

FCC Test Report for 802.15.4/ Zigbee module JN5139-000-M03

Report Number 03-166A/3298/1/07 Supersedes report number 03-166/3298/1/07 Report Produced by: -

R.N. Electronics Ltd.

1 Arnolds Court Arnolds Farm Lane Mountnessing ESSEX CM13 1UT

www.RNelectronics.com

Telephone 01277 352219 Facsimile 01277 352968

File name JENNIC.166A PAGE 1 OF 47

QMF21 - 8: FCC PART 15C: RNE ISSUE 02, APR 06

1. Contents

1.	CONTENTS	2
2. S	UMMARY OF TEST RESULTS	3
3.	INFORMATION ABOUT EQUIPMENT UNDER TEST	4
4.	SPECIFICATIONS	
4.1	Deviations	5
5. T	ESTS, METHODS AND RESULTS	6
5.1	Conducted Emissions	6
5.2	Radiated Emissions	7
5.3	Intentional Radiator Field Strength	8
5.4	Maximum Spectral Power Density	9
5.5	6dB Bandwidth	
6.	PLOTS AND RESULTS	11
6.1	Conducted Emissions	11
6.2	Radiated Emissions	11
6.3	6dB Bandwidth	36
7 E	XPLANATORY NOTES	38
7.1	Explanation of FAIL LIMIT 1 Statement	38
7.2	Explanation of limit line calculations for radiated measurements	38
8. P	HOTOGRAPHS	39
8.1	Radiated emissions	39
8.2	EUT	40
8.3	EUT in Test Jig	41
9.	SIGNAL LEADS	43
10.	TEST EQUIPMENT CALIBRATION LIST	44
11.	AUXILIARY EQUIPMENT	45
11.1	Auxiliary equipment supplied by Jennic Ltd	45
11.2		
12.	MODIFICATIONS	46
13	COMPLIANCE INFORMATION	47

2. Summary of Test Results

The 802.15.4/ Zigbee module JN5139-000-M03 was tested to the following standards: -

FCC Part 15C (effective date February 7, 2007); Class DTS Intentional Radiator

Any compliance statements are made reliant on: (a) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT.

Titl	e	Reference	Results
1.	Conducted Emissions	FCC Part 15C §15.207	NOT APPLICABLE ¹
2.	Radiated Emissions	FCC Part 15C §15.205, §15.209 & §15.247(d)	PASSED
3.	Modulation Bandwidth	FCC Part 15C §15.215(c), §15.247(a)(2)	PASSED
4.	Intentional Radiator Field	FCC Part 15C §15.247(b)	PASSED
	Strength		
5.	Power Spectral Density	FCC Part 15C §15.247(e)	PASSED

This report relates to the equipment tested as identified by a unique serial number and at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed.

Date of Test:	25 th March 2007		
Test Engineer:			
Approved By:			
Customer Representative:			

File name JENNIC.166A PAGE 3 OF 47

¹ The digital device tested is intended to be powered from 3V dc supply (battery) and intended for modular approval. Any third party device it is incorporated into with a connection to the AC power line will require demonstration of compliance with the limits. Refer to §15.207(c) "Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to AC power lines".

3. Information about Equipment Under Test

Manufacturer of EUT Jennic Ltd

Furnival Street Sheffield S1 4QT

Full name of EUT 802.15.4/ Zigbee module

Model Number of EUT JN5139-000-M03

Serial Number of EUT 05

FCC ID (if applicable): TYOJN5139M3

Date when equipment was received

by RN Electronics Limited 13th March 2007

Date of test: 25th March 2007

Customer order number: PO 004039

A visual description of EUT is as follows: A canned IC on small PCB with an antenna port

intended for dedicated antenna use only. For purposes of test mounted on a motherboard with

battery / dc voltage input and RS232 communications fly lead. The unit was also positioned on a small plastic box containing an

sma adapter lead for test purposes.

The main function of the EUT is: To provide 2.4GHz Zigbee / IEEE 802.15.4

communications.

Antenna: Dedicated antenna connected to antenna port.

gigaAnt Titanis 2.4GHz swivel sma antenna

(4.4dBi gain).

Equipment Under Test Information specification:

1 F	
Height	3.5mm
Width	18mm
Depth	30mm
Weight	0.01kg
Voltage	3V dc
Current required from above voltage source	0.05A
Highest Frequencies used / generated	2480MHz

Description of ancillary equipment connected to the equipment under test, for the purpose of tests, can be found in Section 11.

Any modifications made to the **EUT**, whilst under test, can be found in Section 12.

This report was printed on: 14 April 2007

4. Specifications

The tests were performed by RN Electronics Engineer Daniel Sims who set up the tests, the test equipment, and operated it in accordance with the *R.N. Electronics Ltd* procedures manual and FCC Part 15.

4.1 Deviations

NONE

File name JENNIC.166A PAGE 5 OF 47

©2004 RN ELECTRONICS LIMITED

REPORT NUMBER 03-166A/3298/1/07

- ALL RIGHTS RESERVED
- 5. Tests, Methods and Results
- 5.1 Conducted Emissions

NOT APPLICABLE.

