

FCC TEST REPORT

REPORT NO.: 070208FIA01

MODEL NO.: AU500

RECEIVED: Feb. 12, 2007

TESTED: Feb. 12 ~ Mar. 10, 2007

ISSUED: Mar. 10, 2007

APPLICANT: Austar technology (Hang zhou) Co., Ltd.

ADDRESS: A-19-C, Paradise Software Park, No. 3 Xi doumen Rd., Hang Zhou, Zhe Jiang, China P. R.

ISSUED BY: ADT (Shanghai) Corporation

ADDRESS: 2F, Building C, No.1618, Yishan Rd., 201103, Shanghai, China

This test report consists of 46 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards. This report contains data that were produced under Laboratory ADT (Shanghai) Corporation.

ADT (Shanghai) Corporation.

V 1.0

TABLE OF CONTENTS

1. CERTIFICATION	5
2. SUMMARY OF TEST RESULTS.....	6
2.1 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT.....	8
3.2 DESCRIPTION OF TEST MODES.....	9
3.2.1 CONFIGURATION OF SYSTEM UNDER TEST	10
3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	11
3.2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS	13
3.2.4 DESCRIPTION OF SUPPORT UNITS	13
4. TEST TYPES AND RESULTS.....	14
4.1 RADIATED EMISSION MEASUREMENT	14
4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT.....	14
4.1.2 TEST INSTRUMENTS	15
4.1.3 TEST PROCEDURES	16
4.1.4 DEVIATION FROM TEST STANDARD	16
4.1.5 TEST SETUP	17
4.1.6 EUT OPERATING CONDITIONS	17
4.1.7 TEST RESULTS	18
4.2 NUMBER OF HOPPING FREQUENCY USED	22
4.2.1 LIMIT OF HOPPING FREQUENCY USED	22
4.2.2 TEST INSTRUMENTS	22
4.2.3 TEST PROCEDURES	22
4.2.4 DEVIATION FROM TEST STANDARD	22
4.2.5 TEST SETUP	23
4.2.6 EUT OPERATING CONDITIONS	23
4.2.7 TEST RESULTS	24

4.3	DWELL TIME ON EACH CHANNEL	25
4.3.1	LIMIT OF DWELL TIME USED.....	25
4.3.2	TEST INSTRUMENTS	25
4.3.3	TEST PROCEDURES	25
4.3.4	DEVIATION FROM TEST STANDARD	26
4.3.5	TEST SETUP	26
4.3.6	EUT OPERATING CONDITIONS	26
4.3.7	TEST RESULTS	27
4.4	CHANNEL BANDWIDTH.....	31
4.4.1	LIMITS OF CHANNEL BANDWIDTH	31
4.4.2	TEST INSTRUMENTS	31
4.4.3	TEST PROCEDURE	31
4.4.4	DEVIATION FROM TEST STANDARD	31
4.4.5	TEST SETUP	32
4.4.6	EUT OPERATING CONDITION	32
4.4.7	TEST RESULTS	33
4.5	HOPPING CHANNEL SEPARATION	35
4.5.1	LIMIT OF HOPPING CHANNEL SEPARATION	35
4.5.2	TEST INSTRUMENTS	35
4.5.3	TEST PROCEDURES	35
4.5.4	DEVIATION FROM TEST STANDARD	35
4.5.5	TEST SETUP	36
4.5.6	EUT OPERATING CONDITIONS	36
4.5.7	TEST RESULTS	37
4.6	MAXIMUM PEAK OUTPUT POWER	39
4.6.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	39
4.6.2	TEST INSTRUMENTS	39
4.6.3	TEST PROCEDURES	39
4.6.4	DEVIATION FROM TEST STANDARD	40
4.6.5	TEST SETUP	40
4.6.6	EUT OPERATING CONDITION	40
4.6.7	TEST RESULTS	41

4.7	BAND EDGES MEASUREMENT	42
4.7.1	LIMITS OF BAND EDGES MEASUREMENT	42
4.7.2	TEST INSTRUMENTS	42
4.7.3	TEST PROCEDURE	42
4.7.4	DEVIATION FROM TEST STANDARD	42
4.7.5	EUT OPERATING CONDITION	42
4.7.6	TEST RESULTS	43
4.8	ANTENNA REQUIREMENT	44
4.8.1	STANDARD APPLICABLE	44
4.8.2	ANTENNA CONNECTED CONSTRUCTION	44
5.	INFORMATION ON THE TESTING LABORATORY	45
	APPENDIX-A.....	A-1

1. CERTIFICATION

PRODUCT: Bluetooth Car kit

MODEL NO.: AU500

BRAND NAME: Austar

APPLICANT: Austar technology (Hang zhou) Co., Ltd.

TESTED: Feb. 12 ~ Mar. 10, 2007

TEST ITEM: Engineering Sample

STANDARDS: FCC Part 15, Subpart C (Section 15.247),
ANSI C63.4-2003

We, **ADT (Shanghai) Corporation**, declare that the equipment above has been tested in our facility and found compliance with the requirement limits of applicable standards. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate under the standards herein specified.

TECHNICAL ACCEPTANCE : *Bright Tong* , **DATE:** MAR. 10, 2007
Bright Tong
Engineering Supervisor

APPROVED BY : , **DATE:** MAR. 10, 2007
Wallace Pan
Director of Operations

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
15.207	AC Power Conducted Emission	N/A	
15.247(a)(1) (iii)	Number of Hopping Frequency Used Spec.: At least 15 channels	PASS	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel Spec.: Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit.
15.247(a)(1)	1. Hopping Channel Separation Spec. : Min. 25 kHz or two-thirds of 20 dB bandwidth, whichever is greater 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.
15.247(b)	Maximum Peak Output Power Spec.: max. 1W	PASS	Meet the requirement of limit.
15.247(d)	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -0.52dB at 55.75MHz.
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.

Note: If the Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20dB bandwidth of hopping channel, whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

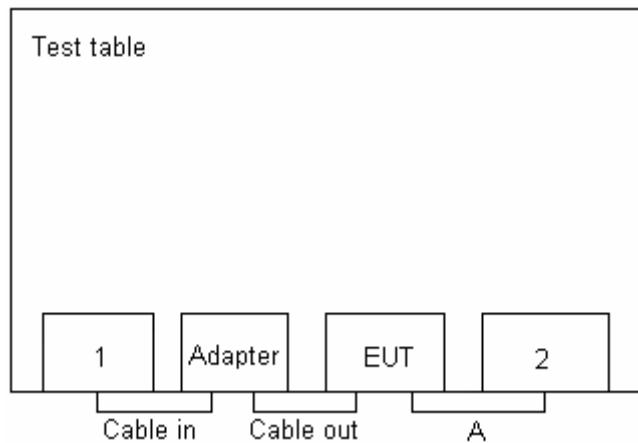
MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz ~ 30MHz	2.44 dB
Radiated emissions	30MHz ~ 200MHz	3.73 dB
	200MHz ~1000MHz	3.74 dB
	1GHz ~ 18GHz	2.20 dB
	18GHz ~ 40GHz	1.88 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Bluetooth Car kit
MODEL NO.	AU500
POWER SUPPLY	12Vdc from battery
POWER ADAPTER SUPPLIED	Cable out: 1.5m, non-shielded, non-detachable
MODULATION TYPE	GFSK
RADIO TECHNOLOGY	FHSS
TRANSFER RATE	3Mbps
FREQUENCY RANGE	2400 ~ 2483.5 MHz
NUMBER OF CHANNEL	79
OUTPUT POWER	1.276mW
ANTENNA TYPE	Printed
ANTENNA GAIN	-10dBi
DATA CABLE	N/A
I/O PORTS	Refer to user's manual
ASSOCIATED DEVICES	N/A

NOTE: The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.


3.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2431	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

For test mode A

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE MODE	Applicable to							Description
	DT	CB	HCS	MPOP	BM	CE	RE	
A	√	√	√	√	√	--	√	Powered by 12Vdc adapter

Where

DT: Dwell Time on Each Channel**CB:** Cannel Bandwidth**HCS:** Hopping Channel Separation**MPOP:** Maximum Peak Output Power**BM:** Band edge Measurement**RE:** Radiated Emission

DWELL TIME ON EACH CHANNEL:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and X.Y.Z. axis.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE	AXIS
A	0 ~ 78	0, 39, 78	FHSS	GFSK	3Mbps	X

CHANNEL BANDWIDTH:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and X.Y.Z. axis.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE	AXIS
A	0 ~ 78	0, 39, 78	FHSS	GFSK	3Mbps	X

HOPPING CHANNEL SEPARATION

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and X.Y.Z. axis.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE	AXIS
A	0 ~ 78	0, 39, 78	FHSS	GFSK	3Mbps	X

MAXIMUM PEAK OUTPUT POWER

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and X.Y.Z. axis.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE	AXIS
A	0 ~ 78	0, 39, 78	FHSS	GFSK	3Mbps	X

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and X.Y.Z. axis..
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE	AXIS
A	0 ~ 78	0, 78	FHSS	GFSK	3Mbps	X

RADIATED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and X.Y.Z. axis.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE	AXIS
A	0 ~ 78	0, 39, 78	FHSS	GFSK	3Mbps	X

3.2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a Bluetooth Car kit. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247)

ANSI C63.4- 2003

All test items have been performed and recorded as per the above standards.

3.2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Battery	KOBA	MF78-550	N/A	N/A
2	Earphone	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
A	1m non-shielded earphone line.

Note: 0.5m non-shielded input power cable was used during the test.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_uV/m) = 20 log Emission level (uV/m).
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

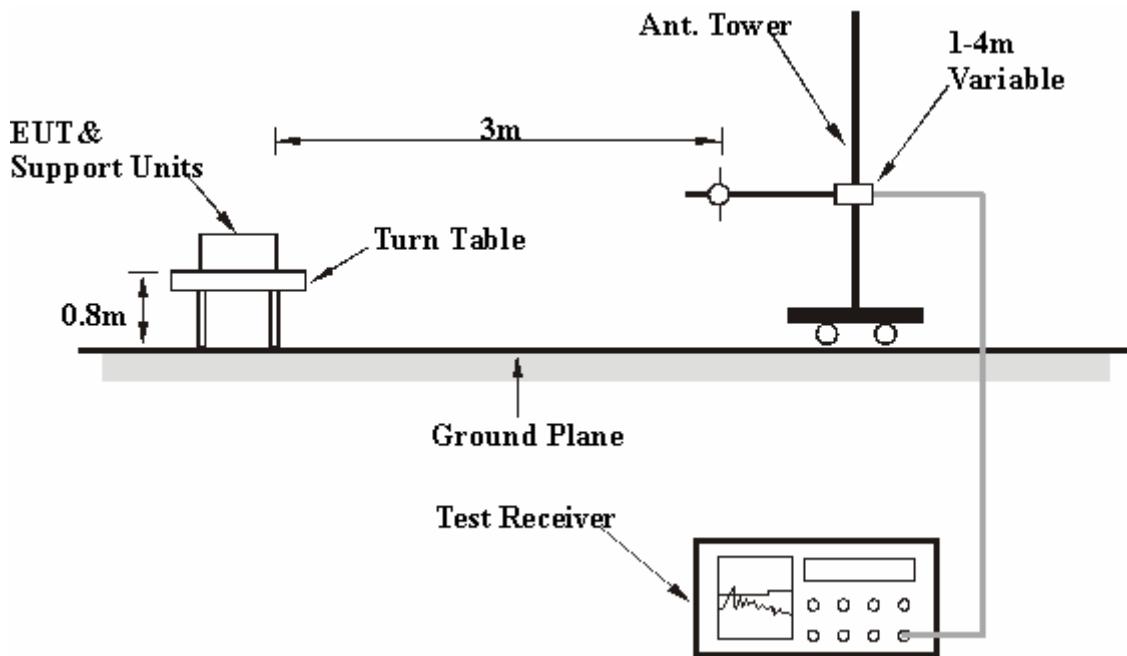
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS30	E1R1001	Apr. 19, 2007
BILOG Antenna SCHWARZBECK	VULB9168	E1A1001	Sept. 26, 2007
Preamplifier Agilent	8447D	E1A2001	Jan. 27, 2008
Preamplifier Agilent	8449B	E1A2002	Jan. 27, 2008
Double Ridged Broadband Horn Antenna Schwarzbeck	BBHA 9120D	E1A1002	Feb. 15, 2008
Spectrum Analyzer Agilent	E4403B	E1S1001	Jan. 13, 2008
Signal Analyzer ROHDE & SCHWARZ	FSP	E1S1002	May. 16, 2007
Software ADT	ADT_Radiated_V7.5	N/A	N/A

- NOTE:**
1. The calibration interval of the above test instruments is 12 months.
 2. “*” = These equipment are used for the final measurement.
 3. The horn antenna and Agilent preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
 4. The Spectrum Analyzer (model: FSP) and RF signal cable (SERIAL: E1CBH16&E1CBH20) are used only for the measurement of emission frequency above 1GHz if tested.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.


NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection (PK) at frequency above 1GHz.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

Below 1 GHz: Normal operation (hopping according to its hoplist).

Above 1 GHz: Continuously transmitting with modulation on a certain channel that can be set by the software (with typical data input as the modulation source).

4.1.7 TEST RESULTS

Below 1 GHz Worst Case

EUT	Bluetooth Car kit	MEASUREMENT DETAIL		
MODEL	AU500	FREQUENCY RANGE		Below 1000MHz
CHANNEL	Channel 0	DETECTOR FUNCTION		Quasi-Peak
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS		20deg. C, 60%RH, 1001hPa
TEST MODE	A	INPUT POWER		12Vdc from battery
TESTED BY	Jeffrey			

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	200.06	12.95	18.50	31.45	43.50	-12.05	150.00	228.00
2	225.06	14.19	18.75	32.95	46.00	-13.05	157.00	211.00
3	325.09	17.14	27.27	44.41	46.00	-1.59	112.00	318.00
4	400.11	18.64	10.00	28.64	46.00	-17.36	99.00	34.00
5	425.12	19.48	19.03	38.51	46.00	-7.49	100.00	224.00
6	450.12	20.12	19.47	39.59	46.00	-6.41	100.00	44.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	55.75	15.07	24.41	39.48	40.00	-0.52	99.00	97.00
2	150.82	16.98	-1.60	15.38	43.50	-28.12	99.00	287.00
3	225.06	14.19	7.23	21.43	46.00	-24.57	99.00	192.00
4	325.09	17.14	9.99	27.13	46.00	-18.87	99.00	221.00
5	475.13	20.51	0.83	21.34	46.00	-24.66	99.00	133.00
6	755.08	25.39	-8.40	16.99	46.00	-29.01	99.00	218.00

- REMARKS:**
1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
 3. The other emission levels were very low against the limit.
 4. Margin value = Emission level – Limit value.

Above 1 GHz

EUT		Bluetooth Car kit	MEASUREMENT DETAIL			
MODEL		AU500	FREQUENCY RANGE		Above 1GHz	
CHANNEL		Channel 0	DETECTOR FUNCTION		Peak (PK) Average (AV)	
MODULATION TYPE		GFSK	ENVIRONMENTAL CONDITIONS		20deg. C, 60%RH, 1001hPa	
TEST MODE		A	INPUT POWER		12Vdc from battery	
TESTED BY		Bright				

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4803.58 PK	37.74	29.02	66.76	74.00	-7.24	100.00	119.00
1	4803.58 AV	37.74	9.02	46.76	54.00	-7.24	100.00	119.00
2	7206.00 PK	45.18	10.35	55.53	74.00	-18.47	100.00	226.00
2	7206.00 AV	45.18	-9.65	35.53	54.00	-18.47	100.00	226.00
3	9608.00 PK	47.91	8.34	56.25	74.00	-17.75	100.00	345.00
3	9608.00 AV	47.91	-11.66	36.25	54.00	-17.75	100.00	345.00
4	12010.00 PK	49.05	9.80	58.85	74.00	-15.15	100.00	12.00
4	12010.00 AV	49.05	-10.20	38.85	54.00	-15.15	100.00	12.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4803.62 PK	37.74	25.05	62.79	74.00	-11.21	100.00	164.00
1	4803.62 AV	37.74	5.05	42.79	54.00	-11.21	100.00	164.00
2	7206.00 PK	45.18	10.12	55.30	74.00	-18.70	100.00	3.00
2	7206.00 AV	45.18	-9.88	35.30	54.00	-18.70	100.00	3.00
3	9608.00 PK	47.91	9.19	57.10	74.00	-16.90	100.00	119.00
3	9608.00 AV	47.91	-10.81	37.10	54.00	-16.90	100.00	119.00
4	12010.00 PK	49.05	10.29	59.33	74.00	-14.67	100.00	48.00
4	12010.00 AV	49.05	-9.71	39.33	54.00	-14.67	100.00	48.00

- REMARKS:**
1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
 3. The other emission levels were very low against the limit.
 4. Margin value = Emission level – Limit value.
 5. Based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle is equal to: $20\log(3.125/100) = -30 \text{ dB}$
 6. Average value = peak reading – 20dB.

EUT		Bluetooth Car kit	MEASUREMENT DETAIL			
MODEL	AU500			FREQUENCY RANGE	Above 1GHz	
CHANNEL	Channel 39			DETECTOR FUNCTION	Peak (PK) Average (AV)	
MODULATION TYPE	GFSK			ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001hPa	
TEST MODE	A			INPUT POWER	12Vdc from adapter	
TESTED BY	Bright					

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4882.34 PK	38.03	32.79	70.82	74.00	-3.18	100.00	331.00
1	4882.34 AV	38.03	12.79	50.82	54.00	-3.18	100.00	331.00
2	7323.00 PK	45.26	11.43	56.69	74.00	-17.31	100.00	246.00
2	7323.00 AV	45.26	-8.57	36.69	54.00	-17.31	100.00	246.00
3	9764.00 PK	48.32	7.97	56.29	74.00	-17.71	100.00	184.00
3	9764.00 AV	48.32	-12.03	36.29	54.00	-17.71	100.00	184.00
4	12205.00 PK	49.16	9.34	58.50	74.00	-15.50	100.00	16.00
4	12205.00 AV	49.16	-10.66	38.50	54.00	-15.50	100.00	16.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4882.34 PK	38.03	32.52	70.56	74.00	-3.44	100.00	216.00
1	4882.34 AV	38.03	12.52	50.56	54.00	-3.44	100.00	216.00
2	7323.00 PK	45.26	10.88	56.14	74.00	-17.86	100.00	334.00
2	7323.00 AV	45.26	-9.12	36.14	54.00	-17.86	100.00	334.00
3	9764.00 PK	48.32	8.91	57.23	74.00	-16.77	100.00	298.00
3	9764.00 AV	48.32	-11.09	37.23	54.00	-16.77	100.00	298.00
4	12205.00 PK	49.16	9.44	58.60	74.00	-15.40	100.00	29.00
4	12205.00 AV	49.16	-10.56	38.60	54.00	-15.40	100.00	29.00

- REMARKS:**
1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
 3. The other emission levels were very low against the limit.
 4. Margin value = Emission level – Limit value.
 5. Based upon bluetooth theory the transmitter is on $0.625 * 5$ per 296.25 ms per channel. Therefore, the duty cycle is equal to: $20\log(3.125/100) = -30$ dB
 6. Average value = peak reading – 20dB.

EUT		Bluetooth Car kit	MEASUREMENT DETAIL			
MODEL	AU500		FREQUENCY RANGE		Above 1GHz	
CHANNEL	Channel 78		DETECTOR FUNCTION		Peak (PK) Average (AV)	
MODULATION TYPE	GFSK		ENVIRONMENTAL CONDITIONS		20deg. C, 60%RH, 1001hPa	
TEST MODE	A		INPUT POWER		12Vdc from adapter	
TESTED BY	Bright					

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1*	2483.50 PK	32.76	18.49	51.25	74.00	-22.75	100.00	220.00
1*	2483.50 AV	32.76	-1.51	31.25	54.00	-22.75	100.00	220.00
2	4959.66 PK	38.31	33.10	71.42	74.00	-2.58	100.00	331.00
2	4959.66 AV	38.31	13.10	51.42	54.00	-2.58	100.00	331.00
3	7440.00 PK	45.20	9.68	54.88	74.00	-19.12	100.00	44.00
3	7440.00 AV	45.20	-10.32	34.88	54.00	-19.12	100.00	44.00
4	9920.00 PK	48.53	8.92	57.45	74.00	-16.55	100.00	16.00
4	9920.00 AV	48.53	-11.08	37.45	54.00	-16.55	100.00	16.00
5	12400.00 PK	49.27	9.08	58.35	74.00	-15.65	100.00	115.00
5	12400.00 AV	49.27	-10.92	38.35	54.00	-15.65	100.00	115.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1*	2483.50 PK	32.76	18.23	50.99	74.00	-23.01	100.00	222.00
1*	2483.50 AV	32.76	-1.77	30.99	54.00	-23.01	100.00	222.00
2	4959.66 PK	38.31	32.21	70.52	74.00	-3.48	100.00	179.00
2	4959.66 AV	38.31	12.21	50.52	54.00	-3.48	100.00	179.00
3	7440.00 PK	45.20	9.04	54.24	74.00	-19.76	100.00	164.00
3	7440.00 AV	45.20	-10.96	34.24	54.00	-19.76	100.00	164.00
4	9920.00 PK	48.53	9.16	57.70	74.00	-16.30	100.00	113.00
4	9920.00 AV	48.53	-10.84	37.70	54.00	-16.30	100.00	113.00
5	12400.00 PK	49.27	9.65	58.92	74.00	-15.08	100.00	79.00
5	12400.00 AV	49.27	-10.35	38.92	54.00	-15.08	100.00	79.00

- REMARKS:**
1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
 3. The other emission levels were very low against the limit.
 4. Margin value = Emission level – Limit value.
 5. Based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle is equal to: $20\log(3.125/100) = -30$ dB
 6. Average value = peak reading – 20dB.

4.2 NUMBER OF HOPPING FREQUENCY USED

4.2.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Spectrum Analyzer ROHDE & SCHWARZ	FSP	E1S1002	May. 15, 2007

NOTE: The calibration interval of the above test instruments is 12 months.

4.2.3 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.5 TEST SETUP

4.2.6 EUT OPERATING CONDITIONS

Normal operation (Hopping according to its hoplist).

4.2.7 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. On the plots, it shows that the hopping frequencies are equally spaced.

4.3 DWELL TIME ON EACH CHANNEL

4.3.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
*Spectrum Analyzer ROHDE & SCHWARZ	FSP	E1S1002	May. 15, 2007

NOTES: The calibration interval of the above test instruments is 12 months.

4.3.3 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency to be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation.

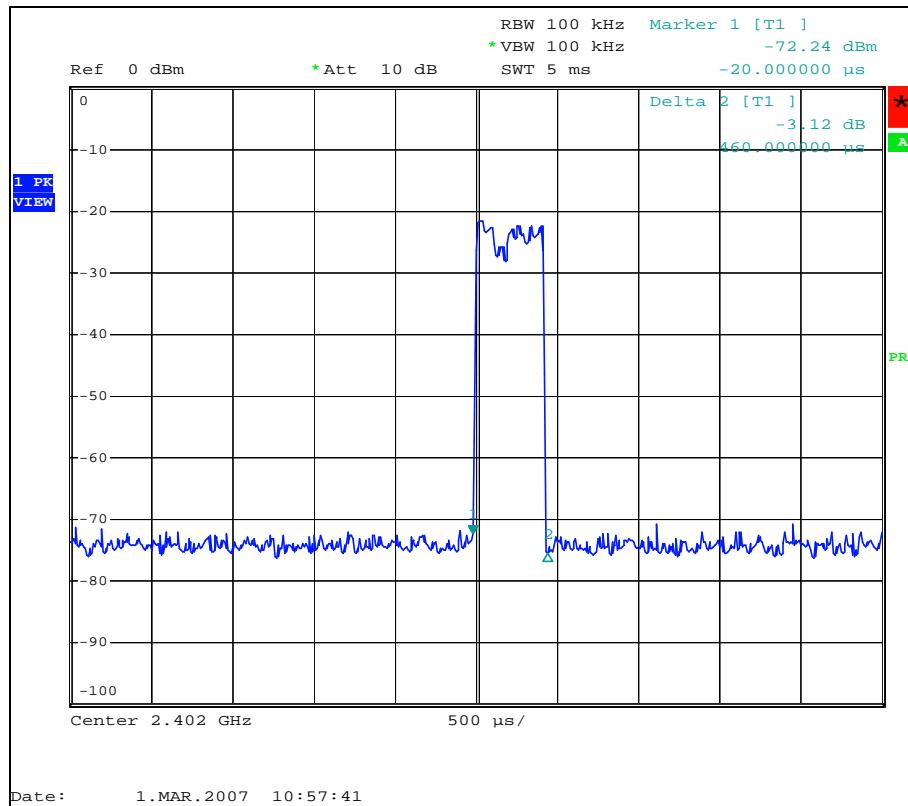
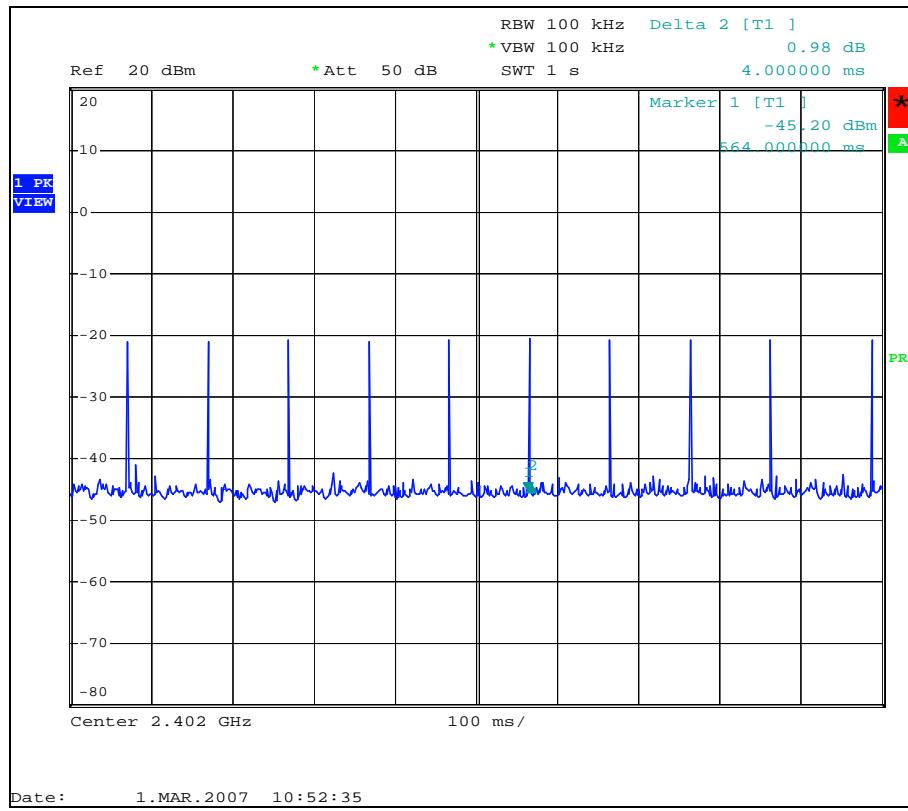
4.3.5 TEST SETUP

