



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

### FCC Rules and Regulations / Intentional Radiators

Operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands

#### Part 15, Subpart C, Section 15.249

#### THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

Formal Name: 625 Wireless Basestation  
FCC ID: U39 9A429T1  
Kind of Equipment: Medical Exam Table  
Frequency Range: 2405 - 2480 MHz  
Test Configuration: Stand Alone (Tested at 240 vac, 60 Hz)  
Model Number(s): 625-001, 625-002, 625-003, 625-005, 625-006  
Model(s) Tested: 625-003, 625-006  
Serial Number(s): N/A  
Date of Tests: November 17 & 18, 2009, and February 16, 2010  
Test Conducted For: Midmark Corporation  
60 Vista Drive  
Versailles, Ohio 45380

**NOTICE:** "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report.

© Copyright 1983-2009 D.L.S. Electronic Systems, Inc

#### COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

### SIGNATURE PAGE

Report By:

Aronom C. Rowe  
Test Engineer  
EMC-001375-NE

Reviewed By:

William Stumpf  
OATS Manager

Approved By:

Brian Mattson  
General Manager

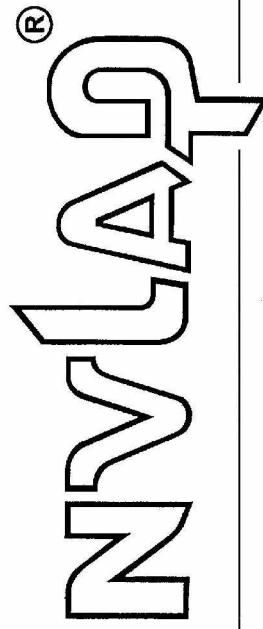


1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

## TABLE OF CONTENTS

|      |                                                                   |    |
|------|-------------------------------------------------------------------|----|
| i.   | Cover Page .....                                                  | 1  |
| ii.  | Signature Page.....                                               | 2  |
| iii. | Table of Contents .....                                           | 3  |
| iv.  | NVLAP Certificate of Accreditation.....                           | 4  |
| 1.0  | Summary of Test Report.....                                       | 5  |
| 2.0  | Introduction.....                                                 | 5  |
| 3.0  | Object .....                                                      | 5  |
| 4.0  | Test Set-Up .....                                                 | 6  |
| 5.0  | Test Equipment .....                                              | 6  |
| 6.0  | Ambient Measurements.....                                         | 7  |
| 7.0  | Description of Test Sample.....                                   | 8  |
| 8.0  | Additional Description of Test Sample .....                       | 9  |
| 9.0  | Photo Information and Test Set-Up .....                           | 9  |
| 10.0 | Radiated Photos Taken During Testing.....                         | 10 |
| 10.0 | Conducted Photos Taken During Testing.....                        | 16 |
| 11.0 | Results of Tests .....                                            | 18 |
| 12.0 | Conclusion .....                                                  | 18 |
|      | TABLE 1 – EQUIPMENT LIST .....                                    | 19 |
|      | Appendix A – Electric Field Radiated Emissions Test.....          | 20 |
| 1.0  | Conducted Emission Measurements .....                             | 21 |
| 2.0  | Band Edge and Restrict Band Compliance.....                       | 27 |
| 2.0  | Data and Graph(s) taken showing the Band Edge .....               | 29 |
| 3.0  | Antenna Connector.....                                            | 31 |
| 4.0  | Field Strength of Spurious Emission Measurements .....            | 31 |
| 4.0  | Radiated Data taken for Fundamental & Spurious Measurements ..... | 33 |
| 3.0  | Data and Graph(s) taken showing the 20 dB Bandwidth .....         | 37 |
| 5.0  | Transmitter Duty Cycle Graphs Taken During testing .....          | 39 |




1250 Peterson Dr., Wheeling, IL 60090

Company:  
Model Tested:  
Report Number:

Midmark Corporation  
625-003, 625-006  
15874

United States Department of Commerce  
National Institute of Standards and Technology



## Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 100276-0

D.L.S. Electronic Systems, Inc.  
Wheeling, IL

is accredited by the National Voluntary Laboratory Accreditation Program for specific services,  
listed on the Scope of Accreditation, for:

### ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005  
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality  
management system (refer to joint ISO/IEC/ILAC/IAF Communique dated January 2009).



2009-10-01 through 2010-09-30

Effective dates

*Dale S. Bruce*  
For the National Institute of Standards and Technology

NVLAP-01C (REV. 2009-01-28)



1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

## 1.0 SUMMARY OF TEST REPORT

It was found that the 625 Wireless Basestation, Model Number(s) 625-003, 625-006 **meets** the radio interference radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.249 for operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands.

## 2.0 INTRODUCTION

On November 17 & 18, 2009, a series of radio frequency interference measurements was performed on 625 Wireless Basestation, Model Number(s) 625-003, 625-006, Serial Number: N/A. The tests were performed according to the procedures of the FCC as stated in the "Methods of Measurement of Radio-Noise Emissions for Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" found in the American National Standards Institute, ANSI C63.4-2003. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at <http://www.dlsemc.com/certificate>. Our facilities are registered with the FCC, Industry Canada, and VCCI.

### **Main Test Facility:**

D.L.S. Electronic Systems, Inc.  
1250 Peterson Drive  
Wheeling, Illinois 60090

### **O.A.T.S. Test Facility:**

D.L.S. Electronic Systems, Inc.  
166 S. Carter Street  
Genoa City, Wisconsin 53128  
FCC Registration Number: 334127

## 3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Sections 15.35(b), 15.37(d), 15.209 & 15.249 for Intentional Radiators operating in the Bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24-24.25 GHz.



1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

#### 4.0 TEST SET-UP

All emission tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the ANSI C63.4-2003, Annex H. The conducted tests were performed with the test item placed on a non-conductive table (table top equipment), located in the test room. Equipment normally operated on the floor was tested by placing it on the metal ground plane. The ground plane has an electrical isolation layer over its surface approximately 7mm thick. The power line supplied was connected to a dual line impedance stabilization network electrically bonded to the ground plane, located on the floor. The networks were constructed per the requirements of the ANSI C63.4-2003, Annex H.

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-2003, Sections 6 and 8.

#### 5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the ESI 26/40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the ESI 26/40 Fixed Tuned Receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the ESI 26/40 Fixed Tuned Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the Spectrum Analyzer.

The bandwidths shown below are specified by ANSI C63.4-2003, Section 4.2.

| Frequency Range   | Bandwidth (-6 dB) |
|-------------------|-------------------|
| 10 to 150 kHz     | 200 Hz            |
| 150 kHz to 30 MHz | 9 kHz             |
| 30 MHz to 1 GHz   | 120 kHz           |
| Above 1 GHz       | 1 MHz             |

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.



1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

## 6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emissions that have the highest amplitude relative to the limit. These methods are performed to the specifications in ANSI C63.4-2003.



1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

## 7.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)

### 7.1 Description:

Exam table used to position a patient for a medical exam.

### 7.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 54 Width: 32 Height: 18-37

### 7.3 LINE FILTER USED:

Corcom 10EH1

### 7.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

N/A

Clock Frequencies:

25 MHz

### 7.5 DESCRIPTION OF ALL CIRCUIT BOARDS:

|                                    |                    |
|------------------------------------|--------------------|
| 1. Main Control Board              | PN: 015-2371-00 A6 |
| 2. Upholstery heater control board | PN: 015-2628-00 A1 |
| 3. Basestation                     | PN: 015-2086-00 C  |



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

#### 8.0 ADDITIONAL DESCRIPTION OF TEST SAMPLE:

(See also Paragraph 7.0)

1: There were no additional descriptions noted at the time of test.

#### NOTE:

The EUT was tested in continuous transmit mode in which it was continuously transmitting a constant pulse train.

The EUT was tested in continuous receive mode.

The EUT was tested at the low, mid and high channels (2405 MHz, 2445 MHz, and 2480 MHz).

The EUT was tested inside the Midmark 625 Table (host unit).

The EUT was tested for AC Line Conducted Emissions separate from host at 120V 60Hz. Using an off the shelf, standard, unmodified AC to DC power supply.

#### 9.0 PHOTO INFORMATION AND TEST SET-UP

Item 0 625 Wireless Basestation

Model Number: 625-003, 625-006; Serial Number: N/A

Item 1 Midmark 625 Table (host unit).