The digital device tested is intended to be powered from 3V dc supply (battery) and intended for modular approval. Any third party device it is incorporated into with a connection to the AC power line will require demonstration of compliance with the limits. Refer to §15.207(c) "Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to AC power lines"

File name JENNIC.166A PAGE 6 OF 47

5.2 Radiated Emissions

5.2.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.205 / 15.209)

Test Method: FCC Part 15C, Reference (15.209)

5.2.1.1 Configuration of EUT

Radiated Emissions testing was performed with the EUT in a test jig provided by the manufacturer. The jig allowed for communications to set the frequency and power level of the device as well as provide the 3V required dc input. This set up also allowed for continuous operation of the transmitter which would normally have a duty cycle <= 1 %.

30MHz to 6.5GHz.

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Tests were repeated with the EUT transmit frequency channel set to 2405, 2440 and 2480 MHz.

Above 6.5GHz.

The antenna was re-positioned at a distance of 1 metre.

5.2.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

30MHz to 1GHz measurements were made in a semi-anechoic chamber (pre-scan) with final measurements on an OATS. Test sites 'M' and 'OATS' have been listed with the FCC. The equipment was rotated 360° and the antenna scanned 1-4 metres in both horizontal and vertical polarisations to record the worst case emissions.

1 GHz to 26 GHz measurements were made in a semi-anechoic chamber. The equipment was rotated 360° and the antenna positioned level with the EUT in both horizontal and vertical polarisations.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

5.2.2 Test results

Tests were performed using Test Site M.

Test Environment:

Temperature: 19-21°C Humidity: 42-51 %

Analyser plots for the Quasi-Peak / Average values as applicable on the middle channel and a table of any signals within 20dB of the limit line on all three channels can be found in Section 6.2 of this report.

These show that the EUT has PASSED this test.

5.2.2.1 Test Equipment used

E3, E268, TMS79, N438, E242, E238, E235, TMS82, E1, TMS933, E320, E319

See Section 10 for more details

File name JENNIC.166A PAGE 7 OF 47

5.3 Intentional Radiator Field Strength

5.3.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.247(b))

Test Method: FCC Part 15C, Reference (15.247)

5.3.1.1 Configuration of EUT

A test jig was provided with an SMA 50ohm coaxial connector which was checked for maximum conducted power at the antenna port.

5.3.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below and taking due consideration of the loss of the antenna port adaptor.

5.3.2 Test results

Tests were performed using Test Site A.

Test Environment:

A Temperature: 19-21°C Humidity: 42-51 %

The conducted power is shown in the table below:

Frequency	Power
(MHz)	(W)
2405	0.00177
2440	0.00189
2480	0.00189

Limit 1 Watt.

These results show that the EUT has PASSED this test.

5.3.2.1 Test Equipment used

C031, C032

See Section 10 for more details

File name JENNIC.166A PAGE 8 OF 47

5.4 Maximum Spectral Power Density

5.4.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.247(e))

Test Method: FCC Part 15C, Reference (15.247)

5.4.1.1 Configuration of EUT

A test jig was provided with an SMA 50ohm coaxial connector which was checked for maximum conducted power at the antenna port.

5.4.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below and taking due consideration of the loss of the antenna port adaptor.

5.4.2 Test results

Tests were performed using Test Site A.

Temperature of test Environment: 22°C

The spectral power density is shown in the table below:

Frequency (MHz)	Peak Power (dBm/3kHz)
2405	-16.7
2440	-15.7
2480	-16.9

Limit +8dBm/3kHz

These results show that the EUT has PASSED this test.

5.4.2.1 Test Equipment used

E3, E3, E266, C031, C032, E5, TMS73

See Section 10 for more details.

5.5 6dB Bandwidth

5.5.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.247(a))

Test Method: FCC Part 15C, Reference (15.247)

5.5.1.1 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres.

5.5.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber.

5.5.2 Test results

Tests were performed using Test Site A.

Temperature of test Environment: 23°C

Analyser plots for the 6dB bandwidth can be found in Section 6.3 of this report.

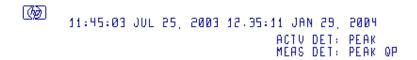
Frequency (MHz)	6dB Bandwidth (MHz)	Plot Reference
2405	1.64	Plot 001
2440	1.63	Plot 003
2480	1.65	Plot 002

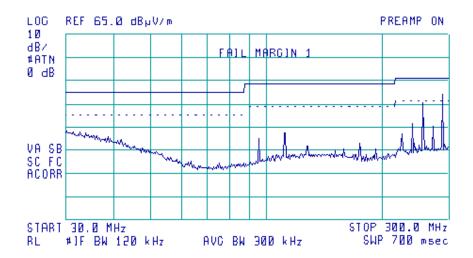
Limit > 500kHz.

These results show that the EUT has PASSED this test.

5.5.2.1 Test Equipment used

E2, TMS10, TMS73


See Section 10 for more details.

