

FCC PART 15D

MEASUREMENT AND TEST REPORT

For

LogicMark, LLC

8625 Hampton Way; Fairfax Station, Virginia 22039, USA

FCC ID: TYD3X911

Report Type: Product Type:

Original Report LifeSentry & FreedomAlert (Base)

Test Engineer: Vicent Kang

Report Number: RSZ10041305-Base

Report Date: 2010-07-02

Merry Zhao

Reviewed By: EMC Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building,

merry, wheno

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Shenzhen). This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Related Submittal(s)/Grant(s)	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	6
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
CONFIGURATION OF TEST SETUPBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.319 (I) & §2.1091 - RF RADIATION EXPOSURE	
APPLICABLE STANDARDSMPE PREDICATION	
FCC§15.317 & §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
FCC §15.319(E) - ANTENNA GAIN	
APPLICABLE STANDARD	
FCC §15.315 & §15.207 - CONDUCTED EMISSIONS	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST RESULTS SUMMARY	
FCC §15.323 (A) - EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.319 (C) - PEAK TRANSMIT POWER	19
STANDARD APPLICABLE	19
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	_
FCC §15.319(D) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARDTEST PROCEDURE	
TEST FROCEDURE	
TEST DATA	

FCC §15.323(D) - EMISSION INSIDE AND OUTSIDE THE SUB-BAND	29
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	29
TEST DATA	29
FCC §15.319(G) - RADIATED EMISSIONS	36
MEASUREMENT UNCERTAINTY	36
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP.	37
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	37
CORRECTED AMPLITUDE & MARGIN CALCULATION	37
TEST RESULTS SUMMARY	38
Test Data	38
FCC §15.323 (F) - FREQUENCY STABILITY	42
APPLICABLE STANDARD	42
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.323(C)(E) & §15.319(F) – SPECIFIC REQUIREMENTS FOR UPCS DEVICE	44
DECLARATION LETTER	50

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *LogicMark*, *LLC's* product, model number: 37911(base)(FCC ID:TYD3X911) or the "EUT" as referred to in this report is a LifeSentry & FreedomAlert, which measures approximately: 13.7 cm L x 14.5 cm W x 4.3 cm H, input voltage: DC 7.5V adapter or DC 4*1.2V AA battery.

Adapter Information: PLUG IN CLASS 2 TRANSFORMER

Model: HHD75-600;

Input: AC120V 60Hz 18W; Output: DC 7.5V 600mA

*Note: The series products, 37911 & 35911, we select 37911 to test, the two models are electrically identical, and they are just named differently due to marketing purposes, which was explained in the attached Declaration Letter.

* All measurement and test data in this report was gathered from production sample serial number: 1004024 (Assigned by BACL, Shenzhen). The EUT was received on 2010-04-13.

Objective

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.17 – 2006, and ANSI C63.4-2003

The tests were performed in order to determine compliance with FCC Part 15, Subpart D, and section 15.203, 15.315, 15.317, 15.319 and 15.323 rules.

Related Submittal(s)/Grant(s)

FCC ID: TYD3X911, FCC Part 15D submission of handset portion.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.17 - 2006 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 21, 2007. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

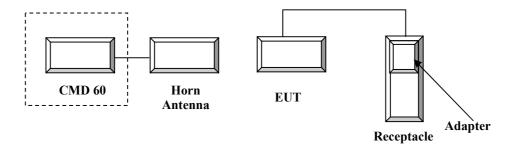
SYSTEM TEST CONFIGURATION

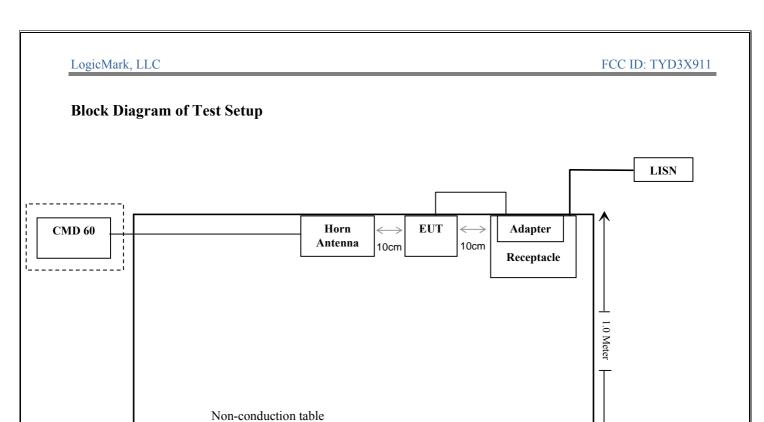
Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

Equipment Modifications

No modification was made to the unit tested.


Local Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	FCC ID
R & S	Digital Radio-Communication Tester	CMD60	829902/026	DoC

External I/O Cable

Cable Description	Length (m)	From/Port	То
Unshielded Detectable Power Line	1.8	Adapter	EUT

Configuration of Test Setup

1.5 Meter

80 cm above Ground Plane

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.319(i), §2.1091	RF Radiation Exposure	Compliant
§15.317, §15.203	Antenna Requirement	Compliant
§15.319 (e)	Antenna Gain	Compliant
§15.315, §15.207	Conducted Emission	Compliant
§15.323 (a)	Emission Bandwidth	Compliant
§15.319 (c)	Peak Transmit Power	Compliant
§15.319 (d)	Power Spectral Density	Compliant
§15.323 (d)	Emission Inside and Outside the sub-band	Compliant
§15.319 (g)	Radiated Emission	Compliant
§15.323 (f)	Frequency Stability	Compliant
§15.323 (c)(e), §15.319 (f)	Specific Requirements for UPCS	Compliant

FCC §15.319 (i) & §2.1091 - RF RADIATION EXPOSURE

Applicable Standards

According to FCC §1.1307(b)(1) and §2.1091, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	842/f	2.19/f	*(180/f\2\)	30
30-300	27.5	0.073	0.2	30
300-1500.	/	/	f/1500	30
1500-100,000.	/	/	1.0	30

f = frequency in MHz

MPE Predication

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Maximum peak output power at antenna input terminal: 16.58 (dBm)

Maximum peak output power at antenna input terminal: 45.4988 (mW)

Prediction distance: 20 (cm)

Predication frequency: 1921.536 (MHz)
Antenna Gain (typical): 2.14 (dBi)

Antenna Gain (typical): 1.637 numeric

The worst case is power density at predication frequency at 20 cm: $\frac{0.0148 \text{ (mW/cm}^2)}{0.0148 \text{ (mW/cm}^2)}$ MPE limit for general population exposure at prediction frequency: $\frac{1 \text{ (mW/cm}^2)}{0.0148 \text{ (mW/cm}^2)}$

Result: Pass

^{* =} Plane-wave equivalent power density

FCC§15.317 & §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC §15.317, an unlicensed PCS device must meet the antenna requirement of §15.203.

