

SARGENT MANUFACTURING CO. TEST REPORT

SCOPE OF WORK

Emissions Testing – Aperio RF Module, Model IN100

REPORT NUMBER

105626878BOX-001c

ISSUE DATE

February 28, 2024

[REVISED DATE]

Original Issue

DOCUMENT CONTROL NUMBER

Non-Specific Radio Report Shell Rev. October 2022
© 2022 INTERTEK

EMISSIONS TEST REPORT

(CLASS II PERMISSIVE CHANGE – FULL COMPLIANCE)

Report Number: 105626878BOX-001c

Project Number: G105626878

Report Issue Date: February 28, 2024

Model(s) Tested: IN100

Model(s) Partially Tested: None

Model(s) Not Tested but declared equivalent by the client: None

Standards: CFR47 FCC Part 15 Subpart C, Section 15.247: 12/2023

RSS-247 Issue 3 August 2023

KDB 558074 D01 15.247 Meas Guidance v05r02: 04/2019

Contains BLE Limited Module

FCC ID: Y88-MBM1CC2640

IC: 9504A-MBM1CC2640

Tested by:

Intertek

70 Codman Hill Road

Boxborough, MA 01719

USA

Client:

Sargent Manufacturing Co.

110 Sargent Drive

New Haven, CT 6511

USA

Report prepared by Reviewer

Kouma Sinn / Sr. EMC Staff Engineer

Report reviewed by

Vathana Ven / Sr. EMC Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	<i>Introduction and Conclusion</i>	4
2	<i>Test Summary</i>	4
3	<i>Client Information</i>	5
4	<i>Description of Equipment Under Test and Variant Models</i>	5
5	<i>System Setup and Method</i>	7
6	<i>Maximum Peak Output Power</i>	8
7	<i>Band Edge Compliance</i>	18
8	<i>Transmitter Spurious Emissions</i>	28
9	<i>Revision History</i>	60

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	--
4	Description of Equipment Under Test and Variant Models	--
5	System Setup and Method	---
6	Maximum Peak Output Power CFR47 FCC Part 15 Subpart C: 12/2023, Section 15.247 (b)(3) RSS-247 Issue 3 August 2023	Pass
7	Band Edge Compliance CFR47 FCC Part 15 Subpart C: 12/2023, Section 15.247 (d) RSS-247 Issue 3 August 2023	Pass
8	Transmitter spurious emissions CFR47 FCC Part 15 Subpart C: 12/2023, Section 15.247 (d) RSS-247 Issue 3 August 2023	Pass
9	Revision History	--

3 Client Information

This EUT was tested at the request of:

Client: Sargent Manufacturing Co.
110 Sargent Drive
New Haven, CT 6511
USA

Contact: David Debiase
Telephone: (203) 821 5724
Email: dave.debiase@assaabloy.com

4 Description of Equipment Under Test and Variant Models

Manufacturer: Sargent Manufacturing Co.
110 Sargent Drive
New Haven, CT 6511
USA

Equipment Under Test			
Description	Manufacturer	Model Number	Serial Number
Aperio RF Module	Assa Abloy, Inc.	IN100	N/A
Aperio RF Module	Assa Abloy, Inc.	IN100-MB (added metal wing model)	N/A

Receive Date:	12/11/2023
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)	
Contains BLE Limited Module	
FCC ID: Y88-MBM1CC2640	
IC: 9504A-MBM1CC2640	

Equipment Under Test Power Configuration			
Rated Voltage	Rated Current	Rated Frequency	Number of Phases
9 V (6 x 1.5 V Batteries)	1.5 A	DC	N/A

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Pre-programmed to transmit continuously using HyperTerminal

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	HyperTerminal

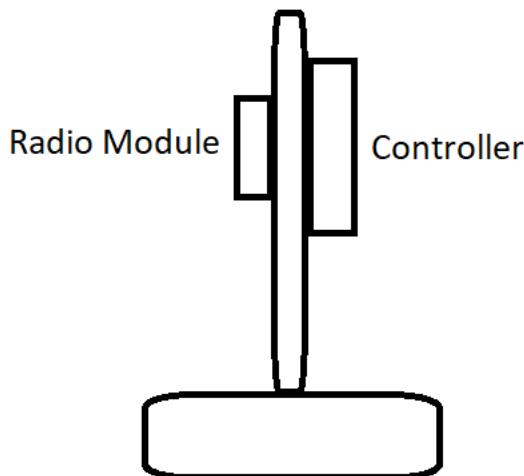
Bluetooth Low Energy (BLE)**Radio/Receiver Characteristics**

Frequency Band(s)	See FCC ID # Y88-MBM1CC2640
Modulation Type(s)	See FCC ID # Y88-MBM1CC2640
Maximum Output Power (Plastic Enclosure)	+1.37 dBm (EIRP)
Maximum Output Power (Metal Enclosure)	-0.40 dBm (EIRP)
Test Channels	Low, Mid, and High Channels
Occupied Bandwidth	See FCC ID # Y88-MBM1CC2640
Frequency Hopper: Number of Hopping Channels	N/A
Frequency Hopper: Channel Dwell Time	N/A
Frequency Hopper: Max interval between two instances of use of the same channel	N/A
MIMO Information (# of Transmit and Receive antenna ports)	N/A
Equipment Type	Limited Module
Antenna Type and Gain	See FCC ID # Y88-MBM1CC2640

Variant Models:

The following variant models were not tested as part of this evaluation and are not eligible for certification; but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None


5 System Setup and Method

Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination
--	None	--	--	--	--

Support Equipment			
Description	Manufacturer	Model Number	Serial Number
None	--	--	--

5.1 Method:

Configuration as required by ANSI C63.10-2013, RSS-Gen Issue 5 April 2018, and KDB 558074 D01 15.247 Meas Guidance v05r02: 04/2019.

5.2 EUT Block Diagram:

6 Maximum Peak Output Power

6.1 Method

Tests are performed in accordance with ANSI C63.10, RSS-Gen, and KDB 558074.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	5.0 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.9 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.1 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.7 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$RA = 52.0 \text{ dB}\mu\text{V}$

$AF = 7.4 \text{ dB}/\text{m}$

$CF = 1.6 \text{ dB}$

$AG = 29.0 \text{ dB}$

$FS = 32 \text{ dB}\mu\text{V}/\text{m}$

To convert from $\text{dB}\mu\text{V}$ to μV or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

NF = Net Reading in $\text{dB}\mu\text{V}$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V}/\text{m}$$

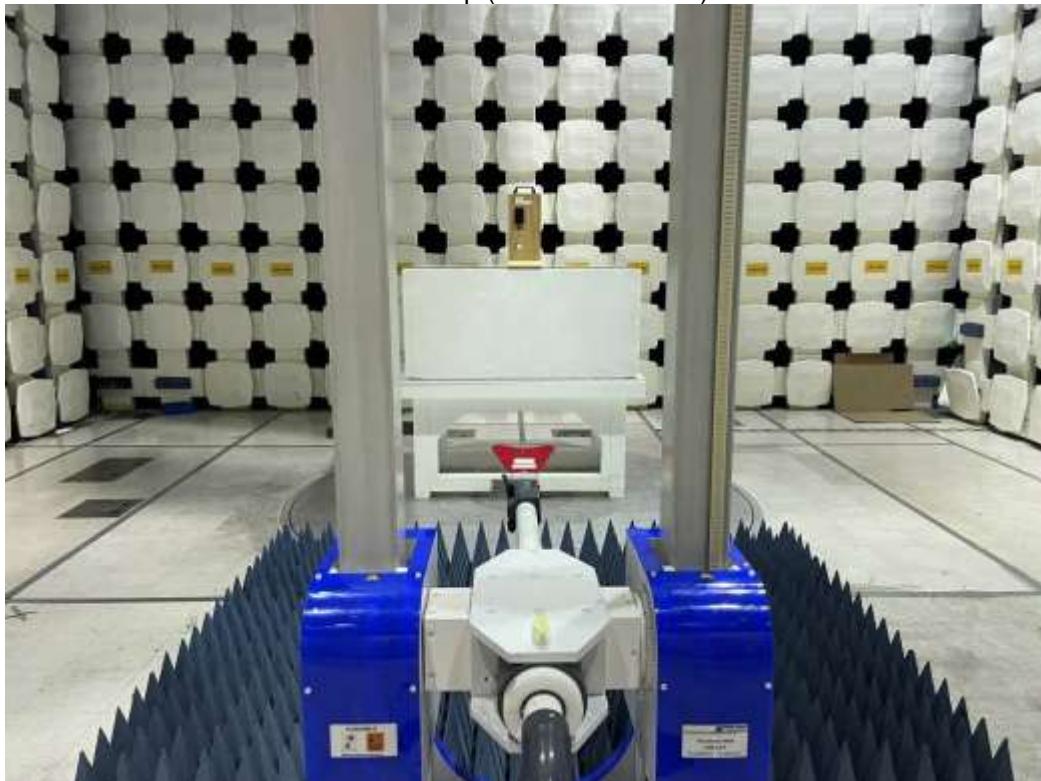
Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

6.2 Test Equipment Used:

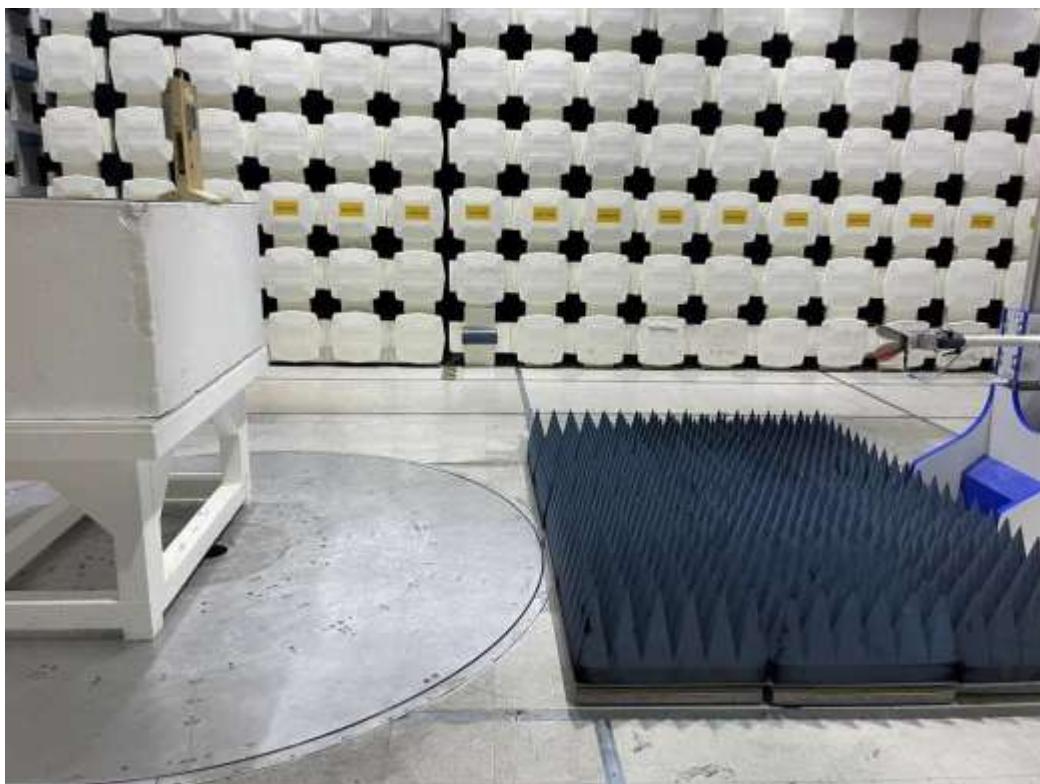
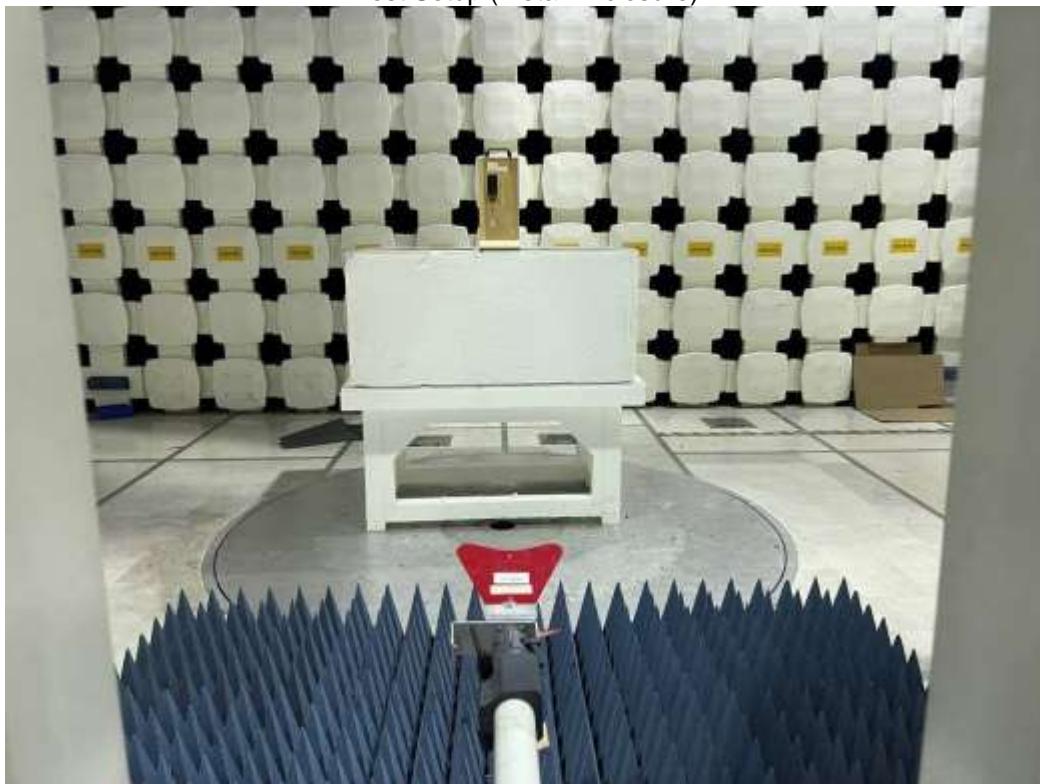
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV006'	Weather Station	Davis	6250	MS191218071	02/21/2023	02/21/2024
ROS011'	ESW44 receiver 1Hz-44GHz	Rhode and Schwarz	ESW44	103296	06/28/2023	06/28/2024
145-420'	Receiver to floor cable	Uttiflex	UFB311A-2-0591-70070	145-420	02/18/2023	02/18/2024
145-408'	10m Chamber - 3m Track B In-floor Cable	Huber + Suhner	sucoflex 106-11000mm	001	07/19/2023	07/19/2024
HS002'	DC-18GHz cable 1.5M long	Huber + Suhner	SucoFlex 106A	HS002	07/19/2023	07/19/2024
145-422'	10Amp Pre-amp to under floor	Uttiflex	UFB311A-0-2756-70070	145-422	02/18/2023	02/18/2024
ETS002'	1-18GHz DRG Horn Antenna	ETS Lindgren	3117	00143260	10/16/2023	10/16/2024

Software Utilized:

Name	Manufacturer	Version
None	--	--

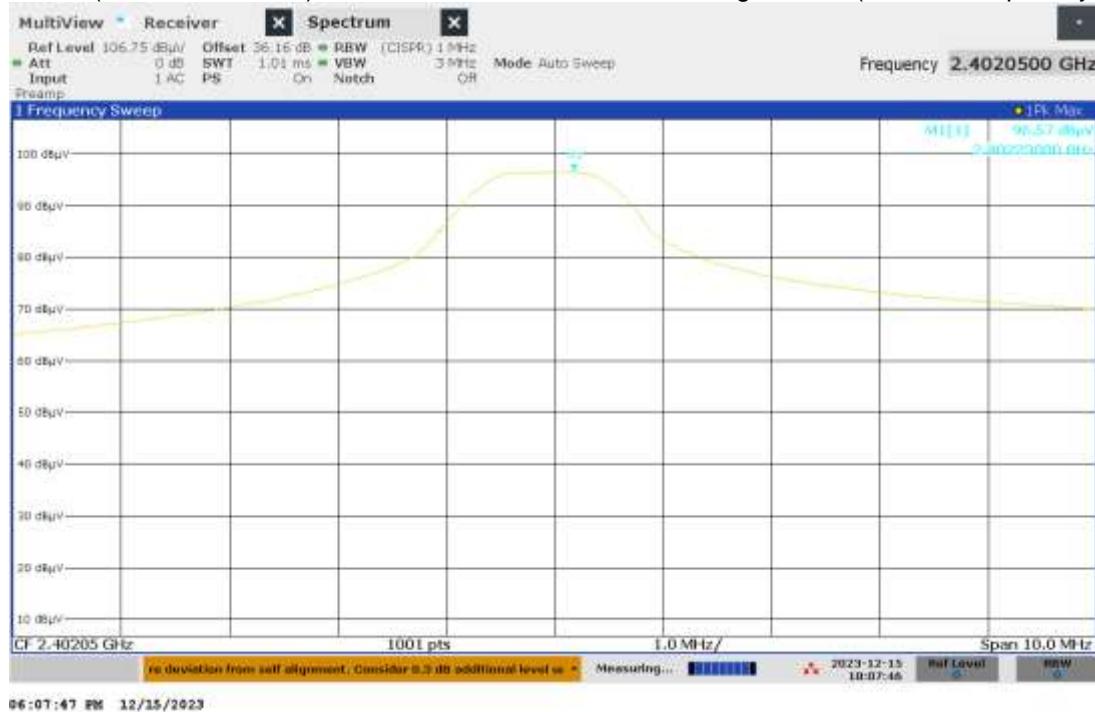

6.3 Results:

The sample tested was found to Comply.