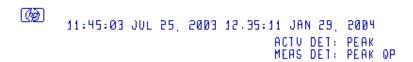

File name JENNIC.166A PAGE 10 OF 47

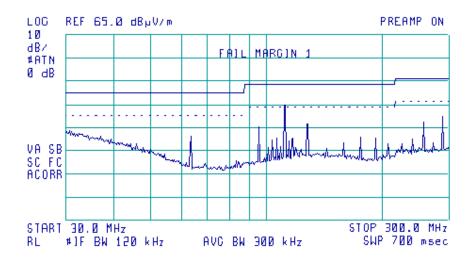
- 6. Plots and Results
- 6.1 Conducted Emissions

NONE - TEST NOT APPLICABLE

6.2 Radiated Emissions

Quasi-Peak Values of 30 MHz. to 300 MHz. Horizontal Polarisation


The plot shows a swept response of peak values using the quasi-peak limit line


(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

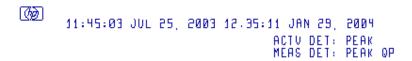
File name JENNIC.166A PAGE 11 OF 47

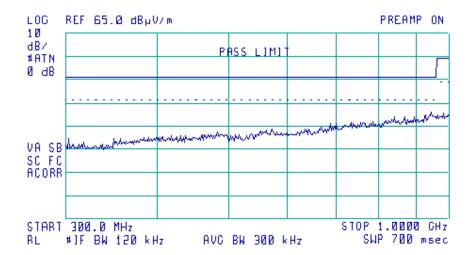
Signal	Freq (MHz)	Peak Amp (dBuV/m)	Peak - Lim1 (dB)	QP Amp (dBuV/m)	QP - Lim1 (dB)
1	111.994013	23.72	-19.78	21.83	-21.67
2	223.993200	24.57	-21.43	22.34	-23.66
3	239.995950	27.37	-18.63	25.60	-20.40
4	255.995813	36.93	-9.07	36.17	-9.83
5	272.007038	26.85	-19.15	24.81	-21.19
6	287.995013	40.41	-5.59	39.82	-6.18

Table of signals within 20dB of the limit line for Quasi-Peak Horizontal

Quasi-Peak Values of 30 MHz. to 300 MHz. **Vertical Polarisation**

The plot shows a swept response of peak values using the quasi-peak limit line


(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)


PAGE 13 OF 47 File name JENNIC.166A

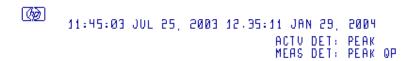
Signal	Freq (MHz)	Peak Amp (dBuV/m)	Peak - Lim1 (dB)	QP Amp (dBuV/m)	QP - Lim1 (dB)
1	63.997088	22.27	-17.73	20.91	-19.09
2	95.998950	26.72	-16.78	25.54	-17.96
3	111.996875	35.88	-7.62	35.30	-8.20
4	127.993275	28.06	-15.44	26.58	-16.92
5	255.993275	29.05	-16.95	27.40	-18.60
6	287.995975	31.54	-14.46	29.95	-16.05

Table of signals within 20dB of the limit line for Quasi-peak Vertical

File name JENNIC.166A PAGE 14 OF 47

Quasi-Peak Values of 300 MHz. to 1 GHz. Horizontal Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line


(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

File name JENNIC.166A PAGE 15 OF 47

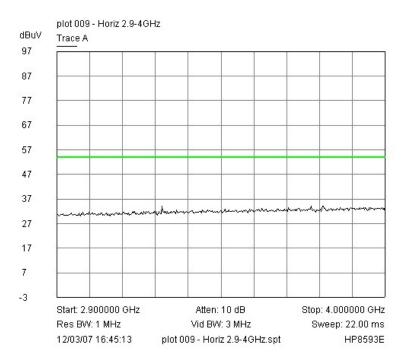
NONE

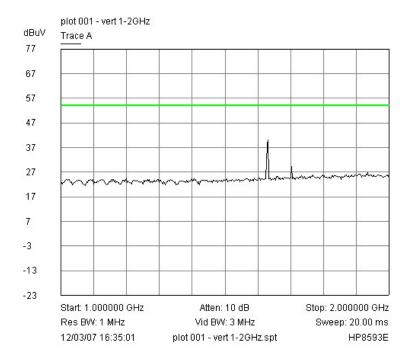
Table of signals within 20dB of the limit line for Quasi-Peak Horizontal

File name JENNIC.166A PAGE 16 OF 47

Quasi-Peak Values of 300 MHz. to 1 GHz. Vertical Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line


(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)