As per FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has two integrated antennas arrangement, one is vertical polarity, the other is horizontal polarity, please refer to the internal photos. Their maximum gains are 2.14 dBi, fulfill the requirement of this section.

Test Result: Pass

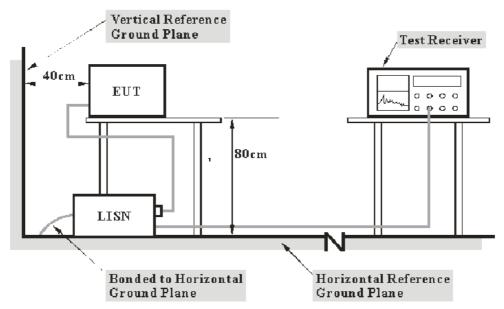
FCC §15.319(e) - ANTENNA GAIN

Applicable Standard

According to FCC §15.319 (e):

The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

Result: The antenna gain is 2.14 dBi provided by manufacturer, which is less than 3 dBi.


FCC §15.315 & §15.207 - CONDUCTED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is ±2.4 dB.

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC 15.315 and FCC 15.207 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range IF B/W 150 kHz - 30 MHz 9 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2009-11-24	2010-11-24
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2010-03-09	2011-03-08

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

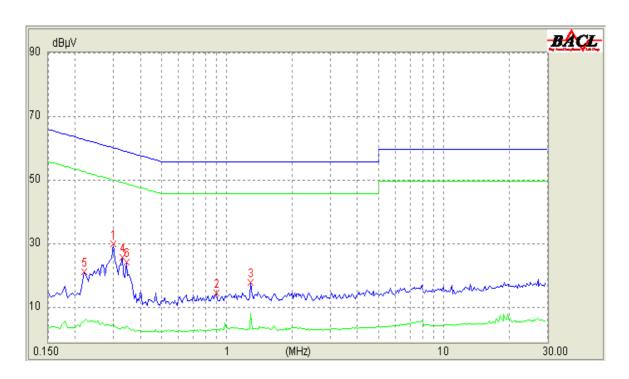
All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15 .207, with the worst margin reading of:

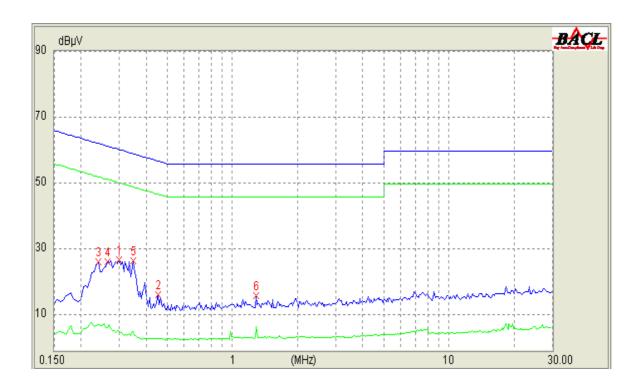
37.22 dB at 1.285 MHz in the Line conductor mode. 38.83 dB at 1.285 MHz in the Neutral conductor mode.

Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.2kPa

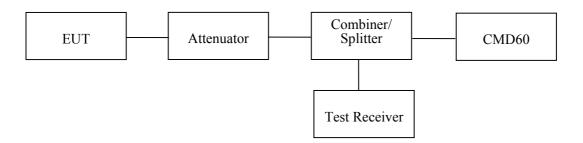
The testing was performed by Vicent Kang on 2010-04-22.


Test mode: Transmitting

120V/60Hz, Line

Co	Conducted Emissions			FCC Part 15.2	207
Frequency (MHz)	Correction Factor (dB)	Cord. Result (dВµV)	Limit (dBµV)	Margin (dB)	Detector (PK/AV/QP)
1.285	10.10	8.78	46.00	37.22	AV
0.300	10.10	18.34	60.28	41.94	QP
0.895	10.10	3.70	46.00	42.30	AV
1.285	10.10	12.70	56.00	43.30	QP
0.345	10.10	4.92	49.18	44.26	AV
0.330	10.10	14.97	59.51	44.54	QP
0.300	10.10	5.42	50.28	44.86	AV
0.330	10.10	4.33	49.51	45.18	AV
0.345	10.10	13.91	59.18	45.27	QP
0.220	10.10	6.57	52.92	46.35	AV
0.895	10.10	8.61	56.00	47.39	QP
0.220	10.10	14.29	62.92	48.63	QP

120V/60Hz, Neutral:


Co	Conducted Emissions			FCC Part 15.20	77
Frequency (MHz)	Correction Factor (dB)	Cord. Result (dBµV)	Limit (dBµV)	Margin (dB)	Detector (PK/AV/QP)
1.285	10.10	7.17	46.00	38.83	AV
0.300	10.10	19.23	60.28	41.05	QP
0.350	10.10	16.69	59.07	42.38	QP
0.265	10.10	18.32	61.38	43.06	QP
0.350	10.10	5.68	49.07	43.39	AV
0.455	10.10	3.32	46.87	43.55	AV
0.240	10.10	17.77	62.15	44.38	QP
1.285	10.10	11.62	56.00	44.38	QP
0.240	10.10	7.75	52.15	44.40	AV
0.265	10.10	6.85	51.38	44.53	AV
0.300	10.10	5.67	50.28	44.61	AV
0.455	10.10	7.97	56.87	48.90	QP

FCC §15.323 (a) - EMISSION BANDWIDTH

Applicable Standard

Operation shall be contained within the 1920-1930 MHz band. The emission bandwidth shall be less then 2.5 MHz and greater than 50 kHz.

The emission bandwidth is measured in accordance with ANSI C63.17 sub-clause 6.1.3 using the setup below:

The width, in Hz, of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that is 26 dB down relative to the maximum level of the modulated carrier. It is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1% of the emission band-width of the device under measurement. [Extraction from 47 VFR 15, subpart D, 15.303 (C)].

