

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA
Phone: 262.375.4400 • Fax: 262.375.4248
www.lsr.com

TEST REPORT # 310380
LSR Job #: C-1179

Compliance Testing of:
Yale Real Living Deadbolt

Test Date(s):
Feb 24, 28, April 18, 19, 2011

Prepared For:
Assa Abloy
Attn: Mark Caterino
100 Sargent Drive
New Haven, CT 06511

In accordance with:
Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.249
Industry Canada (IC) RSS 210 Annex 2
Transmitters Operating in the
Frequency Band 902 MHz – 928 MHz

This Test Report is issued under the Authority of: Thomas T. Smith

Signature:

Date: 5.11.11

Test Report Reviewed by:

Thomas T. Smith

Signature:

Date: 5.11.11

Tested by:

Peter Feilen, EMC Engineer

Signature: Date: 05.11.11

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 2 of 25

TABLE OF CONTENTS

EXHIBIT 1: INTRODUCTION	
1.1 Scope	3
1.2 Normative References	3
1.3 LS Research, LLC Test Facility	4
1.4 Location of Testing	4
1.5 Test Equipment Utilized	4
EXHIBIT 2: PERFORMANCE ASSESSMENT	
2.1 Client Information	5
2.2 Equipment Under Test (EUT) Information	5
2.3 Associated Antenna Description	5
2.4 EUT's Technical Specifications	6
2.5 Product Description	7
EXHIBIT 3: EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS	
3.1 Climate Test Conditions	7
3.2 Applicability & Summary of EMC Emission Test Results	7
3.3 Modifications Incorporated in the EUT for Compliance Purposes	7
3.4 Deviations & Exclusions from Test Specifications	7
EXHIBIT 4: DECLARATION OF CONFORMITY	
EXHIBIT 5: RADIATED EMISSIONS TESTING	
5.1 Test Setup	9
5.2 Test Procedure	9
5.3 Test Equipment Utilized	10
5.4 Test Results	10
5.5 Calculation of Radiated Emissions Limits	11
5.6 Radiated Emissions Test Data Chart	13
5.7 Screen Captures – Radiated Emissions Test	15
EXHIBIT 6: OCCUPIED BANDWIDTH	
6.1 Limits	19
6.2 Method of Measurements	19
6.3 Test Data	19
6.4 Screen Capture – Occupied Bandwidth	19
EXHIBIT 7: BAND-EDGE MEASUREMENTS	
7.1 Method of Measurements	20
7.2 Screen Captures	20
APPENDICES	
APPENDIX A: TEST EQUIPMENT LIST	22
APPENDIX B: TEST STANDARDS – RADIO	23
APPENDIX C: UNCERTAINTY STATEMENT	24

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 3 of 25

EXHIBIT 1. INTRODUCTION

1.1 SCOPE

References:	FCC Part 15, Subpart C, Section 15.249 and 15.209 FCC Part 2, Section 2.1043 paragraph (b)1. RSS GEN and RSS 210 Annex 2
Title:	FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC : Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	<ul style="list-style-type: none">Commercial, Industrial or BusinessResidential

1.2 NORMATIVE REFERENCES

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 4 of 25

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lsr.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 TEST EQUIPMENT UTILIZED

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 5 of 25

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 CLIENT INFORMATION

Manufacturer Name:	Assa Abloy
Address:	110 Sargent Drive, New Haven, CT 06511
Contact Name:	Mark Caterino

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	Yale Real Living Deadbolt
Model Number:	YRDZW
Serial Number:	N/A

2.3 ASSOCIATED ANTENNA DESCRIPTION

Meandering trace PCB antenna.

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 6 of 25

2.4 EUT'S TECHNICAL SPECIFICATIONS

Additional Information:

EUT Frequency Range (in MHz)	908.4 MHz
RF Power in Watts	0.00008 Watts
Field Strength at 3 meters	84.3 dB μ V/m
Occupied Bandwidth	111.8 kHz
Type of Modulation	FSK
Emission Designator	112KF1D
EIRP (in mW)	0.081 mW
Transmitter Spurious (worst case) at 3 meters	37.5 dB μ V/m at 1816.8 MHz
Stepped (Y/N)	N
Step Value:	N/A
Microprocessor Model # (if applicable)	L152K6
Antenna Information	
Detachable/non-detachable	Non-detachable
Type	Trace
Gain (in dBi)	-5.7 dBi
EUT will be operated under FCC Rule Part(s)	15.249
EUT will be operated under RSS Rule Part(s)	RSS 210
Modular Filing	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Portable or Mobile?	N/A

RF Technical Information:

Type of Evaluation (check one)	SAR Evaluation: Device Used in the Vicinity of the Human Head
	SAR Evaluation: Body-worn Device
	RF Evaluation

If RF Evaluation checked above, test engineer to complete the following:

- Evaluated against exposure limits: General Public Use Controlled Use
- Duty Cycle used in evaluation: %
- Standard used for evaluation: OET 65
- Measurement Distance: 20 cm
- RF Value: 0.00038 V/m A/m W/m²
 Measured Computed Calculated

This product has a maximum output power of 0.081 mW and thus it is exempt from RF and SAR evaluation.