Limits – FCC Part §15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt or 30 dBm.

6.4 Setup Photographs:

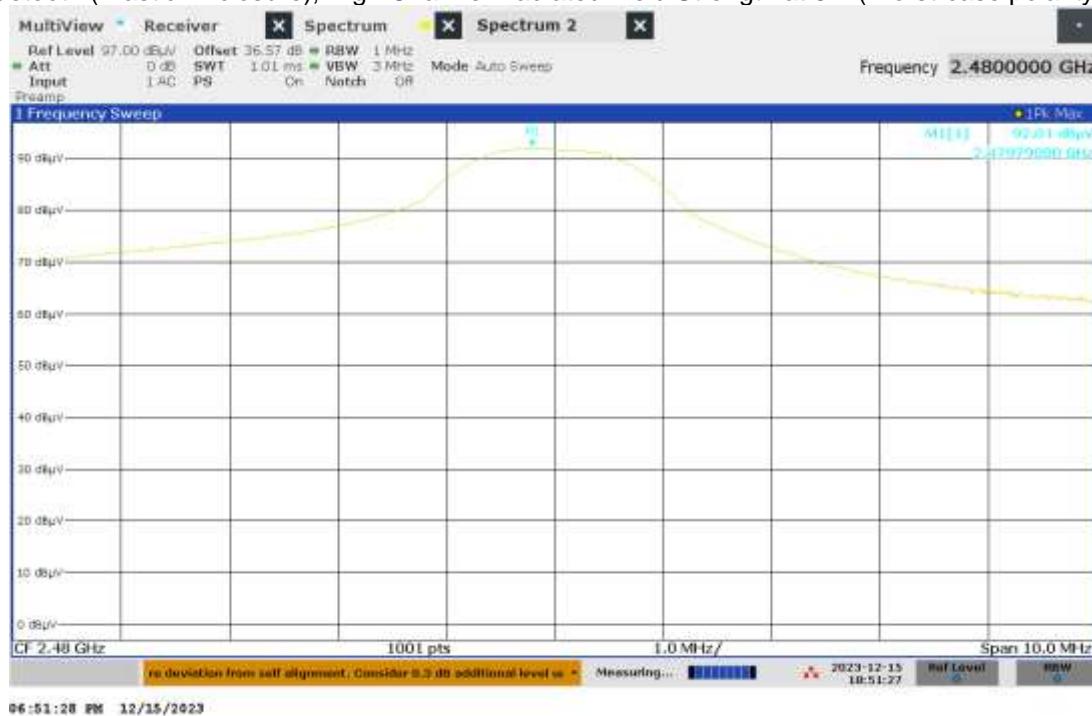
Test Setup (Plastic Enclosure)



Test Setup (Metal Enclosure)

6.5 Plots/Data:

Bluetooth (Plastic Enclosure), Low Channel Radiated Field Strength at 3m (Worst-case polarity: H)

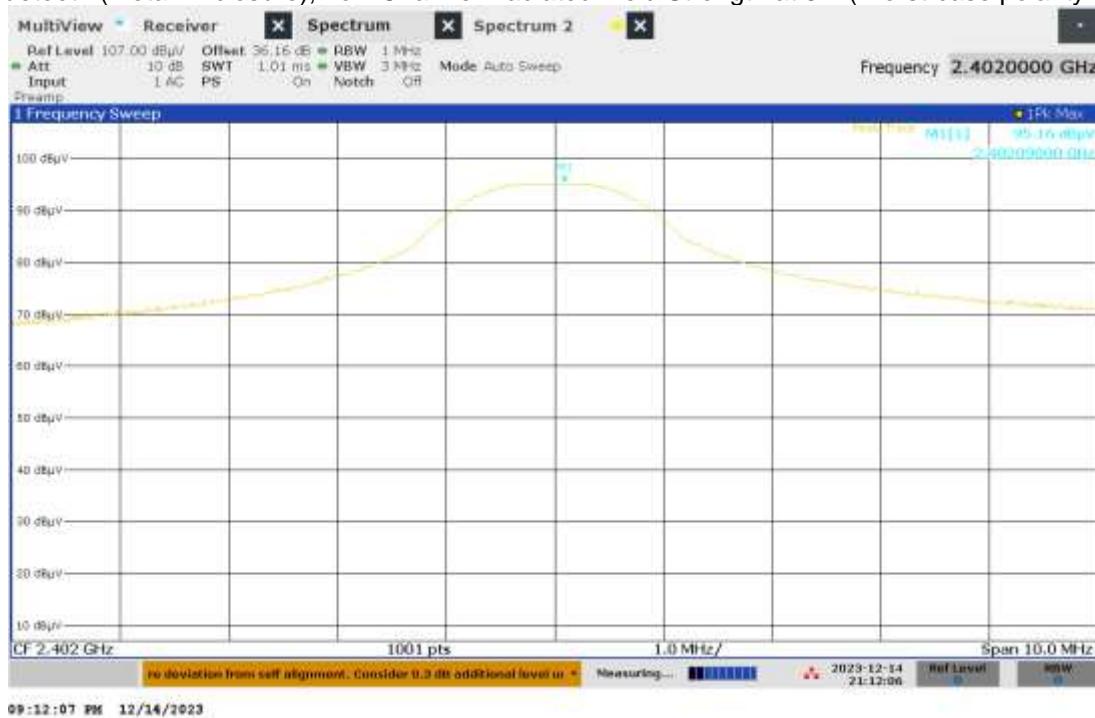


Bluetooth (Plastic Enclosure), Mid Channel Radiated Field Strength at 3m (Worst-case polarity: H)

Notes: Cable loss and antenna were compensated internally as offset.

Bluetooth (Plastic Enclosure), High Channel Radiated Field Strength at 3m (Worst-case polarity: H)

Notes: Cable loss and antenna were compensated internally as offset.

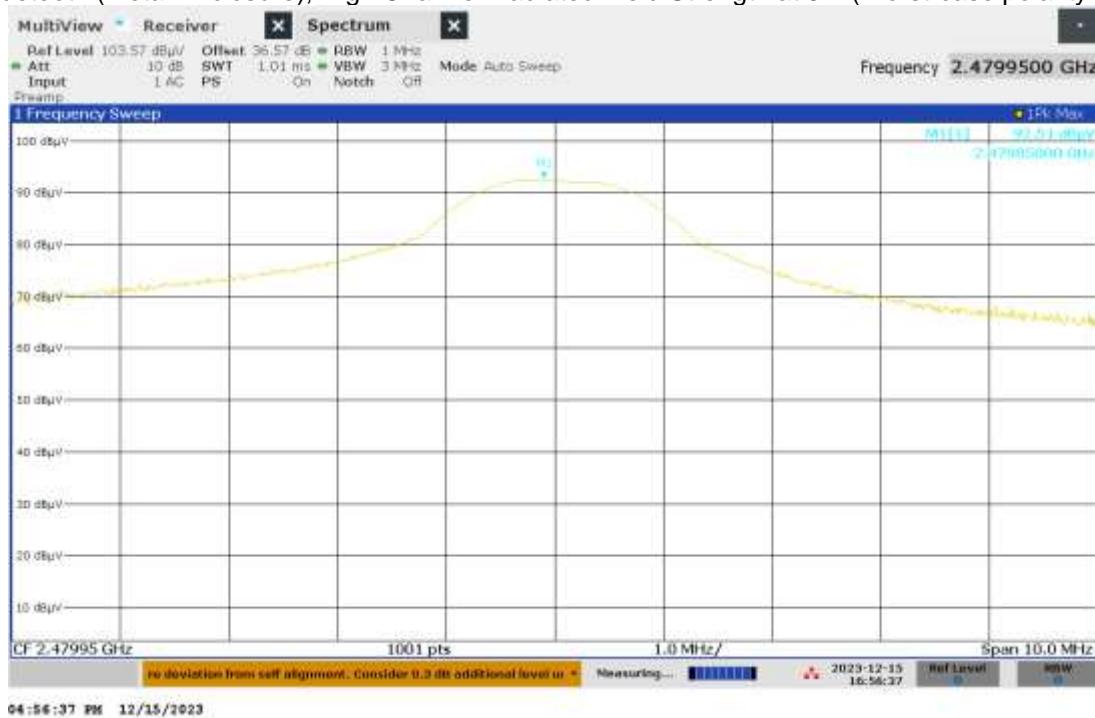

Bluetooth (Plastic Enclosure) EIRP

Channels (MHz)	Field Strength (dBuV/m)	EIRP (dBm)
2402	96.57	+1.37
2440	91.11	-4.09
2480	92.01	-3.19

Notes: The EIRP was calculated from field strength as the formula below:

$$\text{EIRP} = E_{\text{Meas}} + 20 \log(d_{\text{Meas}}) - 104.7$$

Bluetooth (Metal Enclosure), Low Channel Radiated Field Strength at 3m (Worst-case polarity: H)



Bluetooth (Metal Enclosure), Mid Channel Radiated Field Strength at 3m (Worst-case polarity: H)

Notes: Cable loss and antenna were compensated internally as offset.

Bluetooth (Metal Enclosure), High Channel Radiated Field Strength at 3m (Worst-case polarity: H)

Notes: Cable loss and antenna were compensated internally as offset.

Bluetooth (Metal Enclosure) EIRP

Channels (MHz)	Field Strength (dB _μ V/m)	EIRP (dBm)
2402	95.16	-0.04
2440	91.57	-3.63
2480	92.51	-2.69

Notes: The EIRP was calculated from field strength as the formula below:

$$\text{EIRP} = E_{\text{Meas}} + 20 \log(d_{\text{Meas}}) - 104.7$$

Product Standard: CFR47 FCC Part 15.247, RSS-247				Limit applied: See Report Section 7.3 Pretest Verification w/BB source: Yes			
Test Date	Test Personnel/ Initials	Supervising Engineer/ Initials	Input Voltage	Mode	Atmospheric Data		
					Temp C°	Relative Humidity %	Atmospheric Pressure mbar
12/14/2023	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	24	15	1026
12/15/2023	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	27	18	1011
01/29/2024	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	22	29	1003
01/30/2024	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	22	29	1003

Deviations, Additions, or Exclusions: None

7 Band Edge Compliance

7.1 Method

Tests are performed in accordance with ANSI C63.10, RSS-Gen, and KDB 558074.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	5.0 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.9 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.1 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.7 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}/\text{m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V}/\text{m}$$

To convert from $\text{dB}\mu\text{V}$ to μV or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in } \text{dB}\mu\text{V}$$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V}/\text{m}$$

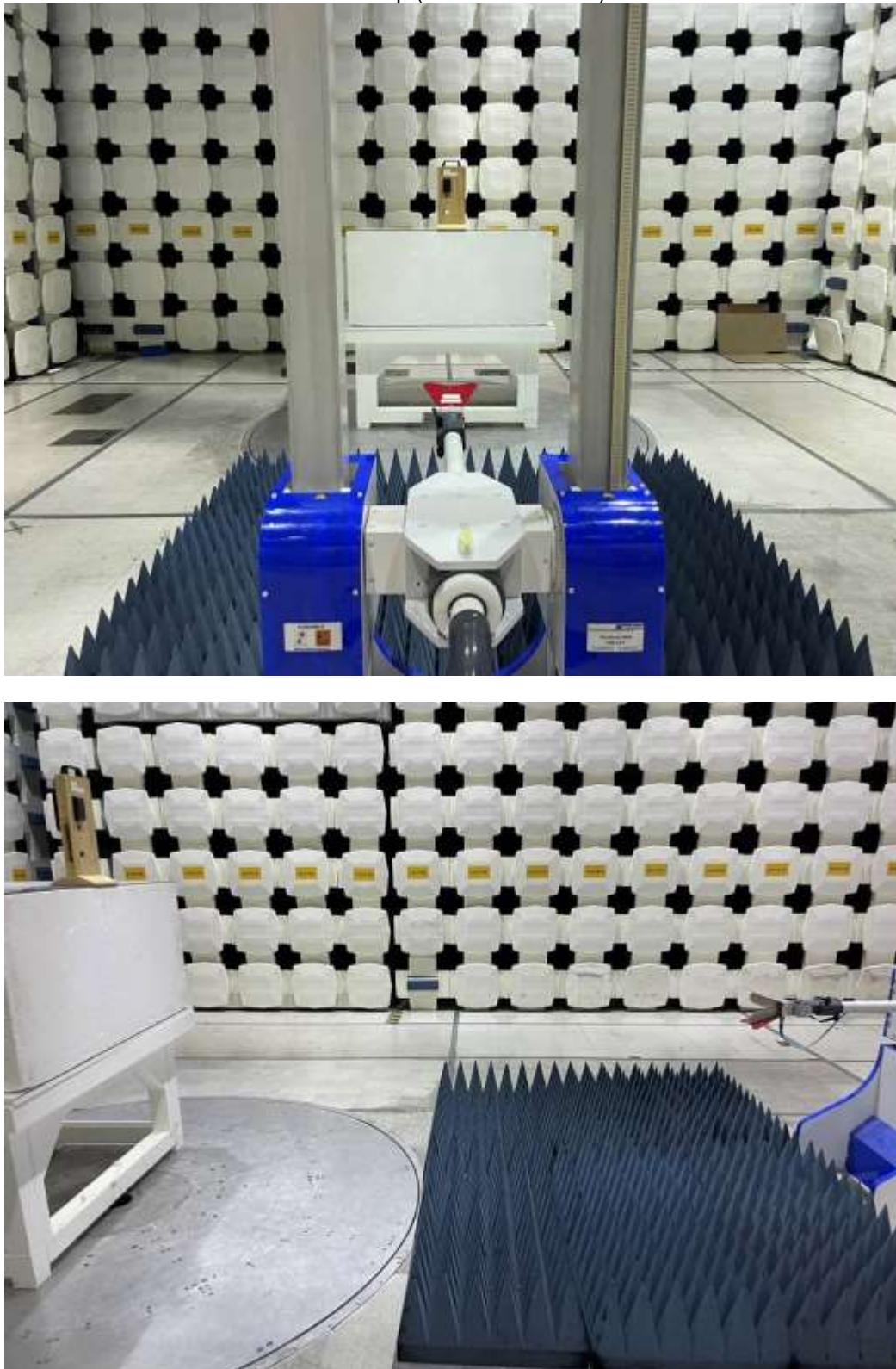
Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

7.2 Test Equipment Used:

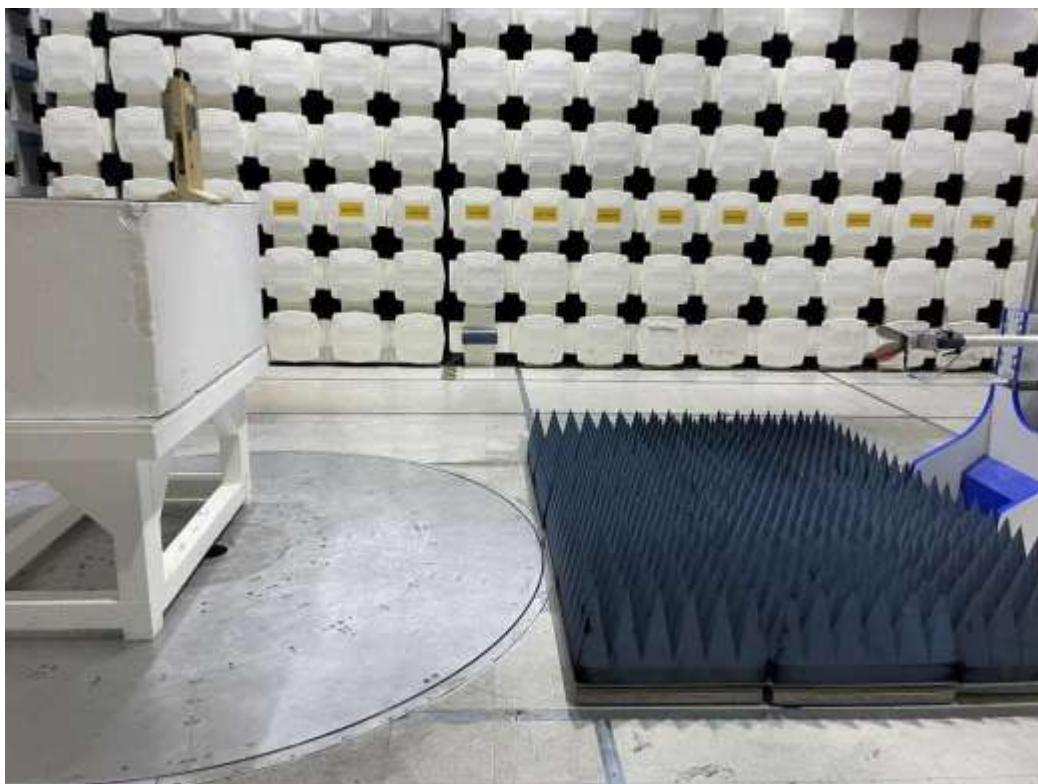
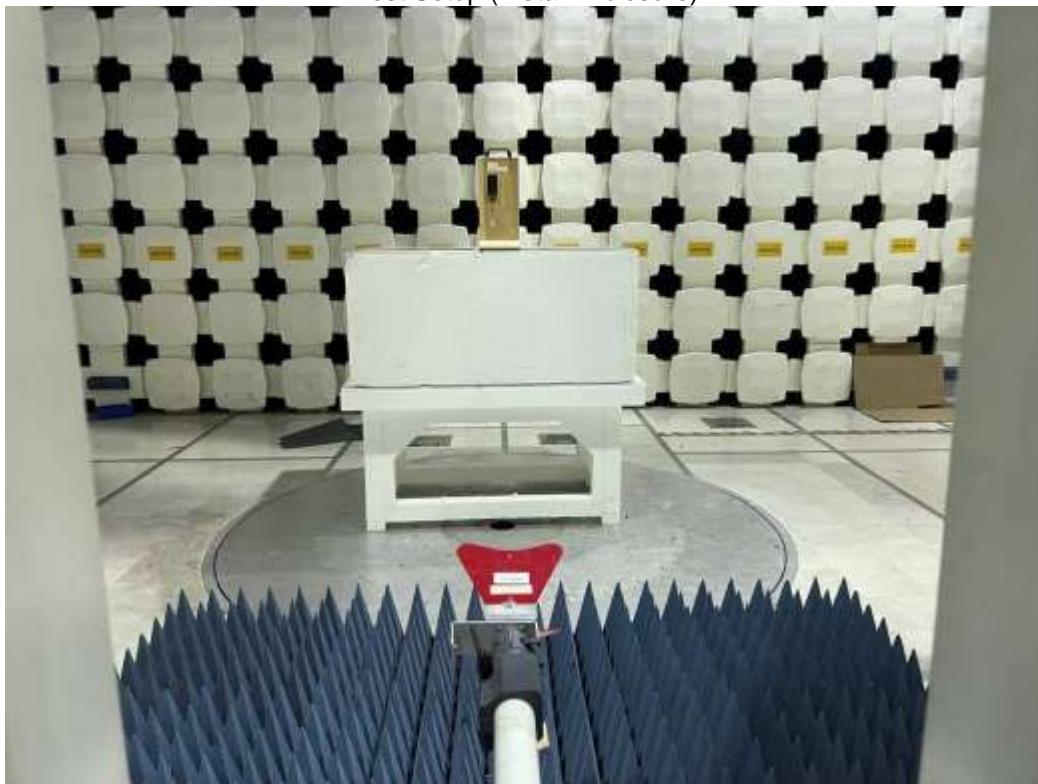
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV006'	Weather Station	Davis	6250	MS191218071	02/21/2023	02/21/2024
ROS011'	ESW44 receiver 1Hz-44GHz	Rhode and Schwarz	ESW44	103296	06/28/2023	06/28/2024
145-420'	Receiver to floor cable	Utilflex	UFB311A-2-0591-70070	145-420	02/18/2023	02/18/2024
145-408'	10m Chamber - 3m Track B In-floor Cable	Huber + Suhner	sucoflex 106-11000mm	001	07/19/2023	07/19/2024
HS002'	DC-18GHz cable 1.5M long	Huber & Suhner	SucoFlex 106A	HS002	07/19/2023	07/19/2024
145-422'	10Amp Pre-amp to under floor	Utilflex	UFB311A-0-2756-70070	145-422	02/18/2023	02/18/2024
ETS002'	1-18GHz DRG Horn Antenna	ETS Lindgren		3117	00143260	10/16/2023