Test Equipment List and Details

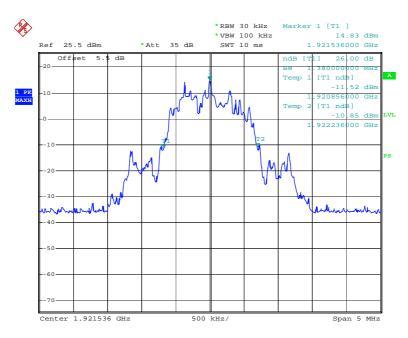
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2009-11-24	2010-11-24

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Data

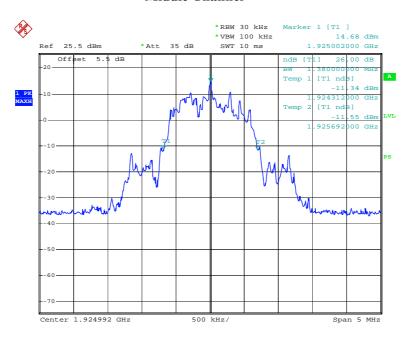
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

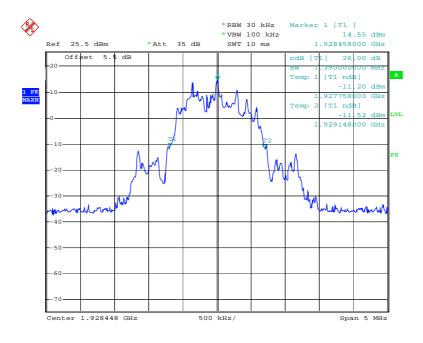

The testing was performed by Vicent Kang on 2010-04-26.

Test Mode: Transmitting

Channel	Center Frequency (MHz)	26dB Bandwidth (MHz)	Limit
Low	1921.536	1.380	50 kHz < OBW <2.5 MHz
Middle	1924.992	1.380	50 kHz < OBW <2.5 MHz
High	1928.448	1.390	50 kHz < OBW <2.5 MHz


Test Result: Pass, please Refer to the attached plots.

Low Channel


Date: 26.APR.2010 15:17:54

Middle Channel

Date: 26.APR.2010 15:18:43

High Channel

Date: 26.APR.2010 15:19:26

FCC §15.319 (c) - PEAK TRANSMIT POWER

Standard Applicable

The peak transmit power is according to ANSI C63.17-2006 §6.1.2

Per FCC Part15.319 (a), Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in hertz.

Per FCC Part15.319 (e), The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

Calculation of Peak Transmit Power Limit (P_{max}): $P_{max} = 100 \mu w \ x \ (EBW)^{1/2}$ EBW is the transmit emission bandwidth in Hz determined in the other test item:

Test Data:

EBW = 1390000Hz $P_{\text{max}} = 100 \,\mu \text{ W x } (1390000)^{1/2} = 117.90 \text{mW} = 20.72 \text{dBm}$

Test Procedure

Using the manufacturer's information on occupied bandwidth set the spectrum analyzer as follows:

RBW	≥ Emission bandwidth	
Video bandwidth	≥RBW	
Span	Zero	
Center frequency	Nominal center frequency of channels	
Amplitude scale	Log (linear may be used if analyzer has sufficient linear dynamic range and accuracy)	
Detection	Peak detection	
Trigger	Video	
Sweep rate	Sufficiently rapid to permit the transmit pulse to be resolved accurately	

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2009-11-24	2010-11-24

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

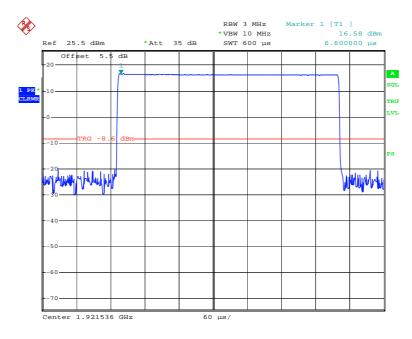
Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

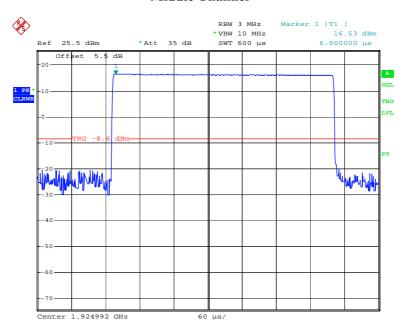
The testing was performed by Vicent Kang on 2010-04-26.

Test Result: Pass

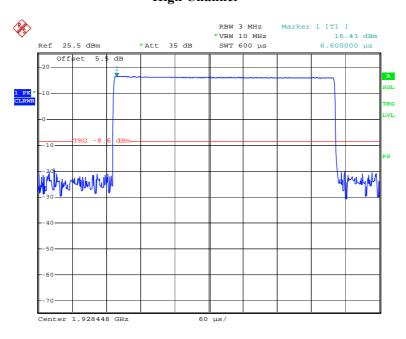

Refer to the attached plots.

Powered by adapter

Frequency (MHz)	Peak Transmit Power (dBm)	FCC Limit (dBm)
1921.536	16.58	20.72
1924.992	16.53	20.72
1928.448	16.43	20.72


Note: $P_{max} = 100 \mu W \ x \ (1390000)^{1/2} = 117.90 \ mW = 20.72 \ dBm$

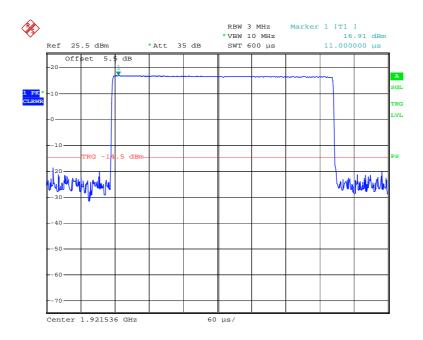
Low Channel


Date: 26.APR.2010 15:25:44

Middle Channel

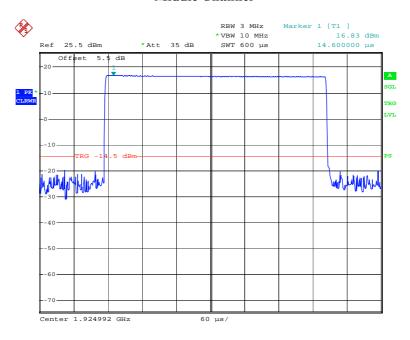
Date: 26.APR.2010 15:26:05

High Channel

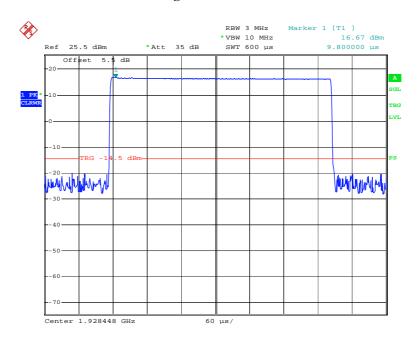

Date: 26.APR.2010 15:26:25

Powered by battery

Frequency (MHz)	Peak Transmit Power (dBm)	FCC Limit (dBm)
1921.536	16.91	20.72
1924.992	16.83	20.72
1928.448	16.67	20.72