2.5 PRODUCT DESCRIPTION

The Yale Real Living Deadbolt is a deadbolt lock that also contains a 900MHz transceiver which can control peripherals though out the residence it is associated with. The unit requires 4-AA batteries and transmits data with a trace antenna.

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 7 of 25

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	20-25 ° C
Humidity:	35-65 % R.H.

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	N/A
IC : RSS GEN section 4.6.1	20 dB Bandwidth	Yes
FCC : 15.249(A) & 1.1310 IC : RSS 210 A2.9 (a)	Maximum Output Power	Yes
FCC : 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	Yes
FCC : 15.249(a) IC : RSS 210 A2.9(a)	Transmitter harmonics	Yes
FCC : 15.249(d), 15.209 & 15.205 IC : RSS 210 A2.9(b),	Transmitter Radiated Emissions	Yes

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC). The Receiver Test Report is available upon request.

3.3 MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None Yes (explain below)

3.4 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS

None Yes (explain below)

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 8 of 25

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.249, and Industry Canada RSS-210, Annex 2.9.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 9 of 25

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuously transmitting modulated mode using power as provided by a battery.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one channel: **908.4 MHz**.

5.2 Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz.

In the frequency range of 30 MHz to 4 GHz, the maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height while for the range of 4 GHz to 10 GHz the antenna was raised and lowered between 1 and 1.8 meters in height. In addition, the polarity of the antenna was switched between horizontal and vertical polarity.

Battery Voltage was periodically checked to ensure sufficient supply.

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 10 of 25

5.3 Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.249 and Canada RSS-210, Annex 2.9. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 11 of 25

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS AND REPORTED DATA.

Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dB μ V/m) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) – amplification factor when applicable (dB).

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dB μ V/m).

Field Strength of Fundamental Frequencies:

The fundamental emissions for an intentional radiator in the 902-928 MHz band, operating under FCC part 15.249 and RSS 210 A2.9 limits, must have electric field strength of no greater than 50 mV/m, for the fundamental frequency, when measured at 3 meters, and harmonic field strength of no greater than 500 μ V/m, when measured at 3 meters. Spurious emissions outside the 902-928 MHz band shall be attenuated by at least 50 dB below the level of the fundamental, or meet the limits expressed in FCC part 15.209 under general emission limits.

Field Strength of Fundamental Frequencies is Limited to 50,000 μ V/m, or 94 dB μ V/m.

Field Strength of Harmonic and Spurious Frequencies is Limited by FCC 15.249 a and d

The harmonic limit of –50 dBc with respect to the fundamental limit would be:

$$94 \text{ dB}\mu\text{V/m} - 50 \text{ dB} = 44 \text{ dB}\mu\text{V/m},$$

with the exception of where FCC 15.209 allows for a higher limit to be used.

Frequency (MHz)	3 m Limit (μ V/m)	3 m Limit (dB μ V/m)
902-928	50,000	94.0
30-88 ; 88-216	159	44.0
216-902 ; 928-960	500	46.0*
960-40,000	500	54.0*

The following table depicts the general radiated emission limits obtained from Title 47 CFR, part 15.209a, for radiated emissions measurements, including restricted band limits as expressed in 47 CFR, part 15.205.

Frequency (MHz)	3 m Limit (μ V/m)	3 m Limit (dB μ V/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-40,000	500	54.0

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 12 of 25

Sample conversion from field strength μ V/m to $\text{dB}\mu$ V/m:

from 30 - 88 MHz for example: $\text{dB}\mu\text{V/m} = 20 \log_{10} (3\text{m limit})$
 $40.0 \text{ dB}\mu\text{V/m} = 20 \log_{10} (100)$

For measurements made at 1 meter, a 9.5 dB correction may be been invoked.

960 MHz to 40,000 MHz
500 μ V/m or 54.0 $\text{dB}\mu$ V/m at 3 meters
 $54.0 + 9.5 = 63.5 \text{ dB}\mu\text{V/m at 1 meter}$

Note: Limits are conservatively rounded to the nearest tenth of a whole number.