4.3.6 EUT OPERATING CONDITIONS

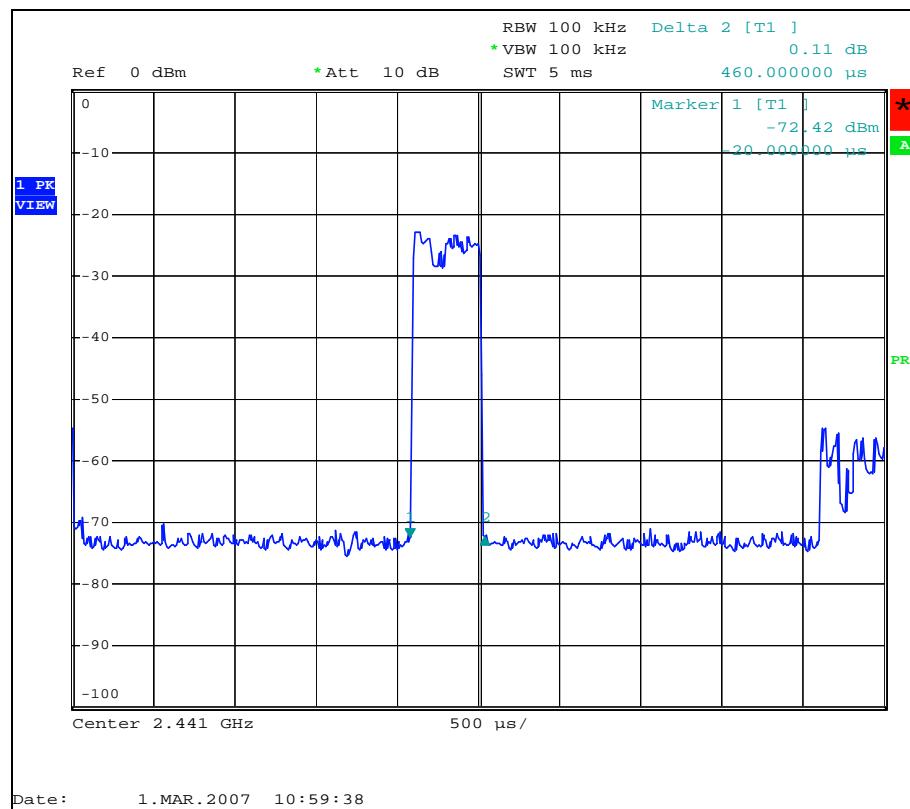
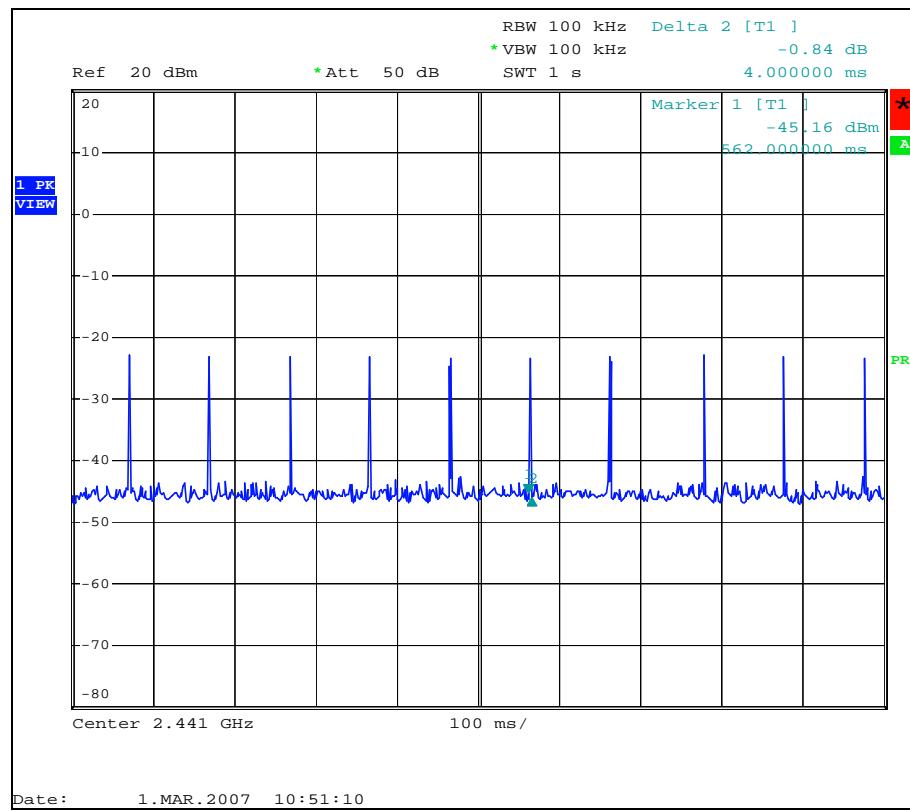
Normal operation (Hopping according to its hoplist).

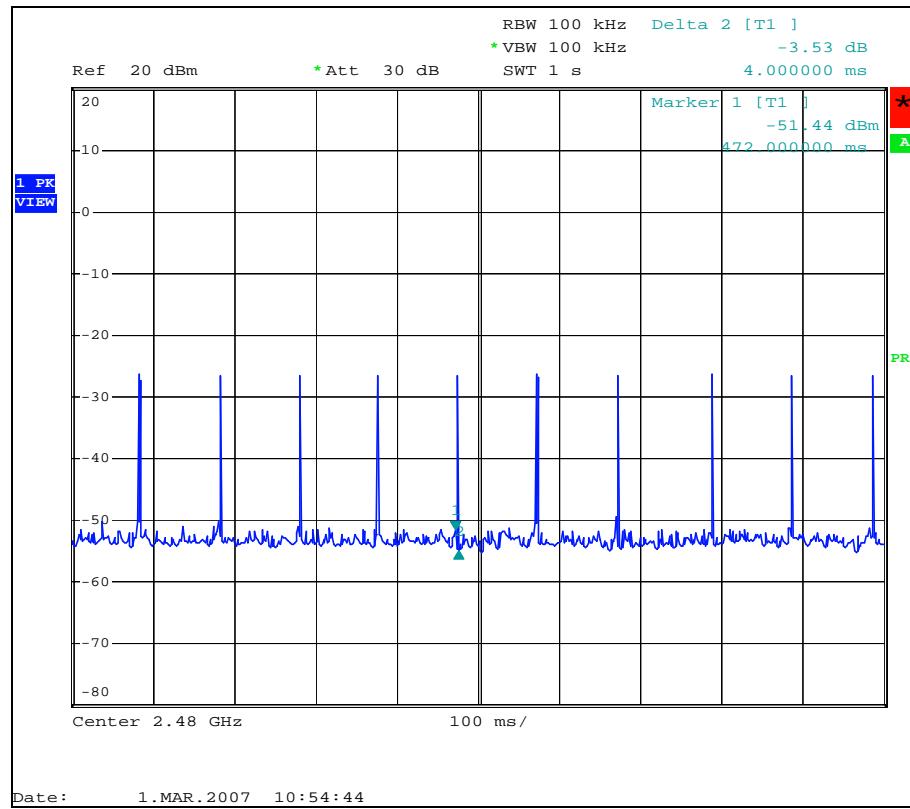
4.3.7 TEST RESULTS

EUT	Bluetooth Car kit	MODEL	AU500
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001Hpa
INPUT POWER	12Vdc from battery	TESTED BY	Bright



MODE	NUMBER OF TRANSMISSION IN A 31.6 (79HOPPING * 0.4)	LENGTH OF TRANSMISSION TIME (msec)	RESULT (msec)	LIMIT (msec)
CH0	10(times/1sec)*31.6=316 times	0.460	145.36	400
CH39	10(times/1sec)*31.6=316 times	0.460	145.36	400
CH78	10(times/1sec)*31.6=316 times	0.460	145.36	400

NOTE: Test plots of the transmitting time slot are shown on next 3 pages.



FCC ID: U37AU500


CH0

CH39

CH78

4.4 CHANNEL BANDWIDTH

4.4.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dB bandwidth of hopping channel shall be a minimum limit for the hopping channel separation.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Spectrum Analyzer ROHDE & SCHWARZ	FSP	E1S1002	May. 15, 2007

NOTE: The calibration interval of the above test instruments is 12 months.