Note: $P_{max} = 100 \ \mu W \ x \ (1390000)^{1/2} = 117.90 \ mW = 20.72 \ dBm$

Low Channel


Date: 26.APR.2010 17:22:34

Middle Channel

Date: 26.APR.2010 17:21:59

High Channel

Date: 26.APR.2010 17:21:32

FCC §15.319(d) - POWER SPECTRAL DENSITY

Applicable Standard

The power spectral density is according to ANSI C63.17-2006 §6.1.5

The average pulse energy in a 3 kHz bandwidth is divided by the pulse duration.

The power spectral density shall not exceed 3mW in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

Test Procedure

Using the manufacturer's information on occupied bandwidth set the spectrum analyzer as follows:

RBW	3 kHz	
Video bandwidth	$\geq 3 \times RBW$	
Span	Zero span at frequency with the maximum level (frequency determined in 6.1.3 if the same type of signal (continuous versus burst) was used in 6.1.3)	
Center frequency	Spectral peak as determined in 6.1.3	
Sweep time	For burst signals, sufficient to include essentially all of the maximum length burst at the output of a 3 kHz filter (e.g., maximum input burst duration plus 600 µs). For continuous signals, 20 ms.	
Amplitude scale	Log power	
Detection	Sample detection and averaged for a minimum of 100 sweeps	
Trigger	External or internal	

Test Equipment List and Details

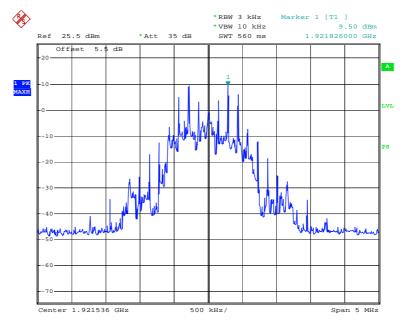
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2009-11-24	2010-11-24

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

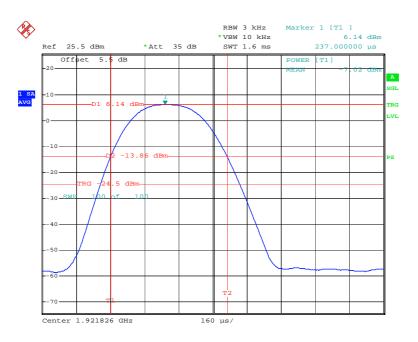
Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

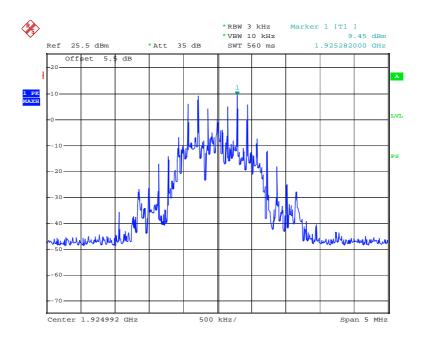

The testing was performed by Vicent Kang on 2010-04-26.

Test Mode: Transmitting

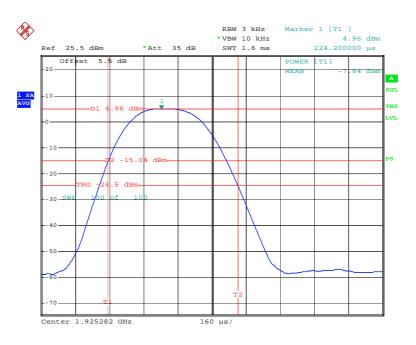

Test Result: Compliant. Please refer to following tables and plots

Frequency	Power Spec	tral Density	Limit	Result
(MHz)	(dBm/3 kHz)	(mW/3 kHz)	(mW/3 kHz)	Result
1921.536	-7.02	0.199	3	Pass
1924.992	-7.84	0.164	3	Pass
1928.448	-6.72	0.213	3	Pass

Low Channel

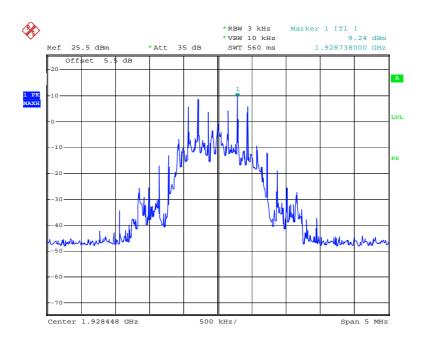


Date: 26.APR.2010 15:46:14

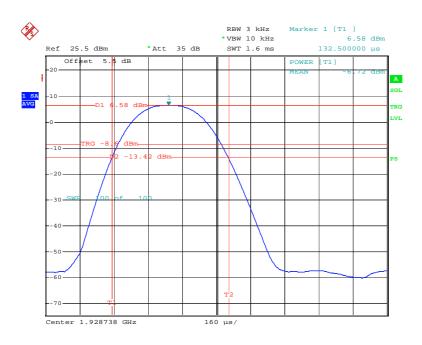


Date: 26.APR.2010 15:47:11

Middle Channel



Date: 26.APR.2010 15:39:38



Date: 26.APR.2010 15:41:07

High Channel

Date: 26.APR.2010 15:28:36

Date: 26.APR.2010 15:30:13

FCC §15.323(d) - EMISSION INSIDE AND OUTSIDE THE SUB-BAND

Applicable Standard

Emissions inside the sub-band must comply with the following emission mask:

1. In the bands between 1B and 2B measured from the center of the emission bandwidth the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device;

- 2. in the bands between 2B and 3B measured from the center of the emission bandwidth the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator:
- 3. in the bands between 3B and the sub-band edge the total power emitted by an intentional radiator in the measurement bandwidth shall be at least 60 dB below the transmit power permitted for that radiator.

