

RF TEST REPORT

Report No.: Q181227S004-FCC-R2

Supersede Report No.: N/A

Applicant	REMOTE SOLUTION.CO.,LTD	
Product Name	REMOTE CONTROL UNIT	
Main Model	RC96A	
Serial Model	RC96XBB (X stands for A~Z, BB stands for 00~99)	
Test Standard	FCC Part 15.249; ANSI C63.10: 2013	
Test Date	January 15&February 13, 2019	
Issue Date	February 13, 2019	
Test Result	<input checked="" type="checkbox"/> Pass	<input type="checkbox"/> Fail
Equipment complied with the specification		<input checked="" type="checkbox"/>
Equipment did not comply with the specification		<input type="checkbox"/>
Aaron Liang Test Engineer	David Huang Checked By	
<p>This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only</p>		

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park

South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	Q181227S004-FCC-R2
Page	3 of 32

This page has been left blank intentionally.

CONTENTS

1. REPORT REVISION HISTORY.....	5
2. CUSTOMER INFORMATION	5
3. TEST SITE INFORMATION.....	5
4. EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5. TEST SUMMARY	7
6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1 ANTENNA REQUIREMENT.....	8
6.2 AC LINE CONDUCTED EMISSIONS.....	9
6.3 RADIATED SPURIOUS EMISSIONS.....	11
6.4 FIELD STRENGTH MEASUREMENT.....	19
6.5 20DB BANDWIDTH TESTING.....	21
6.6 BAND EDGE.....	24
ANNEX A. TEST INSTRUMENT.....	27
ANNEX B. TEST SETUP AND SUPPORTING EQUIPMENT.....	28
ANNEX C. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST.....	31
ANNEX D. DECLARATION OF SIMILARITY.....	32

1. Report Revision History

Report No.	Report Version	Description	Issue Date
Q181227S004-FCC-R2	NONE	Original	February 13, 2019

2. Customer information

Applicant Name	REMOTE SOLUTION.CO.,LTD
Applicant Add	326-14,APO-DAERO, NAM-MYEON, GIMCHEON CITY, GYEONGSANGBUK-DO,KOREA
Manufacturer	REMOTE SOLUTION.CO.,LTD
Manufacturer Add	326-14,APO-DAERO, NAM-MYEON, GIMCHEON CITY, GYEONGSANGBUK-DO,KOREA

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
Lab Address	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
FCC Test Site No.	535293
IC Test Site No.	4842E-1
Test Software	Radiated Emission Program-To Shenzhen v2.0

Test Lab B:

Lab performing tests	Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch Laboratories
Lab Address	No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China
FCC Test Site No.	749762
IC Test Site No.	5936A-1
Test Software	ADT_Radiated_V7.6.15.9.2

Note: We just perform Radiated Spurious Emission above 18GHz in the test Lab. B.

4. Equipment under Test (EUT) Information

Description of EUT:	REMOTE CONTROL UNIT
Main Model:	RC96A
Serial Model:	RC96XBB (X stands for A~Z, BB stands for 00~99)
Date EUT received:	January 08, 2019
Test Date(s):	January 15&February 13, 2019
Antenna Gain:	0dBi
Antenna Type:	Pattern antenna
Power:	94.61dBuV/m
Type of Modulation:	RF4CE: O-QPSK
RF Operating Frequency (ies):	RF4CE: 2425-2475MHz
Number of Channels:	RF4CE: 11CH
Input Power:	Battery: Spec: DC 3V
Port:	Please refer to the user's manual
Trade Name :	N/A
FCC ID:	TX4RC96A

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	N/A
§15.205, §15.209, §15.249(a), §15.249(d)	Radiated Fundamental / Radiated Spurious Emissions	Compliance
§15.249(a)	Field Strength Measurement	Compliance
§15.249©	20 dB Bandwidth	Compliance
§15.249(d)	Band Edge	Compliance

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

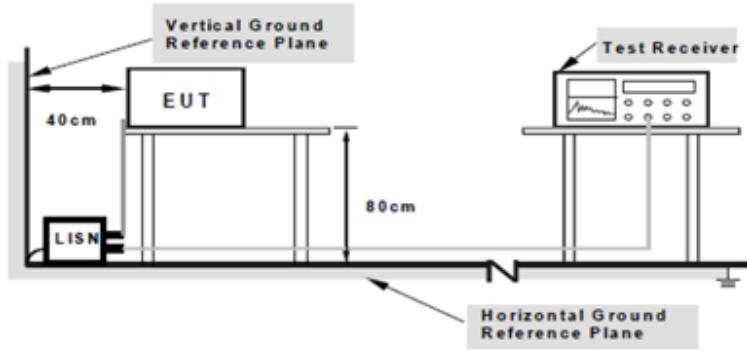
6.1 Antenna Requirement

Standard Requirement:

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction


The EUT has 2 antenna:

A permanently attached Pattern/Chip antenna for BLE/RF4CE., the gain is -1.6dBi for BLE, the gain is 0dBi for RF4CE.

Test Result: Pass

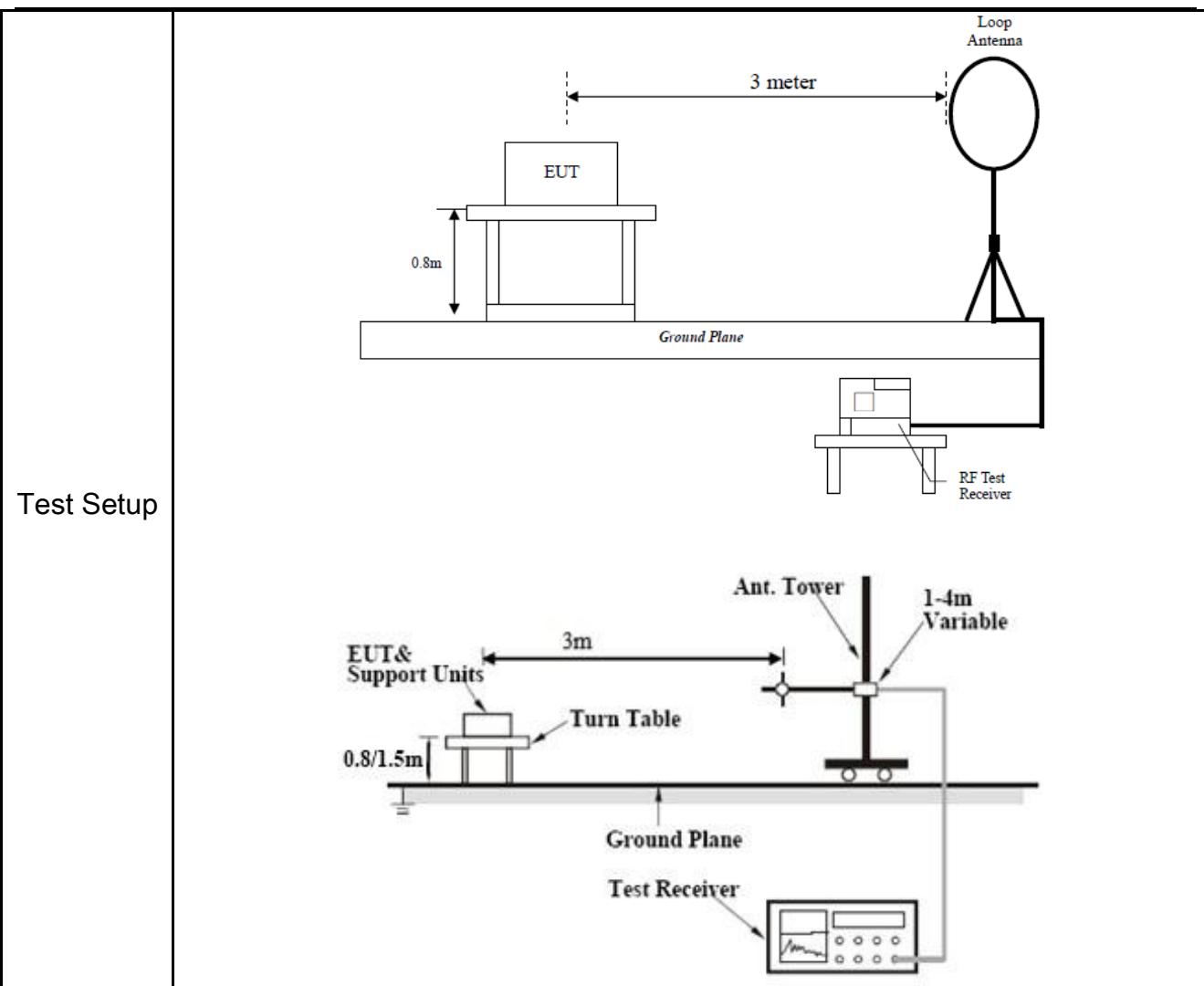
6.2 AC Line Conducted Emissions

Temperature	-----
Relative Humidity	-----
Atmospheric Pressure	-----
Test date :	-----
Tested By :	-----

Spec	Item	Requirement	Applicable														
§15.207	a)	<p>For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.</p> <table border="1"> <thead> <tr> <th rowspan="2">Frequency ranges (MHz)</th> <th colspan="2">Limit (dBμV)</th> </tr> <tr> <th>QP</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15 ~ 0.5</td> <td>66 – 56</td> <td>56 – 46</td> </tr> <tr> <td>0.5 ~ 5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5 ~ 30</td> <td>60</td> <td>50</td> </tr> </tbody> </table>	Frequency ranges (MHz)	Limit (dB μ V)		QP	Average	0.15 ~ 0.5	66 – 56	56 – 46	0.5 ~ 5	56	46	5 ~ 30	60	50	<input type="checkbox"/>
Frequency ranges (MHz)	Limit (dB μ V)																
	QP	Average															
0.15 ~ 0.5	66 – 56	56 – 46															
0.5 ~ 5	56	46															
5 ~ 30	60	50															
Test Setup			<p>Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.</p>														
Procedure			<ol style="list-style-type: none"> 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. 2. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. 														

	<ol style="list-style-type: none"> 4. All other supporting equipment were powered separately from another main supply. 5. The EUT was switched on and allowed to warm up to its normal operating condition. 6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. 7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. 8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	The EUT is powered by battery.
Result	<input type="checkbox"/> Pass <input type="checkbox"/> Fail <input checked="" type="checkbox"/> N/A

Test Data Yes N/A


Test Plot Yes (See below) N/A

6.3 Radiated Spurious Emissions

Temperature	26°C
Relative Humidity	55%
Atmospheric Pressure	1016mbar
Test date :	January 15, 2019
Tested By :	Aaron Liang

Requirement(s):