Item 2 2.5 meter, non-shielded, AC power cord.

Item 3 Hand switch.

Item 4 Foot switch.

Item 5 Two non-shielded, 2-meter, AC output power cords.



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## 10.0 RADIATED PHOTOS TAKEN DURING TESTING



Radiated Side 1



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

#### 10.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)



Radiated Side 2



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

#### 10.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)



Radiated Side 3



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

#### 10.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)



Radiated Side 4



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

#### 10.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)



Close-up of Radio Board

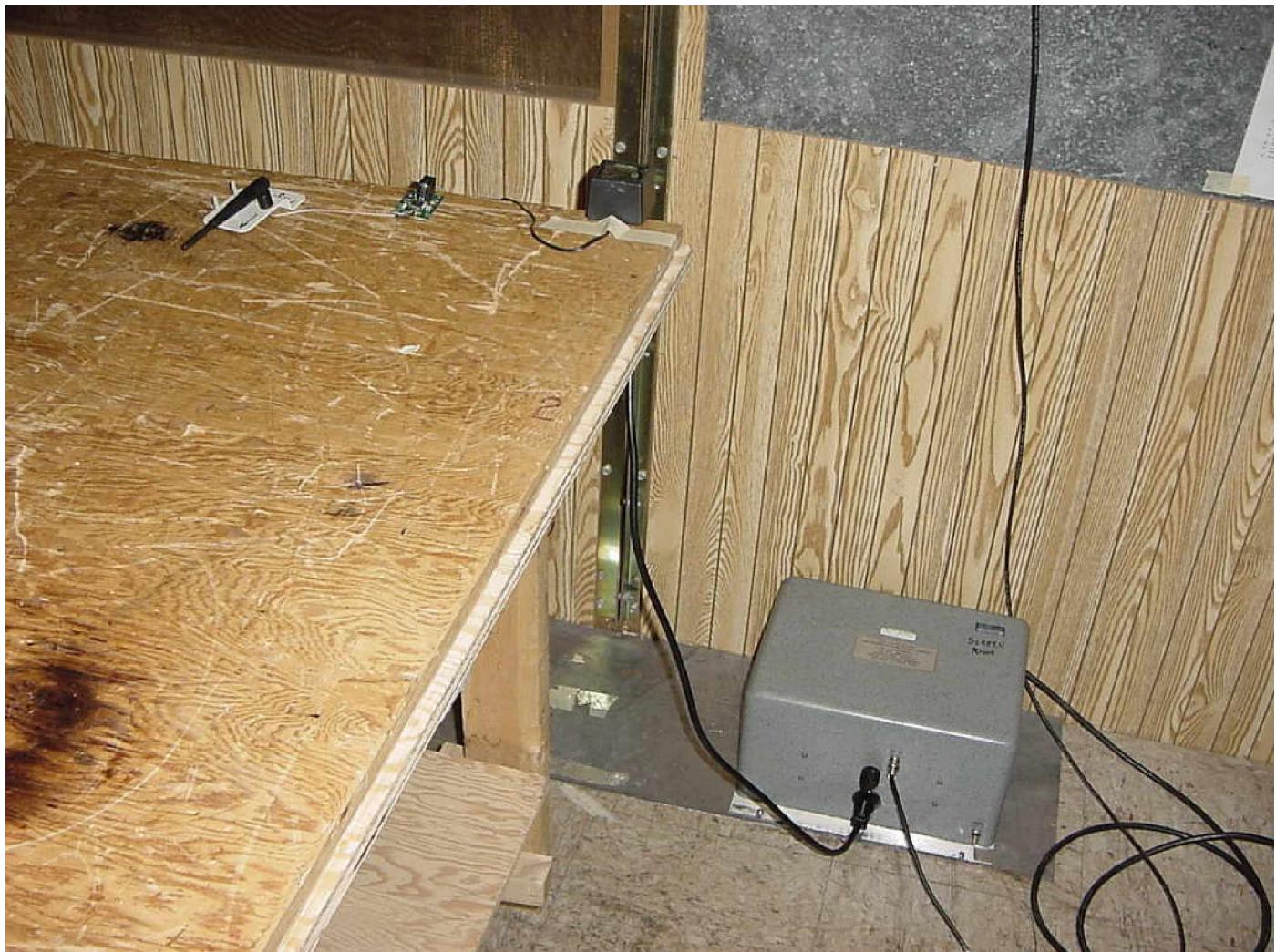


Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

#### 10.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)




Close-up of Antenna



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

#### 10.0 CONDUCTED PHOTOS TAKEN DURING TESTING



Conducted Front



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

#### 10.0 CONDUCTED PHOTOS TAKEN DURING TESTING (CON'T)



Conducted Back



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## 11.0 RESULTS OF TESTS

The radio interference emission charts can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report.

## 12.0 CONCLUSION

It was found that the 625 Wireless Basestation, Model Number(s) 625-003, 625-006 **meets** the radio interference radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.249 for operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands.



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

TABLE 1 – EQUIPMENT LIST

| Description       | Manufacturer    | Model Number             | Serial Number | Frequency Range  | Cal Due Dates |
|-------------------|-----------------|--------------------------|---------------|------------------|---------------|
| Receiver          | Rohde & Schwarz | ESI 40                   | 837808/005    | 20 Hz – 40 GHz   | 7/10          |
| Preamplifier      | Rohde & Schwarz | TS-PR10                  | 032001/003    | 9 kHz – 1 GHz    | 1/10          |
| Antenna           | EMCO            | 3104C                    | 4849          | 20 MHz – 200 MHz | 4/10          |
| Antenna           | Electro-Metrics | LPA-25                   | 1114          | 200 MHz – 1 GHz  | 7/11          |
| Preamp            | Miteq           | AMF-8B-180265-40-10P-H/S | 438727        | 18 GHz-26 GHz    | 8/10          |
| Horn Antenna      | EMCO            | 3116                     | 2549          | 18 – 40 GHz      | 8/10          |
| High Pass Filter  | Planar          | CL22500-9000-CD-SS       | PF1229/0728   | 15-40 GHz        | 7/10          |
| Receiver          | Rohde & Schwarz | ESI 26                   | 837491/010    | 20 Hz – 26 GHz   | 12/09         |
| LISN              | Solar           | 9252-50-R-24-BNC         | 971612        | 10 kHz – 30 MHz  | 1/10          |
| Filter- High-Pass | SOLAR           | 7930-120                 | 090701        | 120 kHz          | 2/10          |
| Limiter           | Electro-Metrics | EM-7600                  | 705           | 10 kHz – 30 MHz  | 1/10          |

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.



1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

## APPENDIX A

### TEST PROCEDURE

Part 15, Subpart C, Section 15.249(a)(c)(d)(e)

Operation within the Bands 902-928 MHz,  
2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### 1.0 CONDUCTED EMISSION MEASUREMENTS

Conducted emissions were measured over the frequency range from 150 kHz to 30 MHz in accordance with the power line measurements as specified in FCC Part 15, Subpart C, Section 15.207 & ANSI C63.4-2003. Since the device is operated from the public utility lines, the 120 Vac, 60 Hz power leads, high (hot) and low (neutral) sides, were measured by connecting the measuring equipment to the appropriate meter terminal of the LISN. During the test, the cables were placed and items moved (when appropriate) to maximize emissions. All signals were then recorded. The allowed levels for Intentional Radiators which is designed to connected to the public utility (AC) power line cannot exceed the following:

| Frequency of Emissions (MHz) | Conducted Limits (dBuV) |          |
|------------------------------|-------------------------|----------|
|                              | Quasi Peak              | Average  |
| .15 to .5                    | 66 to 56                | 56 to 46 |
| .5 to 5                      | 56                      | 46       |
| 5 to 30                      | 60                      | 50       |

#### NOTE:

All test measurements were made at a screen room temperature of **68° F** at **63%** relative humidity.



1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

## APPENDIX A

# AC POWER LINE CONDUCTED DATA AND GRAPHS TAKEN DURING TESTING

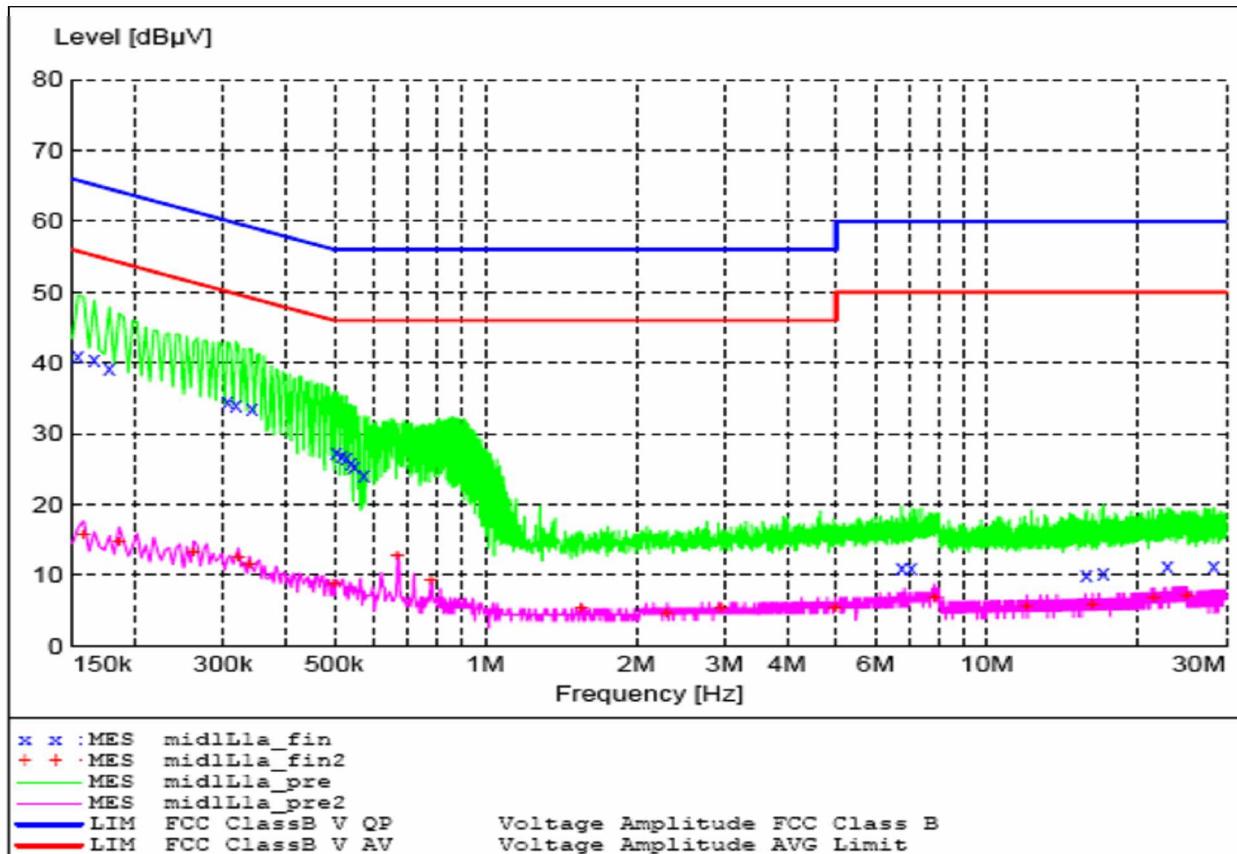
## PART 15.207



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A


### FCC Part 15 Class B

#### Voltage Mains Test

EUT: Basestation Transceiver  
Manufacturer: Midmark Corp.  
Operating Condition: 69 deg. F, 24% R.H.  
Test Site: DLS O.F. Screenroom  
Operator: Adam A  
Test Specification: Line 1  
Comment: 120 V 60 Hz - Tx  
Date: 02-16-2010

#### SCAN TABLE: "Line Cond Scrn RmFin"

| Short Description: Line Conducted Emissions |                |            |           |       |                     |
|---------------------------------------------|----------------|------------|-----------|-------|---------------------|
| Start Frequency                             | Stop Frequency | Step Width | Detector  | Meas. | IF Transducer       |
| 150.0 kHz                                   | 30.0 MHz       | 4.0 kHz    | QuasiPeak | 2.0 s | 9 kHz LISN CISPR AV |





Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### MEASUREMENT RESULT: "midLLla\_fin"

2/16/2010 3:38PM

| Frequency<br>MHz | Level<br>dBuV | Transd<br>dB | Limit<br>dBuV | Margin<br>dB | Detector | Line | PE  |
|------------------|---------------|--------------|---------------|--------------|----------|------|-----|
| 0.154000         | 41.10         | 12.7         | 66            | 24.7         | QP       | ---  | --- |
| 0.166000         | 40.50         | 12.5         | 65            | 24.7         | QP       | ---  | --- |
| 0.178000         | 39.30         | 12.2         | 65            | 25.3         | QP       | ---  | --- |
| 0.306000         | 34.60         | 10.7         | 60            | 25.5         | QP       | ---  | --- |
| 0.318000         | 34.10         | 10.7         | 60            | 25.7         | QP       | ---  | --- |
| 0.342000         | 33.50         | 10.6         | 59            | 25.7         | QP       | ---  | --- |
| 0.504000         | 27.30         | 10.4         | 56            | 28.7         | QP       | ---  | --- |
| 0.516000         | 26.90         | 10.4         | 56            | 29.1         | QP       | ---  | --- |
| 0.528000         | 26.50         | 10.5         | 56            | 29.5         | QP       | ---  | --- |
| 0.540000         | 26.90         | 10.5         | 56            | 30.1         | QP       | ---  | --- |
| 0.548000         | 25.50         | 10.5         | 56            | 30.5         | QP       | ---  | --- |
| 0.572000         | 24.20         | 10.5         | 56            | 31.8         | QP       | ---  | --- |
| 6.760000         | 11.10         | 10.2         | 60            | 48.9         | QP       | ---  | --- |
| 7.056000         | 11.10         | 10.2         | 60            | 48.9         | QP       | ---  | --- |
| 15.816000        | 10.10         | 10.6         | 60            | 49.9         | QP       | ---  | --- |
| 17.076000        | 10.20         | 10.7         | 60            | 49.8         | QP       | ---  | --- |
| 22.928000        | 11.40         | 10.9         | 60            | 48.6         | QP       | ---  | --- |
| 28.332000        | 11.20         | 11.2         | 60            | 48.8         | QP       | ---  | --- |