File name JENNIC.166A PAGE 17 OF 47

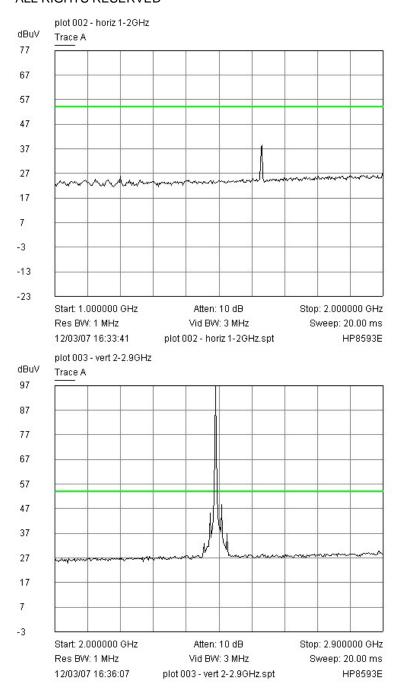
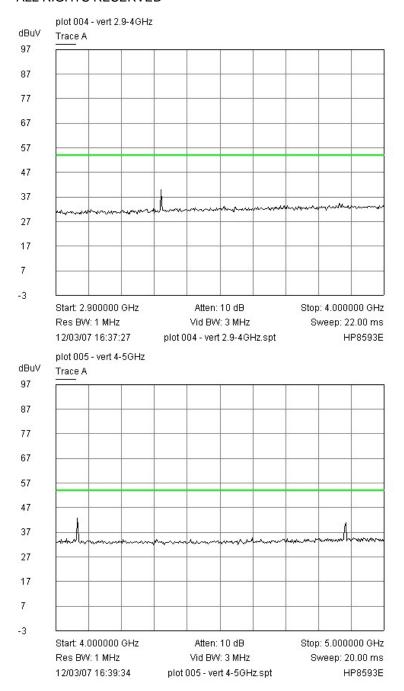
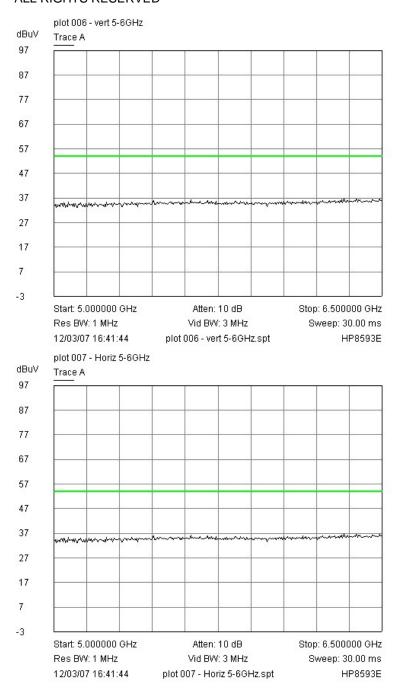
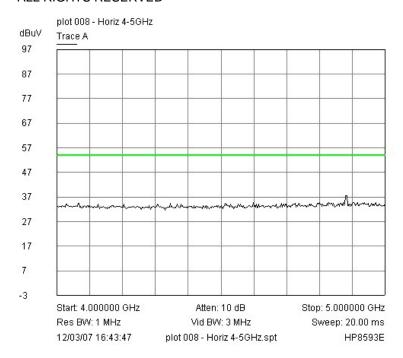

NONE

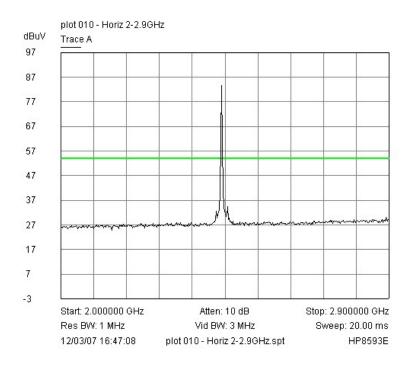
Table of signals within 20dB of the limit line for Quasi-peak Vertical