Spec	Requirement	Applicable																															
§15.209, §15.205, §15.249(a) & §15.249(d)	<p>The emissions from the Low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges.</p> <p>The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:</p> <table border="1"> <thead> <tr> <th>Fundamental frequency</th> <th>Field strength of fundamental (millivolts/meter)</th> <th>Field strength of harmonics (microvolts/meter)</th> </tr> </thead> <tbody> <tr> <td>902– 928 MHz</td> <td>50</td> <td>500</td> </tr> <tr> <td>2400– 2483.5 MHz</td> <td>50</td> <td>500</td> </tr> <tr> <td>5725– 5875 MHz</td> <td>50</td> <td>500</td> </tr> <tr> <td>24.0– 24.25 GHz</td> <td>250</td> <td>2500</td> </tr> </tbody> </table> <p>(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.</p> <table border="1"> <thead> <tr> <th>Frequency range (MHz)</th> <th>Field Strength (μV/m)</th> </tr> </thead> <tbody> <tr> <td>0.009~0.490</td> <td>2400/F(KHz)</td> </tr> <tr> <td>0.490~1.705</td> <td>24000/F(KHz)</td> </tr> <tr> <td>1.705~30.0</td> <td>30</td> </tr> <tr> <td>30 – 88</td> <td>100</td> </tr> <tr> <td>88 – 216</td> <td>150</td> </tr> <tr> <td>216 960</td> <td>200</td> </tr> <tr> <td>Above 960</td> <td>500</td> </tr> </tbody> </table>	Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)	902– 928 MHz	50	500	2400– 2483.5 MHz	50	500	5725– 5875 MHz	50	500	24.0– 24.25 GHz	250	2500	Frequency range (MHz)	Field Strength (μ V/m)	0.009~0.490	2400/F(KHz)	0.490~1.705	24000/F(KHz)	1.705~30.0	30	30 – 88	100	88 – 216	150	216 960	200	Above 960	500	<input checked="" type="checkbox"/>
Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)																															
902– 928 MHz	50	500																															
2400– 2483.5 MHz	50	500																															
5725– 5875 MHz	50	500																															
24.0– 24.25 GHz	250	2500																															
Frequency range (MHz)	Field Strength (μ V/m)																																
0.009~0.490	2400/F(KHz)																																
0.490~1.705	24000/F(KHz)																																
1.705~30.0	30																																
30 – 88	100																																
88 – 216	150																																
216 960	200																																
Above 960	500																																

<p>Procedure</p> <ul style="list-style-type: none"> - Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function - For emission frequencies measured below 1GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1GHZ, a pre-scan also be performed with a meter measuring distance before final test. - For emission frequencies measured below and above 1GHz, set the spectrum analyzer on a 100kHz and 1MHz resolution bandwidth respectively for each frequency measured in step 2. - The search antenna is to be raised and lowered over a range from 1 to 4m in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, the change the orientation of EUT on the test table over a range from 0 to 360°. With a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer.
--

	Vary the antenna position again and record the highest value as a final reading. - Repeat step 4 until all frequencies need to be measured was complete. - Repeat step5 with search antenna in vertical polarized orientations.
Remark	
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail

Test Data Yes N/A

Test Plot Yes (See below) N/A

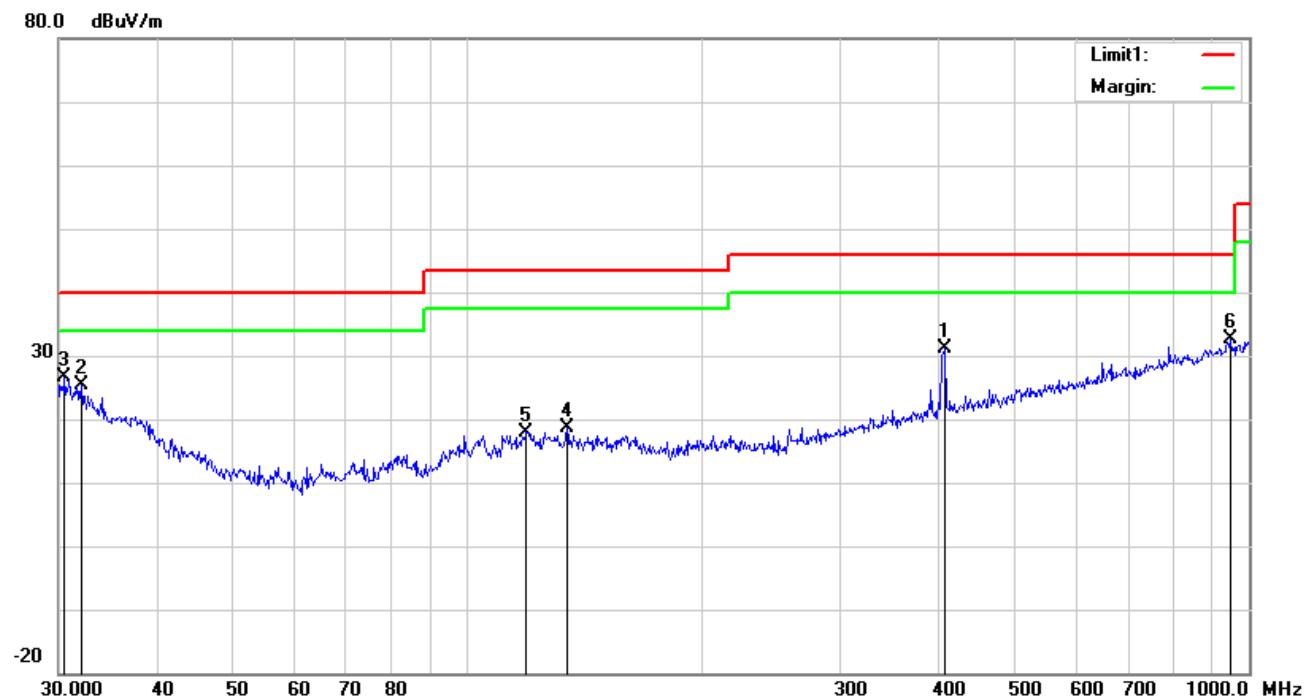
Test Result (worst case):