Software Utilized:

Name	Manufacturer	Version
None	--	--


7.3 Results:

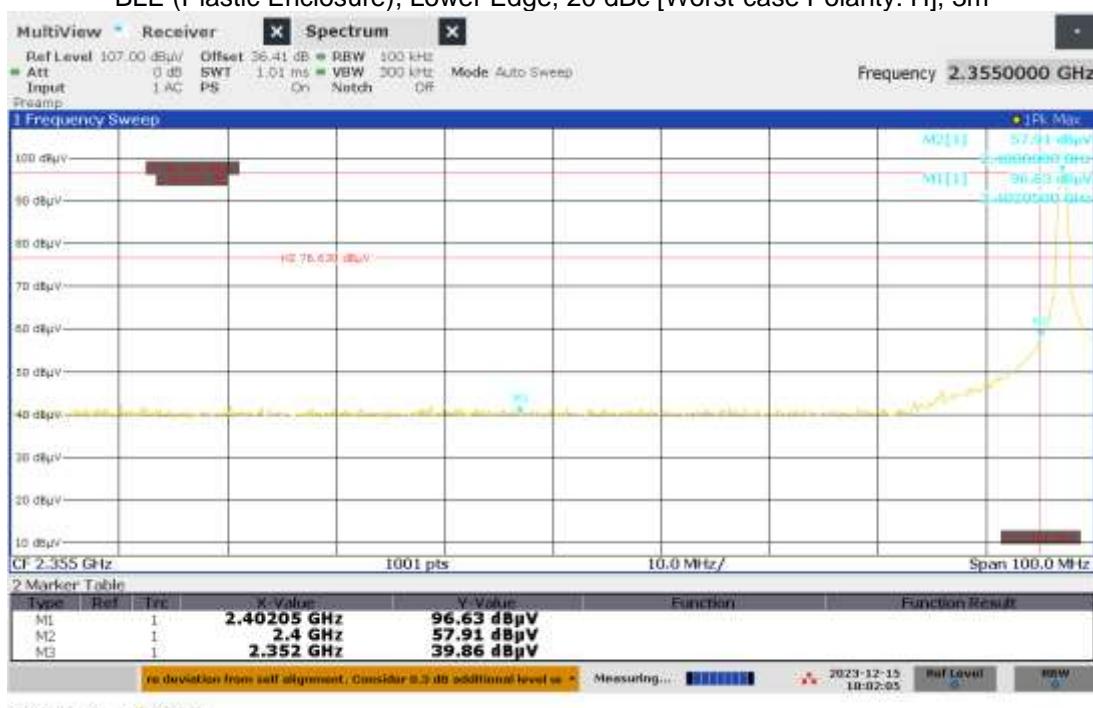
The sample tested was found to Comply.



Limits – FCC Part §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

7.4 Setup Photographs:

Test Setup (Plastic Enclosure)

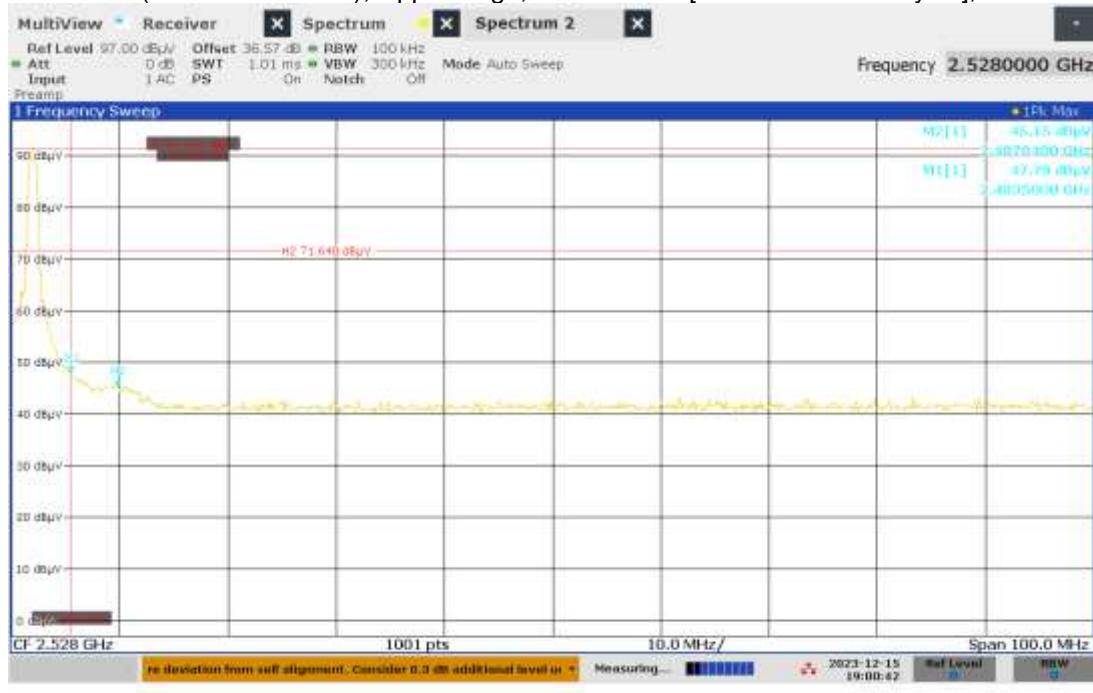
Test Setup (Metal Enclosure)



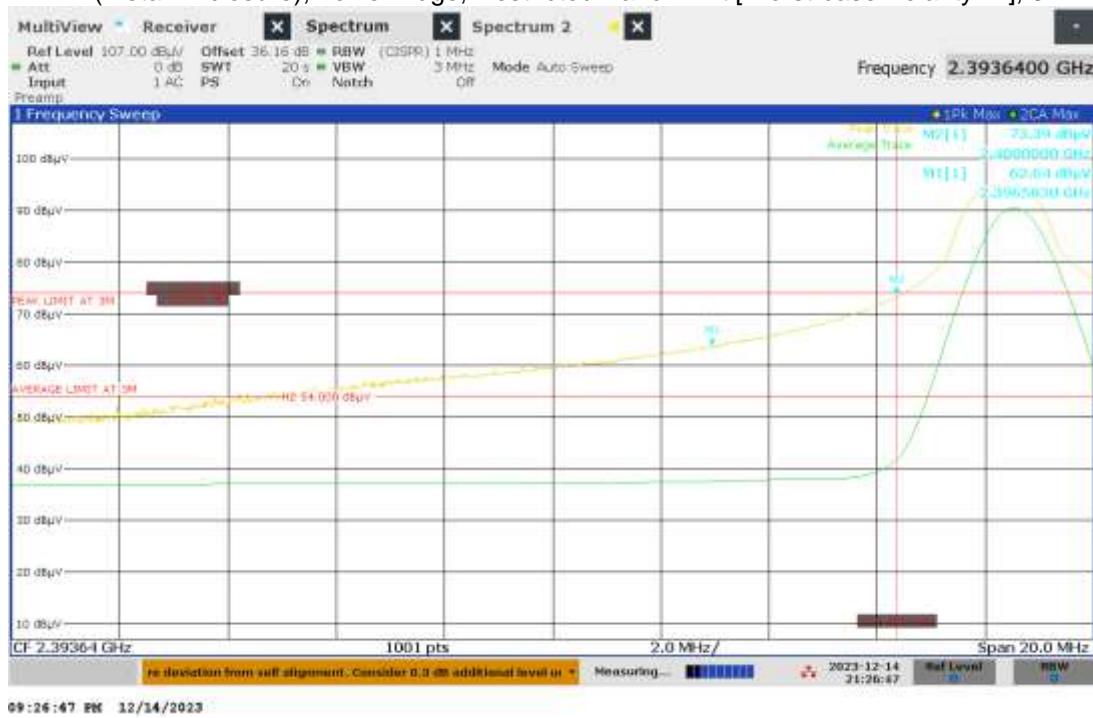
7.5 Plots/Data:

BLE (Plastic Enclosure), Lower Edge, Restricted Band Limit [Worst-case Polarity: H], 3m

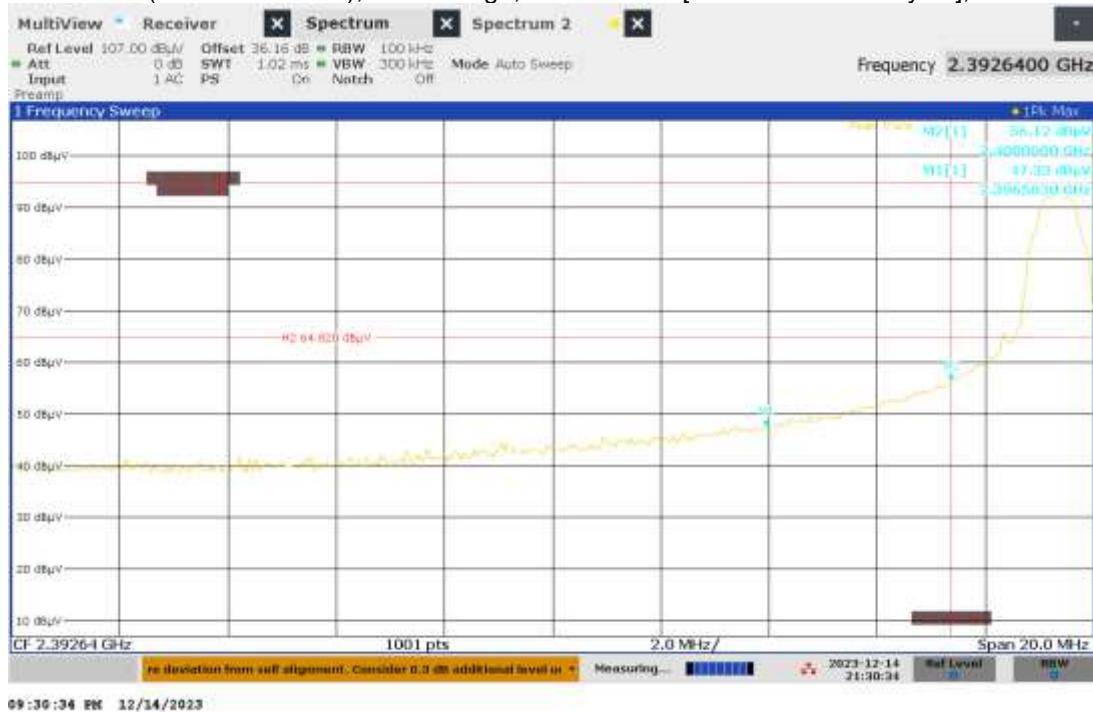
BLE (Plastic Enclosure), Lower Edge, 20 dBc [Worst-case Polarity: H], 3m



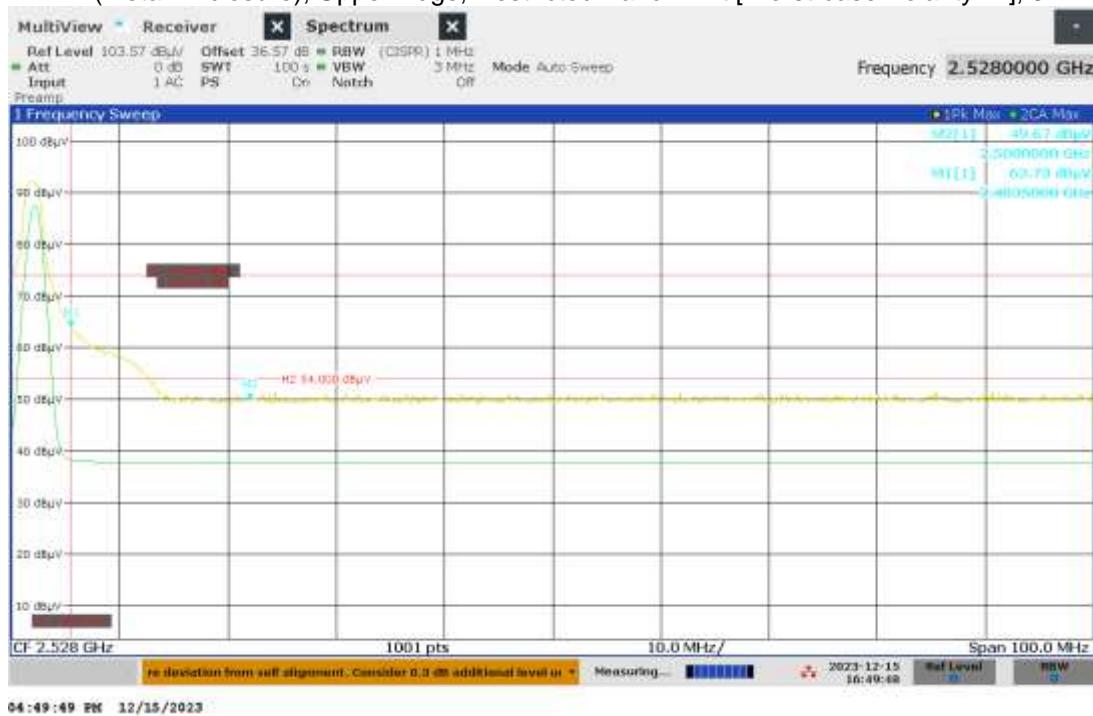
BLE (Plastic Enclosure), Upper Edge, Restricted Band Limit [Worst-case Polarity: H], 3m

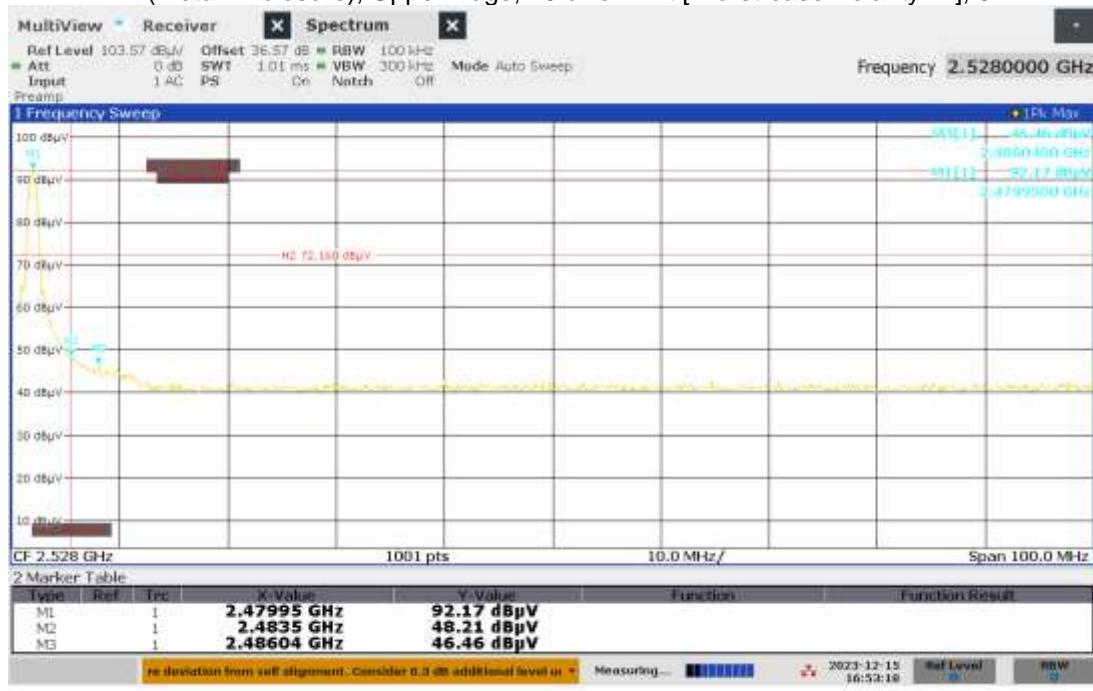

06:56:27 PM 12/15/2023

BLE (Plastic Enclosure), Upper Edge, 20 dBc Limit [Worst-case Polarity: H], 3m



07:00:43 PM 12/15/2023


BLE (Metal Enclosure), Lower Edge, Restricted Band Limit [Worst-case Polarity: H], 3m