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 13 of 25

5.6

RADIATED EMISSIONS TEST DATA CHART

Measurements of Electromagnetic Radiated Emissions

Frequency Range Inspected: 30 MHz to 25000 MHz

Manufacturer:	Assa Abloy				
Date(s) of Test:	February 24, April 18, 2011				
Project Engineer:	Peter Feilen				
Test Engineer(s):	Peter Feilen				
Voltage:	6.0 VDC				
Operation Mode:	Continuous transmit				
EUT Power:		Single Phase 120 VAC			3 Phase ___ VAC
	X	Battery			Other:
EUT Placement:	X	80cm non-conductive table			10cm Spacers
EUT Test Location:	X	3 Meter Semi-Anechoic FCC Listed Chamber			3/10m OATS
Measurements:		Pre-Compliance		Preliminary	X Final
Detectors Used:	X	Peak		X Quasi-Peak	X Average

The following table depicts the level of radiated fundamental:

FREQ (MHz)	ANT	EUT	HEIGHT (m)	AZIMUTH (°)	PEAK (dB μ V/m)	Q.PEAK (dB μ V/m)	Q.PEAK (mv/m)	LIMIT (mv/m)	LIMIT (dB μ V/m)	MARGIN (dB)
908.40	H	TT	1.27	31	81.7	81.2	11.5	50.0	94.0	12.8
908.40	V	TT	1.00	0	84.9	84.3	16.4	50.0	94.0	9.7

The following table depicts the level of radiated spurious emissions:

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dB μ V/m)	Quasi Peak Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation
296.4	1.00	0	23.5	46.0	22.5	V	TT
40.5	1.00	0	12.15	40.0	27.9	H	TT
891.4	1.00	0	28.16	46.0	17.8	H	TT
890.2	1.00	0	27.66	46.0	18.3	V	TT

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 14 of 25

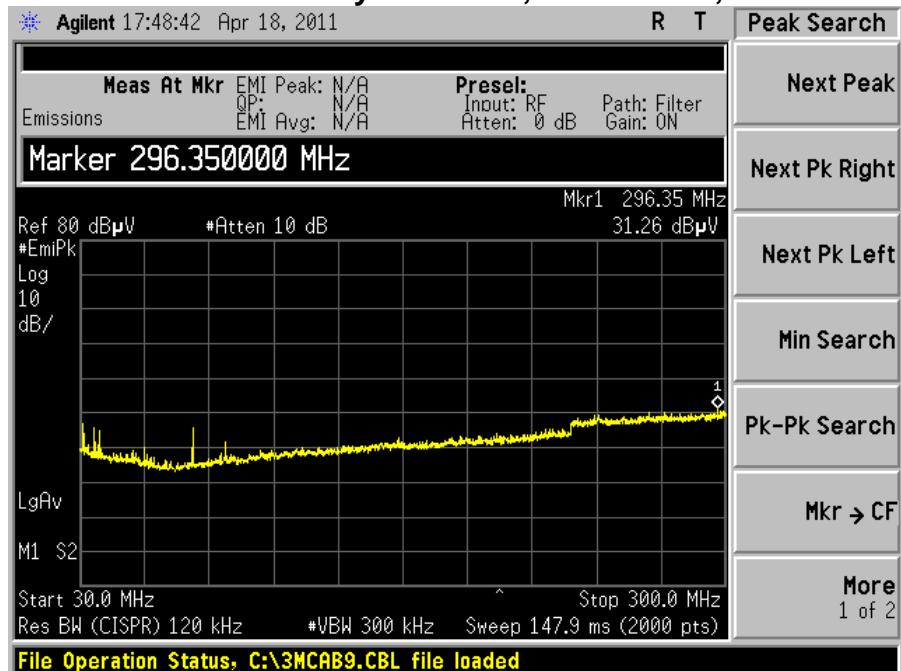
RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of harmonic emissions seen:

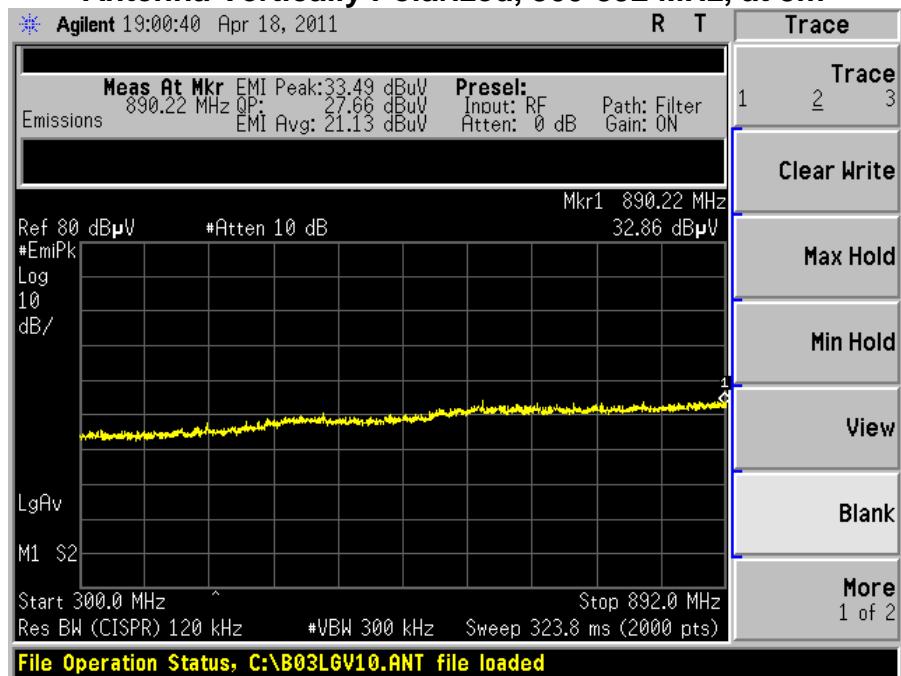
Antenna Polarity	Frequency (MHz)	Peak (dB μ V/m)	Average (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Antenna Height (cm)	Azimuth (°)
Horizontal	1816.84	43.5	37.5	54.0	16.5	114.0	0
Horizontal	2725.26	Note 3		54.0	54.0		
Horizontal	3633.68	Note 3		54.0	54.0		
Horizontal	4542.38	42.7	31.0	63.5	32.5	102.7	5
Horizontal	5450.40	44.4	32.4	63.5	31.1	101.7	4
Horizontal	6356.72	45.2	33.2	63.5	30.3	102.3	14
Horizontal	7266.46	45.5	34.1	63.5	29.4	101.4	9
Horizontal	8177.58	46.2	34.4	63.5	29.1	79.9	10
Horizontal	9086.42	48.1	36.2	63.5	27.3	103.2	20
Vertical	1816.84	39.6	30.5	54.0	23.5	194.0	0
Vertical	2725.26	41.2	37.0	54.0	17.1	158.0	0
Vertical	3633.68	Note 3		54.0	54.0		
Vertical	4540.6	43.0	31.5	63.5	32.0	102.0	311
Vertical	5450.98	44.5	32.4	63.5	31.1	122.9	4
Vertical	6359.58	45.1	33.2	63.5	30.3	104.3	4
Vertical	7267.19	45.4	34.1	63.5	29.4	102.2	89
Vertical	8177.44	46.2	34.5	63.5	29.0	98.1	4
Vertical	9083.84	48.0	36.2	63.5	27.3	103.2	3

Notes:

- 1) A Peak Detector was used in measurements above 1 GHz, for average measurement, the peak detector was used with lower VBW. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.
- 2) Measurements above 4 GHz were made at 1 meter of separation from the EUT. Limits are corrected to reflect this distance.
- 3) Measurement buried within receiver system noise floor.

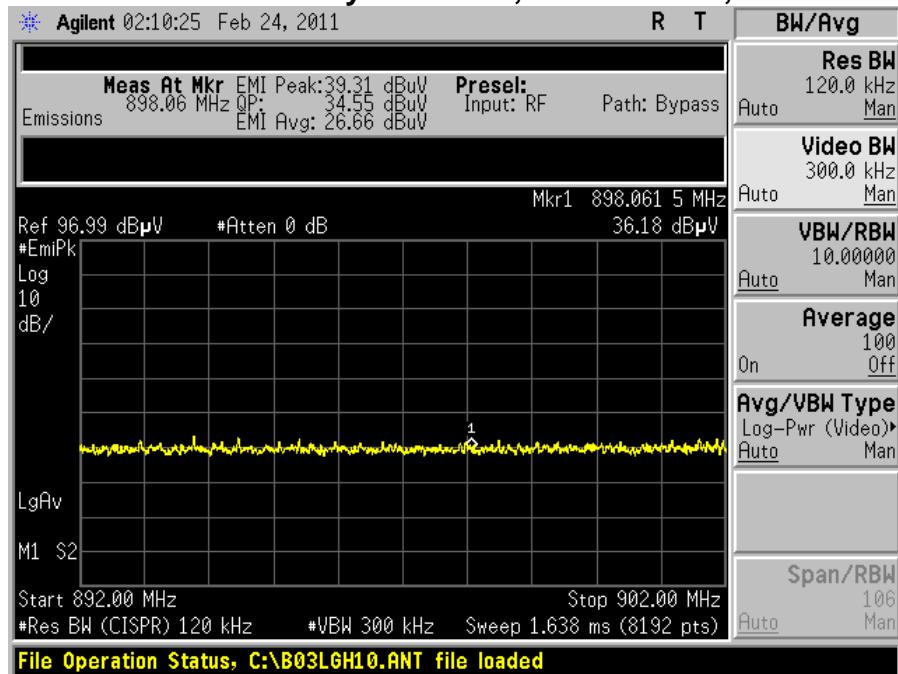

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 15 of 25

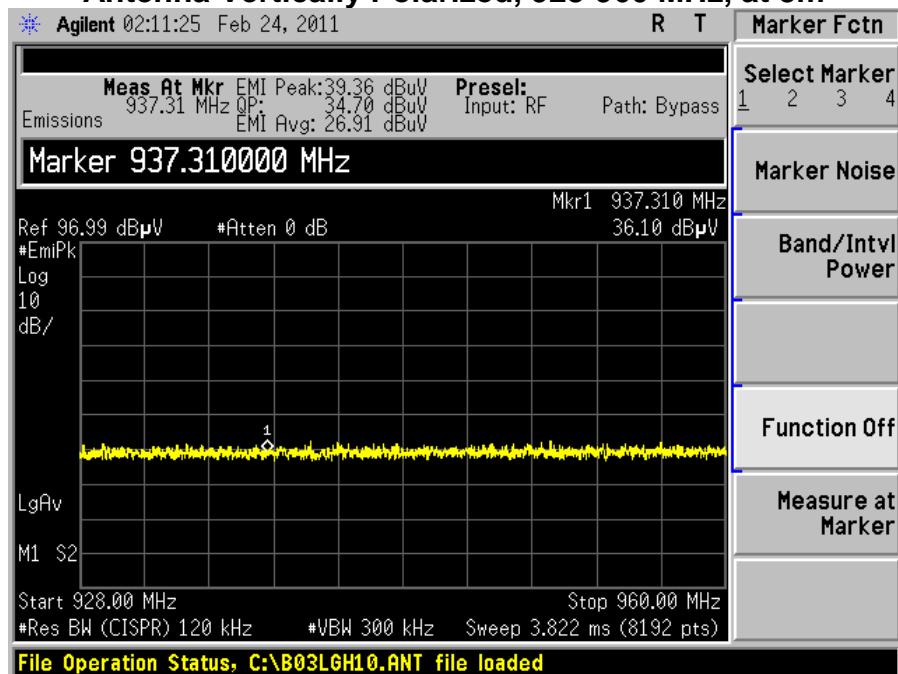
5.7 Screen Captures - Radiated Emissions Test


These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a peak detector with video averaging is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on channels low, middle and high, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

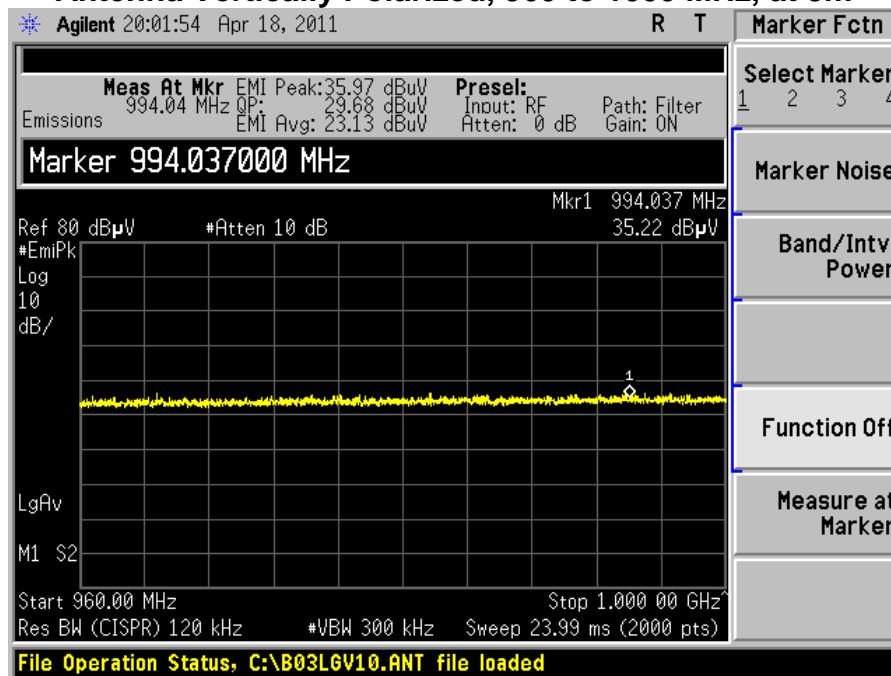
Antenna Vertically Polarized, 30-300 MHz, at 3m