### MEASUREMENT RESULT: "midLLla\_fin2"

2/16/2010 3:38PM

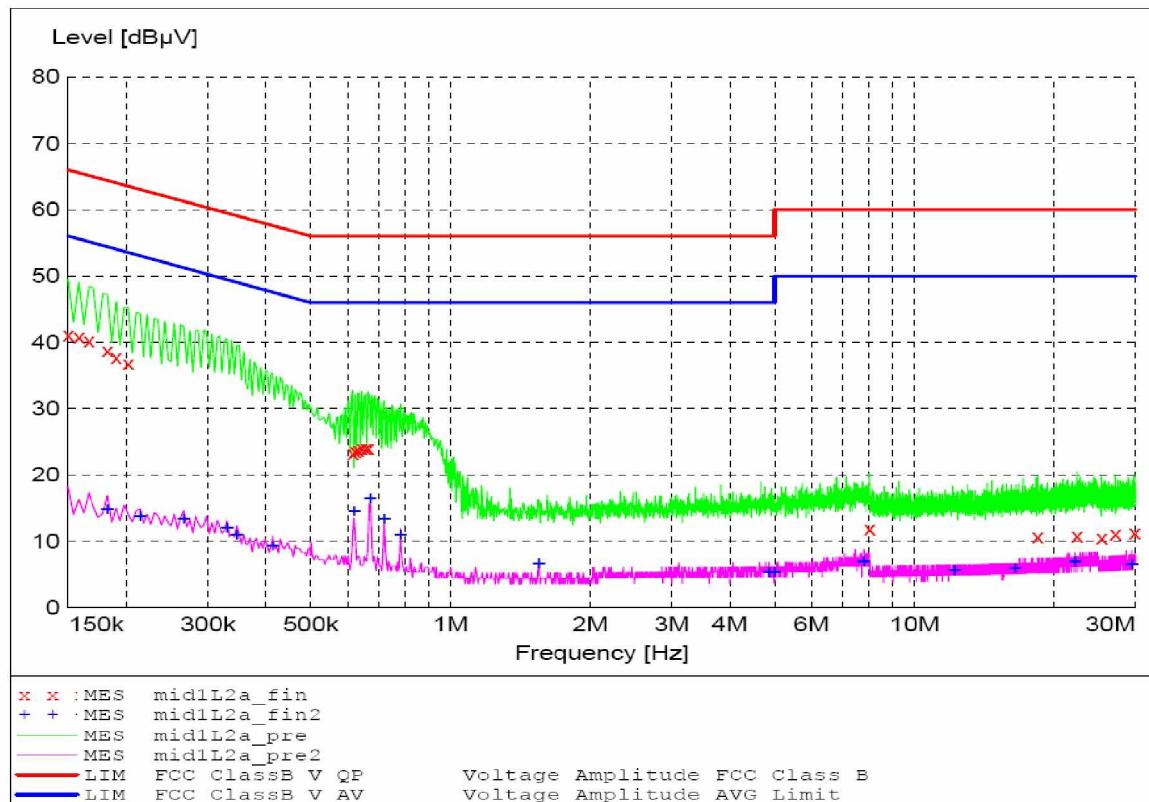
| Frequency<br>MHz | Level<br>dBuV | Transd<br>dB | Limit<br>dBuV | Margin<br>dB | Detector | Line | PE  |
|------------------|---------------|--------------|---------------|--------------|----------|------|-----|
| 0.158000         | 15.70         | 12.6         | 56            | 39.9         | CAV      | ---  | --- |
| 0.186000         | 14.70         | 12.0         | 54            | 39.5         | CAV      | ---  | --- |
| 0.262000         | 13.30         | 10.9         | 51            | 38.1         | CAV      | ---  | --- |
| 0.322000         | 12.40         | 10.7         | 50            | 37.3         | CAV      | ---  | --- |
| 0.338000         | 11.50         | 10.6         | 49            | 37.8         | CAV      | ---  | --- |
| 0.500000         | 8.90          | 10.4         | 46            | 37.1         | CAV      | ---  | --- |
| 0.668000         | 12.70         | 10.3         | 46            | 33.3         | CAV      | ---  | --- |
| 0.780000         | 9.20          | 10.2         | 46            | 36.8         | CAV      | ---  | --- |
| 1.552000         | 5.30          | 10.0         | 46            | 40.7         | CAV      | ---  | --- |
| 2.304000         | 4.50          | 10.0         | 46            | 41.5         | CAV      | ---  | --- |
| 2.992000         | 5.40          | 10.1         | 46            | 40.6         | CAV      | ---  | --- |
| 4.980000         | 5.40          | 10.1         | 46            | 40.6         | CAV      | ---  | --- |
| 5.000000         | 5.40          | 10.1         | 46            | 40.6         | CAV      | ---  | --- |
| 7.872000         | 6.90          | 10.2         | 50            | 43.1         | CAV      | ---  | --- |
| 12.024000        | 6.70          | 10.4         | 50            | 44.3         | CAV      | ---  | --- |
| 16.256000        | 5.90          | 10.6         | 50            | 44.1         | CAV      | ---  | --- |
| 21.536000        | 6.80          | 10.8         | 50            | 43.2         | CAV      | ---  | --- |
| 25.020000        | 7.00          | 11.0         | 50            | 43.0         | CAV      | ---  | --- |



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A


### FCC Part 15 Class B

#### Voltage Mains Test

EUT: Basestation Transceiver  
Manufacturer: Midmark Corp.  
Operating Condition: 69 deg. F, 24% R.H.  
Test Site: DLS O.F. Screenroom  
Operator: Adam A  
Test Specification: Line 2  
Comment: 120 V 60 Hz - Tx  
Date: 02-16-2010

#### SCAN TABLE: "Line Cond Scrn RmFin"

| Short Description: Line Conducted Emissions |                |            |                 |
|---------------------------------------------|----------------|------------|-----------------|
| Start Frequency                             | Stop Frequency | Step Width | Detector        |
| 150.0 kHz                                   | 30.0 MHz       | 4.0 kHz    | QuasiPeak 2.0 s |
|                                             |                |            | IF Bandw. 9 kHz |
|                                             |                |            | LISN CISPR AV   |





Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### ***MEASUREMENT RESULT: "mid1L2a\_fin"***

2/16/2010 3:45PM

| Frequency<br>MHz | Level<br>dB $\mu$ V | Transd<br>dB | Limit<br>dB $\mu$ V | Margin<br>dB | Detector | Line | PE  |
|------------------|---------------------|--------------|---------------------|--------------|----------|------|-----|
| 0.150000         | 41.20               | 12.8         | 66                  | 24.8         | QP       | ---  | --- |
| 0.158000         | 40.90               | 12.6         | 66                  | 24.7         | QP       | ---  | --- |
| 0.166000         | 40.30               | 12.5         | 65                  | 24.9         | QP       | ---  | --- |
| 0.182000         | 38.70               | 12.1         | 64                  | 25.7         | QP       | ---  | --- |
| 0.190000         | 37.80               | 11.9         | 64                  | 26.2         | QP       | ---  | --- |
| 0.202000         | 36.80               | 11.7         | 64                  | 26.7         | QP       | ---  | --- |
| 0.616000         | 23.30               | 10.4         | 56                  | 32.7         | QP       | ---  | --- |
| 0.624000         | 23.60               | 10.4         | 56                  | 32.4         | QP       | ---  | --- |
| 0.632000         | 23.80               | 10.4         | 56                  | 32.2         | QP       | ---  | --- |
| 0.644000         | 24.00               | 10.3         | 56                  | 32.0         | QP       | ---  | --- |
| 0.656000         | 24.00               | 10.3         | 56                  | 32.0         | QP       | ---  | --- |
| 0.664000         | 24.00               | 10.3         | 56                  | 32.0         | QP       | ---  | --- |
| 8.008000         | 11.90               | 10.2         | 60                  | 48.1         | QP       | ---  | --- |
| 18.424000        | 10.70               | 10.7         | 60                  | 49.3         | QP       | ---  | --- |
| 22.448000        | 10.90               | 10.9         | 60                  | 49.1         | QP       | ---  | --- |
| 25.380000        | 10.60               | 11.0         | 60                  | 49.4         | QP       | ---  | --- |
| 27.136000        | 11.10               | 11.1         | 60                  | 48.9         | QP       | ---  | --- |
| 29.060000        | 11.20               | 11.2         | 60                  | 48.8         | QP       | ---  | --- |

### ***MEASUREMENT RESULT: "mid1L2a\_fin2"***

2/16/2010 3:45PM

| Frequency<br>MHz | Level<br>dB $\mu$ V | Transd<br>dB | Limit<br>dB $\mu$ V | Margin<br>dB | Detector | Line | PE  |
|------------------|---------------------|--------------|---------------------|--------------|----------|------|-----|
| 0.182000         | 14.80               | 12.1         | 54                  | 39.6         | CAV      | ---  | --- |
| 0.214000         | 13.80               | 11.4         | 53                  | 39.2         | CAV      | ---  | --- |
| 0.266000         | 13.30               | 10.9         | 51                  | 37.9         | CAV      | ---  | --- |
| 0.330000         | 12.00               | 10.7         | 50                  | 37.5         | CAV      | ---  | --- |
| 0.346000         | 11.00               | 10.6         | 49                  | 38.1         | CAV      | ---  | --- |
| 0.414000         | 9.30                | 10.3         | 48                  | 38.3         | CAV      | ---  | --- |
| 0.620000         | 14.60               | 10.4         | 46                  | 31.4         | CAV      | ---  | --- |
| 0.672000         | 16.50               | 10.3         | 46                  | 29.5         | CAV      | ---  | --- |
| 0.720000         | 13.30               | 10.2         | 46                  | 32.7         | CAV      | ---  | --- |
| 0.780000         | 11.00               | 10.2         | 46                  | 35.0         | CAV      | ---  | --- |
| 1.552000         | 6.70                | 10.0         | 46                  | 39.3         | CAV      | ---  | --- |
| 4.868000         | 5.40                | 10.1         | 46                  | 40.6         | CAV      | ---  | --- |
| 5.000000         | 5.40                | 10.1         | 46                  | 40.6         | CAV      | ---  | --- |
| 7.776000         | 6.90                | 10.2         | 50                  | 43.1         | CAV      | ---  | --- |
| 12.216000        | 5.70                | 10.4         | 50                  | 44.3         | CAV      | ---  | --- |
| 16.496000        | 5.90                | 10.6         | 50                  | 44.1         | CAV      | ---  | --- |
| 22.252000        | 6.90                | 10.9         | 50                  | 43.1         | CAV      | ---  | --- |
| 29.472000        | 6.50                | 11.2         | 50                  | 43.5         | CAV      | ---  | --- |



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### 2.0 BAND EDGE AND RESTRICTED BAND COMPLIANCE

The field strength of any emissions appearing outside the 902 to 928 MHz band shall not exceed the general radiated emissions limits as stated Section 15.209. The fundamental from the 625 Wireless Basestation transmitter shall not be inside the restricted band 960 to 1240 MHz.