4.4.3 TEST PROCEDURE

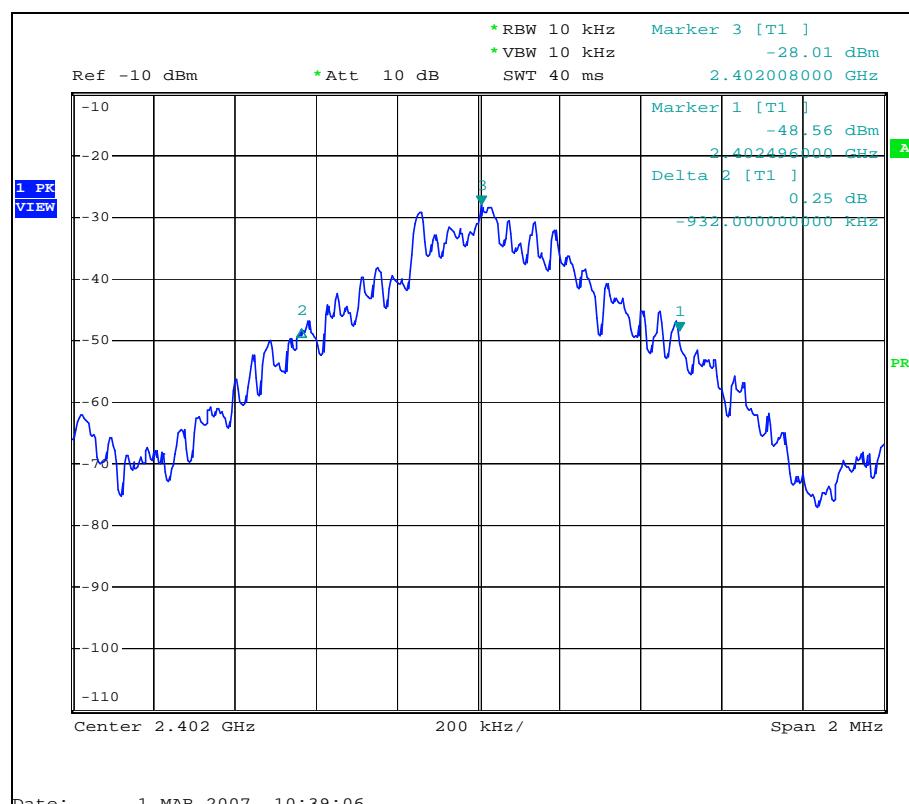
- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.4.4 DEVIATION FROM TEST STANDARD

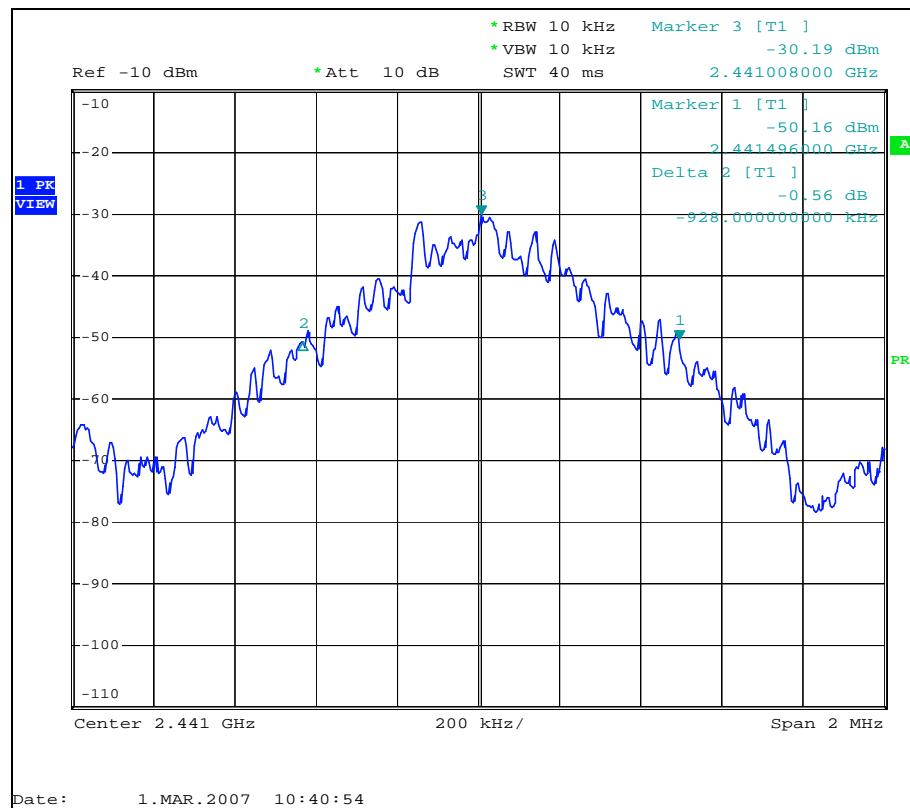
No deviation.

4.4.5 TEST SETUP

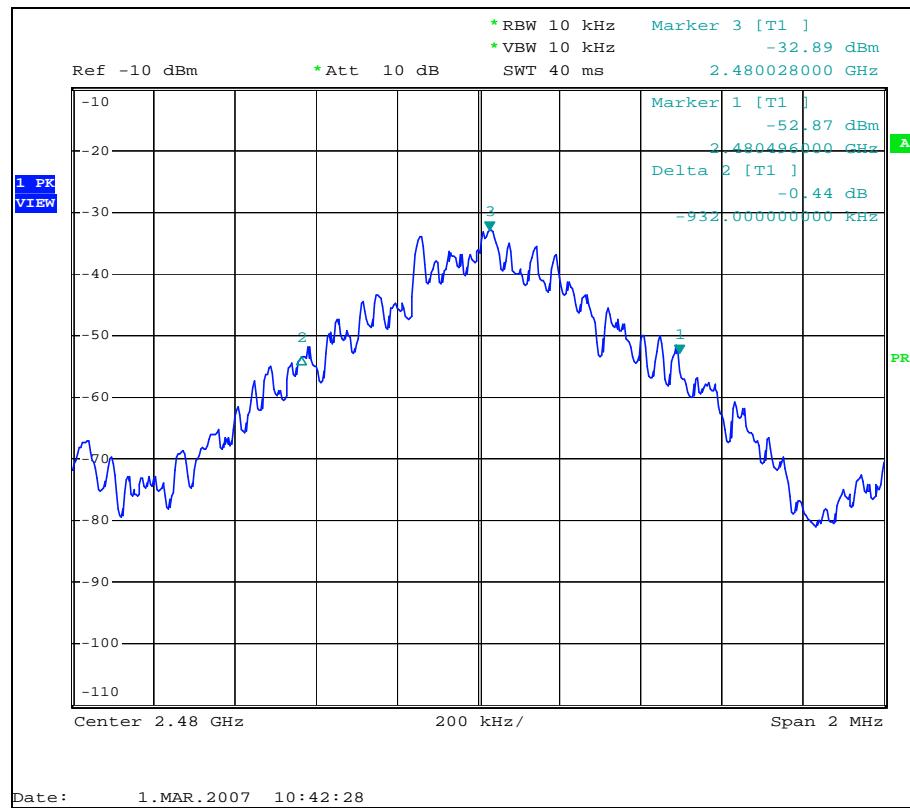
4.4.6 EUT OPERATING CONDITION


Continuously transmitting with modulation on a certain channel that can be set by the software (with typical data input as the modulation source).

4.4.7 TEST RESULTS


EUT	Bluetooth Car kit	MODEL	AU500
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001Hpa
INPUT POWER	12Vdc from battery	TESTED BY	Bright

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	0.932
39	2441	0.928
78	2480	0.932


CH0

CH39

CH78

4.5 HOPPING CHANNEL SEPARATION

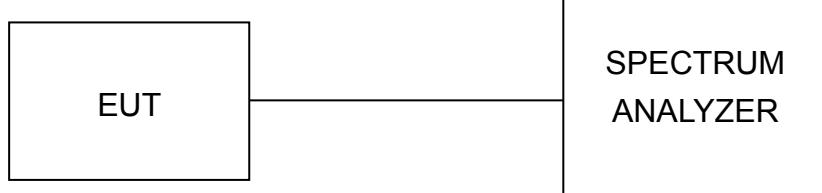
4.5.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25 kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Spectrum Analyzer ROHDE & SCHWARZ	FSP	E1S1002	May. 15, 2007

NOTES: The calibration interval of the above test instruments is 12 months.


