

HAC TEST REPORT

Issued to

Teleepoch Limited

For

Mobile phone

Model Name : VM2090PDKIT180; Wi921;

Trade Name : PCD

Brand Name : Sienna

FCC ID : U46-WI921

Standard : ANSI C 63.19:2007

HAC Level : T-Coil: T3

Test date : 2011-08-23

Issue date : 2011-08-23

Shenzhen MORLAB Communication Technology Co., Ltd.

Tested by Samuel Peng
Samuel Peng
Date 2011.08.23

Review by Li Lei
Li Lei
Date 2011.08.23

CTIA Authorized Test Lab
LAS CODE 2W881223-00
IEEE 1725

OFTA
電訊管理局

GCF
Official Observer
Global Certification Forum

Bluetooth
BQTF

FCC
Reg. No.
741109

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced either in its entirety or in part and it may not be used for advertising. The client to whom the report is issued may, however, show or send it or a certified copy thereof prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Contents

1.1. Identification of the Responsible Testing Laboratory	3	
1.2. Identification of the Responsible Testing Location	3	
1.3. Accreditation Certificate	3	
1.4. List of Test Equipments	3	
2. TECHNICAL INFORMATION	4	
2.1. Identification of Applicant.....	4	
2.2. Identification of Manufacturer	4	
2.3. Equipment Under Test (EUT)	4	
2.3.1. Photographs of the EUT	4	
2.3.2. Identification of all used EUTs.....	5	
2.4. Applied Reference Documents	5	
2.5. Test Environment/Conditions	6	
2.6. Operational Conditions During Test	7	
2.6.1. INTRODUCTION.....	7	
2.6.2. ANSI/IEEE PC 63.19 PERFORMANCE CATEGORIES	8	
2.6.3. Description of Test System	9	
2.6.4. TEST PROCEDURE	13	
2.6.5. Uncertainty Estimation Table	17	
2.6.6. OVERALL MEASUREMENT SUMMARY	18	
2.6.7. TEST DATA.....	19	
ANNEX A	PHOTOGRAPHS OF THE EUT	32
ANNEX B	EUT SETUP PHOTO	33

1.1. Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Morlab Communications Technology Co., Ltd.
Department: Morlab Laboratory
Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan District, Shenzhen, 518055 P. R. China
Responsible Test Lab Manager: Mr. Shu Luan
Telephone: +86 755 86130268
Facsimile: +86 755 86130218

1.2. Identification of the Responsible Testing Location

Name: Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory
Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan District, Shenzhen, 518055 P. R. China

1.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L3572

1.4. List of Test Equipments

No.	Instrument	Type
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)
2	Network Emulator	Rohde&Schwarz (CMU200, SN:105894)
3	Voltmeter	Keithley (2000, SN:1000572)
4	Synthetizer	Rohde&Schwarz (SML_03, SN:101868)
5	Amplifier	Nucl udes (ALB216, SN:10800)
6	Power Meter	Rohde&Schwarz (NRVD, SN:101066)
7	Audio DAQ	NI (MonDAQ, SN:MonNumero)
8	Probe	Antennessa (SN:SN_4108_EPH17)
9	HAC holder	SN02_EPH02 (SN:SN_3608_SUPH16)

2. Technical Information

Note: the following data is based on the information by the applicant.

2.1. Identification of Applicant

Company Name: Teleepoch Limited
Address: 5A, B1 Building, Digital Tech Zone, High-Tech Park(south), Nanshan district, Shenzhen, Guangdong Province, China

2.2. Identification of Manufacturer

Company Name: Teleepoch Limited
Address: 5A, B1 Building, Digital Tech Zone, High-Tech Park(south), Nanshan district, Shenzhen, Guangdong Province, China

2.3. Equipment Under Test (EUT)

Brand Name:	Sienna
Type Name:	PCD
Marking Name:	VM2090PDKIT180; Wi921;
Hardware Version:	WI921_V1.21
Software Version:	N/A
Frequency Bands:	CDMA 800MHz /CDMA 1900MHz WIFI: 2412MHz-2462MHz BT: 2402MHz-2480MHz
Modulation Mode:	CDMA : CDMA WIFI 802.11B : DSSS WIFI 802.11G: OFDM BT: GFSK
Antenna type:	Fixed Internal Antenna
Development Stage:	Identical prototype
Battery Model:	BTR209
Battery specification:	1450mAh 3.7V
HAC Test	CDMA 800; channel 1013, 384, 777, BT OFF, Wifi OFF
Configurations:	CDMA 1900; channel 25, 600, 1175, BT OFF, Wifi OFF

2.3.1. Photographs of the EUT

Please see for photographs of the EUT.

2.3.2. Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	WI921_V1.21	N/A

2.4. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1	ANSI C 63.19:2007	American National Standard Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids

Note: Test report, reference KDB 285076 documents.

2.5. Test Environment/Conditions

Normal Temperature (NT):	20 ... 25 °C
Relative Humidity:	30 ... 75 %
Air Pressure:	980 ... 1020 hPa
Extreme Voltage of the EUT:	Normal Voltage (NV) = 3.70V
	Low Voltage (LV) = 3.60V
	High Voltage (HV) = 4.20V
Test frequency:	CDMA 800MHz/CDMA 1900MHz
Operation mode:	Call established
Power Level:	CDMA Maximum output power

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) is 1013, 384 and 777 respectively in the case of CDMA 800MHz or is allocated to 25, 600 and 1175 respectively in the case of CDMA 1900MHz, The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

2.6. Operational Conditions During Test

2.6.1. INTRODUCTION

On July 10.2003.the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658 to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide suffer from hearing loss.

Compatibility Tests involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions.
- RF Magnetic- field emissions.
- T-coil mode, magnetic-signal strength in the audio band.
- T-coil mode, magnetic-signal frequency response through the audio band.
- T-coil mode, magnetic-signal and noise articulation index.