As stated in Section 15.205a, the fundamental emission from the 625 Wireless Basestation shall not fall within any of the bands listed below:

| Frequency<br>in MHz | Frequency<br>in MHz | Frequency<br>in MHz | Frequency<br>in GHz |
|---------------------|---------------------|---------------------|---------------------|
| .0900 to .1100      | 162.0125 to 167.17  | 2310.0 to 2390      | 9.30 to 9.50        |
| .4900 to .5100      | 167.7200 to 173.20  | 2483.5 to 2500      | 10.60 to 12.70      |
| 2.1735 to 2.1905    | 240.000 to 285.00   | 2655.0 to 2900      | 13.25 to 13.40      |
| 8.362 to 8.3660     | 322.200 to 335.40   | 3260.0 to 3267      | 14.47 to 14.50      |
| 13.36 to 13.410     | 399.900 to 410.00   | 3332.0 to 3339      | 15.35 to 16.20      |
| 25.50 to 25.670     | 608.000 to 614.00   | 3345.8 to 3358      | 17.70 to 21.40      |
| 37.50 to 38.250     | 960.000 to 1240.00  | 3600.0 to 4400      | 22.01 to 23.13      |
| 73.00 to 75.500     | 1300.000 to 1427.00 | 4500.0 to 5250      | 23.60 to 24.00      |
| 108.00 to 121.94    | 1435.000 to 1626.50 | 5350.0 to 5450      | 31.20 to 31.80      |
| 123.00 to 138.00    | 1660.000 to 1710.00 | 7250.0 to 7750      | 36.43 to 36.50      |
| 149.90 to 150.00    | 1718.800 to 1722.20 | 8025.0 to 8500      | ABOVE 38.60         |
| 156.70 to 156.90    | 2200.000 to 2300.00 | 9000.0 to 9200      |                     |

#### NOTE:

**The noise floor within the Restricted Bands for the EMC Receiver will typically lay 20 dB below the limit.**

See the following page (s) for the graph (s) made showing compliance for Band Edge. Also see the table of measurements made for the Fundamental, Harmonic, Spurious and Restricted Band emissions in paragraph 4 of this section.



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### BAND EDGE

### DATA AND GRAPH(S)

### PART 15.249



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

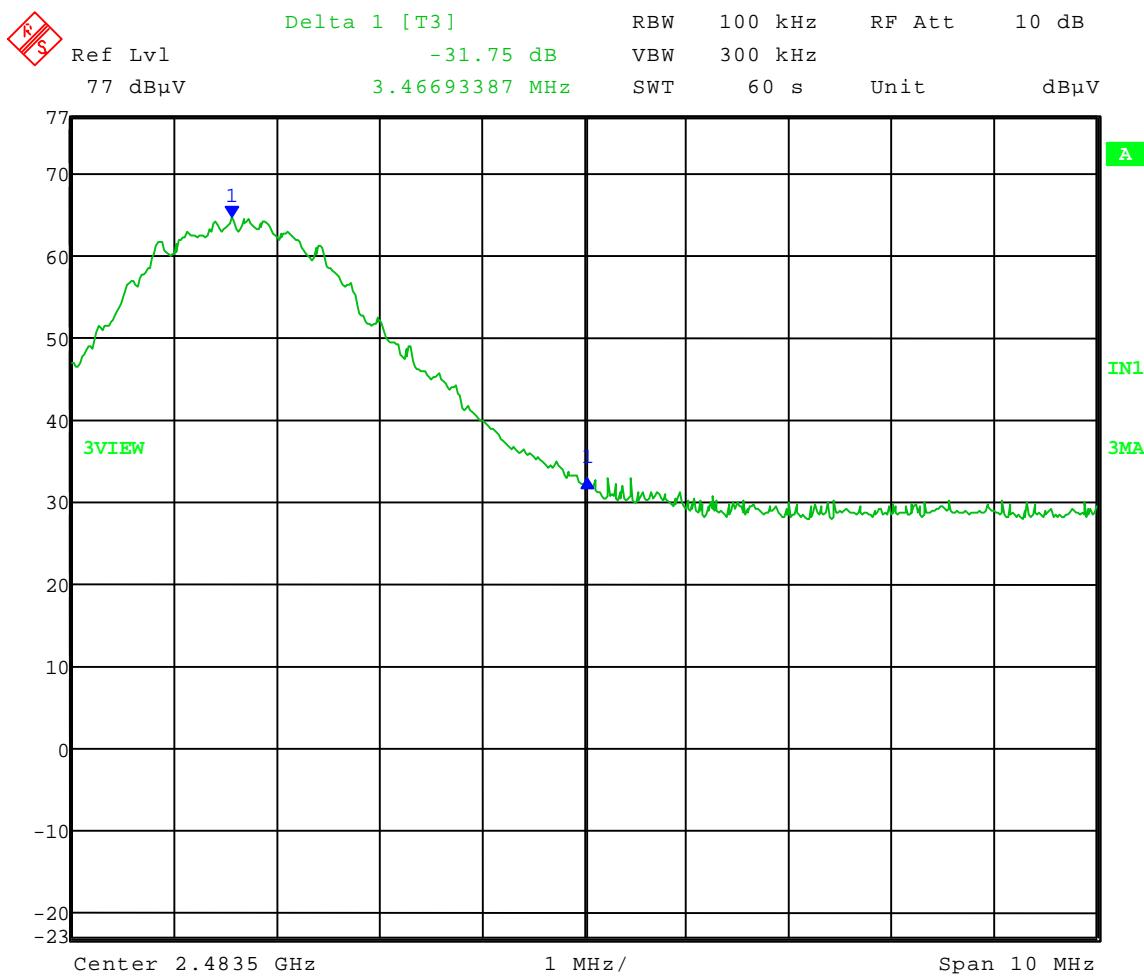
### Radiated Upper Band-Edge Measurement

#### Test Methodology

Because the upper band-edge coincides with a restricted band, band-edge compliance for the upper band-edge was determined using the radiated mark-delta method as outlined in FCC KDB Publication 913591. The radiated field strength of the fundamental emission was first determined and then the mark-delta method was used to determine the field strength of the band-edge emissions.

#### Upper Band-Edge Marker Delta Method

| Frequency (MHz) | Antenna Polarity (H/V) | Fundamental Field Strength (dB $\mu$ V/m) | Duty Cycle Correction (dB) | Delta-Marker (dB) | Band-Edge Field Strength (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------|------------------------|-------------------------------------------|----------------------------|-------------------|-----------------------------------------|----------------------|-------------|
| 2480 (Peak)     | V                      | 95.54                                     | N/A                        | -31.75            | 63.79                                   | 74                   | 10.21       |
| 2480 (Avg)      | V                      | 95.54                                     | -13.92                     | -31.75            | 49.87                                   | 54                   | 4.13        |




Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

Test Date: 11-17-2009  
Company: Midmark Corporation  
EUT: Midmark 625 Wireless Basestation  
Test: Upper Band-Edge Radiated – Marker Delta Method  
Operator: Craig B  
Comment: High Channel: Frequency – 2.480 GHz





Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### 3.0 ANTENNA CONNECTOR – 15.203

As stated in 15.203 the 625 Wireless Basestation was designed to ensure that no antenna other than that furnished by Midmark Corporation will be used with the EUT. The use of a permanently attached antenna or antenna that uses an unique coupling to the intentional radiator was considered to comply with section 15.203.

### 4.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (SECTION 15.249a-d)

The radiated measurements made at D.L.S. Electronic Systems, Inc., for the 625 Wireless Basestation, Model Number: 625-003, 625-006, are shown in tabulated and graph form. Preliminary radiation measurements were performed at a 3 meter test distance with the limits adjusted linearly when required. The frequency range from 30 MHz to over 960 MHz, depending upon the fundamental frequency as stated in Part 15.33a, was automatically scanned and plotted at various angles.