Where B = emission bandwidth

Emission Outside the sub-band shall be attenuated below a reference power of 112 mw (20.5 dBm) as follows:

- 1. 30 dB between the sub-band and 1.25 MHz above or below the sub-band;
- 2. 50 dB between 1.25 and 2.5 MHz above or below the sub-band;
- 3. 60 dB at 2.5 MHz or greater above or below the sub-band.

Test Equipment List and Details

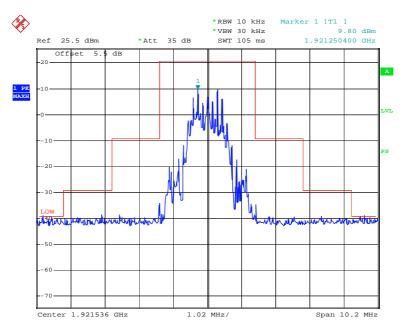
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2009-11-24	2010-11-24

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Data

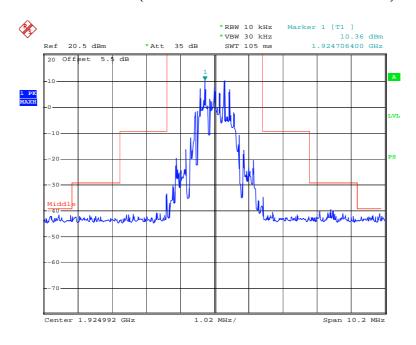
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

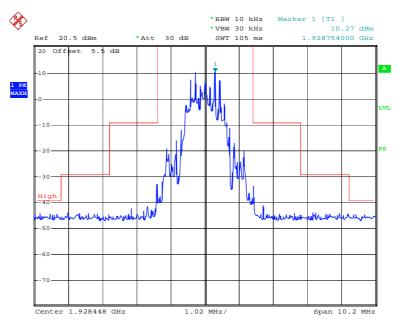

The testing was performed by Vicent Kang on 2010-04-26 and 2010-04-28.

Test Mode: Transmitting

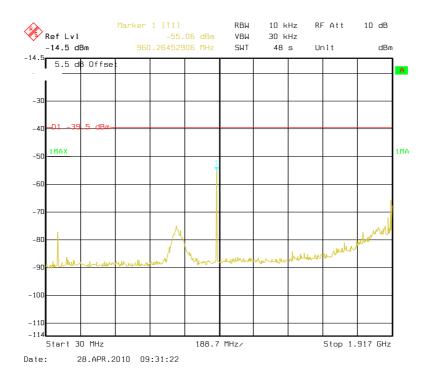
Test Result: Compliant.

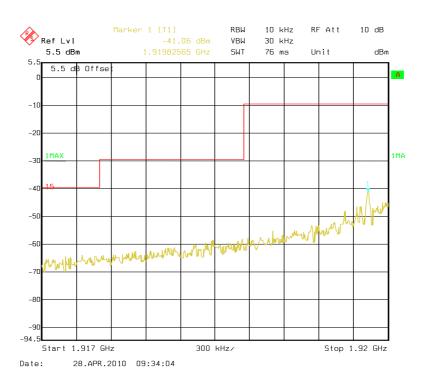

Please refer to following plots

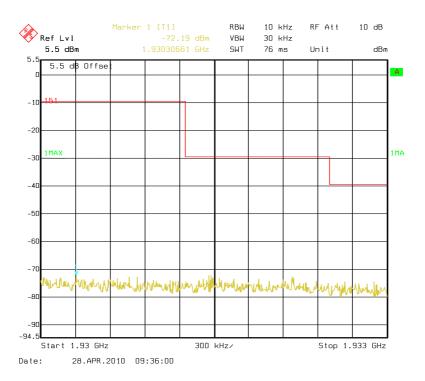
Low Channel (Unwanted Emission inside the Sub-band)

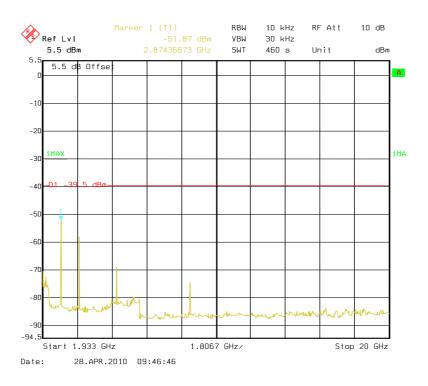

Date: 26.APR.2010 16:48:47

Middle Channel (Unwanted Emission inside the Sub-band)

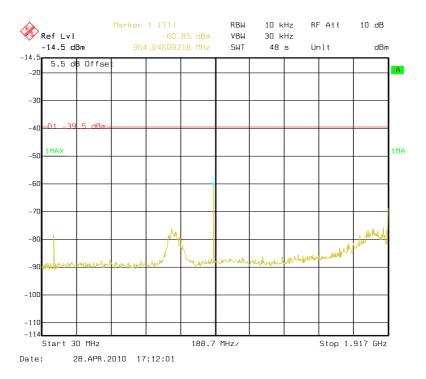

Date: 26.APR.2010 16:44:39

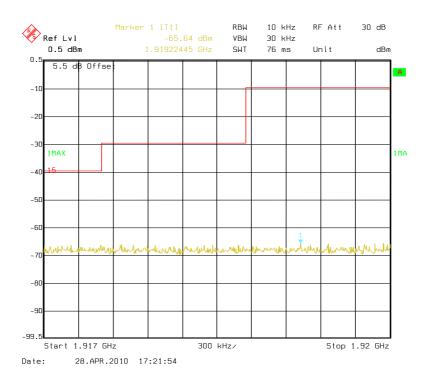

High Channel (Unwanted Emission inside the Sub-band)

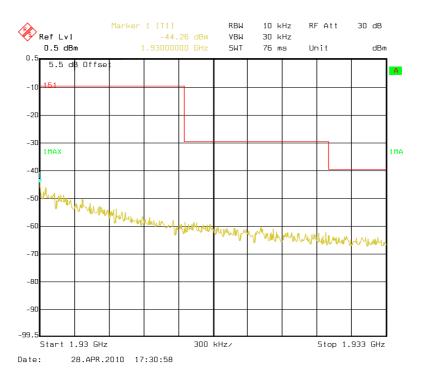


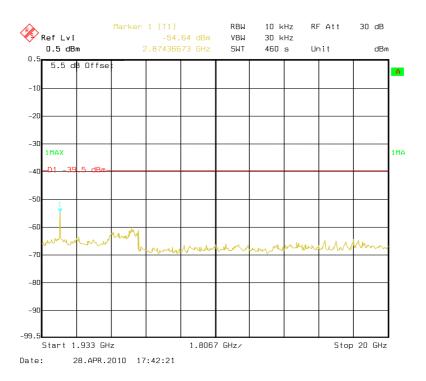

Date: 26.APR.2010 16:57:58

Low Channels (Unwanted Emission outside the Sub-band)