File name JENNIC.166A PAGE 18 OF 47

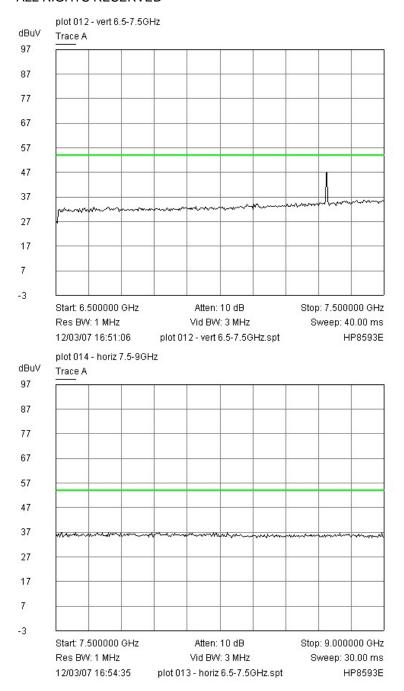


File name JENNIC.166A PAGE 20 OF 47 QMF21 – 8: FCC PART 15C: RNE ISSUE 02, APR 06

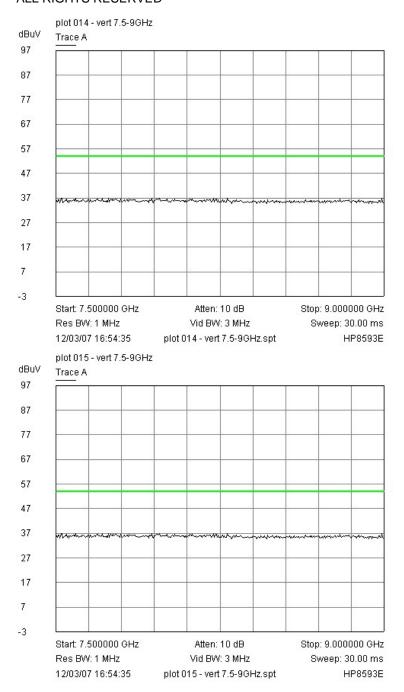

PAGE 21 OF 47 File name JENNIC.166A

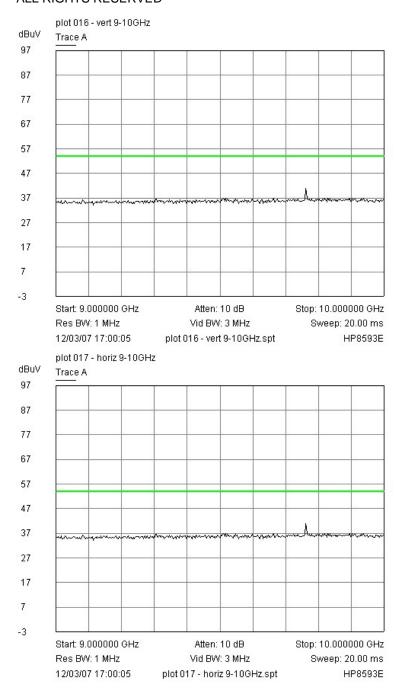


File name JENNIC.166A PAGE 22 OF 47

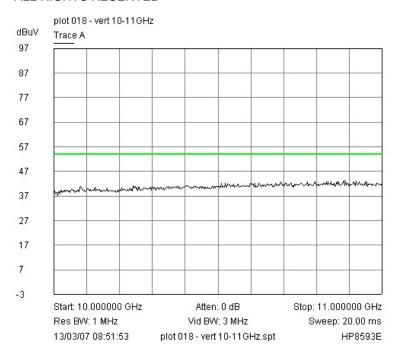

PAGE 23 OF 47

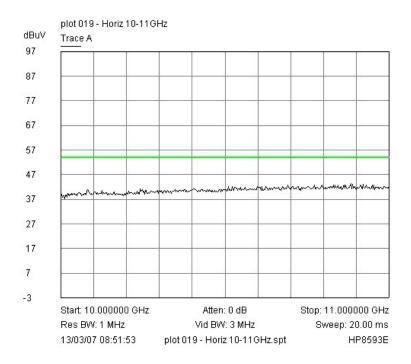
©2004 RN ELECTRONICS LIMITED ALL RIGHTS RESERVED



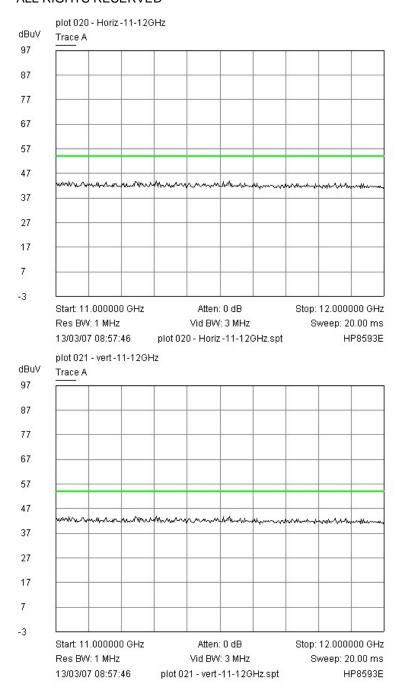

File name JENNIC.166A

PAGE 24 OF 47 File name JENNIC.166A

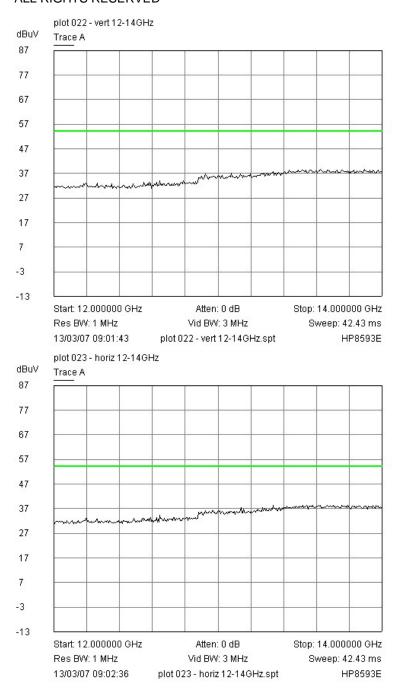

File name JENNIC.166A PAGE 25 OF 47

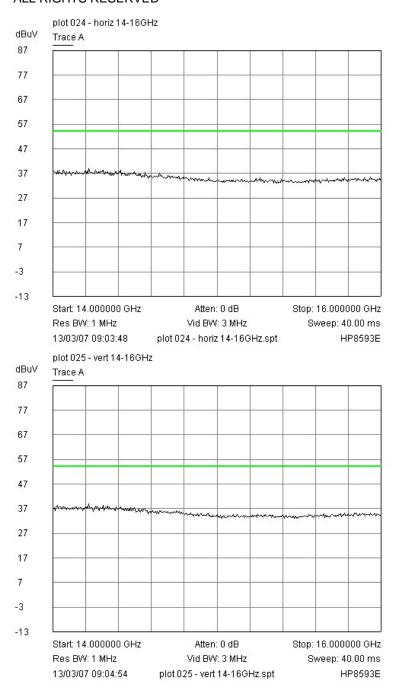


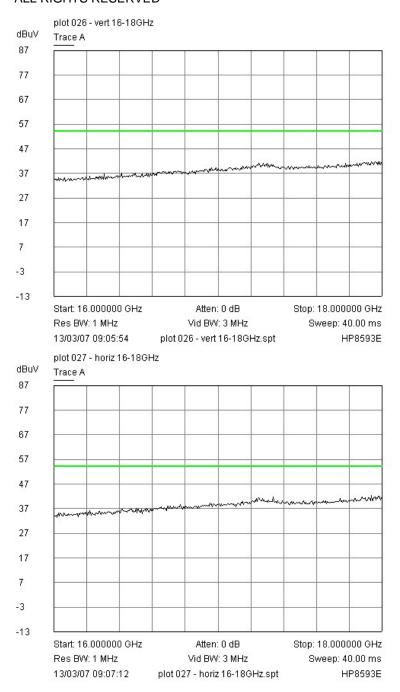
File name JENNIC.166A PAGE 26 OF 47

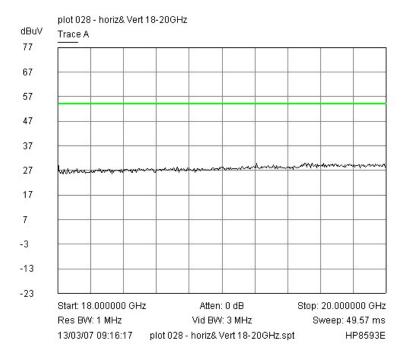

PAGE 27 OF 47

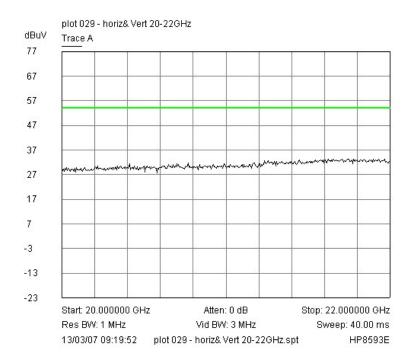
©2004 RN ELECTRONICS LIMITED ALL RIGHTS RESERVED



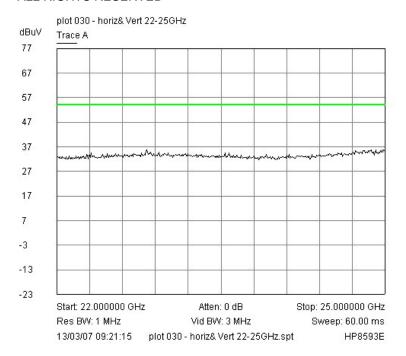

File name JENNIC.166A


File name JENNIC.166A PAGE 28 OF 47


PAGE 29 OF 47 File name JENNIC.166A



PAGE 30 OF 47 File name JENNIC.166A


PAGE 31 OF 47 File name JENNIC.166A

File name JENNIC.166A

QMF21 – 8: FCC PART 15C: RNE ISSUE 02, APR 06

File name JENNIC.166A

QMF21 – 8: FCC PART 15C: RNE ISSUE 02, APR 06

Tables of signals within 20dB of the limit line for 1GHz - 26GHz

Low Channel

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg-Limit ¹ (dBuV/m)	Comments
1	1600	V	39	-15	
2	3200	Н	35	-19	
3	3200	V	45	-9	
4	4810	V	46.2	-7.8	harmonic
5	4810	H	36.5	-17.5	harmonic

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg-Limit ² (dBuV/m)	Comments
6	2405	V	97.9	-	fundamental
7	7215	V	47	-30.9	harmonic
8	7215	H	45.8	-32.1	harmonic
9	9620	V	46.8	-31.1	harmonic
10	9620	Н	46	-31.9	harmonic

Middle Channel

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg-Limit ¹ (dBuV/m)	Comments
1	1625	V	43.5	-10.5	
2	1625	Н	41	-13	
3	3250	V	52	-2	
4	3250	Н	40.1	-13.9	
5	4060	V	41	-13	
6	4880	V	38	-16	harmonic
7	4880	Н	34	-20	harmonic
8	7320	V	47.6	-6.4	harmonic
9	7320	H	45.8	-8.2	harmonic

Signal	Freq	Polaris-	Avg Amp	Avg-Limit ²	Comments
	(MHz)	ation	(dBuV/m)	(dBuV/m)	
10	2440	V	96	-	fundamental
11	9760	V	43	-33	harmonic
12	9760	H	49	-27	harmonic

File name JENNIC.166A PAGE 34 OF 47

 $^{^{1}}$ Limit for emissions within the restricted bands of 15.205 comes from 15.209 = 54dBuV/m at 3m.

² Limit for emissions outside the restricted bands of 15.205 comes from 15.247(d) = -20dB from highest in-band emission measured in 100kHz.

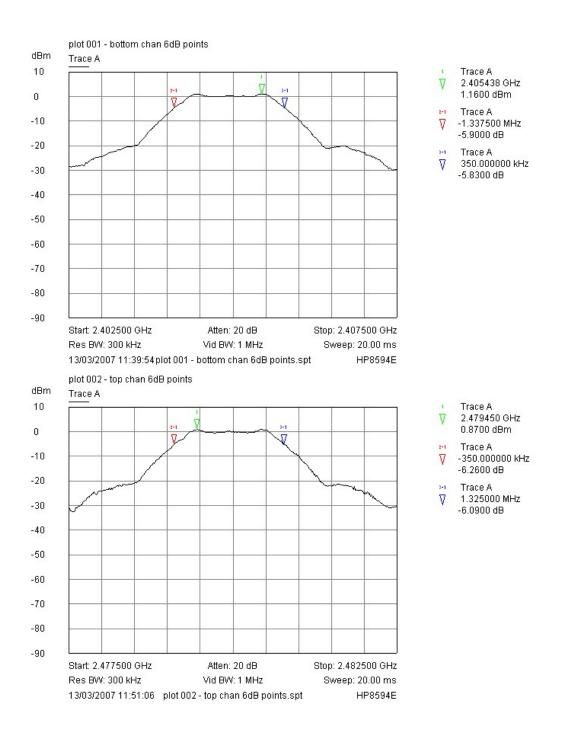
High channel

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg-Limit ¹ (dBuV/m)	Comments
1	3300	V	46.1	-7.9	
2	3300	H	34	-20	
3	4960	V	41.1	-12.9	harmonic
4	4960	H	37	-17	harmonic
5	7440	V	45	-9	harmonic
6	7440	Н	42	-12	harmonic