4.5.3 TEST PROCEDURES

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
3. By using the MaxHold function record the separation of two adjacent channels.
4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

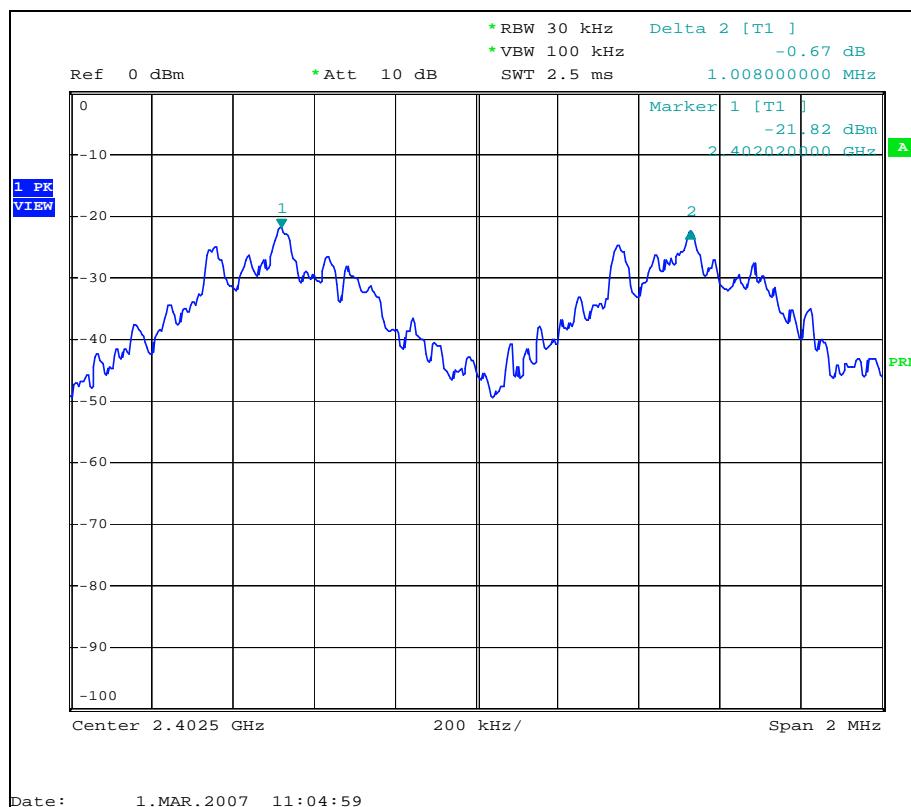
4.5.4 DEVIATION FROM TEST STANDARD

No deviation.

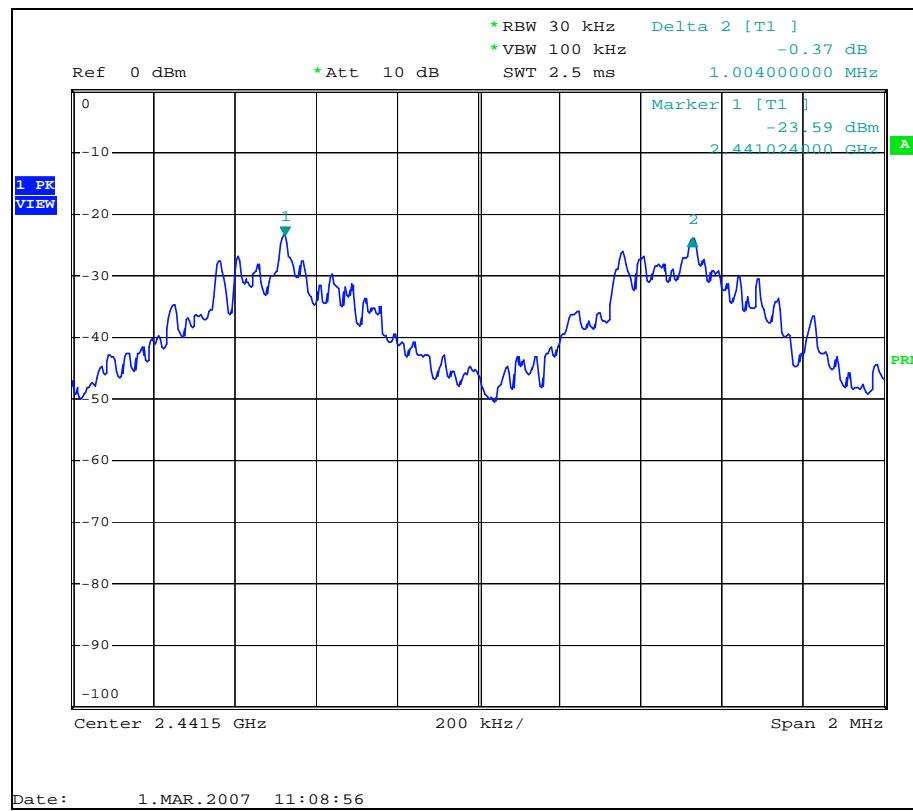
4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITIONS

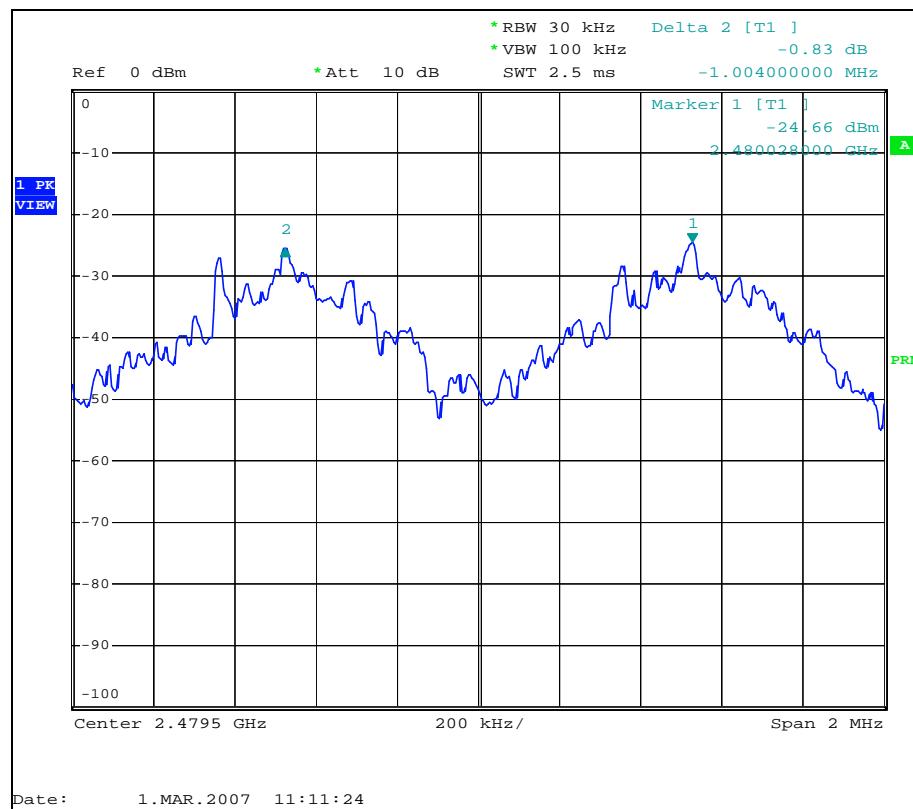
Normal operation (Hopping according to its hoplist).