Measurements for the 625 Wireless Basestation were made up to 26000 MHz, in accordance with Section 15.33a for Intentional Radiators with a fundamental frequency of 2405 - 2480 MHz MHz. For intentional radiators, the frequency range to be investigated is determined by the lowest radio frequency generated by the device without going below 30 MHz, up to at least the tenth harmonic of the highest fundamental frequency or 10 GHz, whichever is lower. At those frequencies where significant signals were detected, measurements were made over the entire frequency range specified in FCC Part 15, Subpart C, Section 15.249 at the open field test site, located at Genoa City, Wisconsin, FCC file number **31040/SIT**. When required, levels were extrapolated from 10 meters to 3 meters using a linear extrapolation.

All signals in the frequency range of 30 MHz to 2000 MHz were measured with a Biconical Antenna or tuned dipoles and from 200 MHz to 1000 MHz, a Log Periodic or Tuned Dipoles were used. From 1000 MHz to 10 GHz Horn Antennas were used. During the test the equipment was rotated and the antenna was raised and lowered from 1 meter to 4 meters to find the maximum level of emissions. In order to find maximum emissions, the cables were moved through all the positions the equipment would be expected to experience in the field. The EUT, peripheral equipment and cables were configured to meet the conditions in ANSI C63.4-2003, Clauses 6 & 8. Tests were made with the receive antenna(s) in both the horizontal and vertical planes of polarization. In each case, the table was rotated to find the maximum emissions.



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### 4.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T)

For operation in the bands 902 to 928 MHz, 2400 to 2483.5 MHz, 5725 to 5875 MHz, and 24.0 to 24.25 GHz the field strength of any emissions within this band shall not exceed the field strength levels specified in the following table as stated in FCC, Part 15, Section 15.249(a).

| Frequency range in MHz | Field Strength of Fundamental millivolts/meter | Field Strength of Fundamental dBuV/meter | Field Strength of Harmonics microvolts/meter | Field Strength of Harmonics dBuV/meter |
|------------------------|------------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------|
| 902 to 928             | 50                                             | 93.98                                    | 500                                          | 53.98                                  |
| 2400 to 2483.5         | 50                                             | 93.98                                    | 500                                          | 53.98                                  |
| 5725 to 5875           | 50                                             | 93.98                                    | 500                                          | 53.98                                  |
| 24000 to 24250         | 250                                            | 107.96                                   | 2500                                         | 67.96                                  |

Field strength limits are at a distance of 3 meters. The emission limits shown are based on measurement instrumentation employing an average detector.

Emissions radiated outside of the specified frequency bands, except for harmonics are attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Preliminary radiated emission measurements were performed at a 3 meter test distance. The frequency range from 30 MHz to 1000 MHz was automatically scanned and plotted at various angles.

#### **NOTE:**

**All radiated emissions measurements were made at a test room temperature of 70°F at 36% relative humidity.**



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

# RADIATED DATA TAKEN FOR FUNDAMENTAL, HARMONIC & SPURIOUS EMISSIONS MEASUREMENTS

PART 15.249



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### Radiated Fundamental and Spurious Emissions – 30 MHz to 26 GHz

**30 MHz to 10 GHz** Tested at a 3 Meter Distance  
**10 GHz to 26 GHz** Tested at a 1 Meter Distance

**EUT:** Model: Midmark 625 Table Base Station Transceiver

**Manufacturer:** Midmark Corporation

**Operating Condition:** 70 deg F; 36% R.H.

**Test Site:** Site G1

**Operator:** Craig B

**Test Specification:** FCC Part 15.249 and Part 15.205

**Comment:** Transmit at Low channel: 2.405 GHz

**Date:** 11-17-2009

**Notes:** All other emissions at least 20 dB under the limit.

| Frequency (GHz) | Measurement Type | Antenna Polarization | Level (dBuV) | Antenna Factor (dB/m) | System Loss (dB) | Duty Cycle Correction (dB) | Total Level (dBuV/m) | Limit (dBuV/m) | Margin (dB) | Antenna Height (m) | EUT Angle (deg) | Comment     |
|-----------------|------------------|----------------------|--------------|-----------------------|------------------|----------------------------|----------------------|----------------|-------------|--------------------|-----------------|-------------|
| 2.405           | Max Peak         | Vert                 | 57.73        | 28.33                 | 9.6              | 0                          | 95.66                | 114            | 18.34       | 1.03               | 337             | Fundamental |
| 2.405           | Average          | Vert                 | 57.73        | 28.33                 | 9.6              | -13.92                     | 81.74                | 94             | 12.26       | 1.03               | 337             | Fundamental |
| 2.405           | Max Peak         | Horz                 | 62.14        | 28.33                 | 9.6              | 0                          | 100.07               | 114            | 13.93       | 1.06               | 258             | Fundamental |
| 2.405           | Average          | Horz                 | 62.14        | 28.33                 | 9.6              | -13.92                     | 86.15                | 94             | 7.85        | 1.06               | 258             | Fundamental |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |
| 4.810           | Max Peak         | Vert                 | 58.42        | 32.89                 | -30.6            | 0                          | 60.71                | 74             | 13.29       | 1.00               | 283             | Harmonic    |
| 4.810           | Average          | Vert                 | 58.42        | 32.89                 | -30.6            | -13.92                     | 46.79                | 54             | 7.21        | 1.00               | 283             | Harmonic    |
| 4.810           | Max Peak         | Horz                 | 52.37        | 32.89                 | -30.6            | 0                          | 54.66                | 74             | 19.34       | 1.00               | 270             | Harmonic    |
| 4.810           | Average          | Horz                 | 52.37        | 32.89                 | -30.6            | -13.92                     | 40.74                | 54             | 13.26       | 1.00               | 270             | Harmonic    |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |
| 7.215           | Max Peak         | Vert                 | 48.44        | 35.80                 | -27.6            | 0                          | 56.64                | 74             | 17.36       | 1.00               | 322             | Harmonic    |
| 7.215           | Average          | Vert                 | 48.44        | 35.80                 | -27.6            | -13.92                     | 42.72                | 54             | 11.28       | 1.00               | 322             | Harmonic    |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### Radiated Fundamental and Spurious Emissions – 30 MHz to 26 GHz

**30 MHz to 10 GHz** Tested at a 3 Meter Distance  
**10 GHz to 26 GHz** Tested at a 1 Meter Distance

**EUT:** Model: Midmark 625 Table Base Station Transceiver  
**Manufacturer:** Midmark Corporation  
**Operating Condition:** 71 deg F; 37% R.H.  
**Test Site:** Site G1  
**Operator:** Craig B  
**Test Specification:** FCC Part 15.249 and Part 15.205  
**Comment:** Transmit at Mid channel: 2.445 GHz  
**Date:** 11-18-2009

**Notes:** All other emissions at least 20 dB under the limit.

| Frequency (GHz) | Measurement Type | Antenna Polarization | Level (dBuV) | Antenna Factor (dB/m) | System Loss (dB) | Duty Cycle Correction (dB) | Total Level (dBuV/m) | Limit (dBuV/m) | Margin (dB) | Antenna Height (m) | EUT Angle (deg) | Comment     |
|-----------------|------------------|----------------------|--------------|-----------------------|------------------|----------------------------|----------------------|----------------|-------------|--------------------|-----------------|-------------|
| 2.445           | Max Peak         | Vert                 | 60.97        | 28.45                 | 9.6              | 0                          | 99.02                | 114            | 14.98       | 1.14               | 320             | Fundamental |
| 2.445           | Average          | Vert                 | 60.97        | 28.45                 | 9.6              | -13.92                     | 85.1                 | 94             | 8.9         | 1.14               | 320             | Fundamental |
| 2.445           | Max Peak         | Horz                 | 61.82        | 28.45                 | 9.6              | 0                          | 99.87                | 114            | 14.13       | 1.00               | 302             | Fundamental |
| 2.445           | Average          | Horz                 | 61.82        | 28.45                 | 9.6              | -13.92                     | 85.95                | 94             | 8.05        | 1.00               | 302             | Fundamental |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |
| 4.890           | Max Peak         | Vert                 | 60.79        | 33.00                 | -30.5            | 0                          | 63.29                | 74             | 10.71       | 1.01               | 286             | Harmonic    |
| 4.890           | Average          | Vert                 | 60.79        | 33.00                 | -30.5            | -13.92                     | 49.37                | 54             | 4.63        | 1.01               | 286             | Harmonic    |
| 4.890           | Max Peak         | Horz                 | 55.11        | 33.00                 | -30.5            | 0                          | 57.61                | 74             | 16.39       | 1.00               | 269             | Harmonic    |
| 4.890           | Average          | Horz                 | 55.11        | 33.00                 | -30.5            | -13.92                     | 43.69                | 54             | 10.31       | 1.00               | 269             | Harmonic    |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |
| 7.335           | Max Peak         | Vert                 | 49.56        | 36.12                 | -26.9            | 0                          | 58.78                | 74             | 15.22       | 1.00               | 0               | Harmonic    |
| 7.335           | Average          | Vert                 | 49.56        | 36.12                 | -26.9            | -13.92                     | 44.86                | 54             | 9.14        | 1.00               | 0               | Harmonic    |
| 7.335           | Max Peak         | Horz                 | 48.12        | 36.12                 | -26.9            | 0                          | 57.34                | 74             | 16.66       | 1.00               | 7               | Harmonic    |
| 7.335           | Average          | Horz                 | 48.12        | 36.12                 | -26.9            | -13.92                     | 43.42                | 54             | 10.58       | 1.00               | 7               | Harmonic    |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |



Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

1250 Peterson Dr., Wheeling, IL 60090

## APPENDIX A

### Radiated Fundamental and Spurious Emissions – 30 MHz to 26 GHz

**30 MHz to 10 GHz Tested at a 3 Meter Distance**  
**10 GHz to 26 GHz Tested at a 1 Meter Distance**

**EUT:** Model: Midmark 625 Table Base Station Transceiver

**Manufacturer:** Midmark Corporation

**Operating Condition:** 70 deg F; 36% R.H.

**Test Site:** Site G1

**Operator:** Craig B

**Test Specification:** FCC Part 15.249 and Part 15.205

**Comment:** Transmit at High channel: 2.480 GHz

**Date:** 11-17-2009

**Notes:** All other emissions at least 20 dB under the limit.

| Frequency (GHz) | Measurement Type | Antenna Polarization | Level (dBuV) | Antenna Factor (dB/m) | System Loss (dB) | Duty Cycle Correction (dB) | Total Level (dBuV/m) | Limit (dBuV/m) | Margin (dB) | Antenna Height (m) | EUT Angle (deg) | Comment     |
|-----------------|------------------|----------------------|--------------|-----------------------|------------------|----------------------------|----------------------|----------------|-------------|--------------------|-----------------|-------------|
| 2.480           | Max Peak         | Vert                 | 58.67        | 28.56                 | 9.7              | 0                          | 96.93                | 114            | 17.07       | 1.11               | 318             | Fundamental |
| 2.480           | Average          | Vert                 | 58.67        | 28.56                 | 9.7              | -13.92                     | 83.01                | 94             | 10.99       | 1.11               | 318             | Fundamental |
| 2.480           | Max Peak         | Horz                 | 57.49        | 28.56                 | 9.7              | 0                          | 95.75                | 114            | 18.25       | 1.00               | 238             | Fundamental |
| 2.480           | Average          | Horz                 | 57.49        | 28.56                 | 9.7              | -13.92                     | 81.83                | 94             | 12.17       | 1.00               | 238             | Fundamental |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |
| 4.960           | Max Peak         | Vert                 | 55.48        | 33.09                 | -30.7            | 0                          | 57.87                | 74             | 16.13       | 1.00               | 286             | Harmonic    |
| 4.960           | Average          | Vert                 | 55.48        | 33.09                 | -30.7            | -13.92                     | 43.95                | 54             | 10.05       | 1.00               | 286             | Harmonic    |
| 4.960           | Max Peak         | Horz                 | 54.58        | 33.09                 | -30.7            | 0                          | 56.97                | 74             | 17.03       | 1.14               | 349             | Harmonic    |
| 4.960           | Average          | Horz                 | 54.58        | 33.09                 | -30.7            | -13.92                     | 43.05                | 54             | 10.95       | 1.14               | 349             | Harmonic    |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |
| 7.440           | Max Peak         | Vert                 | 46.96        | 36.4                  | -26.1            | 0                          | 57.26                | 74             | 16.74       | 1.00               | 0               | Harmonic    |
| 7.440           | Average          | Vert                 | 46.96        | 36.4                  | -26.1            | -13.92                     | 43.34                | 54             | 10.66       | 1.00               | 0               | Harmonic    |
|                 |                  |                      |              |                       |                  |                            |                      |                |             |                    |                 |             |



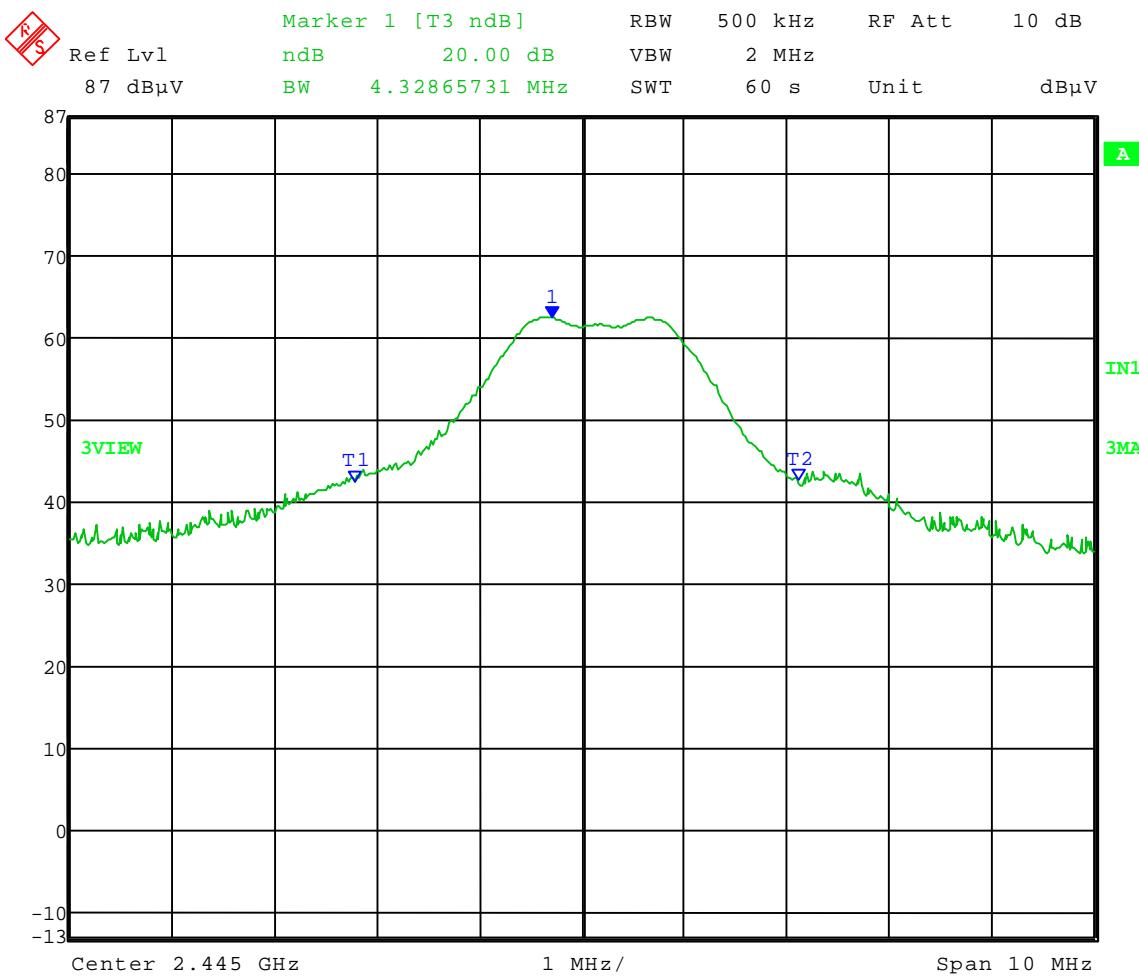
1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

## 20 dB BANDWIDTH

### DATA AND GRAPH(S)

### PART 15.249




1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

Test Date: 11-18-2009  
Company: Midmark Corporation  
EUT: Midmark 625 Table Base Station Transceiver  
Test: 20 dB Bandwidth – Radiated (15.249)  
Operator: Craig B  
Comment: 2.445 GHz Transmit Frequency