BLE (Metal Enclosure), Lower Edge, 20 dBc Limit [Worst-case Polarity: H], 3m

BLE (Metal Enclosure), Upper Edge, Restricted Band Limit [Worst-case Polarity: H], 3m

BLE (Metal Enclosure), Upper Edge, 20 dBc Limit [Worst-case Polarity: H], 3m

Product Standard: CFR47 FCC Part 15.247, RSS-247				Limit applied: See Report Section 7.3 Pretest Verification w/BB source: Yes			
Test Date	Test Personnel/ Initials	Supervising Engineer/ Initials	Input Voltage	Mode	Atmospheric Data		
					Temp C°	Relative Humidity %	Atmospheric Pressure mbar
12/14/2023	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	24	15	1026
12/15/2023	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	27	18	1011

8 Transmitter Spurious Emissions

8.1 Method

Tests are performed in accordance with ANSI C63.10, RSS-Gen, and KDB 558074.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	5.0 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.9 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.1 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.7 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB/m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V/m}$$

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in dB}\mu\text{V}$$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V/m}$$

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

8.2 Test Equipment Used:

Test equipment used from 30-1000 MHz

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV006'	Weather Station	Davis	6250	MS191218071	02/21/2023	02/21/2024
ROS011'	ESW44 receiver 1Hz-44GHz	Rhode and Schwarz	ESW44	103296	06/28/2023	06/28/2024
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	06/23/2023	06/23/2024
PRE10'	30-1000MHz pre-amp	ITS	PRE10	PRE10	02/17/2023	02/17/2024
145-420'	Receiver to floor cable	Utitflex	UFB311A-2-0591-70070	145-420	02/18/2023	02/18/2024
145-424'	9kHz to 40GHz Cable	Huber and Suhner	Sucoflex	145-424	02/18/2023	02/18/2024
HS001'	DC-18GHz cable 1.5m long	Huber & Suhner	SucoFlex 106A	HS001	01/25/2023	01/25/2024
HS003'	10m under floor cable	Huber-Schuner	10m-1	HS003	02/18/2023	02/18/2024

Software Utilized:

Name	Manufacturer	Version
BAT-EMC	Nexio	2022.0.27.0

Test equipment used from 1-18 GHz

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV006'	Weather Station	Davis	6250	MS191218071	02/21/2023	02/21/2024
ROS011'	ESW44 receiver 1Hz-44GHz	Rhode and Schwarz	ESW44	103296	06/28/2023	06/28/2024
145-420'	Receiver to floor cable	Utitflex	UFB311A-2-0591-70070	145-420	02/18/2023	02/18/2024
145-408'	10m Chamber - 3m Track B In-floor Cable	Huber + Suhner	sucoflex 106-11000mm	001	07/19/2023	07/19/2024
HS002'	DC-18GHz cable 1.5m long	Huber & Suhner	SucoFlex 106A	HS002	07/19/2023	07/19/2024
145-422'	10Amp Pre-amp to under floor	Utitflex	UFB311A-0-2756-70070	145-422	02/18/2023	02/18/2024
REA008'	band reject filter 2.4GHz	Reactel, Inc	12RX7-2441.75-x140 S	17-01	10/31/2023	10/31/2024
REA004'	3GHz High Pass Filter	Reactel, Inc	7HSX-3G/18G-S11	06-1	02/14/2023	02/14/2024
ETS002'	1-18GHz DRG Horn Antenna	ETS Lindgren	3117	00143260	10/16/2023	10/16/2024
PRE12	Pre-amplifier	Com Power	PAM-118A	18040117	12/17/2022	12/17/2023

Software Utilized:

Name	Manufacturer	Version
BAT-EMC	Nexio	2022.0.27.0

Test equipment used from 18-25 GHz

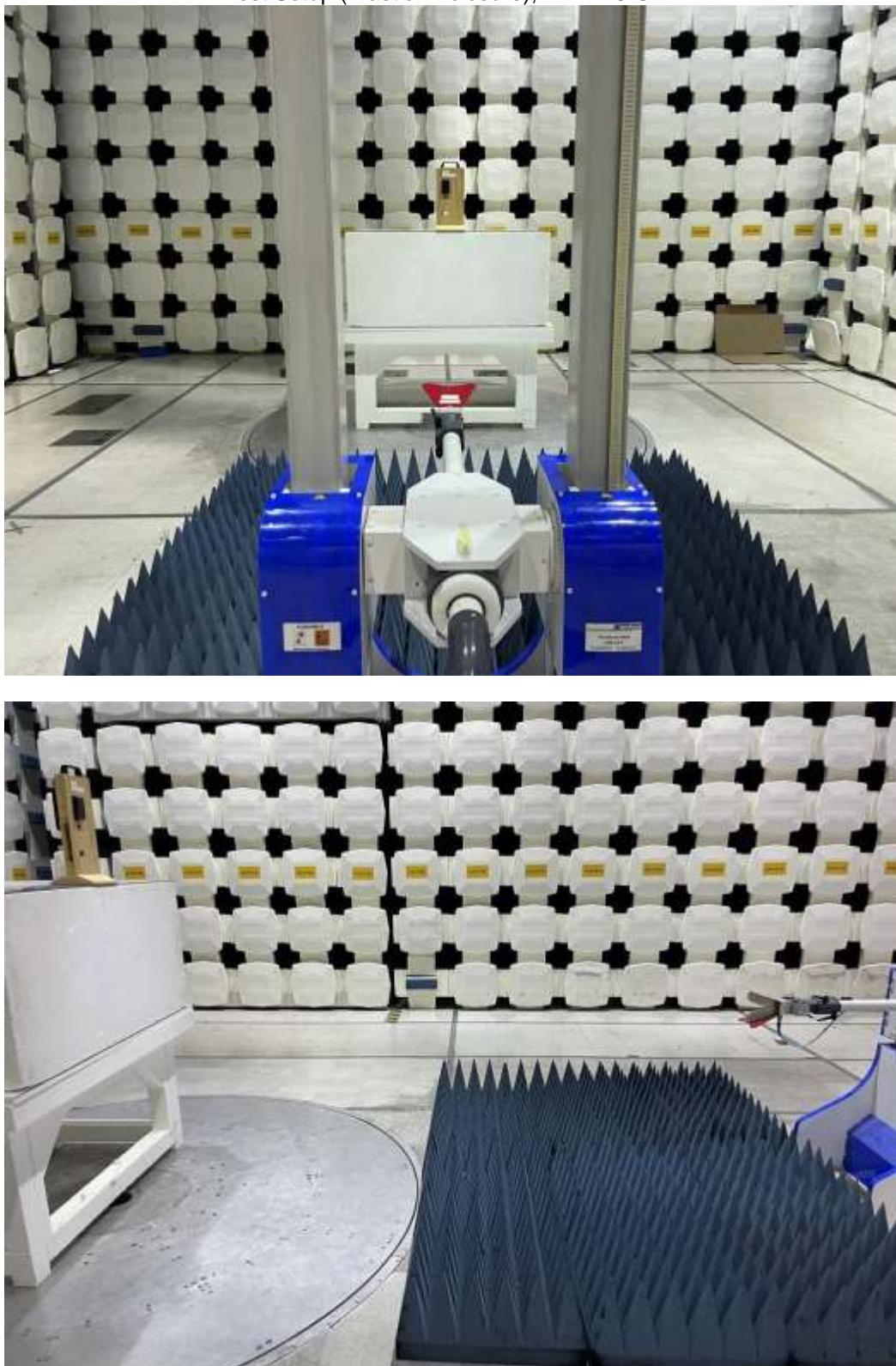
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV006'	Weather Station	Davis	6250	MS191218071	02/21/2023	02/21/2024
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Schwartz	FSW43	100646	11/22/2023	11/22/2024
CBLHF2012-2M-2'	2m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252675002	02/18/2023	02/18/2024
CBLHF2012-5M-2'	5m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252676002	02/25/2023	02/25/2024
REA006'	18GHz High Pass Filter	Reactel, Inc	7HS-18G/40G K11	(061	04/25/2023	04/25/2024
EMC04'	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	01/26/2023	01/26/2024
EMC018'	18-40GHz Pre-amp 40dB gain	The EMC Shop	PA40G	27490-01	07/18/2023	07/18/2024

Software Utilized:

Name	Manufacturer	Version
None	--	--

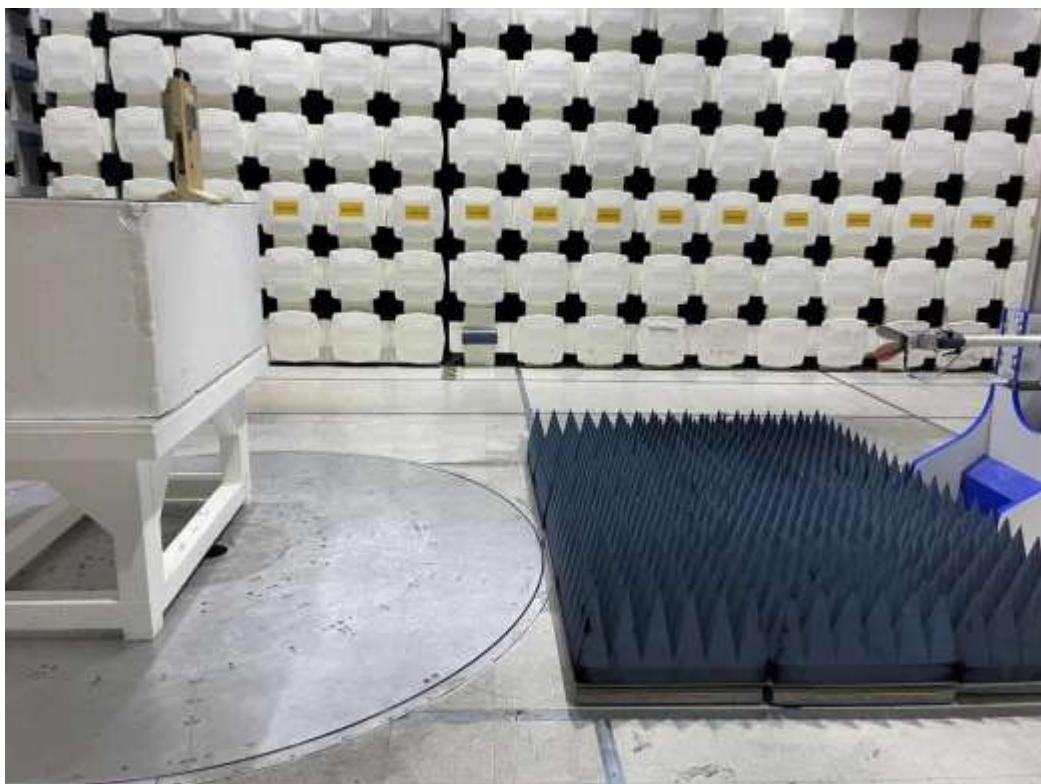
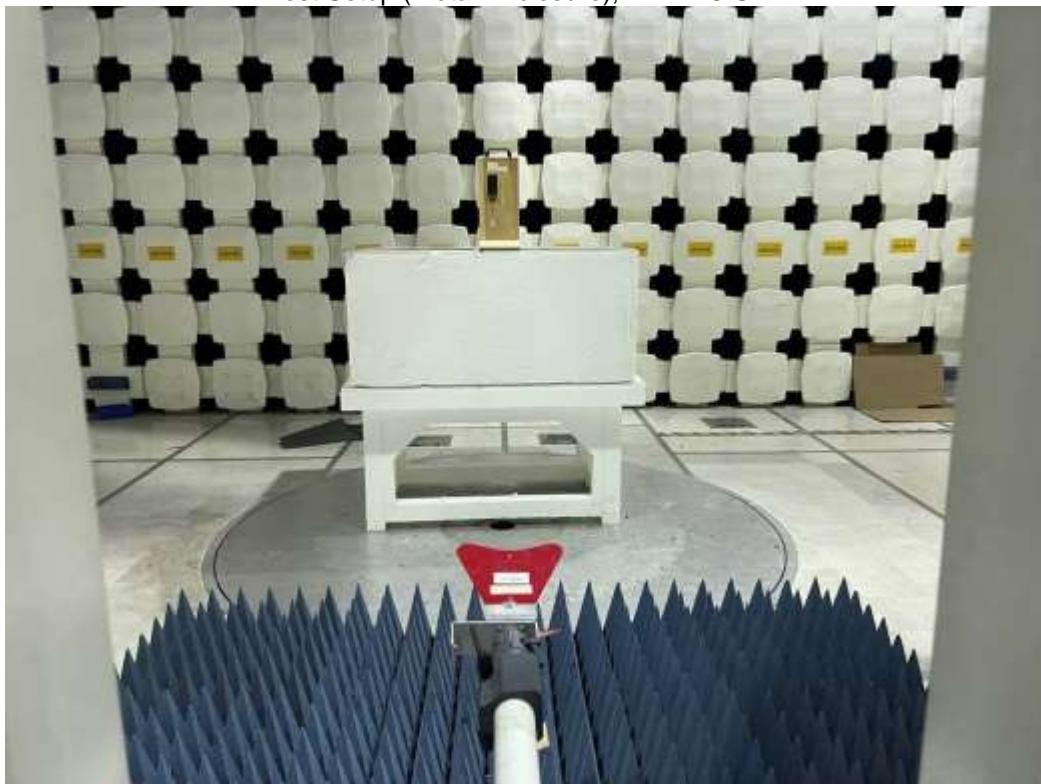
8.3 Results:

The sample tested was found to Comply.


Limits – FCC Part §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

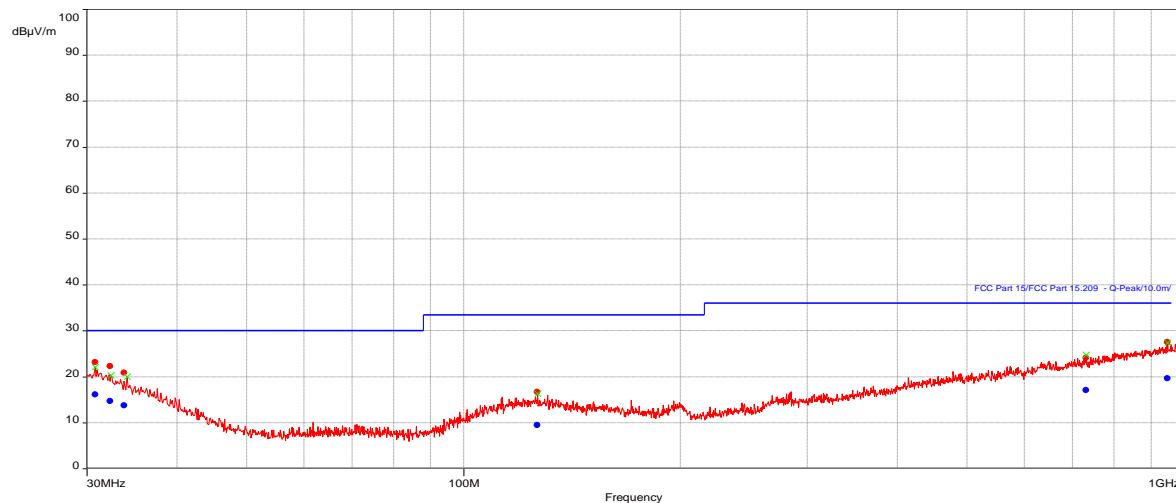
8.4 Setup Photographs:

Test Setup (Plastic Enclosure), RE 30-1000 MHz



Test Setup (Plastic Enclosure), RE 1-18 GHz

Test Setup (Metal Enclosure), RE 30-1000 MHz

Test Setup (Metal Enclosure), RE 1-18 GHz


Notes: 18-25 GHz test setup photo is not available.