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device

2.6.2. ANSI/IEEE PC 63.19 PERFORMANCE CATEGORIES

4.3.2.1. T-coil

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameter
	Wireless Device Signal Quality (Signal + Noise-to-noise ratio in dB)
T1	0 to 10 dB
T2	10 to 20 dB
T3	20 to 30 dB
T4	>30 dB
Magnetic Coupling Parameters	

4.3.2.2. Articulation Weighing Factor (AWF)

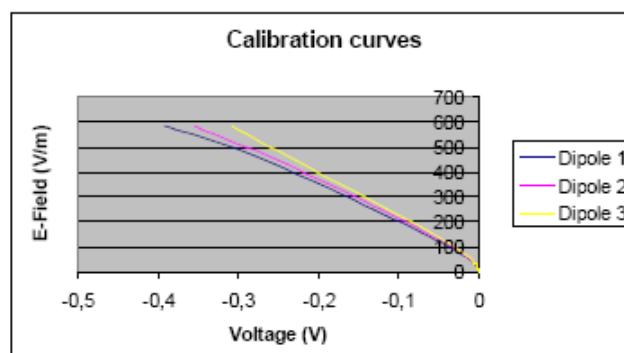
Standard	Technology	AWF
T1/T1P1/3GPP	UMTS(WCDMA)	0
IS-95	CDMA	0
iden	GSM(22and 11Hz)	0
J-STD-007	GSM(217Hz)	-5
AWF has been developed from information presented to the committee regarding the interference potential of the various modulation types according to ANSI PC 63.19		

2.6.3. Description of Test System

4.3.3.1. COMOHAC E-FIELD PROBE

Serial Number:	SN 41/08 EPH17
Frequency:	100MHz – 3GHz
Probe length:	330mm
Length of one dipole:	3.3mm
Maximum external diameter:	8mm
Probe extremity diameter:	6mm
Distance between dipoles/probe extremity:	3mm
Resistance of the three dipole (at the connector):	Dipole 1:R1=2.1807 MΩ Dipole 2:R1=2.0612 MΩ Dipole 3:R3=2.1892 MΩ
Connector (HIROSE series SR30)	6 wire male (Hirose SR30series)

CALIBRATION TEST EQUIPMENT


TYPE	IDENTIFICATION
Calibration bench	SATIMO AIR CALIBRATION SOFTWARE
Multimeter	Keithley 2000

MEASUREMENT PROCEDURE

Probe calibration is realized by using the waveguide method. The probe was inserted in a waveguide loading by a 50 load. By controlling the input power in the waveguide, we are able to create a known EField value in the waveguide. ,

Keithley configuration:

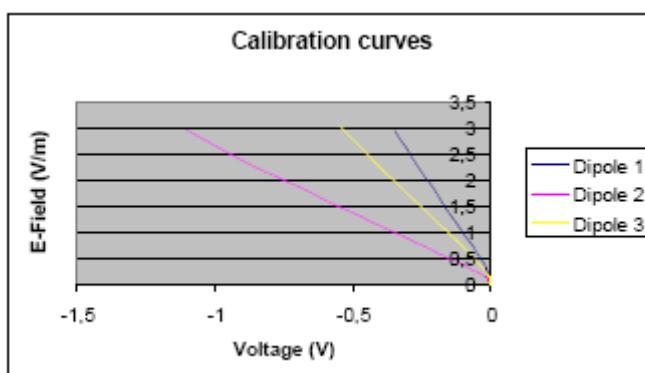
Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO

The following tables represent the calibration curves linearization by curve segment in CW signal.

4.3.3.2. COMOHAC H-FIELD PROBE

Serial Number:	SN 41/08 HPH18
Frequency:	100MHz – 3GHz
Probe length:	330mm
Length of one dipole:	3.3mm
Maximum external diameter:	8mm
Probe extremity diameter:	6mm
Distance between dipoles/probe extremity:	3mm
Resistance of the three dipole (at the connector):	Dipole 1:R1=2.1650 MΩ Dipole 2:R1=2.2176 MΩ Dipole 3:R3=2.4084 MΩ
Connector (HIROSE series SR30)	6 wire male (Hirose SR30series)

CALIBRATION TEST EQUIPMENT

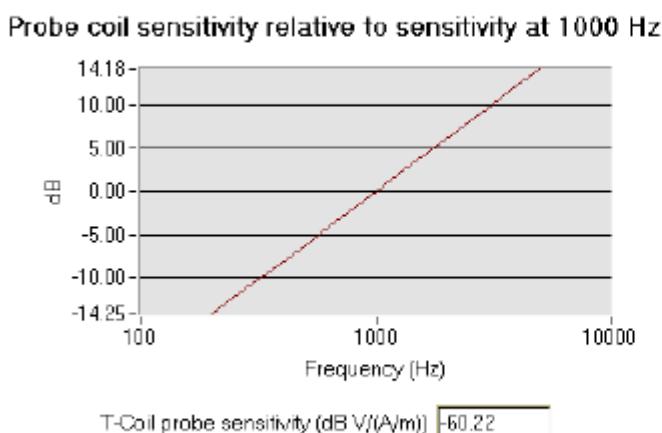

TYPE	IDENTIFICATION
Calibration bench	SATIMO AIR CALIBRATION SOFTWARE
Multimeter	Keithley 2000

MEASUREMENT PROCEDURE

Probe calibration is realized by using the waveguide method. The probe was inserted in a waveguide loading by a 50 load. By controlling the input power in the waveguide, we are able to create a known HField value in the waveguide.

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO


The following tables represent the calibration curves linearization by curve segment in CW signal.

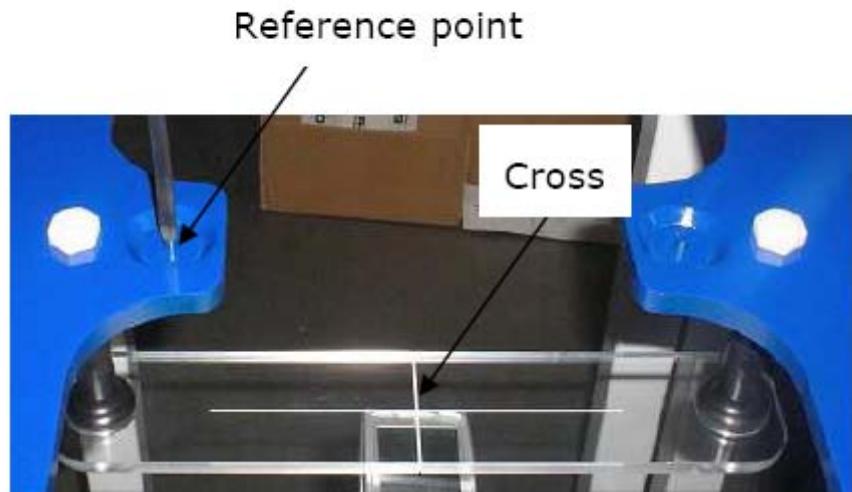
4.3.3.3. COMOHAC T-COIL PROBE

Serial Number:	SN 39/08 TCP11
Dimensions:	6.55mm length*2.29mm diameter
DC resistance:	860.6Ω
Wire size:	51 AWG
Inductance:	132.1 mH at 1kHz
Sensitivity:	-60.22 dB (V/A/m) at 1kHz

SENSITIVITY

Frequency (Hz)	H (dB (V/(A/m)))
200	-73,92940009
250	-72,01119983
315	-70,06378892
400	-67,88880017
500	-66,00059991
630	-64,07318901
800	-62,00820026
1000	-60,22
1250	-58,29179974
1600	-56,20760035
2000	-54,31940009
2500	-52,36119983
3150	-50,38378892
4000	-48,50880017
5000	-46,44059991

LINEARITY

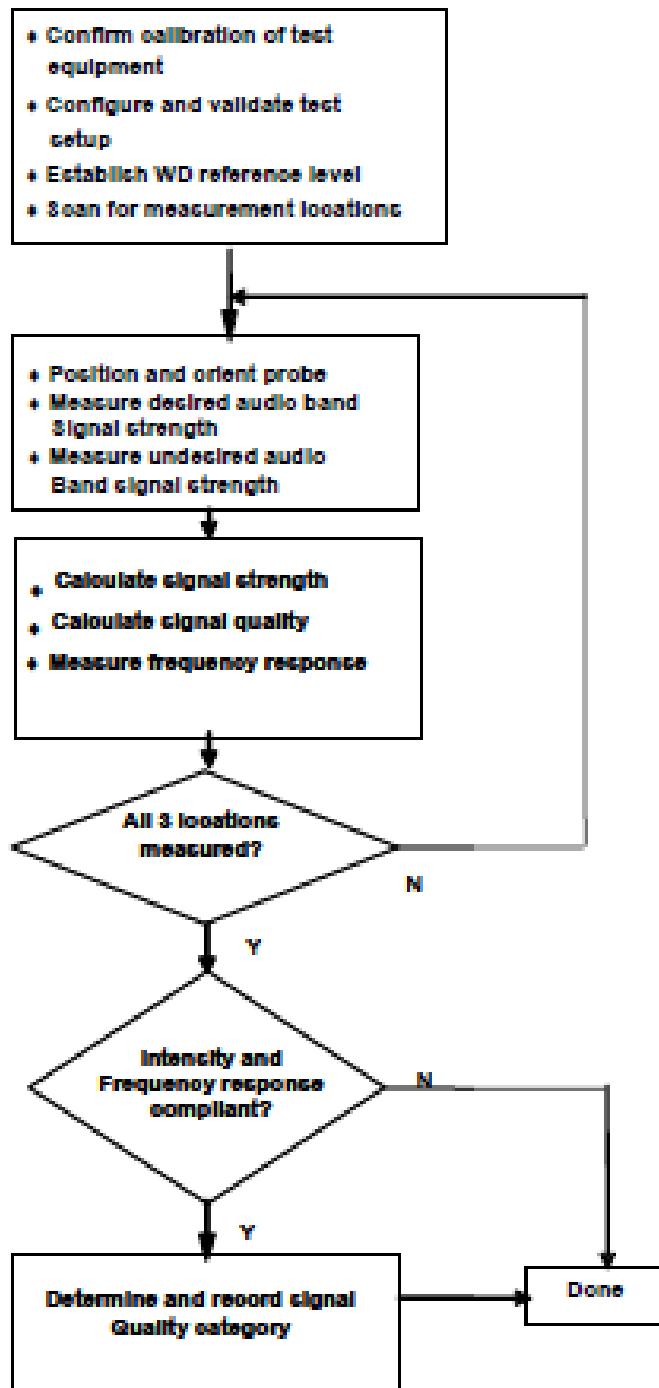

Linearity = 0.27 dB

Power (dB) relative to 1 A/m	0	-10	-20	-30	-40	-50
H (dB (V/(A/m)))	0	-9,95	-19,95	-30	-39,9	-49,73

4.3.3.4. System Hardware

The HAC positioning ruler is used to position the phone properly with the regard to the position of the probe during a measurement. The positioning system is made of a dedicated frame that can be fixed on the table. The tip of the probe is positioned on a reference point located on the top of the positioning ruler. The distance between this reference point and the cross located on the ruler being known, the speaker of the phone is positioned on this cross in order to make sure both probe and phone are positioned properly.

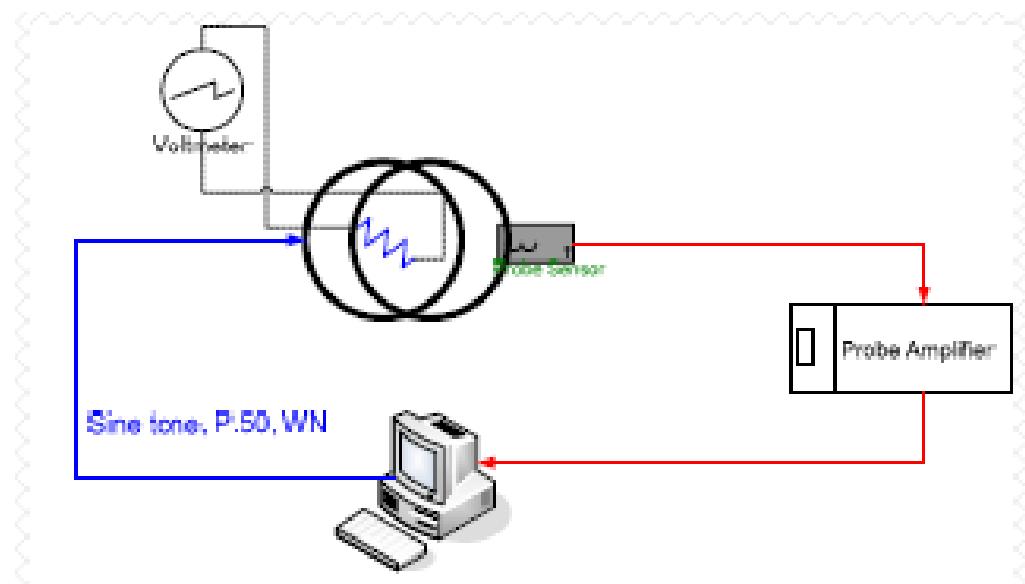
During the measurement, the HAC ruler has to be removed so that it does not interfere with the measurement.

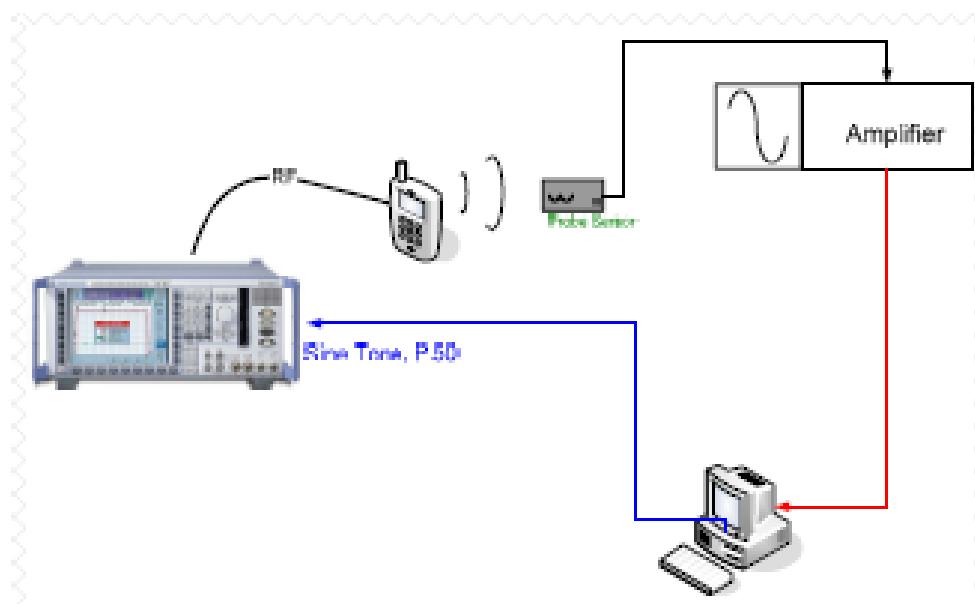


HAC positioning ruler

2.6.4. TEST PROCEDURE

4.3.4.1. T-coil Test Flow

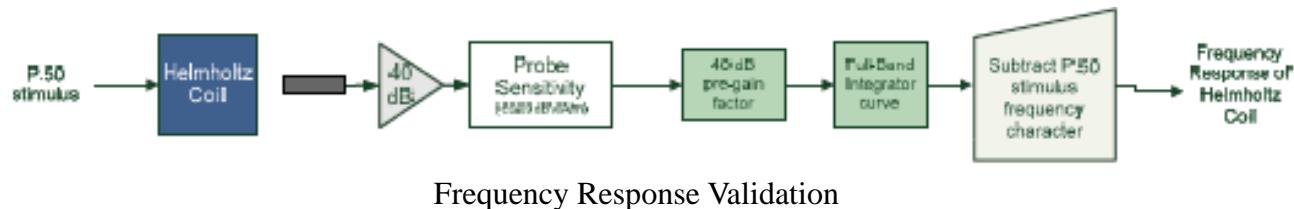

The flow diagram below was followed (From C63.19):


C63.19 T-Coil Signal Test Process

4.3.4.2. TEST Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

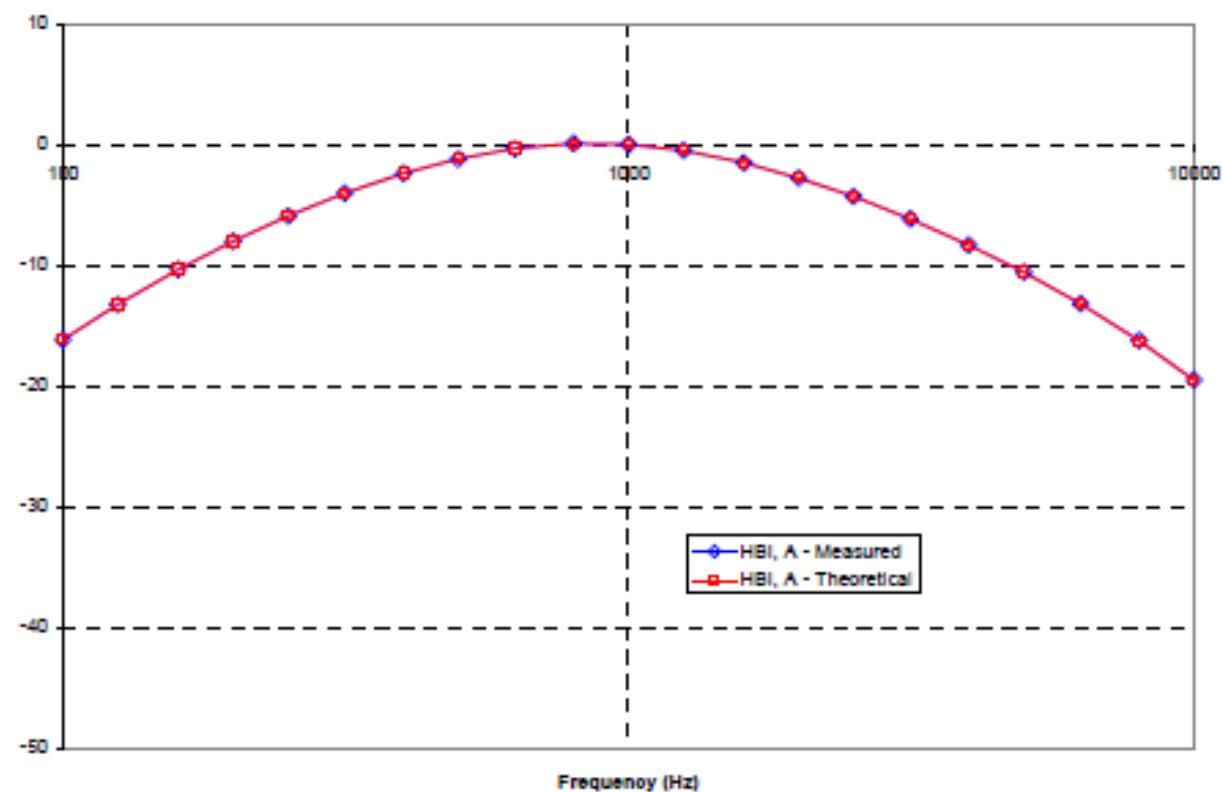
Validation Setup with Helmholtz Coil



T-Coil Test Setup

4.3.4.3.T-coil Test Procedure

Frequency Response Validation


The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1 kHz, between 300 – 3000 Hz using the ITU-P.50 artificial speech signal as shown below:

Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

f(Hz)	HBI, A- Measured (dB re 1kHz)	HBI, A- Theoretical (dB re 1kHz)	dB Var.
100	-16.150	-16.170	0.020
125	-13.241	-13.250	0.009
160	-10.333	-10.340	0.007
200	-8.005	-8.010	0.005
250	-5.915	-5.920	0.005
315	-4.035	-4.040	0.005
400	-2.395	-2.400	0.005
500	-1.207	-1.210	0.003
630	-0.347	-0.350	0.003
800	0.068	0.070	0.002
1000	0.001	0.000	0.001
1250	-0.501	-0.500	-0.001
1600	-1.511	-1.510	-0.001
2000	-2.783	-2.780	-0.003
2500	-4.323	-4.320	-0.003
3150	-6.175	-6.170	-0.005
4000	-8.338	-8.330	-0.008
5000	-10.599	-10.590	-0.009
6300	-13.212	-13.200	-0.012
8000	-16.284	-16.270	-0.014
10000	-19.539	-19.520	-0.019

Frequency Response Validation

2.6.5. Uncertainty Estimation Table

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol (+-)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	V i
Measurement System									
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$			1.02	1.02	
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$			1.63	1.63	
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	
Test sample Related									
Test sample positioning	E.4.2.1	0.03	N	1	1	1	0.03	0.03	N - 1
Device Holder Uncertainty	E.4.1.1	5.00	N	1	1	1	5.00	5.00	
Output power Variation - drift measurement	6.6.2	5.78	R		1	1	3.34	3.34	

2.6.6. OVERALL MEASUREMENT SUMMARY

4.3.7.1 T-coil

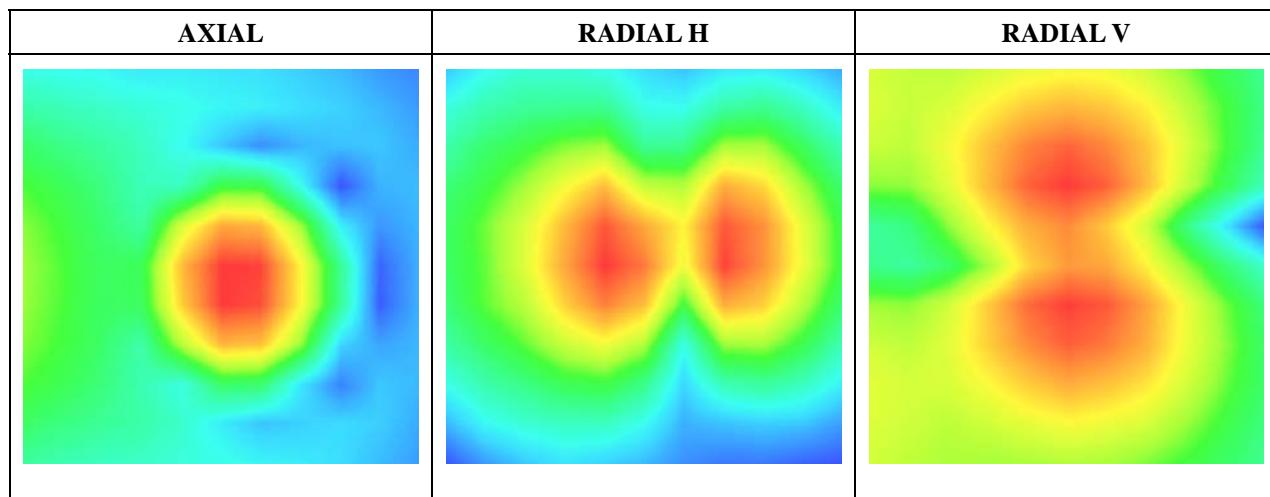
Mode	Channel	Antenna	RESULT	Output power (dBm)
T-coil				
CDMA800	1013	Fixed	T3	27.75
CDMA800	384	Fixed	T3	27.76
CDMA800	777	Fixed	T3	27.62
CDMA1900	25	Fixed	T3	25.64
CDMA1900	600	Fixed	T3	26.17
CDMA1900	1175	Fixed	T3	26.16

2.6.7. TEST DATA

<u>FREQUENCY</u>	<u>PARAMETERS</u>
<u>CDMA 800</u>	<u>Measurement 1:</u> T-coil on Low Channel <u>Measurement 2:</u> T-coil on Middle Channel <u>Measurement 3:</u> T-coil on High Channel
<u>CDMA 1900</u>	<u>Measurement 4:</u> T-coil on Low Channel <u>Measurement 5:</u> T-coil on Middle Channel <u>Measurement 6:</u> T-coil on High Channel

MEASUREMENT 1

A. Experimental conditions.


Grid size (mm x mm)	50.0, 50.0
Step (mm)	5
Scanning Height (mm)	10.0
Band	CDMA 800
Date of measurement	23/8/2011

B. HAC Measurement Results

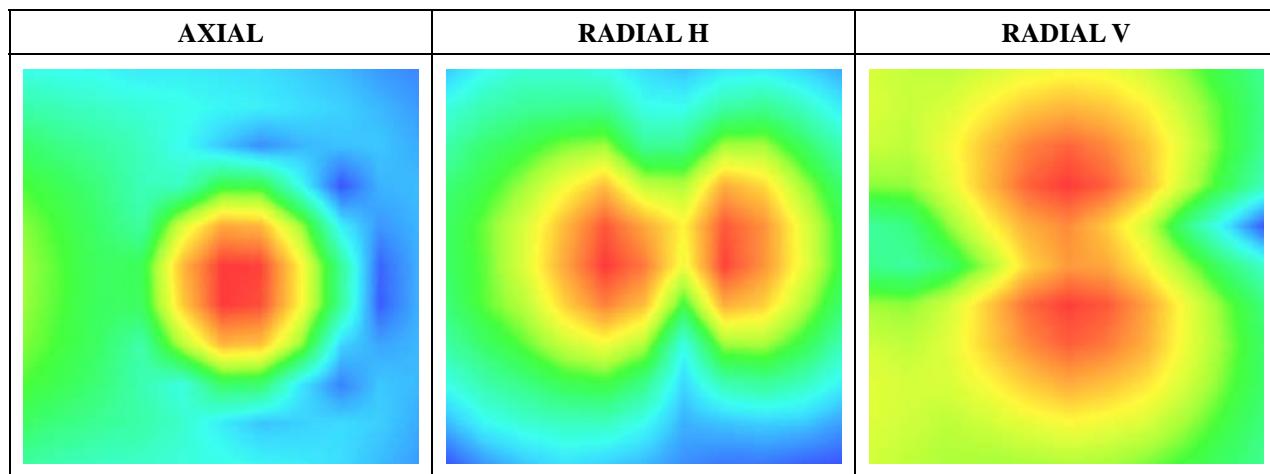
Frequency (MHz): 824.700000

C63.19	Mode	Band	Test Description	Minimum Limit	Location	Measured	Categor y	Verdict
				dBA/m	-	dBA/m	-	Pass/Fai 1
7.3.1.1			Intensity, Axial	-18	Max	3.11	-	PASS
7.3.1.2			Intensity, RadialH	-18	Max	-4.54	-	PASS
				-	-	-	-	-
7.3.1.2			Intensity, RadialV	-18	Max	-5.31	-	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, Axial	5	Max	35.59	T4	PASS
7.3.3			Signal to noise/noise, RadialH	5	Max	27.33	T3	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, RadialV	5	Max	34.47	T4	PASS
				-	-	-	-	-
7.3.2			Frequency reponse, Axial	-	-	-	-	-

T.Coil Scan Overlay Magnetic Field Distributions

MEASUREMENT 2

A. Experimental conditions.


Grid size (mm x mm)	50.0, 50.0
Step (mm)	5
Scanning Height (mm)	10.0
Band	CDMA800
Date of measurement	23/8/2011

B. HAC Measurement Results

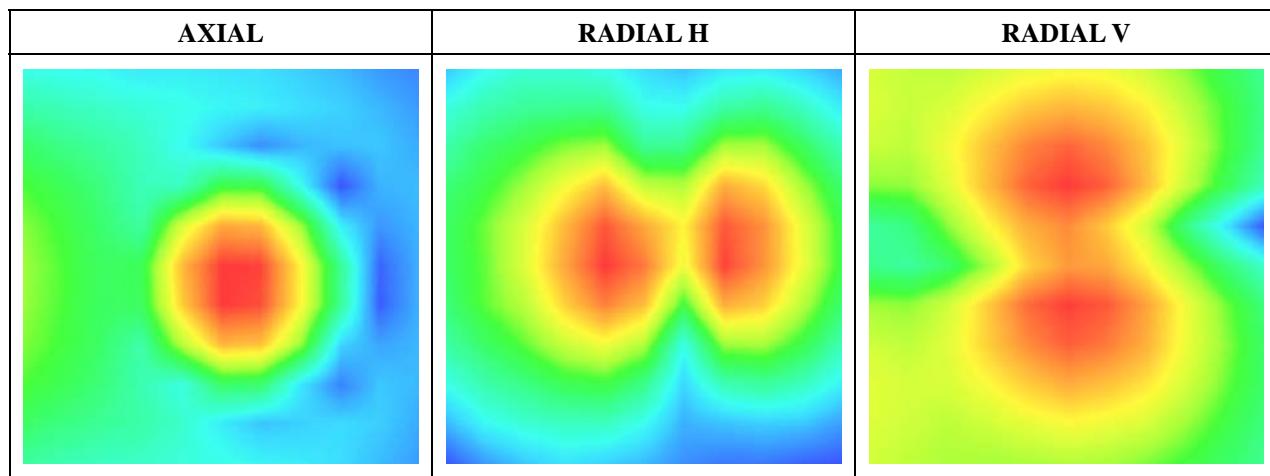
Frequency (MHz): 836.520000

C63.19	Mode	Band	Test Description	Minimum Limit	Location	Measured	Categor y	Verdict
				dBA/m	-	dBA/m	-	Pass/Fai 1
7.3.1.1			Intensity, Axial	-18	Max	3.26	-	PASS
7.3.1.2			Intensity, RadialH	-18	Max	-4.59	-	PASS
				-	-	-	-	-
7.3.1.2			Intensity, RadialV	-18	Max	-5.36	-	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, Axial	5	Max	35.62	T4	PASS
7.3.3			Signal to noise/noise, RadialH	5	Max	27.80	T3	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, RadialV	5	Max	34.45	T4	PASS
				-	-	-	-	-
7.3.2			Frequency reponse, Axial	-	-	-	-	-

T.Coil Scan Overlay Magnetic Field Distributions

MEASUREMENT 3

A. Experimental conditions.


Grid size (mm x mm)	50.0, 50.0
Step (mm)	5
Scanning Height (mm)	10.0
Band	CDMA800
Date of measurement	23/8/2011