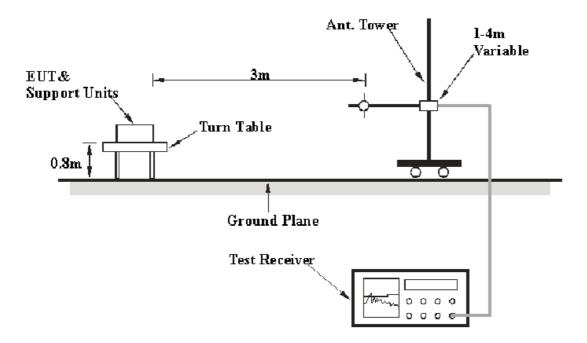








High Channels (Unwanted Emission outside the Sub-band)


FCC §15.319(g) - RADIATED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is ±4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.17 - 2006. The specification used was the FCC 15 § 15.319(g).

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	AV

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
НР	Amplifier	HP8447D	2944A09795	2009-08-02	2010-08-02
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2009-11-24	2010-11-24
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2010-03-11	2011-03-11
НР	Amplifier	2VA-213+	T-E27H	2010-03-08	2011-03-08
Sunol Sciences	Horn Antenna	DRH-118	A052604	2009-05-05	2010-05-04
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-07-08	2010-07-07

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

For the radiated emissions test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30MHz-1GHz and peak and Average detection modes for frequencies above 1GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss- Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Results Summary

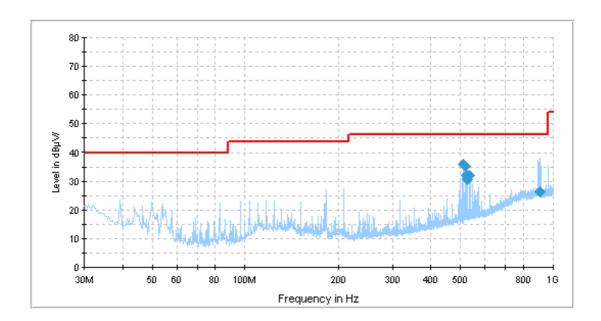
According to the data in the following table, the EUT complied with the FCC Part 15.319 (g), with the worst margin reading of:

Transmitting Mode (30-1000 MHz):

9.9 dB at 511.488750 MHz in the Vertical polarization

Transmitting Mode (Above 1 GHz):

7.60 dB at 3843.072 MHz in the Vertical polarization (Low Channel) 10.27 dB at 3849.984 MHz in the Vertical polarization (High Channel) 12.18 dB at 3856.896 MHz in the Horizontal polarization (High Channel)


Test Data

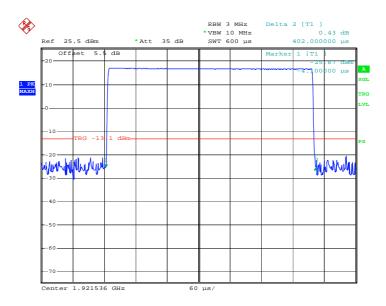
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.9 kPa

The testing was performed by Vicent Kang on 2010-04-27

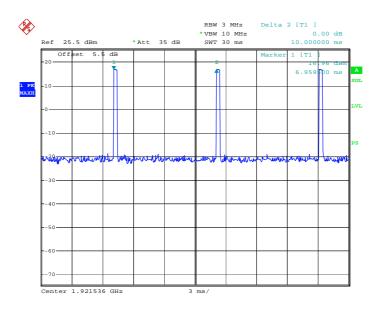
Test Mode: Transmitting (30-1000 MHz, worst case)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Position (degree)	Correction Factor (dB)	Limit (dBµV/m)	Margin (dB)
511.488750	36.1	101.0	V	130.0	-10.1	46.0	9.9
518.382000	35.2	101.0	V	124.0	-10.0	46.0	10.8
532.235250	32.1	101.0	V	132.0	-9.7	46.0	13.9
520.000250	32.0	101.0	V	129.0	-9.9	46.0	14.0
525.316750	30.8	101.0	V	146.0	-9.8	46.0	15.2
908.554500	26.5	261.0	V	76.0	-0.6	46.0	24.5


Test Mode: Transmitting (Above 1GHz)

_	S.A.		Turntable	Tes	t Ante	nna	Cable	Pre-	Cord.	FCC Pa	rt 15.31	9(g)/209
Freq. (MHz)	Donding	Detector PK/QP/AV	Direction Degree			Factor (dB/m)	Loss (dB)	Amp. Gain (dB)	Amp. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Remarks
					Lov	v Chanr	nel					
3843.072	63.68	PK	75	1.0	V	32.1	4.32	33.7	66.40	74	7.60	Harmonic
5764.608	47.73	PK	315	1.6	V	34.5	6.50	33.6	55.13	74	18.87	Harmonic
3843.072	51.97	PK	200	1.5	Н	32.1	4.32	33.7	54.69	74	19.31	Harmonic
5764.608	44.24	PK	207	1.4	Н	34.5	6.50	33.6	51.64	74	22.36	Harmonic
1618.640	40.76	PK	125	1.6	Н	27.8	3.62	34.4	37.78	74	36.22	Spurious
1824.240	40.49	PK	190	1.0	V	25.8	3.50	34.4	35.39	74	38.61	Spurious
	Middle Channel											
3849.984	61.01	PK	230	1.0	V	32.1	4.32	33.7	63.73	74	10.27	Harmonic
3849.984	55.42	PK	185	1.2	Н	32.1	4.32	33.7	58.14	74	15.86	Harmonic
5774.976	48.17	PK	260	1.5	V	34.5	6.5	33.6	55.57	74	18.43	Harmonic
5774.976	44.63	PK	310	1.5	Н	34.5	6.5	33.6	52.03	74	21.97	Harmonic
1797.190	39.95	PK	235	1.2	V	27.8	3.62	34.4	36.97	74	37.03	Spurious
1362.450	39.29	PK	164	1.5	Н	27.8	3.62	34.4	36.31	74	37.69	Spurious
					Hig	h Chan	nel					
3856.896	59.10	PK	304	1.6	Н	32.1	4.32	33.7	61.82	74	12.18	Harmonic
5785.344	51.13	PK	304	1.4	V	34.5	6.5	33.6	58.53	74	15.47	Harmonic
3856.896	55.35	PK	148	1.4	V	32.1	4.32	33.7	58.07	74	15.93	Harmonic
5785.344	45.75	PK	323	1.6	Н	34.5	6.5	33.6	53.15	74	20.85	Harmonic
1645.690	40.67	PK	215	1.5	Н	27.8	3.62	34.4	37.69	74	36.31	Spurious
1627.660	40.14	PK	300	1.3	V	25.8	3.5	34.4	35.04	74	38.96	Spurious