8.5 Plots/Data:

BLE (Plastic Enclosure) Tx Low Channel, RE 30-1000 MHz

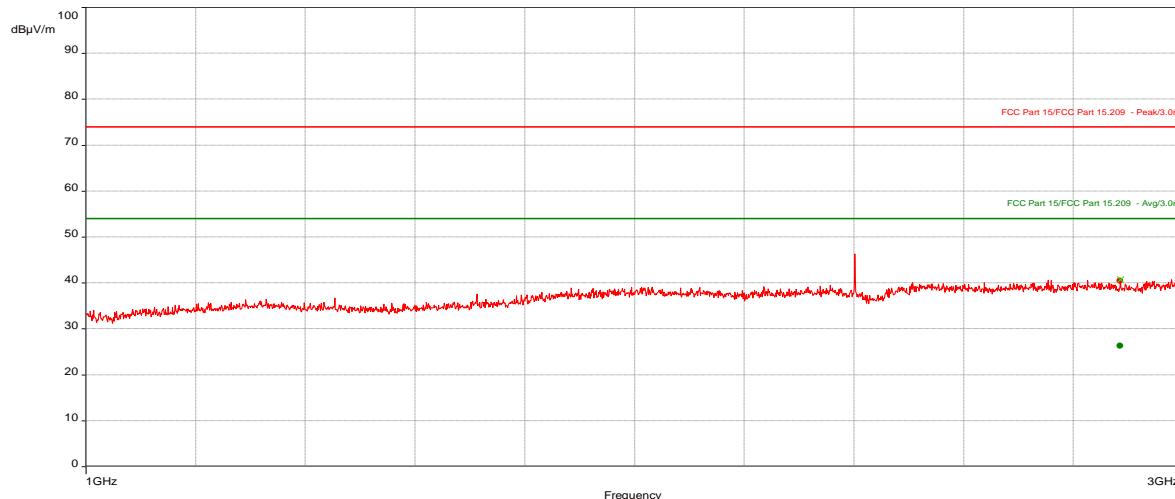
Test Information:

Date and Time	12/11/2023 8:38:01 AM
Client and Project Number	Assa Abloy/Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	37 %
Atmospheric Pressure	990 mbar
Comments	Scan 1_BLE (Plastic Enclosure) Tx Low, RE 30-1000MHz

Graph:**Results:**

Peak (PASS) (6)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.782	23.18	--	--	349.80	3.37	Horizontal	1200000.00	120k	-12.82
32.31	22.34	--	--	162.60	2.89	Vertical	1200000.00	120k	-13.97
33.806	20.97	--	--	141.60	2.96	Horizontal	1200000.00	120k	-15.01
126.592	16.75	--	--	162.80	2.51	Vertical	1200000.00	120k	-18.29
730.848	24.19	--	--	246.10	4.00	Horizontal	1200000.00	120k	-8.48
948.342	27.57	--	--	79.40	2.51	Horizontal	1200000.00	120k	-4.68


QuasiPeak (PASS) (6)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.782	16.12	30.00	-13.88	349.80	3.37	Horizontal	1200000.00	120k	-12.82
32.31	14.77	30.00	-15.23	162.60	2.89	Vertical	1200000.00	120k	-13.97
33.806	13.75	30.00	-16.25	141.60	2.96	Horizontal	1200000.00	120k	-15.01
126.592	9.52	33.50	-23.98	162.80	2.51	Vertical	1200000.00	120k	-18.29
730.848	17.13	36.00	-18.87	246.10	4.00	Horizontal	1200000.00	120k	-8.48
948.342	19.72	36.00	-16.28	79.40	2.51	Horizontal	1200000.00	120k	-4.68

BLE (Plastic Enclosure) Tx Low Channel, RE 1-3 GHz

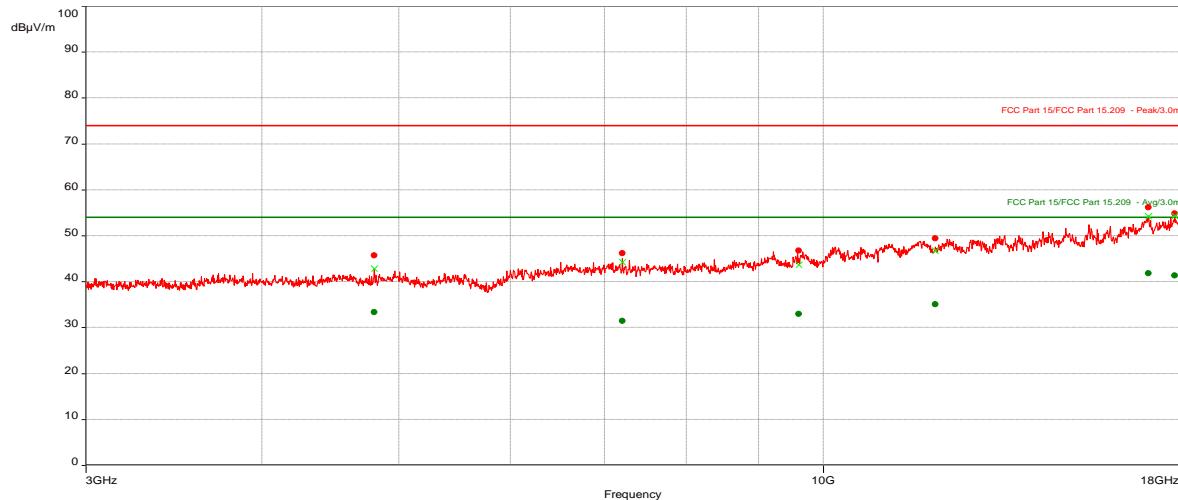
Test Information:

Date and Time	12/13/2023 2:14:48 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	20 %
Atmospheric Pressure	1018 mbar
Comments	Scan 27_BLE (Plastic Enclosure) Tx Low RE 1-3 GHz

Graph:**Results:**

Peak (PASS) (1)

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2884.5	40.54	74.00	-33.46	269.00	1.98	Horizontal	1000000.00	1M	-5.26


Average (PASS) (1)

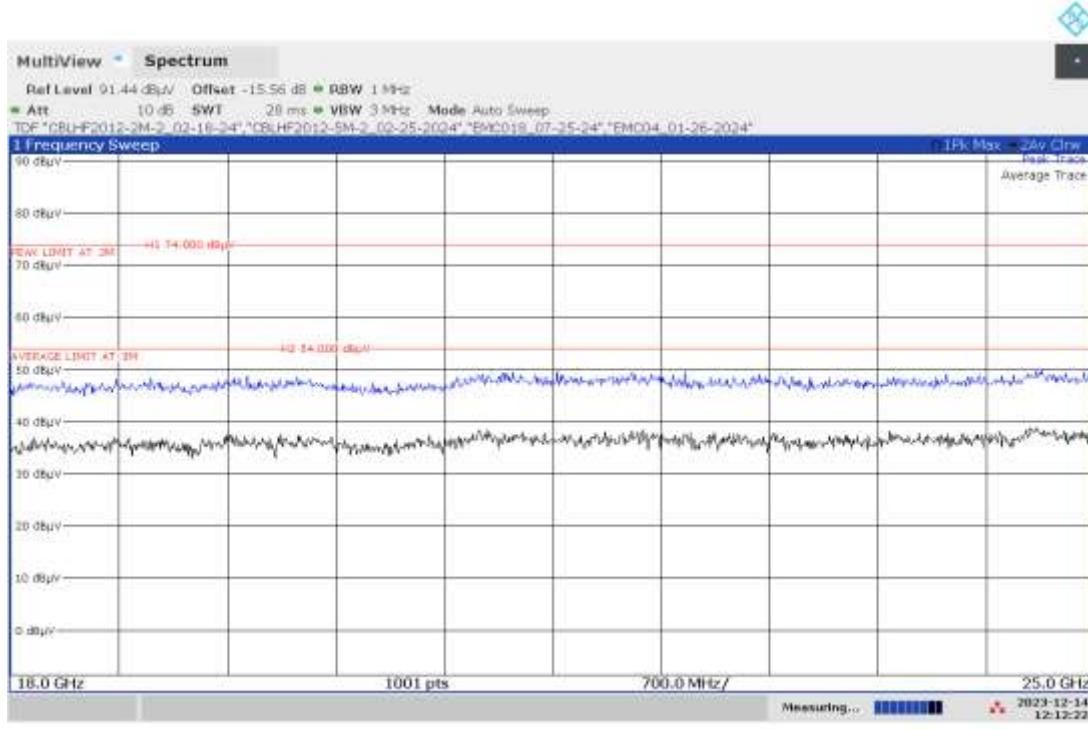
Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2884.5	26.38	54.00	-27.62	269.00	1.98	Horizontal	1000000.00	1M	-5.26

BLE (Plastic Enclosure) Tx Low Channel, RE 3-18 GHz

Test Information:

Date and Time	12/14/2023 9:55:41 AM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	24 C
Humidity	15 %
Atmospheric Pressure	1026 mbar
Comments	Scan 34_BLE (Plastic Enclosure) Tx Low RE 3-18 GHz

Graph:Results:

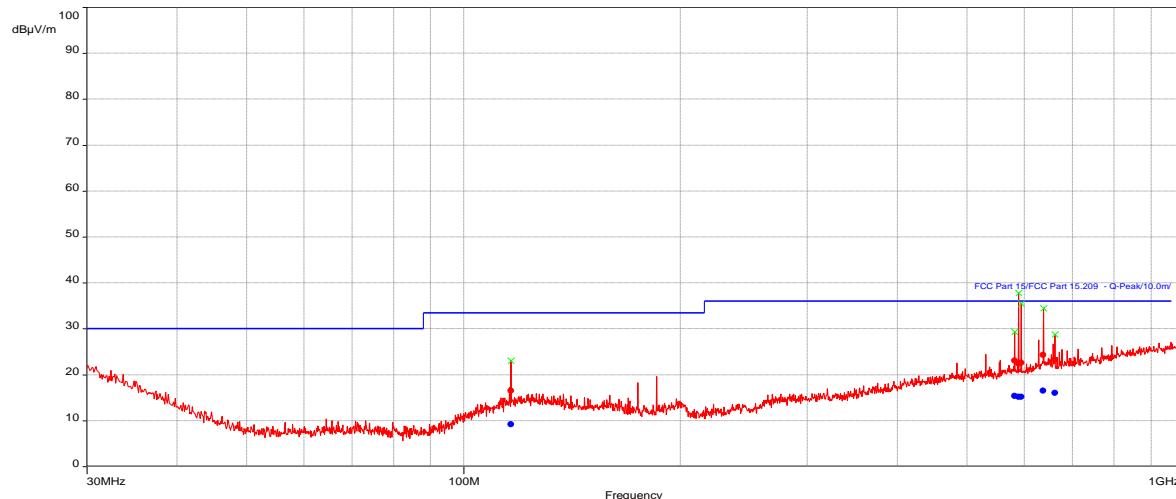

Peak (PASS) (6)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4803.85	45.78	74.00	-28.22	360.00	4.00	Horizontal	1000000.00	1M	-2.36
7205.25	46.20	74.00	-27.80	265.30	4.00	Horizontal	1000000.00	1M	1.36
9611.55	46.81	74.00	-27.19	360.00	1.00	Vertical	1000000.00	1M	3.31
12011.5	49.44	74.00	-24.56	360.00	4.00	Horizontal	1000000.00	1M	7.19
17016.45	56.15	74.00	-17.85	0.00	1.00	Vertical	1000000.00	1M	15.81
17755.6	54.89	74.00	-19.11	265.30	1.00	Vertical	1000000.00	1M	16.15

Average (PASS) (6)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4803.85	33.38	54.00	-20.62	360.00	4.00	Horizontal	1000000.00	1M	-2.36
7205.25	31.46	54.00	-22.54	265.30	4.00	Horizontal	1000000.00	1M	1.36
9611.55	33.03	54.00	-20.97	360.00	1.00	Vertical	1000000.00	1M	3.31
12011.5	35.04	54.00	-18.96	360.00	4.00	Horizontal	1000000.00	1M	7.19
17016.45	41.83	54.00	-12.17	0.00	1.00	Vertical	1000000.00	1M	15.81
17755.6	41.40	54.00	-12.60	265.30	1.00	Vertical	1000000.00	1M	16.15

BLE (Plastic Enclosure) Tx Low Channel, RE 18-25 GHz



Notes: No emission was detected at a distance of 0.5 meter. Noise floor signal was recorded as shown in plot above. The distance factor was compensated as dB offset.

BLE (Plastic Enclosure) Tx Mid Channel, RE 30-1000 MHz

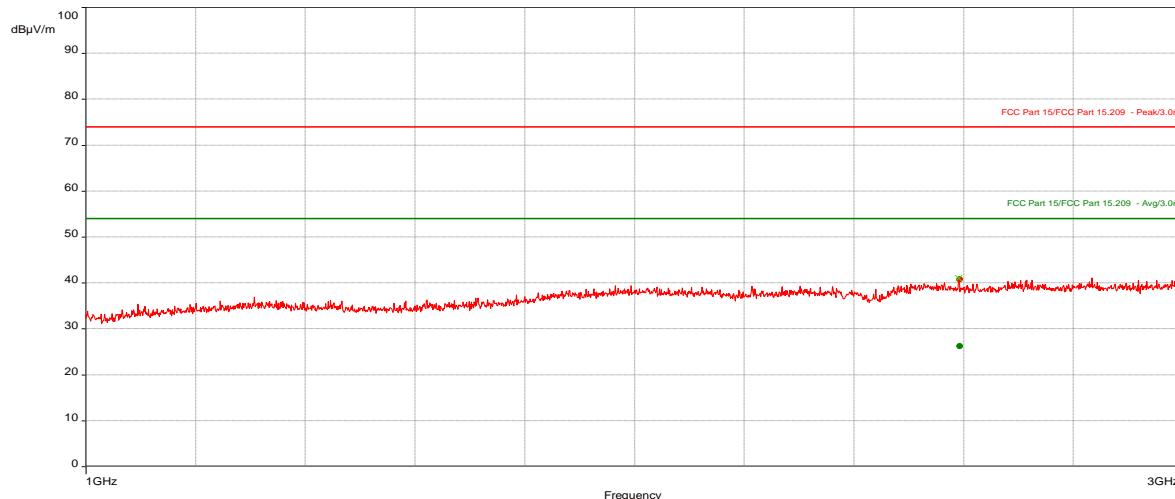
Test Information:

Date and Time	12/11/2023 9:35:52 AM
Client and Project Number	Assa Abloy/Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	37 %
Atmospheric Pressure	990 mbar
Comments	Scan 2_BLE (Plastic Enclosure) Tx Mid, RE 30-1000MHz

Graph:Results:

Peak (PASS) (6)

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
116.444	16.58	--	--	58.30	1.15	Horizontal	120000.00	120k	-18.67
582.202	23.10	--	--	120.70	2.02	Vertical	120000.00	120k	-11.37
589.468	22.41	--	--	350.90	3.32	Vertical	120000.00	120k	-11.54
594.022	22.61	--	--	142.00	1.00	Vertical	120000.00	120k	-11.62
637.69	24.31	--	--	266.60	2.01	Vertical	120000.00	120k	-9.79
661.768	23.27	--	--	328.70	1.16	Vertical	120000.00	120k	-9.91


QuasiPeak (PASS) (6)

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
116.444	9.24	33.50	-24.26	58.30	1.15	Horizontal	120000.00	120k	-18.67
582.202	15.36	36.00	-20.64	120.70	2.02	Vertical	120000.00	120k	-11.37
589.468	15.20	36.00	-20.80	350.90	3.32	Vertical	120000.00	120k	-11.54
594.022	15.21	36.00	-20.79	142.00	1.00	Vertical	120000.00	120k	-11.62
637.69	16.52	36.00	-19.48	266.60	2.01	Vertical	120000.00	120k	-9.79
661.768	16.08	36.00	-19.92	328.70	1.16	Vertical	120000.00	120k	-9.91

BLE (Plastic Enclosure) Tx Mid Channel, RE 1-3 GHz

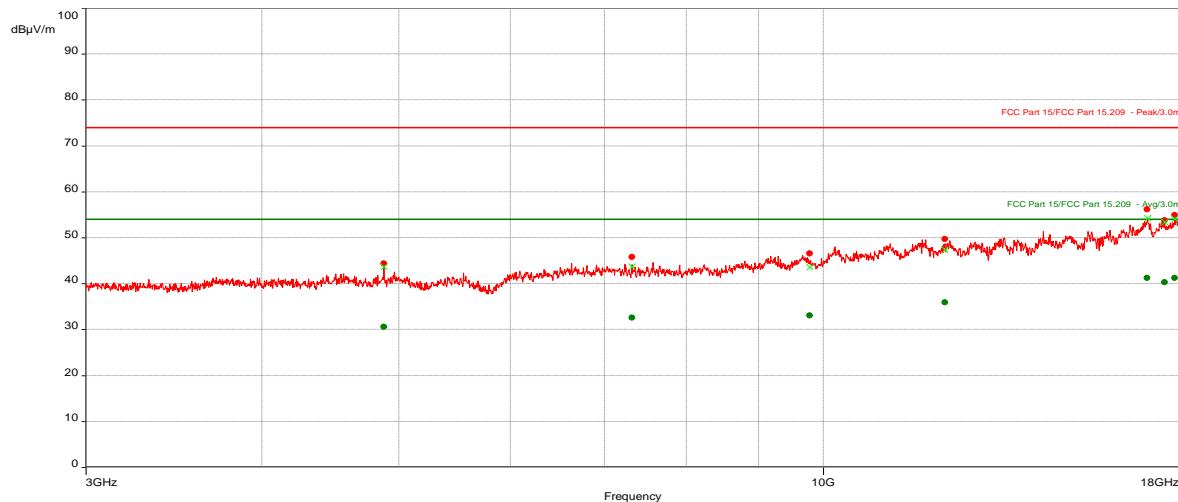
Test Information:

Date and Time	12/13/2023 2:02:21 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	20 %
Atmospheric Pressure	1018 mbar
Comments	Scan 26_BLE (Plastic Enclosure) Tx Mid RE 1-3 GHz

Graph:Results:

Peak (PASS) (1)

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2592.55	40.76	74.00	-33.24	152.10	2.51	Vertical	1000000.00	1M	-5.38


Average (PASS) (1)

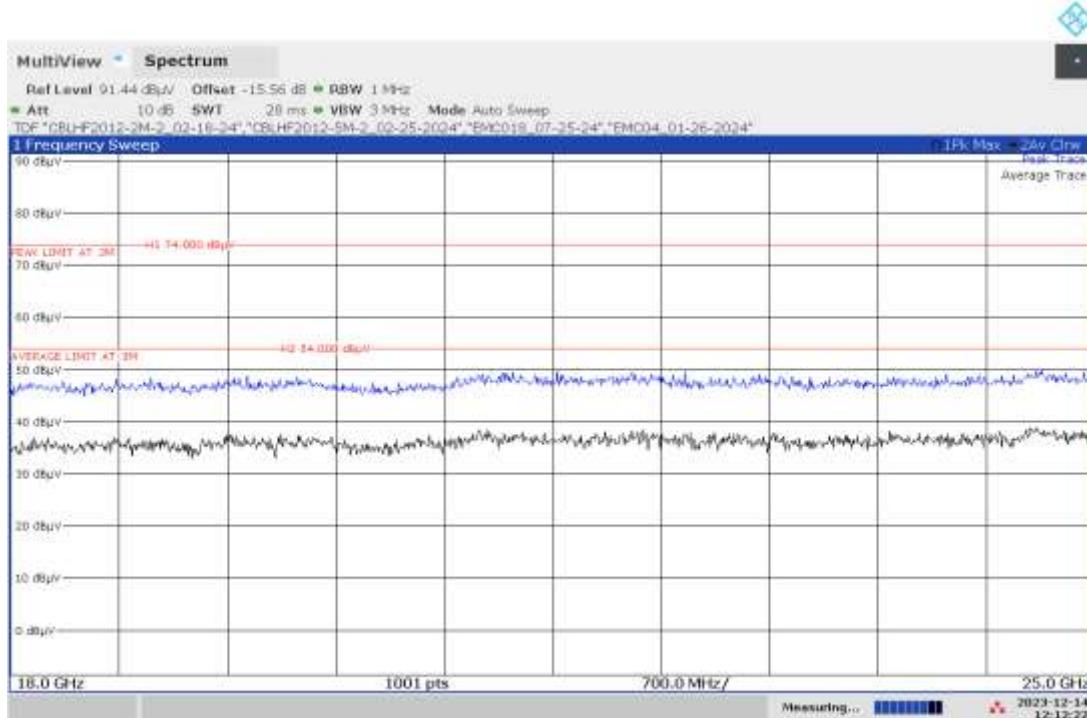
Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2592.55	26.22	54.00	-27.78	152.10	2.51	Vertical	1000000.00	1M	-5.38

BLE (Plastic Enclosure) Tx Mid Channel, RE 3-18 GHz

Test Information:

Date and Time	12/14/2023 10:41:33 AM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	24 C
Humidity	15 %
Atmospheric Pressure	1026 mbar
Comments	Scan 35_BLE (Plastic Enclosure) Tx Mid RE 3-18 GHz

Graph:**Results:**

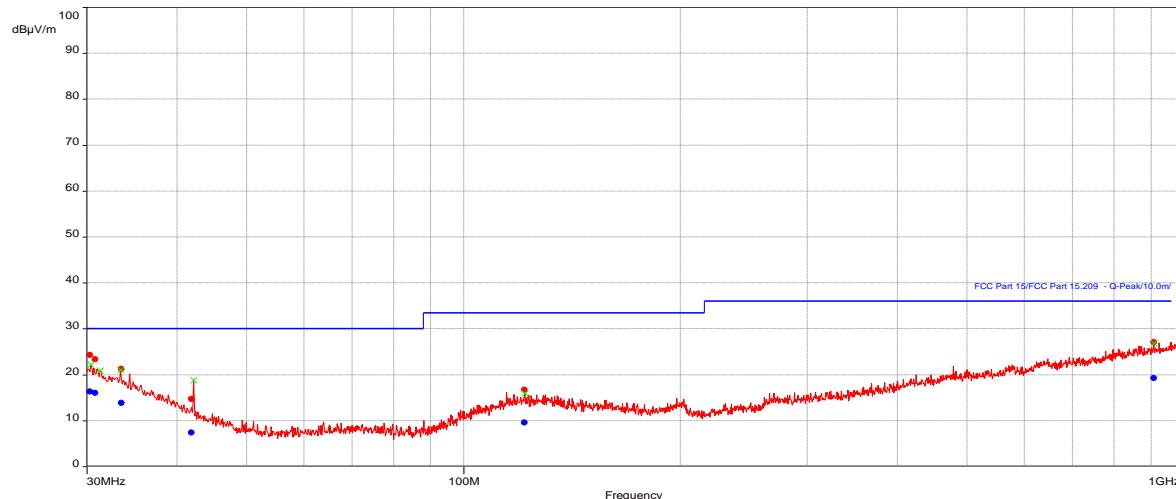

Peak (PASS) (7)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4879.7	44.44	74.00	-29.56	0.00	4.00	Horizontal	1000000.00	1M	-2.29
7319.65	45.78	74.00	-28.22	0.00	1.00	Horizontal	1000000.00	1M	1.37
9782.65	46.54	74.00	-27.46	265.40	4.00	Vertical	1000000.00	1M	3.50
12201.3	49.68	74.00	-24.32	265.30	1.00	Vertical	1000000.00	1M	7.70
16978.75	56.14	74.00	-17.86	0.00	1.00	Vertical	1000000.00	1M	15.75
17472.85	53.83	74.00	-20.17	0.00	1.00	Vertical	1000000.00	1M	15.35
17754.4	54.93	74.00	-19.07	360.00	4.00	Vertical	1000000.00	1M	16.15

Average (PASS) (7)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4879.7	30.60	54.00	-23.40	0.00	4.00	Horizontal	1000000.00	1M	-2.29
7319.65	32.65	54.00	-21.35	0.00	1.00	Horizontal	1000000.00	1M	1.37
9782.65	33.04	54.00	-20.96	265.40	4.00	Vertical	1000000.00	1M	3.50
12201.3	35.91	54.00	-18.09	265.30	1.00	Vertical	1000000.00	1M	7.70
16978.75	41.26	54.00	-12.74	0.00	1.00	Vertical	1000000.00	1M	15.75
17472.85	40.31	54.00	-13.69	0.00	1.00	Vertical	1000000.00	1M	15.35
17754.4	41.31	54.00	-12.69	360.00	4.00	Vertical	1000000.00	1M	16.15

BLE (Plastic Enclosure) Tx Mid Channel, RE 18-25 GHz



Notes: No emission was detected at a distance of 0.5 meter. Noise floor signal was recorded as shown in plot above. The distance factor was compensated as dB offset.

BLE (Plastic Enclosure) Tx High Channel, RE 30-1000 MHz

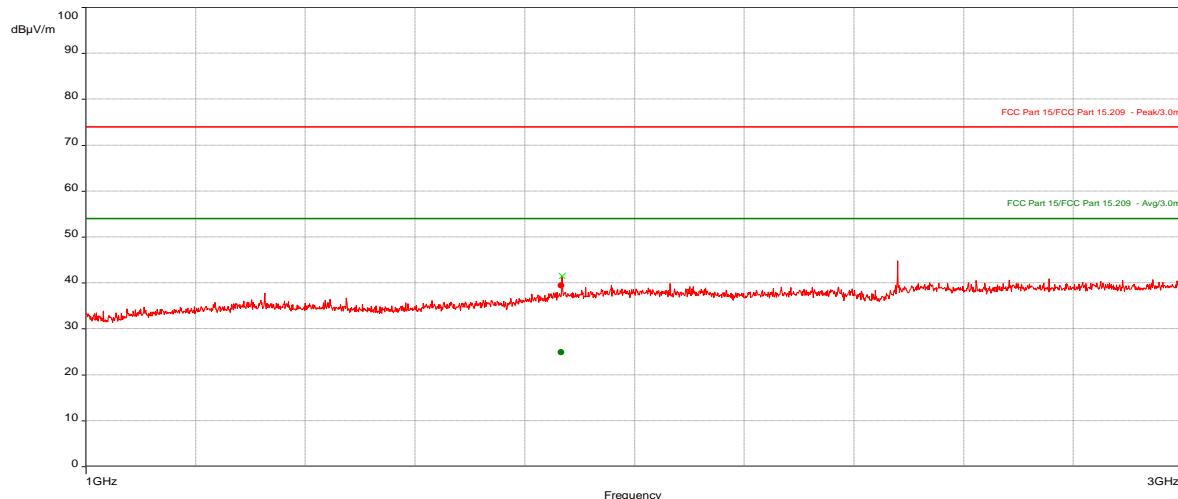
Test Information:

Date and Time	12/11/2023 10:33:23 AM
Client and Project Number	Assa Abloy/Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	37 %
Atmospheric Pressure	990 mbar
Comments	Scan 3_BLE (Plastic Enclosure) Tx High, RE 30-1000MHz

Graph:Results:

Peak (PASS) (6)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.316	24.37	30.00	-5.63	37.50	1.00	Vertical	120000.00	120k	-12.63
30.826	23.42	30.00	-6.58	16.80	1.00	Horizontal	120000.00	120k	-12.83
33.508	21.29	30.00	-8.71	224.60	2.52	Horizontal	120000.00	120k	-14.77
41.918	14.76	30.00	-15.24	349.70	2.51	Horizontal	120000.00	120k	-21.00
121.454	16.69	33.50	-16.81	245.30	1.15	Horizontal	120000.00	120k	-18.38
907.778	27.15	36.00	-8.85	224.30	3.37	Vertical	120000.00	120k	-5.32


QuasiPeak (PASS) (6)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.316	16.33	30.00	-13.67	37.50	1.00	Vertical	120000.00	120k	-12.63
30.826	16.05	30.00	-13.95	16.80	1.00	Horizontal	120000.00	120k	-12.83
33.508	13.91	30.00	-16.09	224.60	2.52	Horizontal	120000.00	120k	-14.77
41.918	7.38	30.00	-22.62	349.70	2.51	Horizontal	120000.00	120k	-21.00
121.454	9.64	33.50	-23.86	245.30	1.15	Horizontal	120000.00	120k	-18.38
907.778	19.31	36.00	-16.69	224.30	3.37	Vertical	120000.00	120k	-5.32

BLE (Plastic Enclosure) Tx High Channel, RE 1-3 GHz

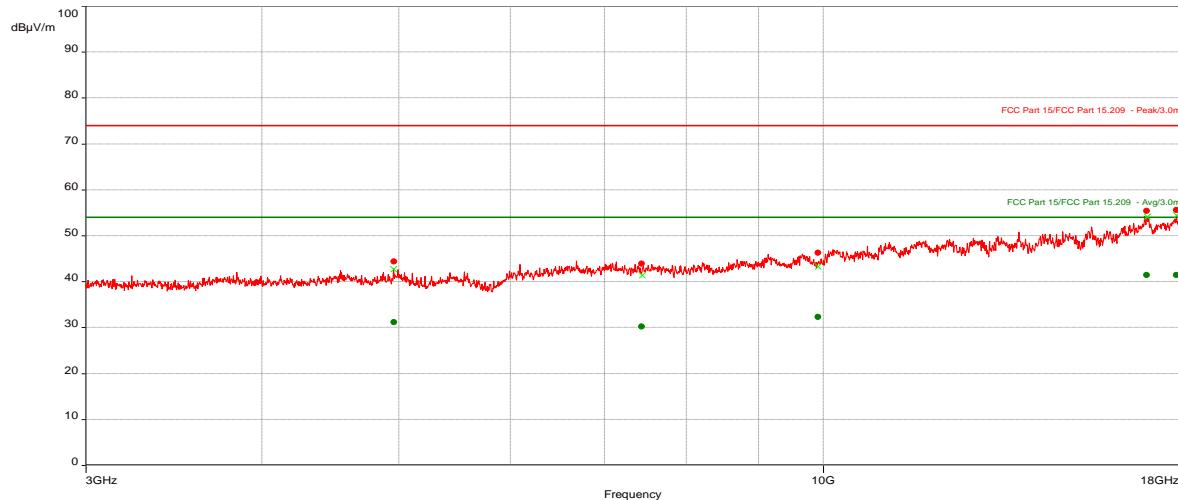
Test Information:

Date and Time	12/13/2023 1:51:15 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	20 %
Atmospheric Pressure	1018 mbar
Comments	Scan 25_BLE (Plastic Enclosure) Tx High RE 1-3 GHz

Graph:**Results:**

Peak (PASS) (1)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
1866.35	39.45	74.00	-34.55	347.10	2.51	Horizontal	1000000.00	1M	-6.66


Average (PASS) (1)

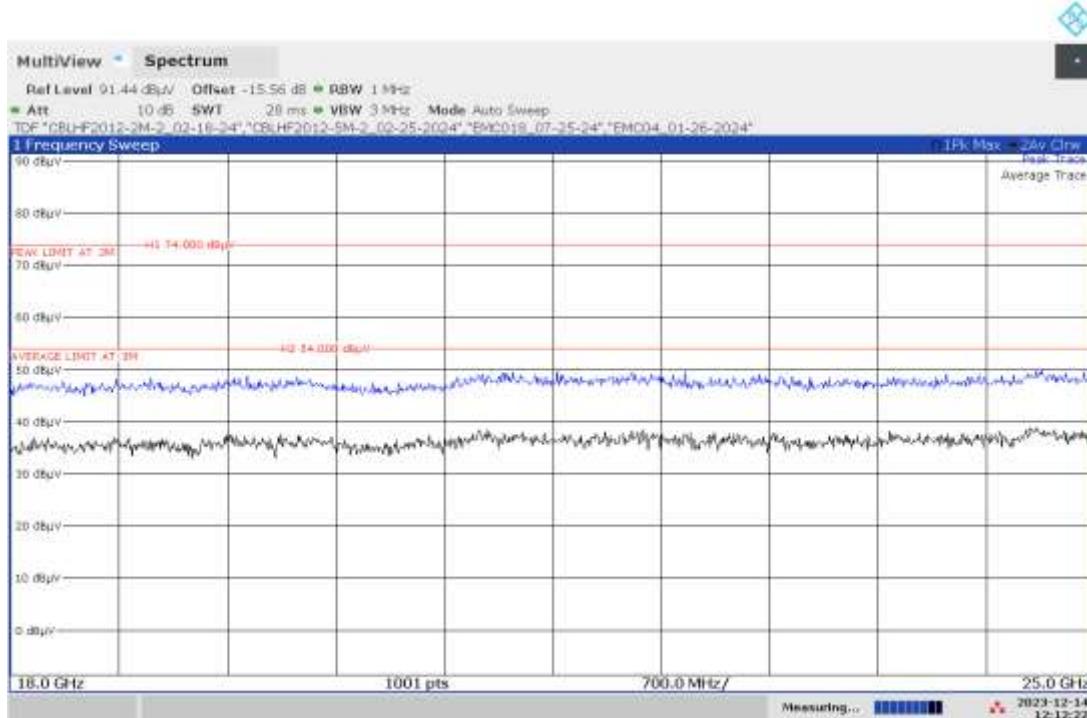
Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
1866.35	24.90	54.00	-29.10	347.10	2.51	Horizontal	1000000.00	1M	-6.66

BLE (Plastic Enclosure) Tx High Chanel, RE 3-18 GHz

Test Information:

Date and Time	12/14/2023 11:32:30 AM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	24 C
Humidity	15 %
Atmospheric Pressure	1026 mbar
Comments	Scan 36_BLE (Plastic Enclosure) Tx High RE 3-18 GHz

Graph:**Results:**

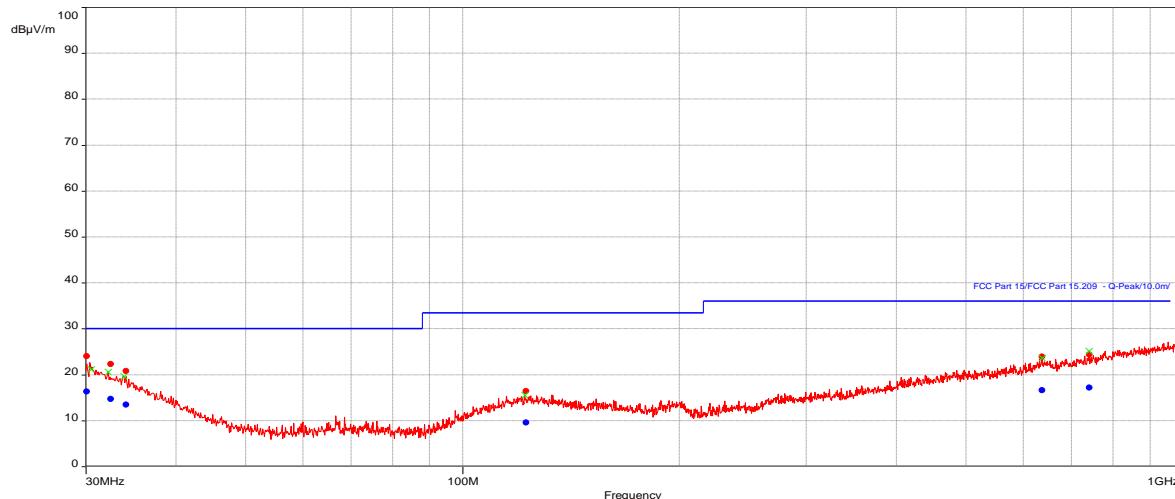

Peak (PASS) (5)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4960.5	44.44	74.00	-29.56	360.00	4.00	Horizontal	1000000.00	1M	-2.16
7436.8	43.94	74.00	-30.06	360.00	1.00	Vertical	1000000.00	1M	1.44
9919.4	46.29	74.00	-27.71	360.00	4.00	Vertical	1000000.00	1M	3.96
16968.55	55.43	74.00	-18.57	0.00	1.00	Horizontal	1000000.00	1M	15.71
17807.2	55.59	74.00	-18.41	0.00	1.00	Vertical	1000000.00	1M	16.20

Average (PASS) (5)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4960.5	31.23	54.00	-22.77	360.00	4.00	Horizontal	1000000.00	1M	-2.16
7436.8	30.27	54.00	-23.73	360.00	1.00	Vertical	1000000.00	1M	1.44
9919.4	32.33	54.00	-21.67	360.00	4.00	Vertical	1000000.00	1M	3.96
16968.55	41.47	54.00	-12.53	0.00	1.00	Horizontal	1000000.00	1M	15.71
17807.2	41.47	54.00	-12.53	0.00	1.00	Vertical	1000000.00	1M	16.20

BLE (Plastic Enclosure) Tx High Chanel, RE 18-25 GHz


12:12:22 PM 12/14/2023

Notes: No emission was detected at a distance of 0.5 meter. Noise signal floor was recorded as shown in plot above. The distance factor was compensated as dB offset.

BLE (Metal Enclosure) Tx Low Channel, RE 30-1000MHz

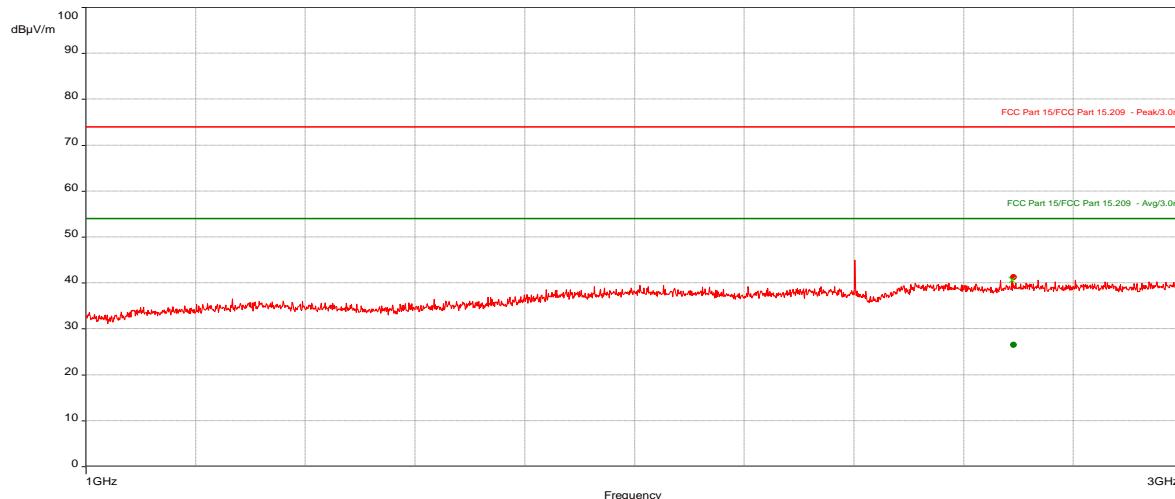
Test Information:

Date and Time	12/12/2023 10:39:17 AM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	23 %
Atmospheric Pressure	1015 mbar
Comments	Scan 10_BLE (Metal Enclosure) Tx Low RE 30-1000MHz

Graph:Results:

Peak (PASS) (6)

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.102	24.07	30.00	-5.93	204.00	3.32	Horizontal	120000.00	120k	-12.55
32.452	22.31	30.00	-7.69	58.20	1.00	Vertical	120000.00	120k	-14.05
34.086	20.84	30.00	-9.16	266.90	3.38	Horizontal	120000.00	120k	-15.22
122.45	16.49	33.50	-17.01	78.80	2.51	Vertical	120000.00	120k	-18.37
637.1	23.99	36.00	-12.01	267.00	3.32	Vertical	120000.00	120k	-9.79
740.914	24.48	36.00	-11.52	58.60	3.33	Vertical	120000.00	120k	-8.34


QuasiPeak (PASS) (6)

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.102	16.33	30.00	-13.67	204.00	3.32	Horizontal	120000.00	120k	-12.55
32.452	14.76	30.00	-15.24	58.20	1.00	Vertical	120000.00	120k	-14.05
34.086	13.54	30.00	-16.46	266.90	3.38	Horizontal	120000.00	120k	-15.22
122.45	9.65	33.50	-23.85	78.80	2.51	Vertical	120000.00	120k	-18.37
637.1	16.62	36.00	-19.38	267.00	3.32	Vertical	120000.00	120k	-9.79
740.914	17.18	36.00	-18.82	58.60	3.33	Vertical	120000.00	120k	-8.34

BLE (Metal Enclosure) Tx Low Channel, RE 1-3 GHz

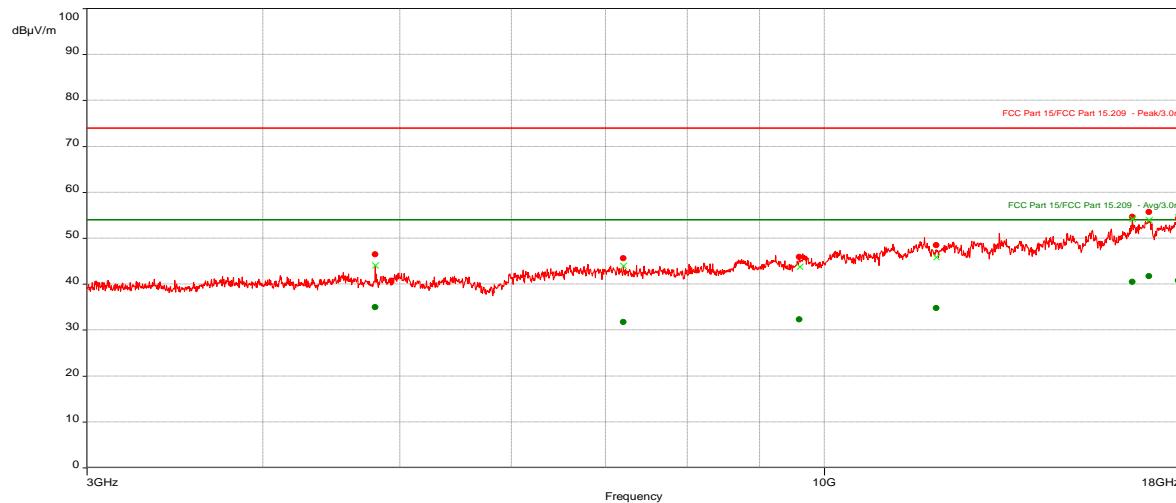
Test Information:

Date and Time	12/13/2023 1:03:46 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	20 %
Atmospheric Pressure	1018 mbar
Comments	Scan 22_BLE (Metal Enclosure) Tx Low RE 1-3 GHz

Graph:Results:

Peak (PASS) (1)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2690.6	41.29	74.00	-32.71	0.00	1.98	Vertical	1000000.00	1M	-5.27


Average (PASS) (1)

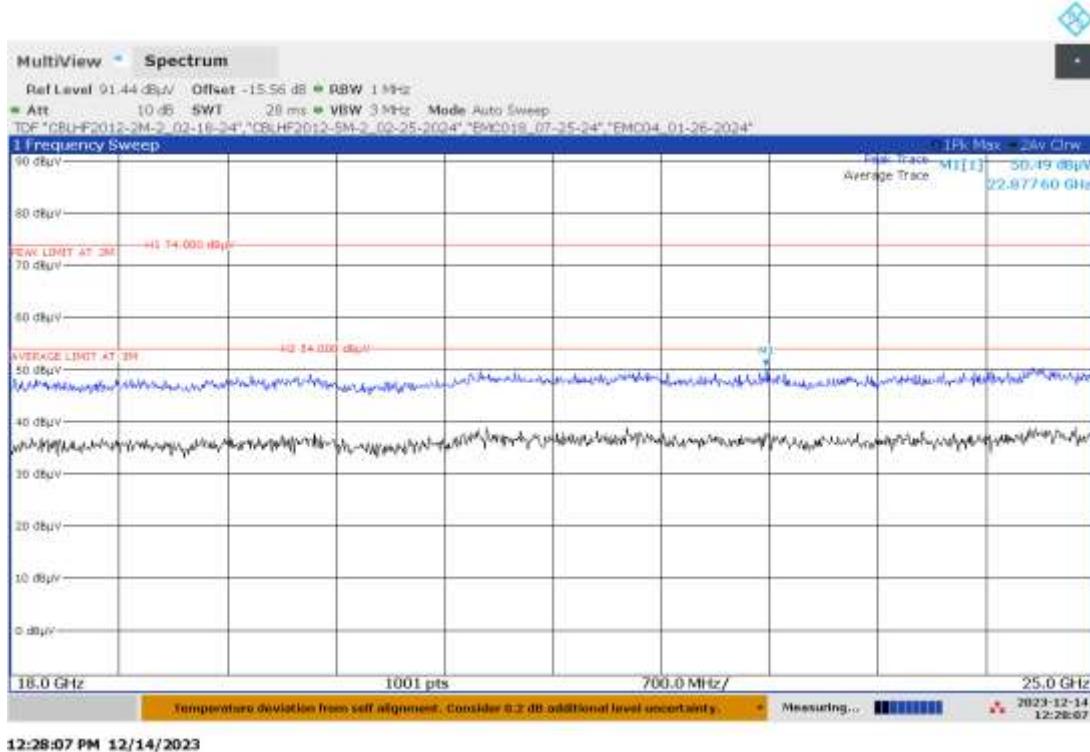
Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2690.6	26.55	54.00	-27.45	0.00	1.98	Vertical	1000000.00	1M	-5.27

BLE (Metal Enclosure) Tx Low Channel, RE 3-18 GHz

Test Information:

Date and Time	12/12/2023 2:05:34 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	23 %
Atmospheric Pressure	1015 mbar
Comments	Scan 13_BLE (Metal Enclosure) Tx Low RE 3-18 GHz

Graph:**Results:**

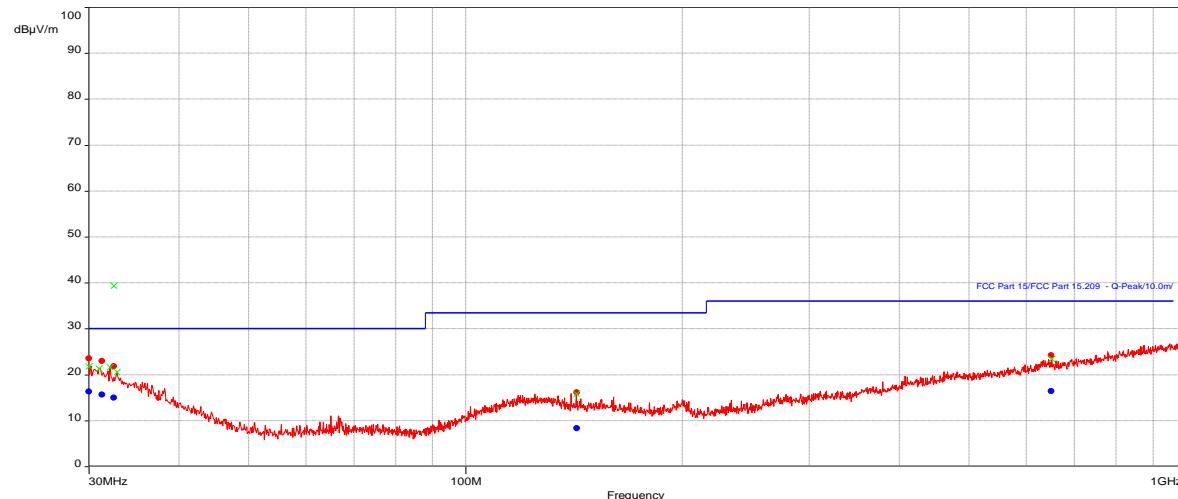

Peak (PASS) (7)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4804	46.45	74.00	-27.55	0.00	1.00	Horizontal	1000000.00	1M	-2.36
7206.5	45.63	74.00	-28.37	265.30	4.00	Horizontal	1000000.00	1M	1.35
9606.35	45.93	74.00	-28.07	265.30	1.00	Horizontal	1000000.00	1M	3.30
12012.7	48.51	74.00	-25.49	265.50	4.00	Vertical	1000000.00	1M	7.19
16548.1	54.67	74.00	-19.33	0.00	4.00	Vertical	1000000.00	1M	13.31
17000.7	55.67	74.00	-18.33	0.00	4.00	Vertical	1000000.00	1M	15.84
17838	54.32	74.00	-19.68	0.00	1.00	Vertical	1000000.00	1M	16.16

Average (PASS) (7)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4804	34.95	54.00	-19.05	0.00	1.00	Horizontal	1000000.00	1M	-2.36
7206.5	31.75	54.00	-22.25	265.30	4.00	Horizontal	1000000.00	1M	1.35
9606.35	32.33	54.00	-21.67	265.30	1.00	Horizontal	1000000.00	1M	3.30
12012.7	34.84	54.00	-19.16	265.50	4.00	Vertical	1000000.00	1M	7.19
16548.1	40.50	54.00	-13.50	0.00	4.00	Vertical	1000000.00	1M	13.31
17000.7	41.76	54.00	-12.24	0.00	4.00	Vertical	1000000.00	1M	15.84
17838	40.80	54.00	-13.20	0.00	1.00	Vertical	1000000.00	1M	16.16

BLE (Metal Enclosure) Tx Low RE 18-25 GHz



Notes: No emission was detected at a distance of 0.5 meter. Noise signal floor was recorded as shown in plot above. The distance factor was compensated as dB offset.

BLE (Metal Enclosure) Tx Mid Channel, RE 30-1000 MHz

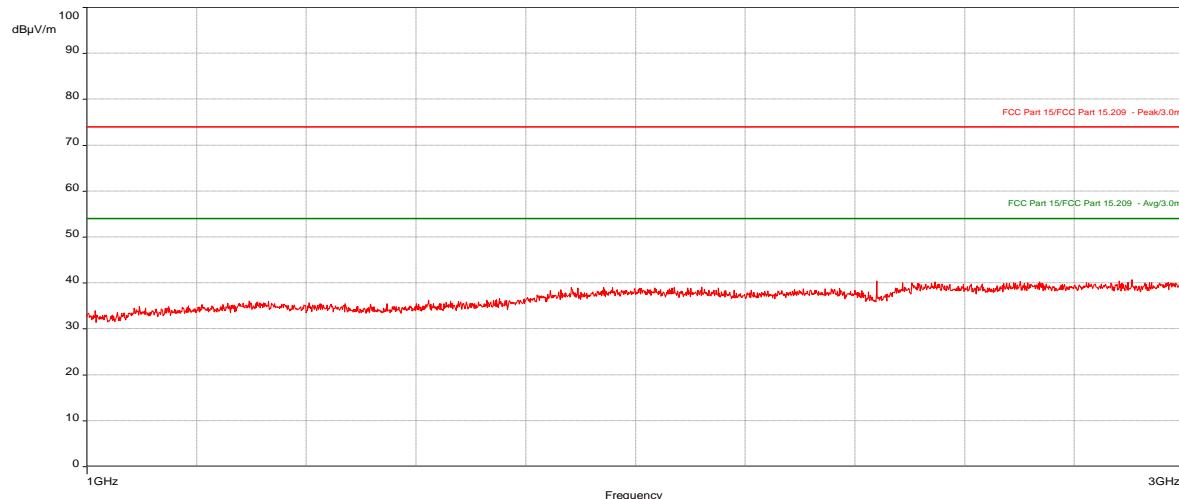
Test Information:

Date and Time	12/12/2023 11:35:50 AM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	23 %
Atmospheric Pressure	1015 mbar
Comments	Scan 11_BLE (Metal Enclosure) Tx Mid RE 30-1000MHz

Graph:Results:

Peak (PASS) (6)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.03	23.54	--	--	308.60	3.36	Horizontal	120000.00	120k	-12.53
31.306	23.03	--	--	37.60	3.80	Horizontal	120000.00	120k	-13.16
32.484	21.84	--	--	329.00	2.01	Vertical	120000.00	120k	-14.07
32.476	39.48	--	--	183.10	1.00	Vertical	120000.00	120k	-14.07
142.692	16.20	--	--	266.70	1.00	Vertical	120000.00	120k	-19.47
650.362	24.28	--	--	329.00	4.00	Horizontal	120000.00	120k	-9.71


QuasiPeak (PASS) (5)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.03	16.35	30.00	-13.65	308.60	3.36	Horizontal	120000.00	120k	-12.53
31.306	15.72	30.00	-14.28	37.60	3.80	Horizontal	120000.00	120k	-13.16
32.476	15.06	30.00	-14.94	183.10	1.00	Vertical	120000.00	120k	-14.07
142.692	8.36	33.50	-25.14	266.70	1.00	Vertical	120000.00	120k	-19.47
650.362	16.46	36.00	-19.54	329.00	4.00	Horizontal	120000.00	120k	-9.71

BLE (Metal Enclosure) Tx Mid Channel, RE 1-3 GHz

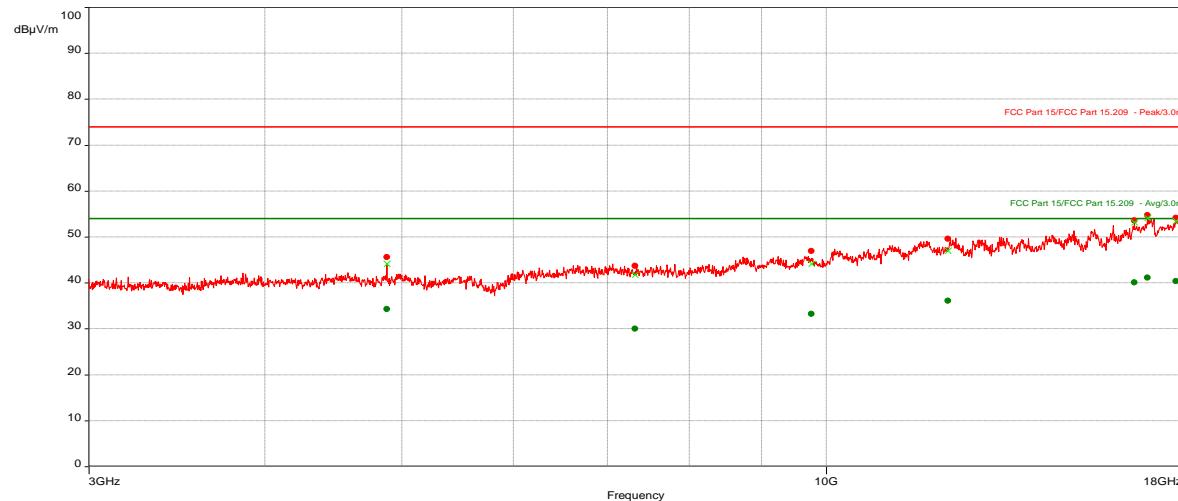
Test Information:

Date and Time	12/13/2023 1:17:42 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	20 %
Atmospheric Pressure	1018 mbar
Comments	Scan 23_BLE (Metal Enclosure) Tx Mid RE 1-3 GHz

Graph:Results:

Peak (PASS) (1)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2997.8	41.42	74.00	-32.58	34.80	4.00	Horizontal	1000000.00	1M	-4.89


Average (PASS) (1)

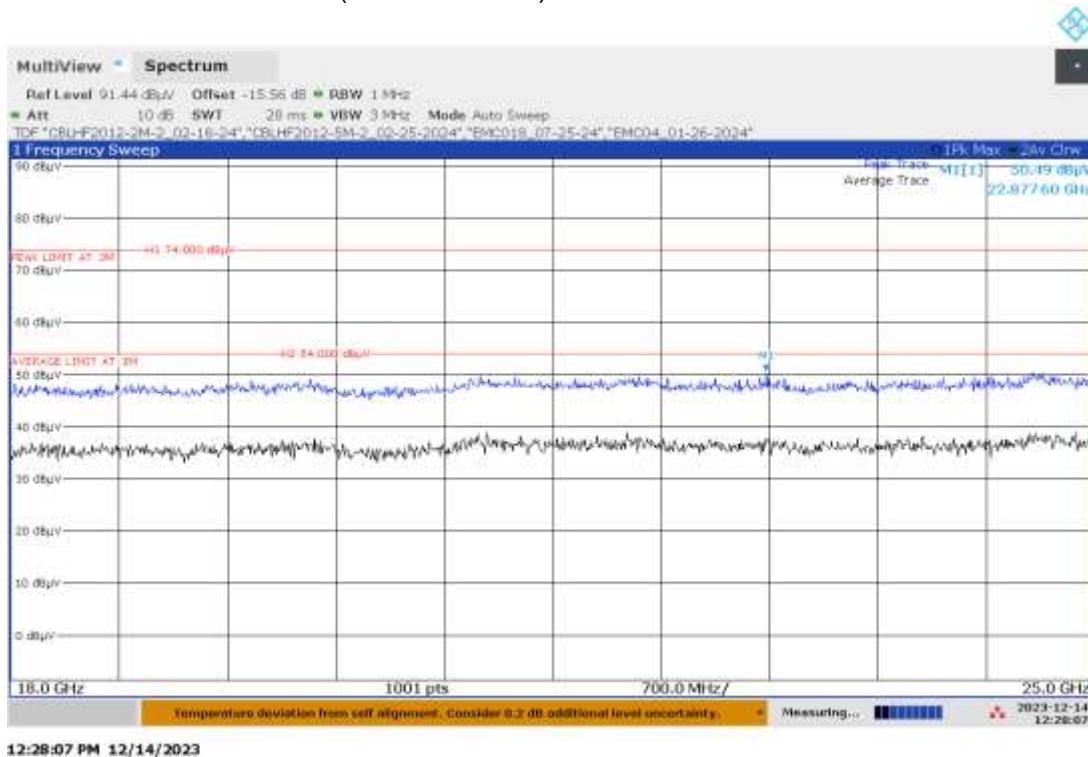
Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2997.8	27.19	54.00	-26.81	34.80	4.00	Horizontal	1000000.00	1M	-4.89

BLE (Metal Enclosure) Tx Mid Channel, RE 3-18 GHz

Test Information:

Date and Time	12/12/2023 2:57:59 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	23 %
Atmospheric Pressure	1015 mbar
Comments	Scan 14_BLE (Metal Enclosure) Tx Mid RE 3-18 GHz

Graph:Results:


Peak (PASS) (7)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4879.85	45.63	74.00	-28.37	0.00	1.00	Horizontal	1000000.00	1M	-2.29
7318.25	43.72	74.00	-30.28	0.00	1.00	Horizontal	1000000.00	1M	1.37
9759.7	46.99	74.00	-27.01	360.00	4.00	Horizontal	1000000.00	1M	3.47
12198.1	49.65	74.00	-24.35	0.00	4.00	Vertical	1000000.00	1M	7.70
16539	53.66	74.00	-20.34	0.00	1.00	Vertical	1000000.00	1M	13.27
16908.9	54.80	74.00	-19.20	265.30	1.00	Horizontal	1000000.00	1M	15.51
17701.65	54.21	74.00	-19.79	265.60	4.00	Horizontal	1000000.00	1M	15.96

Average (PASS) (7)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4879.85	34.33	54.00	-19.67	0.00	1.00	Horizontal	1000000.00	1M	-2.29
7318.25	30.07	54.00	-23.93	0.00	1.00	Horizontal	1000000.00	1M	1.37
9759.7	33.30	54.00	-20.70	360.00	4.00	Horizontal	1000000.00	1M	3.47
12198.1	36.10	54.00	-17.90	0.00	4.00	Vertical	1000000.00	1M	7.70
16539	40.13	54.00	-13.87	0.00	1.00	Vertical	1000000.00	1M	13.27
16908.9	41.18	54.00	-12.82	265.30	1.00	Horizontal	1000000.00	1M	15.51
17701.65	40.45	54.00	-13.55	265.60	4.00	Horizontal	1000000.00	1M	15.96

BLE (Metal Enclosure) Tx Mid RE 18-25 GHz

Notes: No emission was detected at a distance of 0.5 meter. Noise signal floor was recorded as shown in plot above. The distance factor was compensated as dB offset.

BLE (Metal Enclosure) Tx High Channel, RE 30-1000MHz

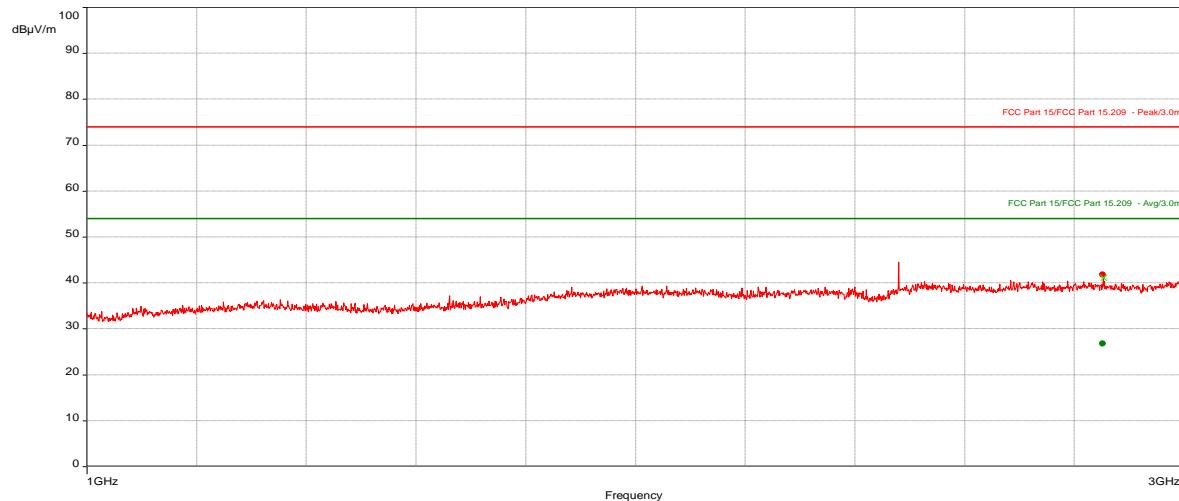
Test Information:

Date and Time	12/12/2023 12:33:46 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	23 %
Atmospheric Pressure	1015 mbar
Comments	Scan 12_BLE (Metal Enclosure) Tx High RE 30-1000MHz

Graph:Results:

Peak (PASS) (6)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.558	23.53	--	--	328.70	3.36	Horizontal	120000.00	120k	-12.73
30.944	23.91	--	--	307.50	3.37	Horizontal	120000.00	120k	-12.88
32.098	22.16	--	--	37.30	0.99	Horizontal	120000.00	120k	-13.85
66.934	12.48	--	--	360.00	3.78	Vertical	120000.00	120k	-24.87
121.464	16.96	--	--	287.20	1.57	Vertical	120000.00	120k	-18.38
199.208	15.67	--	--	287.30	1.58	Horizontal	120000.00	120k	-19.11


QuasiPeak (PASS) (6)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
30.558	16.20	30.00	-13.80	328.70	3.36	Horizontal	120000.00	120k	-12.73
30.944	16.01	30.00	-13.99	307.50	3.37	Horizontal	120000.00	120k	-12.88
32.098	14.97	30.00	-15.03	37.30	0.99	Horizontal	120000.00	120k	-13.85
66.934	6.08	30.00	-23.92	360.00	3.78	Vertical	120000.00	120k	-24.87
121.464	9.64	33.50	-23.86	287.20	1.57	Vertical	120000.00	120k	-18.38
199.208	8.46	33.50	-25.04	287.30	1.58	Horizontal	120000.00	120k	-19.11

BLE (Metal Enclosure) Tx High Channel, RE 1-3 GHz

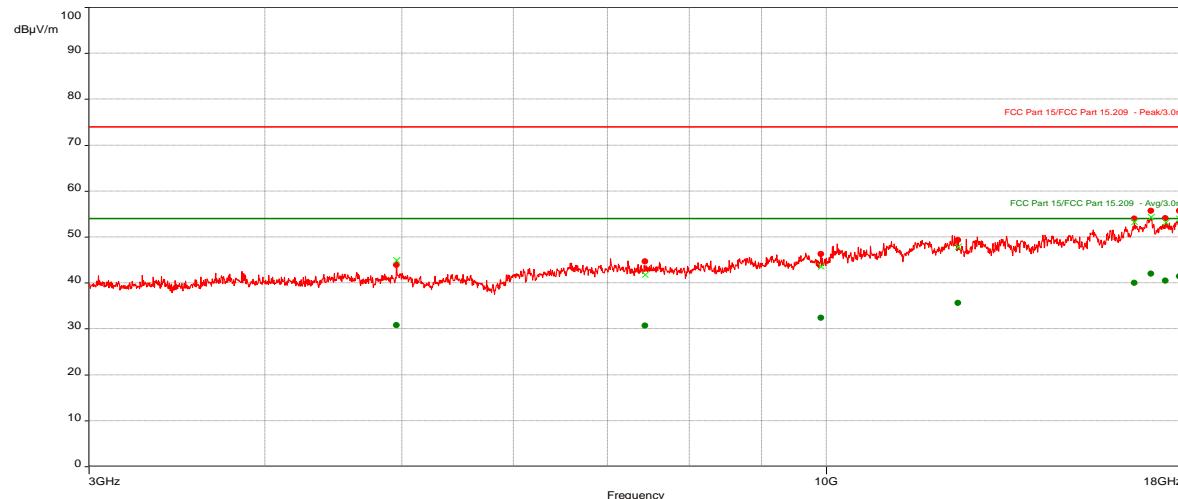
Test Information:

Date and Time	12/13/2023 1:31:50 PM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	20 %
Atmospheric Pressure	1018 mbar
Comments	Scan 24_BLE (Metal Enclosure) Tx High RE 1-3 GHz

Graph:Results:

Peak (PASS) (1)

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2851.75	41.86	74.00	-32.14	308.30	1.44	Horizontal	1000000.00	1M	-5.27


Average (PASS) (1)

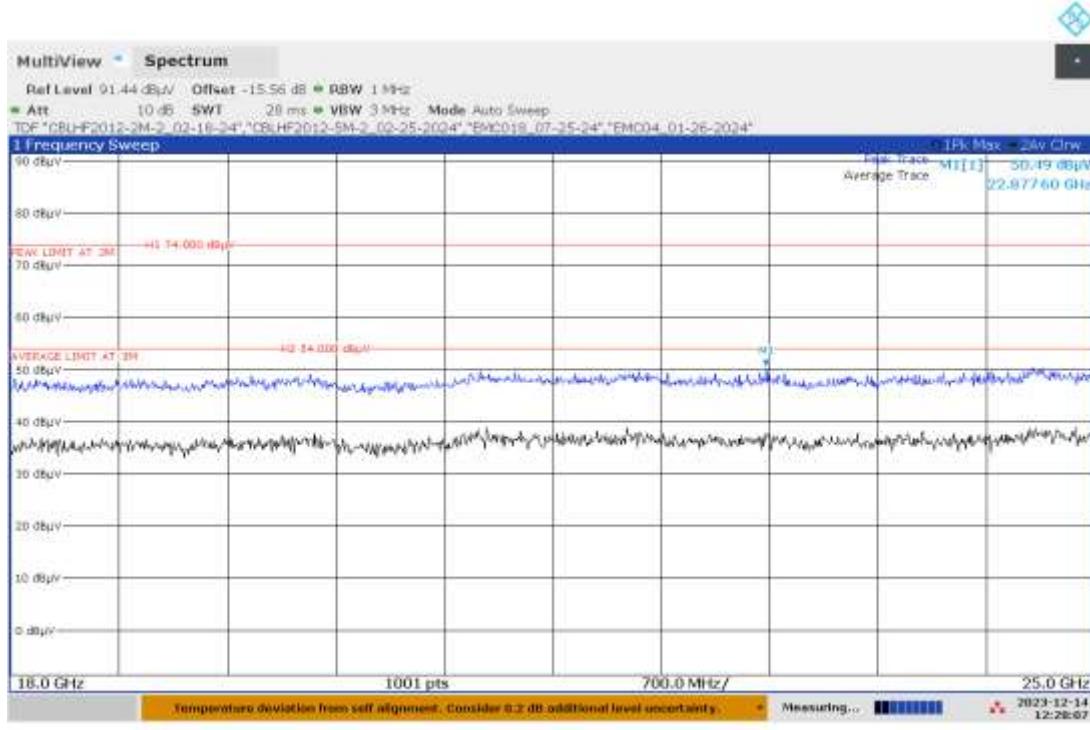
Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
2851.75	26.85	54.00	-27.15	308.30	1.44	Horizontal	1000000.00	1M	-5.27

BLE (Metal Enclosure) Tx High Channel, RE 3-18 GHz

Test Information:

Date and Time	12/13/2023 8:17:50 AM
Client and Project Number	Assa Abloy Sargent Mfg
Engineer	Kouma Sinn
Temperature	26 C
Humidity	20 %
Atmospheric Pressure	1018 mbar
Comments	Scan 15_BLE (Metal Enclosure) Tx High RE 3-18 GHz

Graph:Results:


Peak (PASS) (8)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4960.1	43.96	74.00	-30.04	360.00	4.00	Horizontal	1000000.00	1M	-2.16
7440.55	44.72	74.00	-29.28	360.00	1.00	Horizontal	1000000.00	1M	1.44
9920.1	46.30	74.00	-27.70	360.00	1.00	Horizontal	1000000.00	1M	3.96
12401.9	49.35	74.00	-24.65	360.00	4.00	Horizontal	1000000.00	1M	7.77
16542.3	53.96	74.00	-20.04	360.00	1.00	Horizontal	1000000.00	1M	13.28
17002.6	55.69	74.00	-18.31	265.50	4.00	Vertical	1000000.00	1M	15.84
17411.4	54.05	74.00	-19.95	0.00	1.00	Vertical	1000000.00	1M	15.29
17805.5	55.72	74.00	-18.28	265.50	4.00	Horizontal	1000000.00	1M	16.20

Average (PASS) (8)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW	RBW	Correction (dB)
4960.1	30.78	54.00	-23.22	360.00	4.00	Horizontal	1000000.00	1M	-2.16
7440.55	30.72	54.00	-23.28	360.00	1.00	Horizontal	1000000.00	1M	1.44
9920.1	32.44	54.00	-21.56	360.00	1.00	Horizontal	1000000.00	1M	3.96
12401.9	35.63	54.00	-18.37	360.00	4.00	Horizontal	1000000.00	1M	7.77
16542.3	40.07	54.00	-13.93	360.00	1.00	Horizontal	1000000.00	1M	13.28
17002.6	41.98	54.00	-12.02	265.50	4.00	Vertical	1000000.00	1M	15.84
17411.4	40.50	54.00	-13.50	0.00	1.00	Vertical	1000000.00	1M	15.29

BLE (Metal Enclosure) Tx High RE 18-25 GHz

12:28:07 PM 12/14/2023

Notes: No emission was detected at a distance of 0.5 meter. Noise signal floor was recorded as shown in plot above. The distance factor was compensated as dB offset.

Product Standard: CFR47 FCC Part 15.247, RSS-247				Limit applied: See Report Section 8.3 Pretest Verification w/BB source: Yes			
Test Date	Test Personnel/ Initials	Supervising Engineer/ Initials	Input Voltage	Mode	Atmospheric Data		
					Temp C°	Relative Humidity %	Atmospheric Pressure mbar
12/11/2023	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	26	37	990
12/12/2023	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	26	23	1015
12/13/2023	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	26	20	1018
12/14/2023	Kouma Sinn <i>KPS</i>	N/A	Battery Powered	Continuous Transmitting	24	15	1026

Deviations, Additions, or Exclusions: None

9 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	02/28/2024	105626878BOX-001c	KPS <i>KPS</i>	VFV <i>VFV</i>	Original Issue