B. HAC Measurement Results

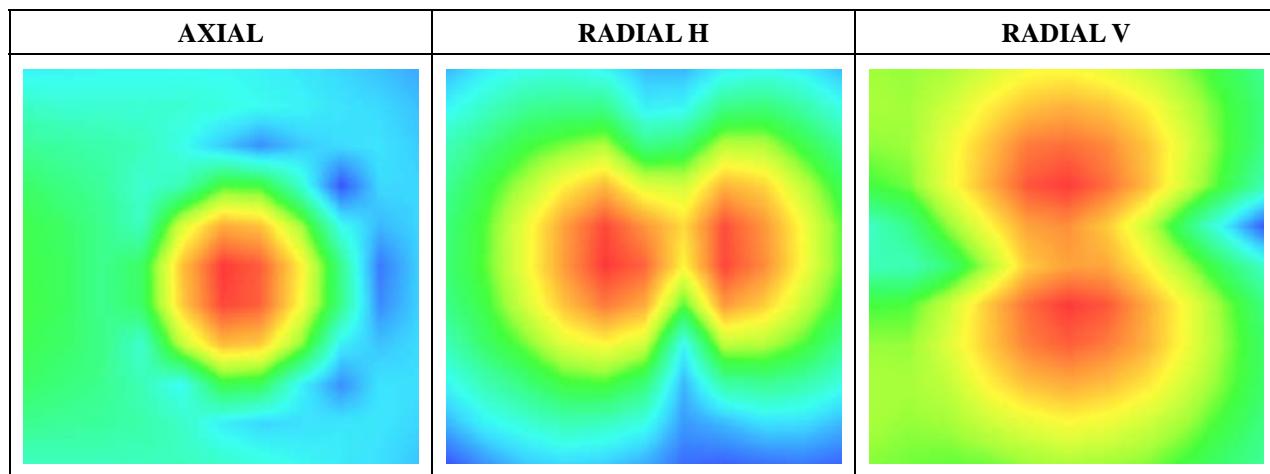
Frequency (MHz): 848.310000

C63.19	Mode	Band	Test Description	Minimum Limit	Location	Measured	Categor y	Verdict
				dBA/m	-	dBA/m	-	Pass/Fai 1
7.3.1.1			Intensity, Axial	-18	Max	3.16	-	PASS
7.3.1.2			Intensity, RadialH	-18	Max	-4.51	-	PASS
				-	-	-	-	-
7.3.1.2			Intensity, RadialV	-18	Max	-5.53	-	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, Axial	5	Max	35.56	T4	PASS
7.3.3			Signal to noise/noise, RadialH	5	Max	27.37	T3	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, RadialV	5	Max	34.75	T4	PASS
				-	-	-	-	-
7.3.2			Frequency reponse, Axial	-	-	-	-	-

T.Coil Scan Overlay Magnetic Field Distributions

MEASUREMENT 4

A. Experimental conditions.


Grid size (mm x mm)	50.0, 50.0
Step (mm)	5
Scanning Height (mm)	10.0
Band	CDMA1800
Date of measurement	23/82011

B. HAC Measurement Results

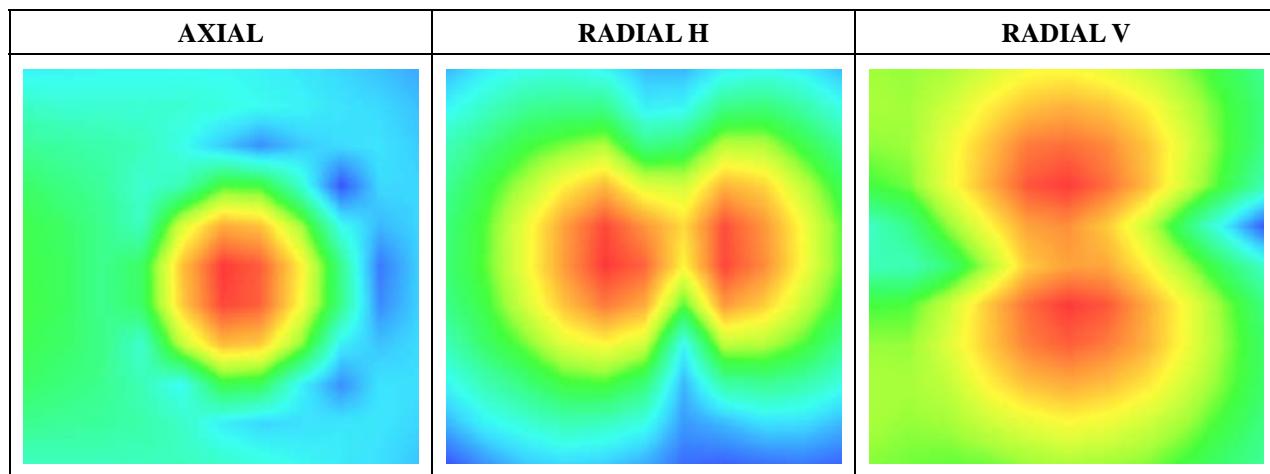
Frequency (MHz): 1851.250000

C63.19	Mode	Band	Test Description	Minimum Limit	Location	Measured	Categor y	Verdict
				dBA/m	-	dBA/m	-	Pass/Fai 1
7.3.1.1			Intensity, Axial	-18	Max	4.29	-	PASS
7.3.1.2			Intensity, RadialH	-18	Max	-5.15	-	PASS
				-	-	-	-	-
7.3.1.2			Intensity, RadialV	-18	Max	-5.77	-	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, Axial	5	Max	35.64	T4	PASS
7.3.3			Signal to noise/noise, RadialH	5	Max	22.39	T3	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, RadialV	5	Max	35.74	T4	PASS
				-	-	-	-	-
7.3.2			Frequency reponse, Axial	-	-	-	-	-

T.Coil Scan Overlay Magnetic Field Distributions

MEASUREMENT 5

A. Experimental conditions.


Grid size (mm x mm)	50.0, 50.0
Step (mm)	5
Scanning Height (mm)	10.0
Band	CDMA1900
Date of measurement	23/8/2011