	Field Strength of Emissions (Average)							
	Cord. Peak	Antenna	Duty Cycle	Cord.	FCC 15.31	9(g)/209		
Frequency (MHz)	Amplitude @3m (dBµV/m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment	
			Low Chan	nel				
3843.072	66.40	V	-27.92	38.48	54	15.52	Harmonic	
5764.608	55.13	V	-27.92	27.21	54	26.79	Harmonic	
3843.072	54.69	Н	-27.92	26.77	54	27.23	Harmonic	
5764.608	51.64	Н	-27.92	23.72	54	30.28	Harmonic	
1618.640	37.78	Н	-27.92	9.86	54	44.14	Spurious	
1824.240	35.39	V	-27.92	7.47	54	46.53	Spurious	
	Middle Channel							
3849.984	63.73	V	-27.92	35.81	54	18.19	Harmonic	
3849.984	58.14	Н	-27.92	30.22	54	23.78	Harmonic	
5774.976	55.57	V	-27.92	27.65	54	26.35	Harmonic	
5774.976	52.03	Н	-27.92	24.11	54	29.89	Harmonic	
1797.190	36.97	V	-27.92	9.05	54	44.95	Spurious	
1362.450	36.31	Н	-27.92	8.39	54	45.61	Spurious	
			High Chan	nel				
3856.896	61.82	Н	-27.92	33.90	54	20.10	Harmonic	
5785.344	58.53	V	-27.92	30.61	54	23.39	Harmonic	
3856.896	58.07	V	-27.92	30.15	54	23.85	Harmonic	
5785.344	53.15	Н	-27.92	25.23	54	28.77	Harmonic	
1645.690	37.69	Н	-27.92	9.77	54	44.23	Spurious	
1627.660	35.04	V	-27.92	7.12	54	46.88	Spurious	


Note: Duty Cycle= $T_{on}/T_p*100\%$ T_{on} =402 μ s=0.402 ms, T_p =10.00 ms Duty Cycle=4.02%, Duty Cycle Factor = 20 log (Duty Cycle) = -27.92 dB Average=Peak+20* lg(Duty Cycle)

 T_{on}

Date: 27.APR.2010 09:52:20

 $T_{\mathfrak{p}}$

Date: 27.APR.2010 09:51:25

FCC §15.323 (f) - FREQUENCY STABILITY

Applicable Standard

Per FCC §15.323(f), the frequency stability of the carrier frequency of the intentional radiator shall be maintained within ± 10 ppm over 1 hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of -20° to $+50^{\circ}$ C at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

Test Procedure

This procedure should be carried out for each of the following test cases:

Temperature	Supply Voltage
20℃	85-115% of declared nominal voltage
-20°C	Normal
+50°C	Normal

^aUse the lowest temperature at which the EUT is specified to operate if it is above -20 °C.

Using the mean carrier frequency at 20° C and at nominal supply voltage as the reference, the mean carrier frequency shall be maintained within ± 10 ppm at the two extreme temperatures (or as declared by the manufacturer) and at normal temperature (typically 20° C) at the two extreme supply voltages.

Test Equipment List and Details

Manufacturer	anufacturer Description M		Serial Number	Calibration Date	Calibration Due Date
WUHUAN	Temperature & Humidity Chamber	HTP205	20021115	N/A	N/A
Rohde &Schwarz	EMI Test Receiver	ESCI	100035	2009-11-24	2010-11-24

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

The testing was performed by Vicent Kang on 2010-04-27

Test Result: Compliant.

Test Mode: Transmitting

Powered by adapter

Temperature (℃)	Voltage (V _{AC})	Channel Frequency (MHz)	Measured Frequency Offset (kHz)	Measured Frequency Offset (ppm)	Limit (ppm)
	102	1924.992	+4	+2. 078	±10
25	120	1924.992	+4	+2.078	±10
	138	1924.992	+3	+1.558	±10
-20	120	1924.992	+3	+1.558	±10
50	120	1924.992	+4	+2.078	±10

Powered by battery

Temperature (°C)	Voltage (V _{DC})	Channel Frequency (MHz)	Measured Frequency Offset (kHz)	Measured Frequency Offset (ppm)	Limit (ppm)
25	4.8	1924.992	+2	+1.039	±10
-20	4.8	1924.992	+2	+1.039	±10
50	4.8	1924.992	+3	+1.558	±10

FCC §15.323(c)(e) & §15.319(f) – SPECIFIC REQUIREMENTS FOR UPCS DEVICE

Automatic Discontinuation of Transmission, FCC Part 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. The provisions in this section are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

Test Procedure:

Please according to the declaration provided by manufacturer.

Test result:

Meet the requirement

Monitoring Time FCC 15.323 (c) (1)

Immediately prior to initiating transmission, devices must monitor the combined time and spectrum window in which they intend to transmit. For a period of at least 10 milliseconds for systems designed to use a 10 milliseconds or shorter frame period or at least 20 milliseconds for systems designed to use a 20 milliseconds frame period

Test procedure:

Measurement method according to ANSI C63.17 2006 clause 7.3.4

Test result:

EUT monitors the combined time and spectrum window prior to initiation of transmission. Test result please according to FCC15.323(c) (4).

Lower Monitoring Threshold Part15.323 (c) (2)

The monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to the emission bandwidth used by the device.

Test procedure:

Measurement method according to ANSI C63.17 2006 clause 7.3.1

Test result: Not Apply

Maximum Transmit Period FCC Part15.323 (c) (3)

If no signal above the threshold level is detected, transmission may commence and continue with the same emission bandwidth in the monitored time and spectrum windows without further monitoring. However, occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

Test procedure:

Measurement method according to ANSI C63.17 2006 clause 8.2.2

Test result:

Repetition of Access Criteria			Results
First	3180	28,800	Pass
Second	4020	28,800	Pass

System Acknowledgement, FCC Part15.323 (c) (4)

Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which time the access criteria must be repeated.