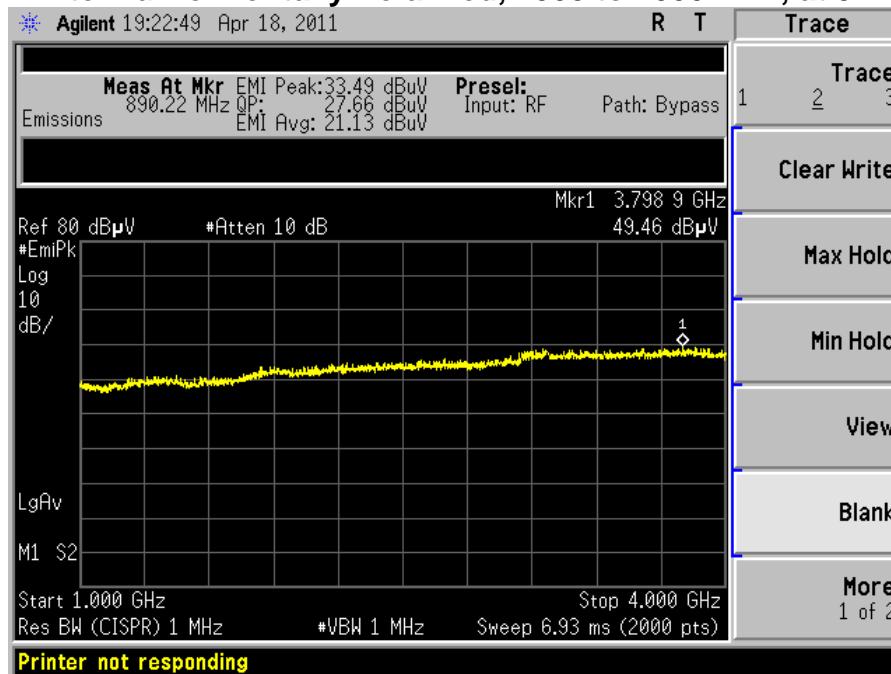

Antenna Vertically Polarized, 300-892 MHz, at 3m


Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 16 of 25

Screen Captures - Radiated Emissions Testing (continued)

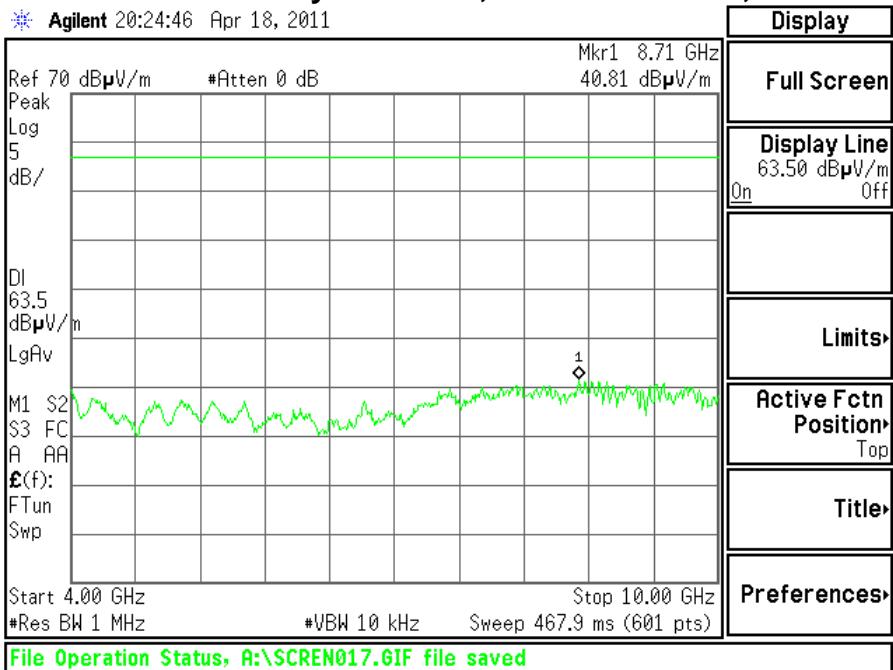
Antenna Vertically Polarized, 892-902 MHz, at 3m


Antenna Vertically Polarized, 928-960 MHz, at 3m


Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 17 of 25

Screen Screen Captures - Radiated Emissions Testing (continued)

Antenna Vertically Polarized, 960 to 1000 MHz, at 3m


Antenna Horizontally Polarized, 1000 to 4000 MHz, at 3m

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 18 of 25

Screen Captures - Radiated Emissions Testing (continued)