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg-Limit ² (dBuV/m)	Comments
7	2480	V	96.4	(GBGV/III)	fundamental
8	9920	V	43	-33.4	harmonic
9	9920	H	43.5	-32.9	harmonic

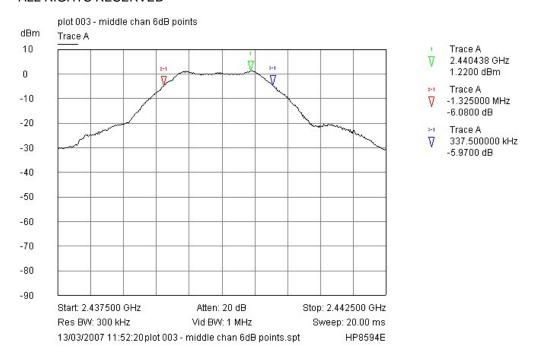
In all the above measurements the fundamental signal was continuously on, and in no case were the peak emissions more than 3dB above the average.

Highest in-band emissions measured in 100kHz bandwidth, per 15.209(d):


Channel	Frequency (MHz)	Field (dBuV/m)
Low	2405	97.9
Middle	2440	96.0
High	2480	96.4

File name JENNIC.166A PAGE 35 OF 47

 $^{^{1}}$ Limit for emissions within the restricted bands of 15.205 comes from 15.209 = 54dBuV/m at 3m.


² Limit for emissions outside the restricted bands of 15.205 comes from 15.247(d) = -20dB from highest in-band emission measured in 100kHz.

6.3 6dB Bandwidth

File name JENNIC.166A PAGE 36 OF 47

©2004 *RN ELECTRONICS LIMITED* ALL RIGHTS RESERVED

File name JENNIC.166A

QMF21 – 8: FCC PART 15C: RNE ISSUE 02, APR 06

7 Explanatory Notes

7.1 Explanation of FAIL LIMIT 1 Statement

The **FAIL MARGIN 1** statement(s) may appear on the graphical plots when the receiver used to measure your equipment detects a signal that exceeds the dashed line. This does not mean that the **EUT**, has failed the test only that the 10 dB calculation margin set, has been exceeded on a peak measurement.

Following the indication that the margin has been exceeded, measurements are made at the frequency (ies) of the peaks. These peaks have been calculated to either Quasi Peak or Average Peak dependant on the test. A table of results has been printed on the reverse of the page. This table looks similar to the one illustrated below:

Signal	Frequency (MHz)	Peak	PK Delta	Avg	Av Delta
Number		(dBµV)	L 1 (dB)	(dBμV)	L 1 (dB)
1	12345.0000	12.9	-2.5	10.2	-5.2

The First column, labelled Signal Number, is a number that the receiver has given to each signal, which has been calculated.

Column Two, labelled Frequency (MHz), is the frequency of the signal received.

Column Three, labelled Peak (dB μ V), (can also be labelled, in the case of Quasi Peak, Peak dB μ V/m) is the Level that was received at peak amount in dB above 1μ V.

Column Four, labelled PK Delta L1 (dB), is the same level as Column three but is given in a level relative to the limit line required.

Column Five, labelled AVG (dB μ V), (can also be labelled, in the case of Quasi Peak, QP dB μ V/m) when undertaking a Quasi peak test, This is the Average or Quasi peak calculation results given in dB μ V or dB μ V/m above 1 μ V.

Column Six, labelled AV Delta L 1 (dB), (can also be labelled, in the case of Quasi Peak, QP Delta L 1 (dB)) is the Average or Quasi Peak calculation relevant to the limit line. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in $\mu V/m$ at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB $\mu V/m$ referenced to the measuring instrument inputs. RN Electronics calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

- (a) limit of 500 μ V/m equates to 20.log (500) = 54 dB μ V/m.
- (b) limit of 300 μ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB μ V/m at 3m

N.B. The limit lines drawn are the general limits of 15.209, not the specific limits of 15.247 which are less stringent outside of the restricted bands of 15.205.

File name JENNIC.166A PAGE 38 OF 47

- 8. Photographs
- 8.1 Radiated emissions

Photograph of the EUT as viewed from in front of the antenna, site M. EUT is mounted on a test jig on a turntable with test jig power adaptor to rear.