Test procedure:

Measurement method according to ANSI C63.17 2006 clause 8.1.1, 8.2.1

Test result:

Test	Time taken (second)	Limit (second)	Result
Connection acknowledgement	0.0050	1	Pass
Change of access criteria for control information	N/A	30	Pass
Transmission cease time	6.00	30	Pass
Pulse length	0.01	0.01	Pass

Note: N/A=Not Applicable

Least Interfered Channel (LIC) Selection, FCC Part15.323 (c) (5)

If access to spectrum is not available as determined by the above, and a minimum of 40 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level below a monitoring threshold of 50 dB above the thermal noise power determined for the emission bandwidth may be accessed.

Calculation of monitoring threshold limits for isochroous devices:

Lower threshold: $T_L = -174 + 10 \text{Log}_{10}\text{B} + M_u + P_{MAX} - P_{EUT} \text{ (dBm)}$

Upper threshold: $T_U = -174 + 10 Log_{10}B + M_u + P_{MAX} - P_{EUT} (dBm)$

Where: B=Emission bandwidth (Hz)

 $M_u = dB$ the threshold may exceed thermal noise (30 for $T_L & 50$ for T_U)

 $P_{MAX} = 5Log_{10}B-10(dBm)$

P_{EUT} =Transmitted power (dBm)

Limit:

Monitor Threshold	B (MHz)	M _U (dB)	P _{MAX} (dBm)	P _{EUT} (dBm)	Threshold (dBm)
$T_{ m L}$	1.39	30	20.72	16.91	-78.76
T_{U}	1.39	50	20.72	16.91	-58.76

The EUT must not transmit until the interference level is less than or equal to:

Measured Threshold Level $\leq T_{IJ}$

Where: $T_U = Upper$ threshold level

Test procedure:

Measurement method according to ANSI C63.17 clause 7.3.2, 7.3.3, 7.3.4

Test result: Not apply

Monitor threshold	Measured Threshold Level	Limit (dBm)
Lower Threshold (dBm)	N/A	-78.76
Upper Threshold (dBm)	N/A	-58.76

Note: The upper threshold is applicable as the EUT utilizes more than 40 duplex system channels

Random waiting FCC 15.323(c) (6)

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same window after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

Test procedure:

Measurement method according to ANSI C63.17 2006 clause 8.1.3

Test result:

The manufacturer declares that this provision is not utilized by the EUT.

Monitoring Bandwidth, FCC Part 15.323 (c) (7)

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission and have a maximum reaction time less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds

Test procedure:

Measurement method according to ANSI C63.17 2006 clause 7.5

Test result:

Test Equation (μs)	B(bandwidth) (MHz)	Pulse width (μs)	Limit (µs)	Result
50 (1.25/B) ^{1/2}	1.39	47.42	50	Pass
35 (1.25/B) ^{1/2}	1.39	33.19	35	Pass

Monitoring Antenna, FCC Part15.323 (c) (8)

The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location.

Test procedure:

Measurement method according to ANSI C63.17 2006 paragraph 4

Test result:

The antenna of the EUT used for transmission is the same interior antenna that used for monitoring.

Monitoring threshold relation FCC 15.323(c) (9)

Devices that have a power output lower than the maximum permitted under the rules can increase their monitoring detection threshold by one decibel for each one decibel that the transmitter power is below the maximum permitted.

Test procedure:

Measurement method according to ANSI C63.17 2006 paragraph 4

Test result:

Not apply based on 15.323 (c) (5)

Duplex Connections, FCC Part15.323 (c) (10)

An initiating device may attempt to establish a duplex connection by monitors both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

Test procedure:

Measurement method according to ANSI C63.17 clause 8.3

Test result:

The manufacturer declares that this provision is not utilized by the EUT.

Alternative monitoring interval for co-located devices, FCC Part 15.323 (c) (11)

An initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within one meter) transmitter of the same system, may monitor the portions of the time and spectrum windows in which they intend to receive over a period of at least 10 milliseconds. The monitored time and spectrum window must total at least 50 percent of the 10 millisecond frame interval and the monitored spectrum must be within 1.25 MHz of the center frequency of channel(s) already occupied by that device or co-located co-operating devices. If the access criteria is met for the intended receive time and spectrum window under the above conditions, then transmission in the intended transmit window by the initiating device may commence.

Test procedure:

Measurement method according to ANSI C63.17 2006 clause 8.4

Test result:

The manufacturer declares that this provision is not utilized by the EUT.

Fair Access, FCC Part 15.323 (c) (12)

The provisions of FCC Part15.323(c)(10) or (c)(11) shall not be used to extend the range of spectrum occupied over space or time for the purpose of denying fair access to spectrum to other devices.

Test result:

The manufacturer declares that this device does not use any mechanisms as provided by Part15.323 (c) (10) or (c) (11) to extend the range of spectrum occupied over space or time for the purpose of denying fail access to spectrum to other device.

Frame Repetition Stability, Part15 .323 (e)

The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in these sub-bands shall be 20 milliseconds or 10 milliseconds/X where X is a positive whole number.

Test procedure:

Measurement method according to ANSI C63.17 2006 clause 6.2.2, 6.2.3

Test result:

Frame Repetition Stability:

Frame Repetition Stability (ppm)	Limit (ppm)	Result (Pass/Fail)
1.15	10	Pass

Frame Period and Jitter:

Max. Pos.	Max. Neg.	Frame Limit		t
Jitter (us)	Jitter (us)	(ms)	Frame Period (ms)	Jitter (μs)
+0.00	-0.01	10.00000	20 or10/X	25us

Note: X is a positive whole number.

DECLARATION LETTER

8625 Hampton Way; Fairfax Station, Virginia 22039 USA Tel: 703-934-7934 Fax: 703-934-7935

Product Similarity Declaration

To Whom It May Concern,

We, LogicMark, LLC, hereby declare that our LifeSentry & FreedomAlert, Model Number: 35911 is electrically identical with the Model Number: 37911 that was certified by BACL. They are named differently and have different purpose due to marketing purposes. While model: 37911 is used for service centre, the other model is face to individual

Please contact me if you have any question.

Signature:

Print Name: Mark Gottlieb

Title: President

Date:2010-07-02

***** END OF REPORT *****