20 dB Bandwidth = 4.32 MHz





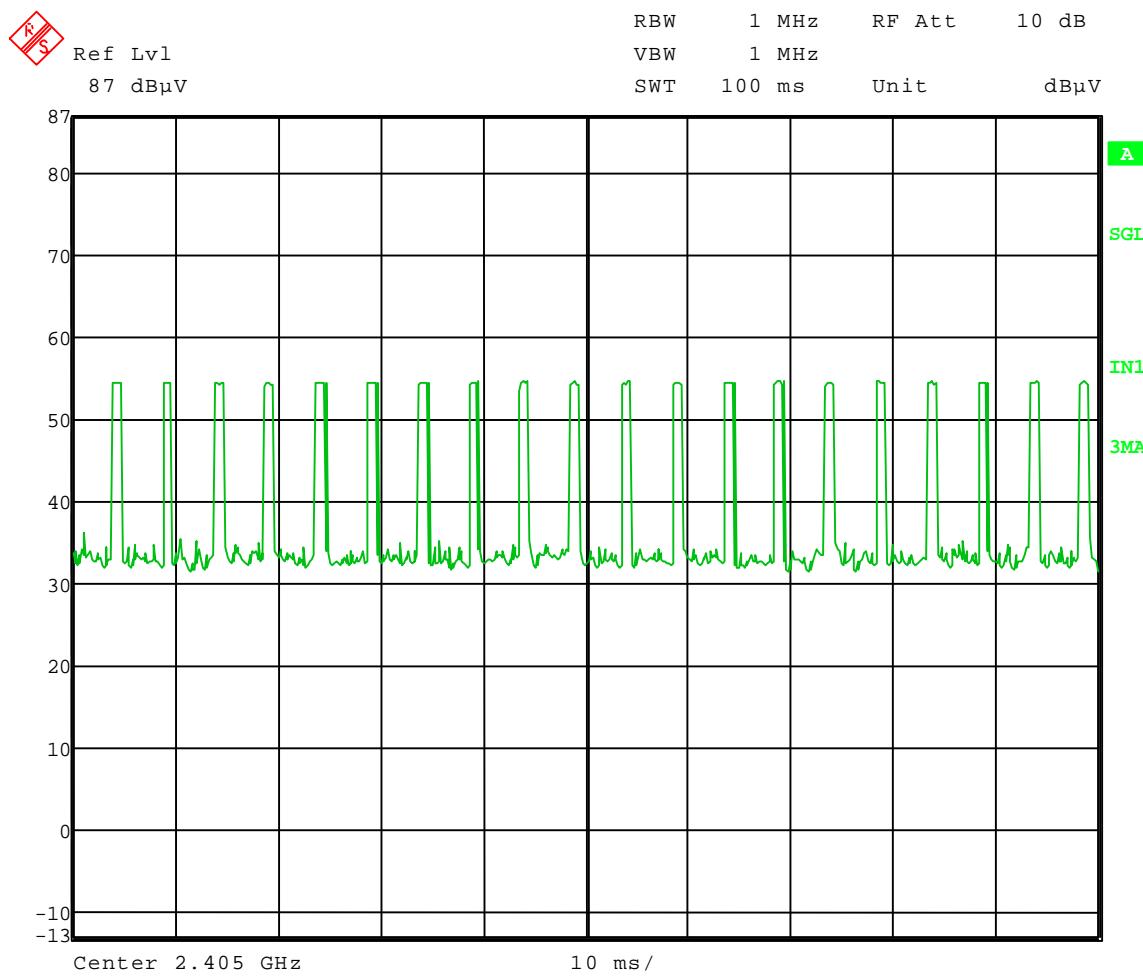
1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

## TRANSMITTER DUTY CYCLE GRAPHS

PART 15.35(c)




1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

Test Date: 11-17-2009  
Company: Midmark Corporation  
EUT: Midmark 625 Table Base Station Transceiver  
Test: Duty Cycle – used for testing (FCC Part 15.35(c))  
Operator: Craig B

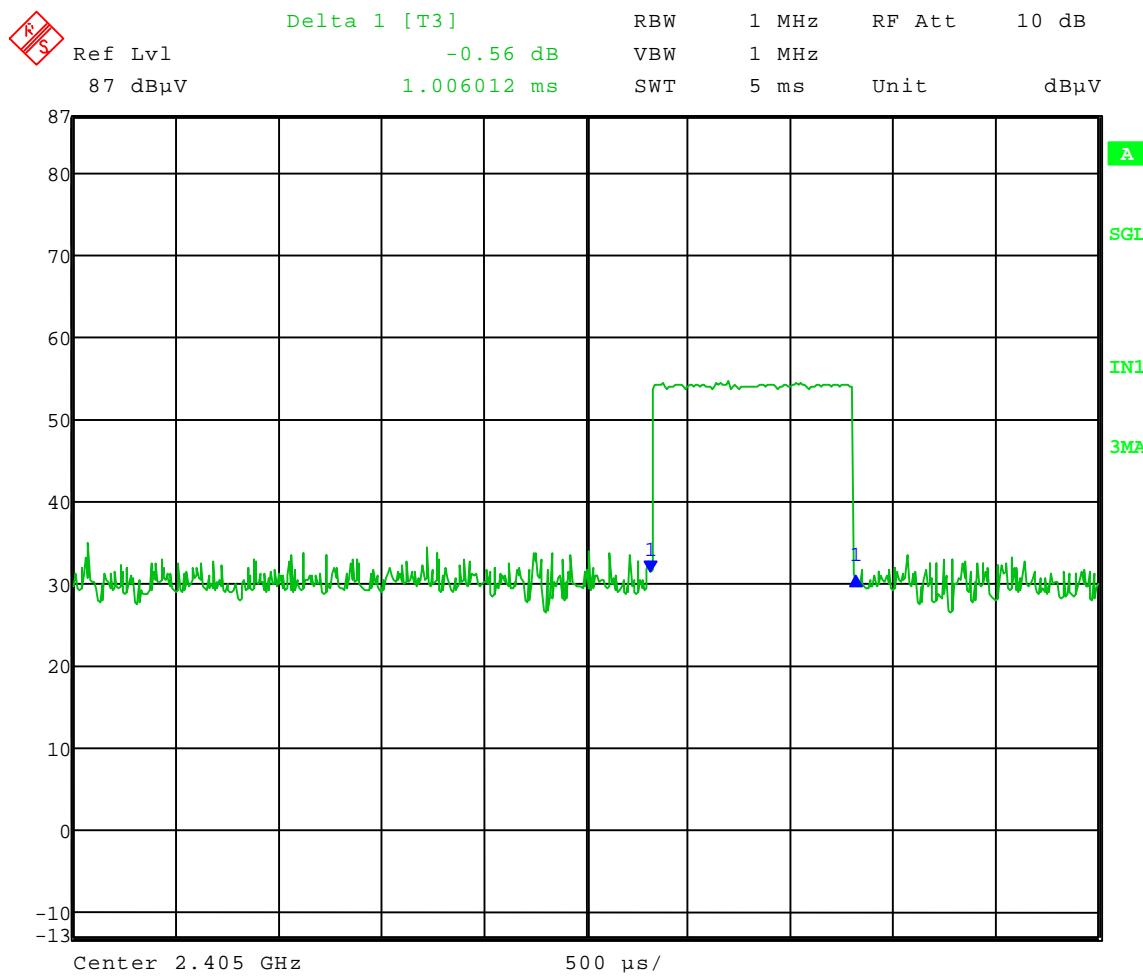
Comment: 20 pulses at 1.006012 ms = 20.12ms  
Duty Cycle Correction:  $20 \log (20.12/100) = -13.92$   
Duty Cycle Correction factor: 13.92 dB

100 ms sweep:



Date: 17.NOV.2009 09:36:25




1250 Peterson Dr., Wheeling, IL 60090

Company: Midmark Corporation  
Model Tested: 625-003, 625-006  
Report Number: 15874

Test Date: 11-17-2009  
Company: Midmark Corporation  
EUT: Midmark 625 Table Base Station Transceiver  
Test: Duty Cycle – used for testing (FCC Part 15.35(c))  
Operator: Craig B

Comment: 20 pulses at 1.006012 ms = 20.12ms  
Duty Cycle Correction:  $20 \log (20.12/100) = -13.92$   
Duty Cycle Correction factor: 13.92 dB

Duration of one pulse:



Date: 17.NOV.2009 09:37:17