Antenna Vertically Polarized, 4000-10000 MHz, at 1m

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 19 of 25

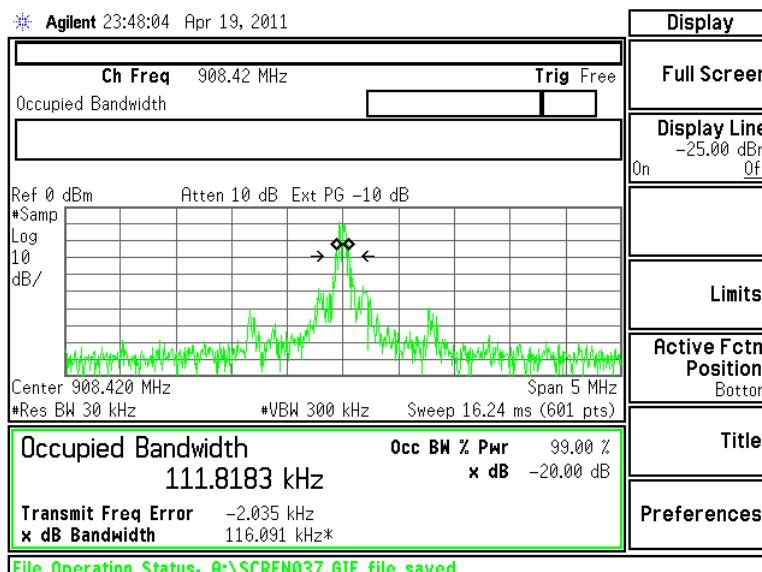
EXHIBIT 6. OCCUPIED BANDWIDTH:

6.1 Limits

There are no limits specified. The occupied bandwidth need only be reported.

6.2 Method of Measurements

This test was performed radiated in a 3-meter semi-anechoic chamber. The resolution bandwidth was set such that it was greater than the occupied bandwidth. This maximum value for the fundamental was then used as reference for 20dBc.


The resolution bandwidth was then set to a value that was greater than or equal to 1% of the bandwidth. Using the 20dBc, marker, the bandwidth was measured.

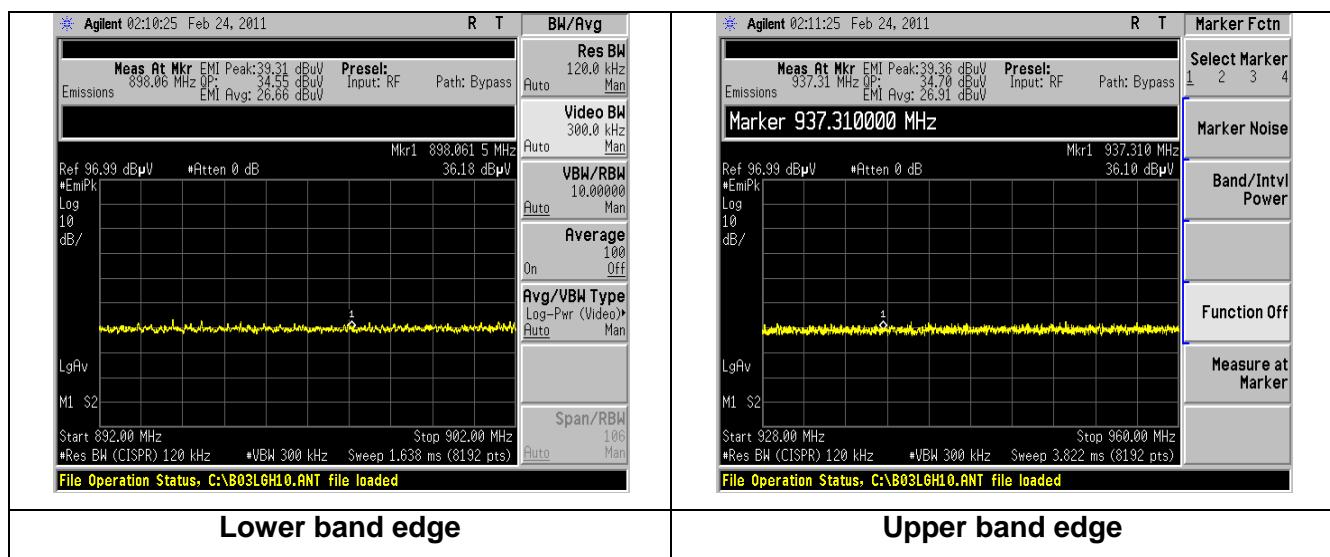
6.3 Test Data

Center Frequency (MHz)	Measured -20 dBc Occ.Bw (kHz)
908.42	111.8

6.4 Screen Captures - OCCUPIED BANDWIDTH

Occupied Bandwidth

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 20 of 25


EXHIBIT 7. BAND-EDGE MEASUREMENTS

7.1 Method of Measurements

FCC 15.209(b) and 15.249(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 902-928 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source.

