------|--|
| 5250 HEAD TSL                       | Calibration   |                           | Verification     |              |         |        |  |
| 3230 HEAD TSL                       | May 1         | 7, 2017                   | May 2, 2019      |              |         |        |  |
|                                     | Tai           | Target                    |                  | Measured     |         | elta   |  |
| Impedance transformed to feed point | R [Ω]         | X [jΩ]                    | R [Ω]            | X [jΩ]       | R [Ω]   | X [jΩ] |  |
|                                     | 50.0          | -9.0                      | 48.58            | -7.97        | -1.4    | 1.0    |  |
| Return Loss                         | Target [dB]   |                           | Measu            | red [dB]     | Delta   | a [%]  |  |
| Netum Loss                          | -21.0         |                           | -2               | 1.7          | 3.3     |        |  |
| 5600 HEAD TSL                       | Calib         | ration                    |                  | Verifi       | cation  |        |  |
| 3000 NEAD TOE                       | May 1         | 7, 2017                   |                  | May 2        | , 2019  | 2019   |  |
|                                     | Tai           | rget                      | Meas             | sured        | Delta   |        |  |
| Impedance transformed to feed point | R [Ω]         | X [jΩ]                    | R [Ω]            | Χ [jΩ]       | R [Ω]   | Χ [jΩ] |  |
|                                     | 55.0          | -2.8                      | 53.57            | -0.43        | -1.4    | +2.4   |  |
| Return Loss                         | Targe         | Target [dB]               |                  | red [dB]     | Delta   | a [%]  |  |
| TOTALL EGG                          | -2            | 5.2                       | -29.2            |              | 15      | 5.9    |  |
| 5800 HEAD TSL                       | Calib         | ration                    |                  | Verifi       | cation  |        |  |
|                                     | May 1         | May 17, 2017              |                  | May 2        | , 2019  |        |  |
|                                     | Tai           | rget                      | Measured         |              | De      | elta   |  |
| Impedance transformed to feed point | R [Ω]         | X [jΩ]                    | R [Ω]            | Χ [jΩ]       | R [Ω]   | X [jΩ] |  |
|                                     | 56.7          | -5.8                      | 57.03            | -4.56        | +0.3    | +1.2   |  |
| Return Loss                         | Targe         | et [dB]                   | Measu            | red [dB]     | Delta   | a [%]  |  |
| TOTALL 2000                         | -2            | 1.7                       | -2:              | 2.1          | 2       | .0     |  |
| 5250 BODY TSL                       | Calibration   |                           | Verification     |              |         |        |  |
|                                     | May 1         | May 17, 2017              |                  | May 28, 2019 |         |        |  |
|                                     | Tai           | rget                      | Meas             | sured        | De      | elta   |  |
| Impedance transformed to feed point | R [Ω]         | X [jΩ]                    | R [Ω]            | Χ [jΩ]       | R [Ω]   | X [jΩ] |  |
|                                     | 50.6          | -6.9                      | 47.98            | -6.98        | -2.6    | -0.1   |  |
| Return Loss                         |               | et [dB]                   | Measured [dB] De |              | Delta   | a [%]  |  |
| . 1814 2000                         | -2            | 3.2                       | -2:              | 2.6          | -2      | 2.6    |  |
| 5600 BODY TSL                       | Calib         | ration                    |                  | Verifi       | cation  |        |  |
|                                     | May 1         | May 17, 2017              |                  | May 28       | 8, 2019 |        |  |
|                                     | Tai           | Target                    |                  | Measured     |         | Delta  |  |
| Impedance transformed to feed point | R [Ω]         | X [jΩ]                    | R [Ω]            | Χ [jΩ]       | R [Ω]   | X [jΩ] |  |
|                                     | 57.5          | -1.6                      | 54.87            | 0.24         | -2.6    | +1.8   |  |
| Return Loss                         |               | Target [dB] Measured [dB] |                  |              |         |        |  |
|                                     | -2:           | -22.9 -26.6               |                  | 16           | 16.2    |        |  |
| 5800 BODY TSL                       |               | ration                    | Verification     |              |         |        |  |
|                                     | May 17, 2017  |                           | May 28, 2019     |              |         | D.     |  |
|                                     |               | rget                      | 1                | sured        |         | elta   |  |
| Impedance transformed to feed point | R [Ω]         | X [jΩ]                    | R [Ω]            | X [jΩ]       | R [Ω]   | Χ [jΩ] |  |
|                                     | 58.4          | -4.7                      | 57.35            | -4.72        | -1.1    | -0.0   |  |
| Return Loss                         |               | et [dB]                   |                  | red [dB]     |         | a [%]  |  |
|                                     | -21.0         |                           | -21.8            |              | 3.8     |        |  |

The impedance is within 5 ohm of prior calibration.

The return loss is <-20 dB and within 20% of prior calibration.

Therefore the verification result supports extended dipole calibration.