4.5.7 TEST RESULTS

EUT	Bluetooth Car kit	MODEL	AU500
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001Hpa
INPUT POWER	12Vdc from battery	TESTED BY	Bright


CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	1.008	0.932	0.621	pass
39	2441	1.004	0.928	0.619	pass
78	2480	1.004	0.932	0.621	pass

NOTE: The minimum limit is two-third of 20dB bandwidth.


CH0

CH39

CH78

4.6 MAXIMUM PEAK OUTPUT POWER

4.6.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 1W.

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
*Spectrum Analyzer ROHDE & SCHWARZ	FSP	E1S1002	May. 15, 2007

NOTE: The calibration interval of the above test instruments is 12 months.

4.6.3 TEST PROCEDURES

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 1 MHz RBW and 3 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation.

4.6.5 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.6.6 EUT OPERATING CONDITION

Continuously transmitting with modulation on a certain channel that can be set by the software (with typical data input as the modulation source).

FCC ID: U37AU500

4.6.7 TEST RESULTS

EUT	Bluetooth Car kit	MODEL	AU500
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001Hpa
INPUT POWER	12Vdc from battery	TESTED BY	Bright

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
0	2402	1.06	30	PASS
39	2441	0.54	30	PASS
78	2480	-1.17	30	PASS

4.7 BAND EDGES MEASUREMENT

4.7.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band.

4.7.2 TEST INSTRUMENTS

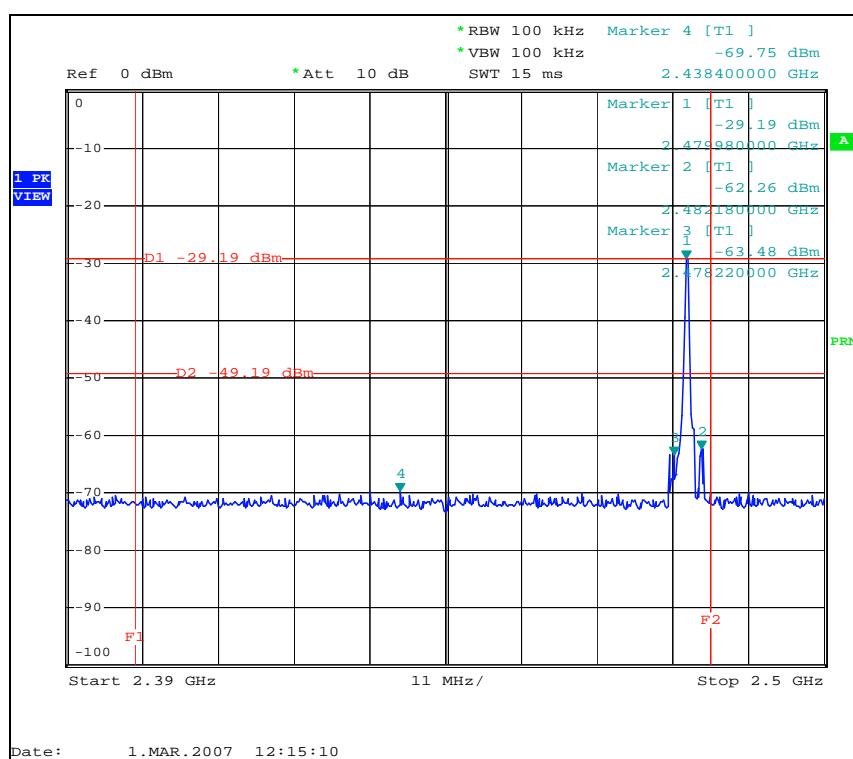
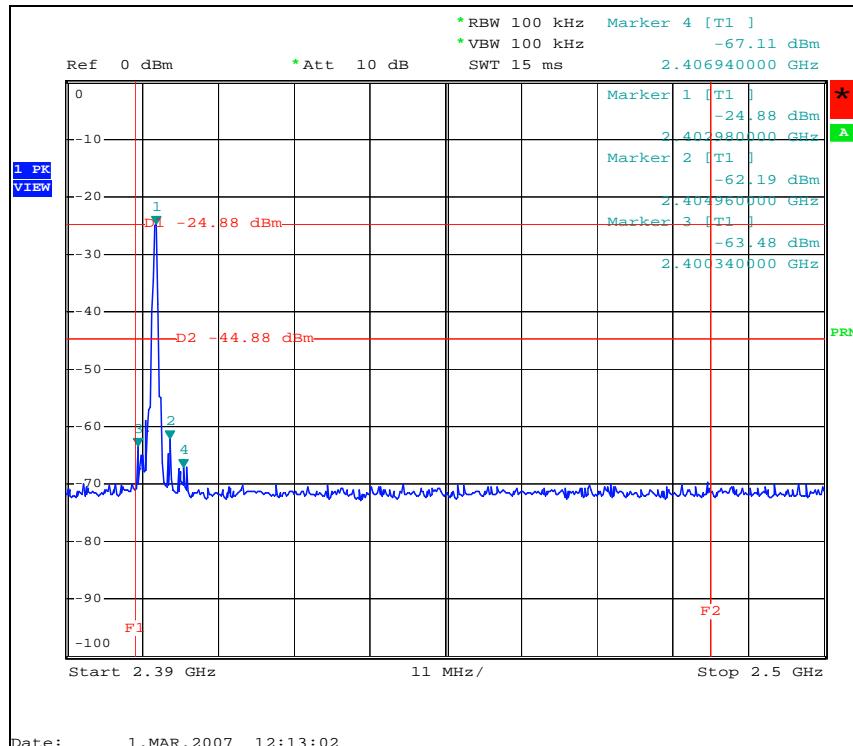
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Spectrum Analyzer ROHDE & SCHWARZ	FSP	E1S1002	May. 15, 2007

NOTES: The calibration interval of the above test instruments is 12 months.

4.7.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Set both RBW and VBW of spectrum analyzer with suitable frequency span including bandwidth from band edge. The band edges was measured and recorded.

4.7.4 DEVIATION FROM TEST STANDARD



No deviation.

4.7.5 EUT OPERATING CONDITION

Continuously transmitting with modulation on a certain channel that can be set by the software (with typical data input as the modulation source).

4.7.6 TEST RESULTS

The spectrum plots are attached on the following 2 images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

4.8 ANTENNA REQUIREMENT

4.8.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.8.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is printed on PCB without antenna connector. The maximum gain of this antenna is -10 dBi.

5. INFORMATION ON THE TESTING LABORATORY

We, ADT (Shanghai) Corp., was founded in 2003 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratory is accredited and approved by the following approval agencies according to ISO / IEC 17025 (2005).

The client should not use it to claim product endorsement by CNLS, A2LA, or any government agency.

Japan	VCCI
USA	FCC, A2LA
Norway	DNV
China	CNAS

Copies of accreditation certificates of our laboratory obtained from approval agencies can be downloaded from our web site: www.cnadt.com

If you have any comments, please feel free to contact us at the following:

ADT (Shanghai) Corporation

TEL :86-21-6465-9091

Fax : 86-21-6465-9092

Email: service@adt-sh.com

Web Site: www.cnadt.com

APPENDIX-A

MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.