Test Mode:	Transmitting Mode
------------	-------------------

Frequency range: 9KHz - 30MHz

Freq. (MHz)	Detection value	Factor (dB/m)	Reading (dBuV/m)	Result (dBuV/m)	Limit@3m (dBuV/m)	Margin (dB)
--	--	--	--	--	--	>20
--	--	--	--	--	--	>20

Note:

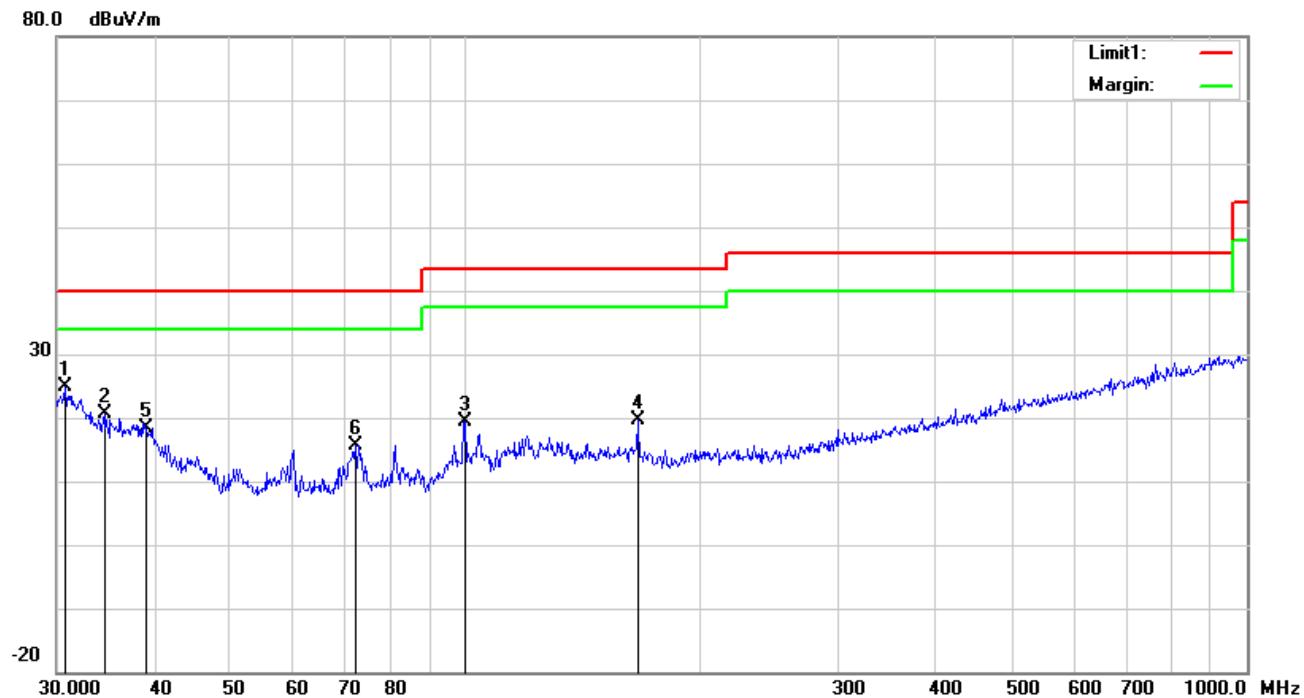

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = $40 \log(\text{specific distance}/\text{test distance})$ (dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

Test Model : RF4CE

(Below 1GHz)



Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr ee
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	H	408.9460	35.12	15.88	21.99	2.03	31.04	46.00	-14.96	100	345
2	H	32.0668	27.23	19.81	22.27	0.68	25.45	40.00	-14.55	200	314
3	H	30.5306	27.32	20.99	22.28	0.63	26.66	40.00	-13.34	100	212
4	H	134.0882	26.84	12.98	22.40	1.23	18.65	43.50	-24.85	100	80
5	H	119.0180	25.47	13.73	22.36	1.16	18.00	43.50	-25.50	100	264
6	H	945.4399	27.58	22.73	20.79	3.16	32.68	46.00	-13.32	100	168

(Below 1GHz)

Test Data

Vertical Polarity Plot @3m

N o.	P/ L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr ee
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	V	30.7455	25.61	20.83	22.28	0.64	24.80	40.00	-15.20	100	297
2	V	34.6385	24.26	17.83	22.25	0.75	20.59	40.00	-19.41	100	259
3	V	99.8777	30.31	10.37	22.32	1.12	19.48	43.50	-24.02	100	54
4	V	166.0680	28.30	12.11	22.26	1.37	19.52	43.50	-23.98	100	115
5	V	39.0245	25.17	14.61	22.27	0.78	18.29	40.00	-21.71	100	313
6	V	72.3376	29.37	7.75	22.39	0.97	15.70	40.00	-24.30	100	283

Above 1GHz

Test Mode:	Transmitting Mode
------------	-------------------

Low Channel (2425 MHz)

Frequency (MHz)	S.A. Reading (dB μ V)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4850	42.14	AV	V	33.33	7.12	48.32	34.27	54	-19.73
4850	46.24	AV	H	33.33	7.12	48.32	38.37	54	-15.63
4850	67.32	PK	V	33.33	7.12	48.32	59.45	74	-14.55
4850	65.15	PK	H	33.33	7.12	48.32	57.28	74	-16.72
10681	32.02	AV	V	38.79	10.66	47.55	33.92	54	-20.08
10681	36.94	AV	H	38.79	10.66	47.55	38.84	54	-15.16
10681	57.29	PK	V	38.79	10.66	47.55	59.19	74	-14.81
10681	58.22	PK	H	38.79	10.66	47.55	60.12	74	-13.88

Middle Channel (2450MHz)

Frequency (MHz)	S.A. Reading (dB μ V)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4900	48.55	AV	V	33.62	7.53	48.36	41.34	54	-12.66
4900	46.68	AV	H	33.62	7.53	48.36	39.47	54	-14.53
4900	65.35	PK	V	33.62	7.53	48.36	58.14	74	-15.86
4900	63.12	PK	H	33.62	7.53	48.36	55.91	74	-18.09
7241	46.42	AV	V	37.66	7.8	48.33	43.55	54	-10.45
7241	44.7	AV	H	37.66	7.8	48.33	41.83	54	-12.17
7241	63.32	PK	V	37.66	7.8	48.33	60.45	74	-13.55
7241	61.84	PK	H	37.66	7.8	48.33	58.97	74	-15.03

High Channel (2475 MHz)

Frequency (MHz)	S.A. Reading (dB μ V)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4950	47.15	AV	V	33.52	7.94	48.61	40	54	-14
4950	49.35	AV	H	33.52	7.94	48.61	42.2	54	-11.8
4950	65.68	PK	V	33.52	7.94	48.61	58.53	74	-15.47
4950	65.57	PK	H	33.52	7.94	48.61	58.42	74	-15.58
17847	20.51	AV	V	42.85	20.16	44.38	39.14	54	-14.86
17847	17.85	AV	H	42.85	20.16	44.38	36.48	54	-17.52
17847	42.39	PK	V	42.85	20.16	44.38	61.02	74	-12.98
17847	38.94	PK	H	42.85	20.16	44.38	57.57	74	-16.43


Note:

- 1, The testing has been conformed to $10 \times 2475\text{MHz} = 24,750\text{MHz}$
- 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.
- 4, The radiated spurious test above 18GHz is subcontracted to Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch Laboratories and found 30dB below the limit at least.

6.4 Field Strength Measurement

Temperature	24°C
Relative Humidity	55%
Atmospheric Pressure	1017mbar
Test date :	February 13, 2019
Tested By :	Aaron Liang

Requirement(s):

Spec	Requirement	Applicable															
§15.249(a)	<table border="1" data-bbox="455 927 1171 1180"> <thead> <tr> <th data-bbox="455 927 841 1012">Fundamental frequency</th><th data-bbox="841 927 1013 1012">Field strength of fundamental (millivolts/meter)</th><th data-bbox="1013 927 1171 1012">Field strength of harmonics (microvolts/meter)</th></tr> </thead> <tbody> <tr> <td data-bbox="455 1012 841 1032">902–928 MHz</td><td data-bbox="841 1012 1013 1032">50</td><td data-bbox="1013 1012 1171 1032">500</td></tr> <tr> <td data-bbox="455 1032 841 1055">2400–2483.5 MHz</td><td data-bbox="841 1032 1013 1055">50</td><td data-bbox="1013 1032 1171 1055">500</td></tr> <tr> <td data-bbox="455 1055 841 1075">5725–5875 MHz</td><td data-bbox="841 1055 1013 1075">50</td><td data-bbox="1013 1055 1171 1075">500</td></tr> <tr> <td data-bbox="455 1075 841 1095">24.0–24.25 GHz</td><td data-bbox="841 1075 1013 1095">250</td><td data-bbox="1013 1075 1171 1095">2500</td></tr> </tbody> </table>	Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)	902–928 MHz	50	500	2400–2483.5 MHz	50	500	5725–5875 MHz	50	500	24.0–24.25 GHz	250	2500	<input checked="" type="checkbox"/>
Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)															
902–928 MHz	50	500															
2400–2483.5 MHz	50	500															
5725–5875 MHz	50	500															
24.0–24.25 GHz	250	2500															
Test Setup	<p data-bbox="617 1360 838 1382">Spectrum Analyzer</p> <p data-bbox="1035 1351 1092 1371">EUT</p>																
Test Procedure	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.																
Remark																	
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail																

Test Data Yes

 N/A

Test Plot Yes (See below)

N/A

Test Mode:	Normal Working Mode
------------	---------------------

Field Strength Measurement

2425MHz

Frequency (MHz)	Polarity (H/V)	Field Strength(PK) (dBuV/m)	Field Strength(AV) (dBuV/m)	Limit(PK) (dBuV/m)	Limit(AV) (dBuV/m)	Margin(PK) (dB)	Margin(AV) (dB)
2425	H	94.32	91.84	114	94	-19.68	-2.16
2425	V	87.78	85.12	114	94	-26.22	-8.88

2450MHz

Frequency (MHz)	Polarity (H/V)	Field Strength(PK) (dBuV/m)	Field Strength(AV) (dBuV/m)	Limit(PK) (dBuV/m)	Limit(AV) (dBuV/m)	Margin(PK) (dB)	Margin(AV) (dB)
2450	H	93.14	91.51	114	94	-20.86	-2.49
2450	V	88.34	86.54	114	94	-25.66	-7.46

2475MHz

Frequency (MHz)	Polarity (H/V)	Field Strength(PK) (dBuV/m)	Field Strength(AV) (dBuV/m)	Limit(PK) (dBuV/m)	Limit(AV) (dBuV/m)	Margin(PK) (dB)	Margin(AV) (dB)
2475	H	94.61	91.62	114	94	-19.39	-2.38
2475	V	86.48	85.31	114	94	-27.52	-8.69

6.5 20dB Bandwidth Testing

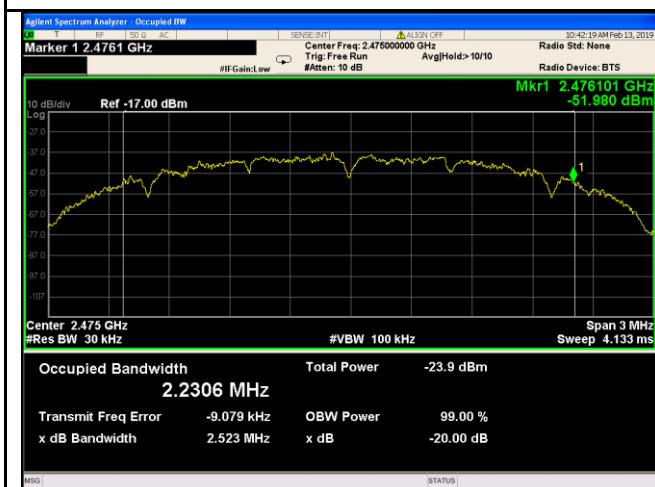
Temperature	24°C
Relative Humidity	55%
Atmospheric Pressure	1017mbar
Test date :	February 13, 2019
Tested By :	Aaron Liang

Requirement(s):

Remark		
Result	<input checked="" type="checkbox"/> Pass	<input type="checkbox"/> Fail
Test Data	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> N/A
Test Plot	<input checked="" type="checkbox"/> Yes (See below)	<input type="checkbox"/> N/A

20dB Bandwidth measurement result

CH	Fundamental Frequency (MHz)	20dB Bandwidth (MHz)	Result
Low	2425	2.491	Pass
Middle	2450	2.547	Pass
High	2475	2.523	Pass


Test Plots

20dB Bandwidth measurement result

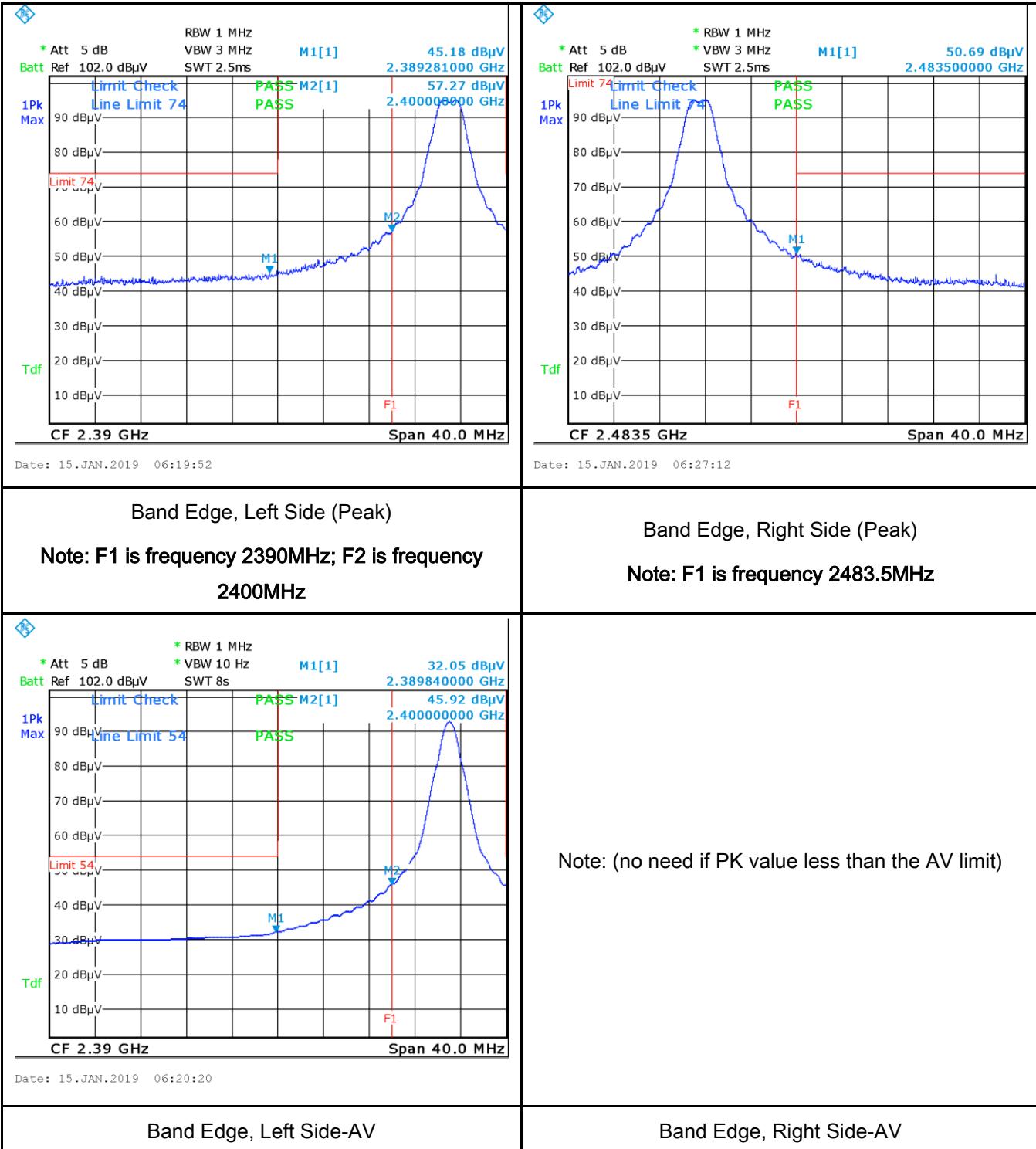
20dB Bandwidth – Low CH 2425

20dB Bandwidth - Middle CH 2450

20dB Bandwidth – High CH 2475

6.6 Band Edge

Temperature	26°C
Relative Humidity	55%
Atmospheric Pressure	1016mbar
Test date :	January 15, 2019
Tested By :	Aaron Liang


Test Report No.	Q181227S004-FCC-R2
Page	25 of 32

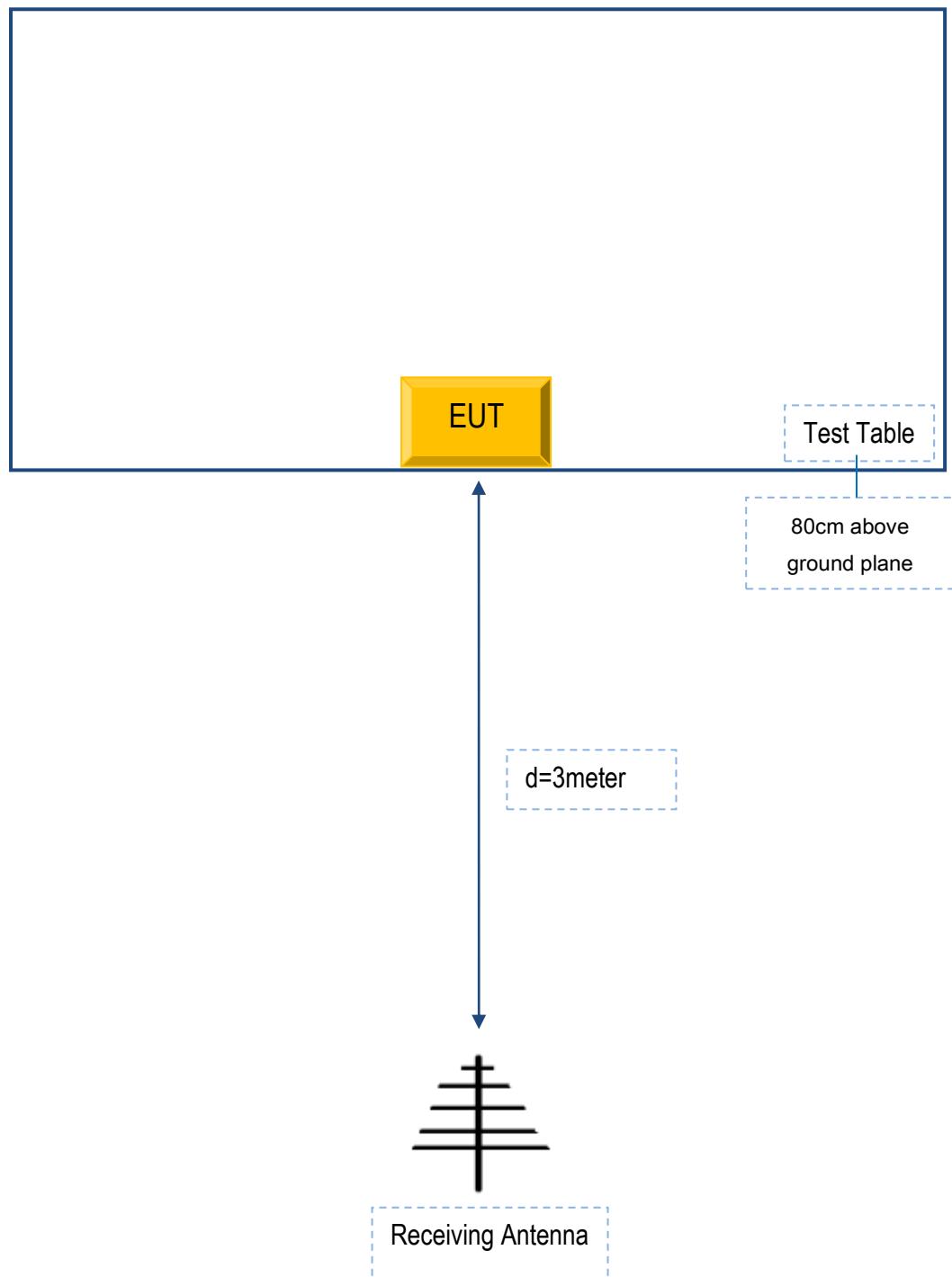
Test Data Yes N/A

Test Plot Yes (See below) N/A

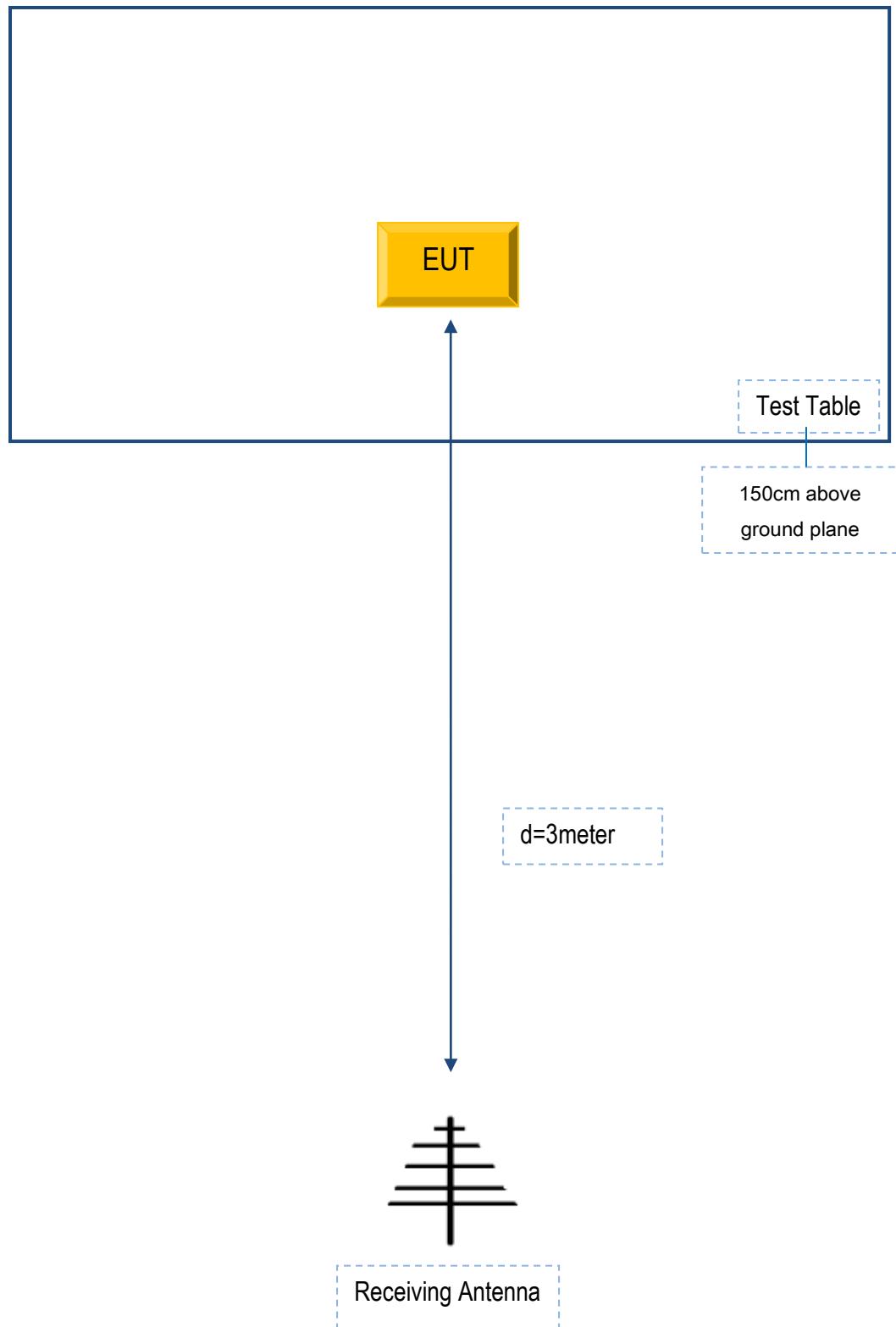
Test Plots

Band Edge measurement result (worst case)

Note: Both Horizontal and vertical polarities were investigated.


Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due
AC Line Conducted Emissions				
EMI test receiver	ESCS30	8471241027	01/04/2019	01/03/2020
Artificial Mains Network	8127	8127713	01/04/2019	01/03/2020
ISN	ISN T800	34373	01/04/2019	01/03/2020
Radiated Emissions				
EMI test receiver	ESL6	1300.5001K06-100262-eQ	01/04/2019	01/03/2020
Active Antenna	AL-130	121031	02/08/2018	02/07/2019
3m Semi-anechoic Chamber	9m*6m*6m	N/A	10/18/2018	10/17/2019
Signal Amplifier	8447E	443008	01/25/2018	01/24/2019
MXA signal analyzer	N9020A	MY49100060	01/04/2019	01/03/2020
Horn Antenna	HAH-118	71259	01/26/2018	01/25/2019
Horn Antenna	HAH-118	71283	02/02/2018	02/01/2019
AMPLIFIER	EM01G26G	60613	01/25/2018	01/24/2019
AMPLIFIER	Emc012645	980077	01/04/2019	01/03/2020
Bilog Antenna (30MHz~6GHz)	JB6	A110712	02/08/2018	02/07/2019
RF Conducted				
DC Power Supply	E3640A	MY40004013	01/04/2019	01/03/2020
MXA Signal Analyzer	N9020A	MY49100060	01/04/2019	01/03/2020
MXG Vector Signal Generator	N5182A	MY50140530	01/04/2019	01/03/2020
Series Signal Generator	E4421B	US40051152	05/12/2018	05/11/2019
RF control unit	JS0806-0806-2	188060112	04/25/2018	04/24/2019
Wireless Connectivity Tester	CMW270	1201.0002K75-101601-PE	04/25/2018	04/24/2019
Weinschel	1580-1	TL177	01/04/2019	01/03/2020
Universal Radio Communica	CMU200	121393	02/10/2019	02/09/2020


Annex B. TEST SETUP AND SUPPORTING EQUIPMENT

Annex B.i. TEST SET UP BLOCK

Block Configuration Diagram for Radiated Emissions (Below 1GHz) .

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Annex B. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
-	-	-	-

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
-	-	-	-	-

Annex C. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Annex D. DECLARATION OF SIMILARITY

REMOTE SOLUTION.CO.,LTD

To: 775 Montague Expressway Milpitas, CA 95035, USA

Declaration Letter

Dear Sir,

For our business issue and marketing requirement,
We declare that the model: RC96A, RC96XBB (X stands for A~Z, BB stands for 00~99) all
models the same PCB and Appearance shape, accessories ,the Simple case, printing color
difference is.

Thank you!

Sincerely,

Client's signature : BC, Kim

Client's name / title : Byung chul, Kim / Manager
Telephone: +82-10-5533-8113
Address : 92, Chogok-ri, Nammyun, Gimchun city, Kyungsangbukdo, Korea