7.2 Screen Captures

Screen Capture Demonstrating Compliance at the Band-Edges

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 21 of 25

APPENDIX A

Date : 11-May-2011

Type Test : Radiated Emissions (109)

Job # : C-1179

Prepared By: _____

Customer : ASSA ABLOY

Quote # : 310380

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	NS181A	MY49060062	6/7/2010	6/7/2011	Active Calibration
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
3	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
4	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
5	AA 9600150	Bicon Antenna	ETS	3110B	0003-3346	11/3/2009	11/3/2010	Active Calibration
6	AA 960081	Double Ridge Horn Antenna	EMCO	3115	6907	12/22/2009	12/22/2010	Active Calibration
7	EE 960159	0.8 - 21GHz LNA	Mini-Circuits	ZVA-213X-S+	740411007	8/19/2010	8/19/2011	Active Calibration
8	AA 960158	Double Ridge Horn Antenna	EMCO	3117	109300	8/19/2010	8/19/2011	Active Calibration

Project Engineer: Peter Fulin

Quality Assurance: Thomas Smith

Date : 11-May-2011

Type Test : Conducted Power Output

Job # : C-1179

Prepared By: _____

Customer : ASSA ABLOY

Quote # : 310380

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/4/2010	6/4/2011	Active Calibration
2	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration

Project Engineer: Peter Fulin

Quality Assurance: Thomas Smith

Date : 11-May-2011

Type Test : Occupied Bandwidth (6dB & 20dB)

Job # : C-1179

Prepared By: Peter

Customer : ASSA ABLOY

Quote # : 310380

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/4/2010	6/4/2011	Active Calibration
2	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration

Project Engineer: Peter Fulin

Quality Assurance: Thomas Smith

Date : 11-May-2011

Type Test : Spurious Emissions

Job # : C-1179

Prepared By: Peter

Customer : ASSA ABLOY

Quote # : 310380

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/4/2010	6/4/2011	Active Calibration
2	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration

Project Engineer: Peter Fulin

Quality Assurance: Thomas Smith

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 22 of 25

Wireless Product Development

Equipment Calibration

Date : 11-May-2011

Type Test: Band-Edge

Job #: C-1179

Prepared By: Peter

Customer: ASSA ABLOY

Quote #: 310380

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
2	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/7/2010	6/7/2011	Active Calibration
3	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
4	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration

Project Engineer: Peter FulinQuality Assurance: Thomas Smith

Wireless Product Development

Equipment Calibration

Date : 11-May-2011

Type Test: Radiated Emissions

Job #: C-1179

Prepared By: Peter

Customer: ASSA ABLOY

Quote #: 310380

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/7/2010	6/7/2011	Active Calibration
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
3	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
4	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
5	AA 960150	Bicon Antenna	ETS	3110B	0003-3346	11/3/2009	11/3/2010	Active Calibration
6	AA 960081	Double Ridge Horn Antenna	EMCO	3115	6907	12/22/2009	12/22/2010	Active Calibration
7	EE 960159	0.8 - 21GHz LNA	Mini-Circuits	ZVA-213X-S+	740411007	8/19/2010	8/19/2011	Active Calibration
8	AA 960158	Double Ridge Horn Antenna	EMCO	3117	109300	8/19/2010	8/19/2011	Active Calibration

Project Engineer: Peter FulinQuality Assurance: Thomas Smith

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 23 of 25

APPENDIX B

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2009		
ANSI C63.10	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 12	2007-05		
CISPR 14-1	2005-11	2008-11	
CISPR 14-2	2001-11	2001-11	2008-05
CISPR 16-1-1 Note 1	2010-01		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2009		
EN 55014-1	2006		
EN 55014-2	1997		
EN 55022	2006	2007	
EN 60601-1-2	2007-03		
EN 61000-3-2	2006-05		
EN 61000-3-3	2008-12		
EN 61000-4-2	2009-05		
EN 61000-4-3	2006-07	2008-05	
EN 61000-4-4	2004		
EN 61000-4-5	2006-12		
EN 61000-4-6	2009-05		
EN 61000-4-8	1994	2001	
EN 61000-4-11	2004-10		
EN 61000-6-1	2007-02		
EN 61000-6-2	2005-12		
EN 61000-6-3	2007-02		
EN 61000-6-4	2007-02		
FCC 47 CFR, Parts 0-15, 18, 90, 95	2009		
FCC Public Notice DA 00-1407	2000		
FCC ET Docket # 99-231	2002		
FCC Procedures	2007		
ICES 001	2006-06		
ICES 002	2009-08		
ICES 003	2004-02		
IEC 60601-1-2 Note 1	2007-03		
IEC 61000-3-2	2005-11	2008-03	2009-02
IEC 61000-3-3	2008-06		
IEC 61000-4-2	2008-12		
IEC 61000-4-3	2008-04	incl in 2008-04	2009-12 FD

Note 1: Test not on LSR Scope of Accreditation.

Updated on 04-27-10

P=Project FD= Final Draft

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 24 of 25

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For: Assa Abloy	EUT: Yale Real Living Deadbolt	LS Research, LLC
Report # 310380	Model #: YRDZW	Template: 15.249 8-11-2010
LSR Job #: C-1179	Serial #: N/A	Page 25 of 25