B. HAC Measurement Results

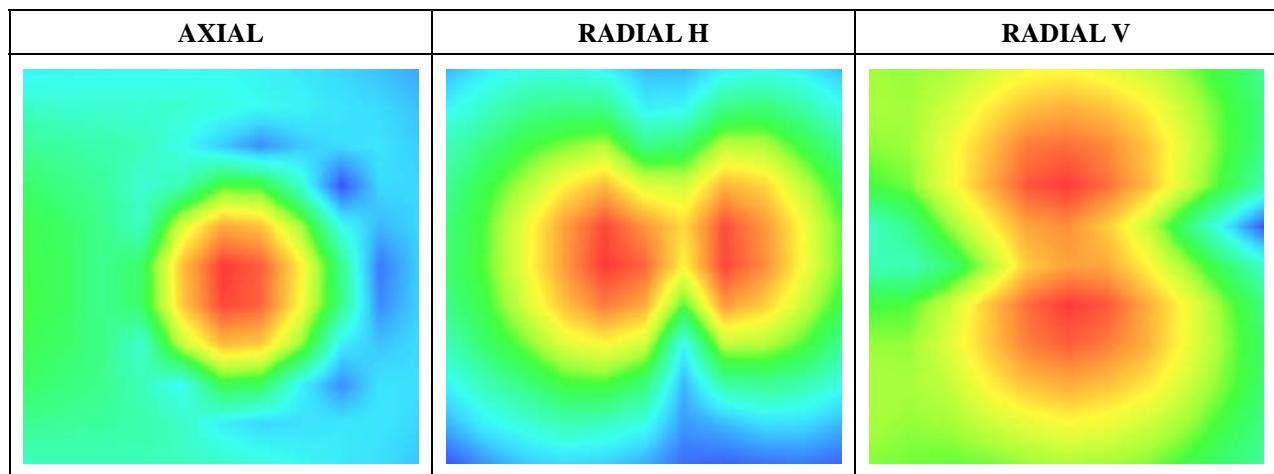
Frequency (MHz): 1880.000000

C63.19	Mode	Band	Test Description	Minimum Limit	Location	Measured	Categor y	Verdict
				dBA/m	-	dBA/m	-	Pass/Fai 1
7.3.1.1			Intensity, Axial	-18	Max	4.33	-	PASS
7.3.1.2			Intensity, RadialH	-18	Max	-5.22	-	PASS
				-	-	-	-	-
7.3.1.2			Intensity, RadialV	-18	Max	-5.54	-	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, Axial	5	Max	34.72	T4	PASS
7.3.3			Signal to noise/noise, RadialH	5	Max	22.35	T3	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, RadialV	5	Max	35.81	T4	PASS
				-	-	-	-	-
7.3.2			Frequency reponse, Axial	-	-	-	-	-

T.Coil Scan Overlay Magnetic Field Distributions

MEASUREMENT 6

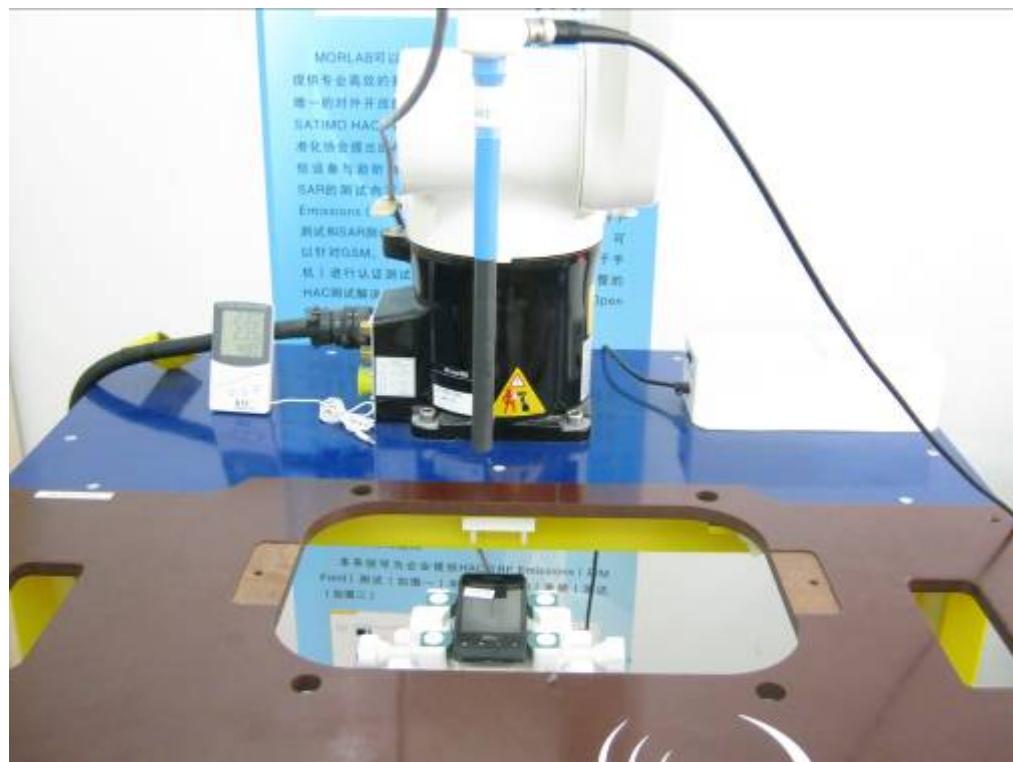
A. Experimental conditions.


Grid size (mm x mm)	50.0, 50.0
Step (mm)	5
Scanning Height (mm)	10.0
Band	CDMA1900
Date of measurement	23/8/2011

B. HAC Measurement Results

Frequency (MHz): 1908.750000

C63.19	Mode	Band	Test Description	Minimum Limit	Location	Measured	Categor y	Verdict
				dBA/m	-	dBA/m	-	Pass/Fai 1
7.3.1.1			Intensity, Axial	-18	Max	4.32	-	PASS
7.3.1.2			Intensity, RadialH	-18	Max	-5.21	-	PASS
				-	-	-	-	-
7.3.1.2			Intensity, RadialV	-18	Max	-5.53	-	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, Axial	5	Max	34.73	T4	PASS
7.3.3			Signal to noise/noise, RadialH	5	Max	22.55	T3	PASS
				-	-	-	-	-
7.3.3			Signal to noise/noise, RadialV	5	Max	35.47	T4	PASS
				-	-	-	-	-
7.3.2			Frequency reponse, Axial	-	-	-	-	-


T.Coil Scan Overlay Magnetic Field Distributions

Annex A Photographs of the EUT

Annex B EUT Setup photo