File name JENNIC.166A PAGE 39 OF 47

8.2 EUT

File name JENNIC.166A PAGE 40 OF 47

8.3 EUT in Test Jig

File name JENNIC.166A QMF21 – 8: FCC PART 15C: RNE ISSUE 02, APR 06

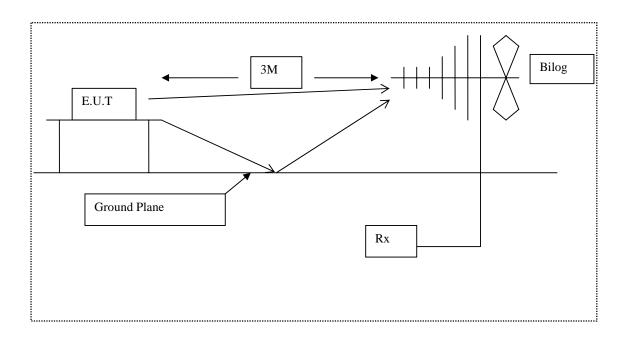


Diagram of the radiated emissions test setup.

9. Signal Leads

Port Name	Cable Type	Location
Test jig antenna port	SMA coax connector	On test jig
Antenna port	uFL coax connector.	On EUT
Serial Comms	RS232 (USB) fly lead	On test jig.
DC input	7V dc fed from ac/dc adaptor to jack	On test jig.
Battery	3V battery clip input (2 of 1.5V AAA)	On test jig / direct to pins of module.

File name JENNIC.166A PAGE 43 OF 47

10. Test Equipment Calibration list

The following table lists the test equipment used, last calibration date and calibration interval. All equipment used has been maintained within the calibration requirements of **R.N. Electronics Ltd.** quality system.

RNNo	Model	Description	Manufacturer	Last Cal	Interval
C031	437B	Power Meter	Hewlett Packard	Sep-19-06	12 mths
C032	8482A	Power Sensor	Hewlett Packard	Sep-22-06	12 mths
E1	HP8542E	EMI Receiver & RF Filter	Hewlett Packard	Oct-31-06	12 mths
E2	HP8594E	Spectrum Analyser + EMC S/ware	Hewlett Packard	Mar-12-07	12 mths
E238	FC5343A	2.7 - 5.0 GHz BPF	IFR	n/a	n/a
E242	22102	Bandpass filter 7.8 - 16 GHz	Merimec	n/a	n/a
E266	2032	5.4GHz Signal Generator	Marconi Instruments	Feb-14-06	24 mths
E268	BHA 9118	1-18 GHz Horn Antenna	Schaffner	May-26-06	60 mths
E3	HP8593E	Spectrum Analyser	Hewlett Packard	Sep-20-06	24 mths
E5	HP8447F	Pre-Amplifier	Hewlett Packard	Aug-15-06	12 mths
N438	3513 172 1208	3.9 - 7.5 GHz BPF	MEL	n/a	n/a
TMS73	0.083333333	Off Air Standard	Quartzlock	n/a	n/a
TMS79	460451	Std Gain Horn Antenna 18-26.5 GHz	ETS Systems	Oct-17-06	12 mths
TMS82	8449B	Pre Amplifier 1 - 26 GHz	Agilent	Oct-17-06	12 mths
TMS933	CBL6141A	Bilog Antenna 30MHz - 2GHz	York EMC	Aug-17-06	36 mths

File name JENNIC.166A PAGE 44 OF 47

ALL RIGHTS RESERVED

11. Auxiliary equipment

11.1 Auxiliary equipment supplied by Jennic Ltd

Auxiliary equipment used for the purpose of test supplied by the above has been listed below

Manufacturer	Description	Model Number	Serial Number
FRIWO	ac/dc adaptor set to 7.5V	EP 2	805
Jennic	Jig for RS232 comms / dc supply	DR1048 v1.0	-
Jennic	Jig for adapting uFL connector to SMA for testing	-	-

11.2 Auxiliary equipment supplied by RN Electronics Limited

Auxiliary equipment used for the purpose of test supplied by the above has been listed below

RN Number	Manufacturer	Description	Model Number	Serial Number
1003	DELL	Laptop	Latitude	191-744-573-95

File name JENNIC.166A PAGE 45 OF 47

©2004 *RN ELECTRONICS LIMITED* ALL RIGHTS RESERVED

REPORT NUMBER 03-166A/3298/1/07

12. Modifications

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

NONE

File name JENNIC.166A PAGE 46 OF 47

13. Compliance information

Products subject to the Declaration of Conformity procedure are required to be supplied with a compliance information statement. A copy of this statement may be included here:

NOT APPLICABLE - Device to be Certified.

File name JENNIC.166A PAGE 47 OF 47

Certificate of Test

The equipment noted below has been tested by **R.N. Electronics Limited** and conforms with the relevant subpart of FCC part 15.

This certificate relates to the equipment, as identified by unique serial number(s) and further detailed in the referenced report, in the condition(s) at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Furthermore, this is a certificate of test only and should not be confused with an equipment authorisation.

Equipment:	802.15.4/ Zigbee module
Model Number(s):	JN5139-000-M03
Unique Serial Number(s):	05
Manufacturer:	Jennic Ltd
Customer Purchase Order Number:	PO 004039
R.N. Electronics Limited Report Number:	03-166A/3298/1/07
Test Standards:	FCC Part 15C: effective date February 7 th 2007 Class DTS Intentional Radiator
Date tested:	24 th March 2007
For and on behalf of R.N. Electronics Limited	
Signature:	