

12. RADIO FREQUENCY EXPOSURE

12.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment are $f/1500 \text{ mW/cm}^2$ for the frequency range between 300 MHz and 1 500 MHz and 1.0 mW/cm^2 for the frequency range between 1 500 MHz and 100 000 MHz.

The electric field generated for a 1 mW/cm^2 exposure is calculated as follows:

$$E = \sqrt{(30 * P * G) / d}, \text{ and } S = E^2 / Z = E^2 / 377, \text{ because } 1 \text{ mW/cm}^2 = 10 \text{ W/m}^2$$

Where

$$S = \text{Power density in mW/cm}^2, Z = \text{Impedance of free space, } 377 \Omega$$

$$E = \text{Electric field strength in V/m, } G = \text{Numeric antenna gain, and } d = \text{distance in meter}$$

Combining equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30 * P * G) / (377 * 10 S)}$$

Changing to units of mW and cm, using $P (\text{mW}) = P (\text{W}) / 1000$, $d (\text{cm}) = 0.01 * d (\text{m})$

$$d = 0.282 * \sqrt{(P * G) / S}$$

Where

$$d = \text{distance in cm, } P = \text{Power in mW, } G = \text{Numeric antenna gain, and } S = \text{Power density in mW/cm}^2$$

12.2 Calculated MPE Safe Distance

According to above equation, the following result was obtained.

Operating Freq. Band (MHz)	Peak Output Power		Antenna Gain		Safe Distance (cm)	Power Density (mW/cm ²) @ 20 cm Separation	Limit (mW/cm ²)
	(dBm)	(mW)	Log	Linear			
2 405 ~ 2 475	17.14	51.76	0.27	1.06	2.09	0.0109	1.00

$$D = 0.282 * \sqrt{(51.76 * 1.06) / 1.00} = 2.09 \text{ cm.}$$

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 51.76 * 1.06 / (4 * 3.14 * 20^2) = 0.0109$$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) – cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna