

SAR Test Report

Product Name : Notebook

Model No. : Lenovo IdeaPad S100xxxx; 20109xxxx; 1067xxxx
(The "X" in the model name can be 0 to 9, A to Z,
"-" or blank, it represents different sales
customer code, not relevant to safety and EMC.)

Applicant : Shenzhen Bitland Information Technology Co., Ltd.

Address : 1-4F, 44# Building, Zone B, Tanglang Industrial Park &
1-6F, #7 Building, TangLang, XiLi Tongfuyu Industrial
Town, Nanshan District, Shenzhen, China Shenzhen City,
Guangdong 518055, China.

Date of Receipt : Jan. 18, 2011

Date of Test : Jan. 26, 2011

Issued Date : Jan. 31, 2011

Report No. : 111S033R-HP-US-P03V02

Report Version : V4.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Jan. 31, 2011

Report No: 111S033R-HP-US-P03V02

QuieTek

Product Name : Notebook

Applicant : Shenzhen Bitland Information Technology Co., Ltd.

Address : 1-4F, 44# Building, Zone B, Tanglang Industrial Park & 1-6F, #7 Building, TangLang, XiLi Tongfuyu Industrial Town, Nanshan District, Shenzhen, China Shenzhen City, Guangdong 518055, China.

Manufacturer : Lenovo (Singapore) Pte Ltd.

Address : 9 Changi Business Park, Central 1486048 Singapore

Model No. : Lenovo IdeaPad S100xxxx; 20109xxxx; 1067xxxx (The “X” in the model name can be 0 to 9, A to Z, “-” or blank, it represents different sales customer code, not relevant to safety and EMC.)

Trade Name : lenovo

EUT Voltage : AC 230V/50Hz

Applicable Standard : FCC OET65 Supplement C June 2001
RSS-102 Issue 4 (March 2010), updated December 2010.
IEEE Std. 1528-2003; 47CFR § 2.1093

Test Result : Max. SAR Measurement (1g)
802.11g: **0.024** W/kg

Performed Location : Suzhou EMC Laboratory
No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., Suzhou, China
TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098
FCC Registration Number: 800392; IC Lab Code: 4075B

Documented By : Alice Ni
(Engineering ADM: Alice Ni)

Tested By : Robin Wu
(Senior Engineer: Robin Wu)

Approved By : Marlin Chen
(Engineering Supervisor: Marlin Chen)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited by the following accreditation Bodies in compliance with ISO 17025, EN 45001 and Guide 25:

Taiwan R.O.C.	: BSMI, NCC, TAF
Germany	: TUV Rheinland
Norway	: Nemko, DNV
USA	: FCC, NVLAP
Japan	: VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: <http://tw.quietek.com/modules/myalbum/>
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <http://www.quietek.com/>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghixing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C.
TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : service@quietek.com

LinKou Testing Laboratory :

No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C.
TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : service@quietek.com

Suzhou (China) Testing Laboratory :

No. 99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., Suzhou, China.
TEL : +86-512-6251-5088 / FAX : +86-512-6251-5098 E-Mail : service@quietek.com

TABLE OF CONTENTS

Description	Page
1. General Information	6
1.1. EUT Description	6
1.2. Test Environment.....	7
2. SAR Measurement System	8
2.1. DASY5 System Description.....	8
2.1.1. Applications	9
2.1.2. Area Scans	9
2.1.3. Zoom Scan (Cube Scan Averaging)	9
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	9
2.2. DASY5 E-Field Probe.....	10
2.2.1. Isotropic E-Field Probe Specification	10
2.3. Boundary Detection Unit and Probe Mounting Device	11
2.4. DATA Acquisition Electronics (DAE) and Measurement Server.....	11
2.5. Robot.....	12
2.6. Light Beam Unit.....	12
2.7. Device Holder.....	13
2.8. SAM Twin Phantom.....	13
3. Tissue Simulating Liquid	14
3.1. The composition of the tissue simulating liquid	14
3.2. Tissue Calibration Result.....	14
3.3. Tissue Dielectric Parameters for Head and Body Phantoms	15
4. SAR Measurement Procedure	16
4.1. SAR System Validation.....	16
4.1.1. Validation Dipoles	16
4.1.2. Validation Result	16
4.2. SAR Measurement Procedure.....	17
5. SAR Exposure Limits	18
6. Test Equipment List.....	19
7. Measurement Uncertainty.....	20
8. Conducted Power Measurement	21
9. Test Results.....	22

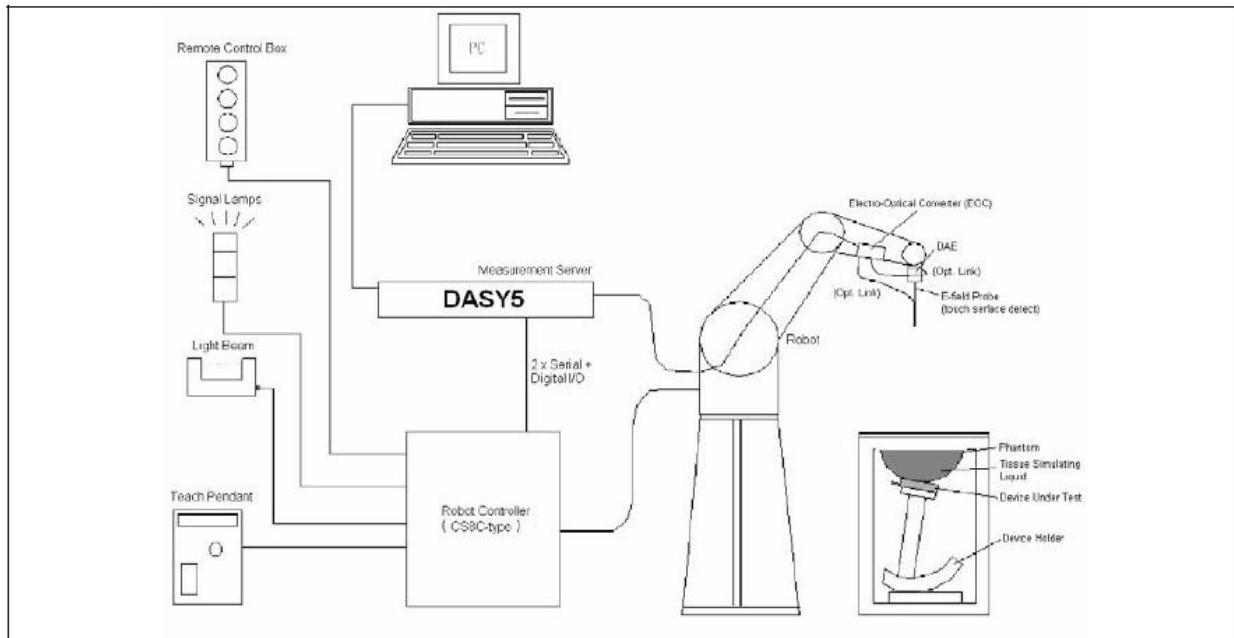
9.1. SAR Test Results Summary	22
9.2. Operation Mode.....	22
9.3. Document Reference	22
9.4. Test Results	23
Appendix A. SAR System Validation Data	24
Appendix B. SAR measurement Data	25
Appendix C. Test Setup Photographs & EUT Photographs	39
Appendix D. Probe Calibration Data	48
Appendix E. Dipole Calibration Data.....	59

1. General Information

1.1. EUT Description

Product Name	Notebook
Trade Name	lenovo
Model No.	Lenovo IdeaPad S100xxxx; 20109xxxx; 1067xxxx (The "X" in the model name can be 0 to 9, A to Z, "-" or blank, it represents different sales customer code, not relevant to safety and EMC.)
Wireless Module Name	RTL8188CEBT
FCC ID	TX2RTL8188CEBT
IC	6317A-RTL8188CEBT
Frequency Range	802.11b/g/n(20MHz): 2412 - 2462 MHz 802.11n(40MHz): 2422 - 2452 MHz
Channel Number	802.11b/g/n(20MHz): 11 802.11n(40MHz): 7
Type of Modulation	802.11b: DSSS 802.11g/n: OFDM
Data Rate	802.11b: 1/2/5.5/11 Mbps 802.11g: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150 Mbps
Device Category	Mobile
RF Exposure Environment	Uncontrolled
Antenna Type	PIFA
Peak Antenna Gain	2.47dBi
Max. Output Power (Conducted)	802.11b: 19.10dBm 802.11g: 18.90dBm 802.11n(20MHz): 18.79dBm 802.11n(40MHz): 16.91dBm

Component	
AC Adapter	Manufacturer: lenovo M/N: PA-1300-12 Input: 100-240V~50/60Hz 1.0A Output: 20Vdc, 1.5A


1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.3± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2 \left(\frac{\pi}{2} \frac{\sqrt{x'^2 + y'^2}}{5a} \right)$$

$$f_2(x, y, z) = Ae^{-\frac{z}{a}} \frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}} \right) \cos^2 \left(\frac{\pi}{2} \frac{y'}{3a} \right)$$

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a + 2z)^2} \right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.


2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.



2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT (% Weight)	2450MHz Head	2450MHz Body	5200MHz Body	5800MHz Body
Water	46.7	73.2	76	75.68
Salt	0.00	0.04	0.00	0.43
Sugar	0.00	0.00	0.00	0.00
HEC	0.00	0.00	0.00	0.00
Preventol	0.00	0.00	0.00	0.00
DGBE	53.3	26.7	4.44	4.42
Triton X-100	0.00	0.00	19.56	19.47

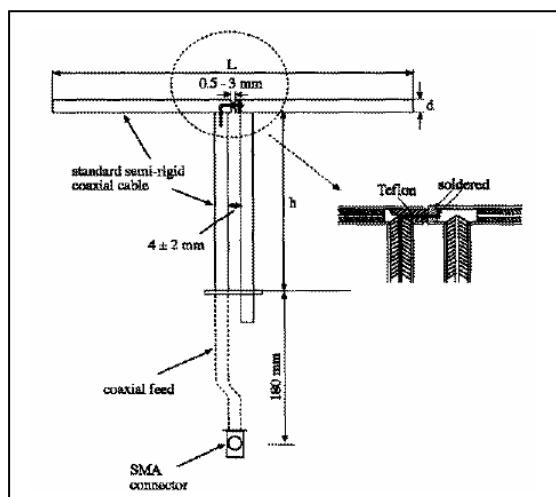
3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
2450MHz	Reference result ± 5% window	52.7 50.07 to 55.34	1.95 1.85 to 2.05	N/A
	27-Jan-2011	50.89	1.96	20.1
2412 MHz	Low channel	51.03	1.90	20.1
2437 MHz	Mid channel	50.94	1.94	20.1
2462 MHz	High channel	50.84	1.97	20.1

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.


Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

4.1.2. Validation Result

System Performance Check at 2450MHz				
Validation Dipole: D2450V2, SN: 839				
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	51.6 46.44 to 56.76	24.2 21.78 to 26.62	N/A
	27-Jan-2011	50.40	23.32	20.1

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ : represents the simulated tissue conductivity

ρ : represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last Calibration	Next Calibration
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	Mar. 2010	only once
Controller	Stäubli	SP1	S-0034	Mar. 2010	only once
DASY5 Reference Dipole 2450MHz	Speag	D2450V2	839	Mar. 2010	Mar. 2012
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1220	Mar. 2010	Mar. 2011
E-Field Probe	Speag	EX3DV4	3710	Mar. 2010	Mar. 2011
SAR Software	Speag	DASY5	V5.2 Build 162	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-28	N/A	N/A
Directional Coupler	Agilent	778D	20160	N/A	N/A
Universal Radio Communication Tester	R&S	CMU 200	117088	Jul. 2009	Jul. 2010
Vector Network	Agilent	E5071C	MY48367267	Mar. 2010	Mar. 2011
Signal Generator	Agilent	E4438C	MY49070163	Apr. 2010	Apr. 2011
Power Meter	Anritsu	ML2495A	0905006	Jan. 2011	Jan. 2012
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	Jan. 2011	Jan. 2012

7. Measurement Uncertainty

DASY5 Uncertainty								
Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) veff
Measurement System								
Probe Calibration	±5.5%	N	1	1	1	±5.5%	±5.5%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty						±10.7%	±10.5%	387
Expanded STD Uncertainty						±21.5%	±21.0%	

8. Conducted Power Measurement

Test under normal condition

Test Mode	Channel No.	Frequency (MHz)	Conducted Power (dBm)
802.11b	01	2412	17.16
	06	2437	19.10
	11	2462	17.62
802.11g	01	2412	15.65
	06	2437	18.90
	11	2462	16.22
802.11n(20MHz)	01	2412	15.31
	06	2437	18.79
	11	2462	14.66
802.11n(40MHz)	03	2422	14.11
	06	2437	16.91
	09	2452	14.75

9. Test Results

9.1. SAR Test Results Summary

IC bystander SAR was performed with the device configured in the positions according to IEEE1528 and RSS-102 Supplementary Procedures (SPR)-001. SAR test was performed with the device 25mm from the phantom for final test.

Test Position: the rear of LCD panel, side of LCD panel and bottom of notebook (for FCC body SAR requirement). Please refer to the test photograph for details.

9.2. Operation Mode

The final SAR test was done with continuous transmission setting by RF control software MP819xVC.exe.

Evaluation mode: 802.11b, 802.11g, 802.11n (20MHz BW) and 802.11n (40MHz BW).

9.3. Document Reference

FCC KDB Publication 447498;

KDB Publication 616217;

RSS-102 Supplementary Procedures (SPR)-001.

9.4. Test Results

SAR MEASUREMENT											
Ambient Temperature (°C) : 21.4 ±2				Relative Humidity (%): 55							
Liquid Temperature (°C) : 20.1 ±2				Depth of Liquid (cm):>15							
Product: Notebook											
Test Mode: 802.11b											
Test Position Body	Antenna Position	Frequency		Separation Distance (mm)	Power Drift ($<\pm 0.2$)	SAR 1g (W/kg)	Limit (W/kg)				
		Channel	MHz								
Bottom of PC	Fixed	6	2437	0	0.123	0.006	1.6				
Side of LCD panel	Fixed	6	2437	25	-0.169	0.021	1.6				
Test Mode: 802.11g											
Bottom of PC	Fixed	1	2412	0	0.166	0.005	1.6				
Bottom of PC	Fixed	6	2437	0	-0.008	0.007	1.6				
Bottom of PC	Fixed	11	2462	0	0.154	0.007	1.6				
Rear of LCD panel	Fixed	6	2437	25	-0.148	0.023	1.6				
Side of LCD panel	Fixed	1	2412	25	-0.122	0.012	1.6				
Side of LCD panel	Fixed	6	2437	25	-0.134	0.024	1.6				
Side of LCD panel	Fixed	11	2462	25	-0.160	0.018	1.6				
Test Mode: 802.11n(20MHz)											
Bottom of PC	Fixed	6	2437	0	0.161	0.006	1.6				
Side of LCD panel	Fixed	6	2437	25	-0.137	0.014	1.6				
Test Mode: 802.11n(40MHz)											
Bottom of PC	Fixed	6	2437	0	-0.187	0.005	1.6				
Side of LCD panel	Fixed	6	2437	25	-0.109	0.006	1.6				

Appendix A. SAR System Validation Data

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

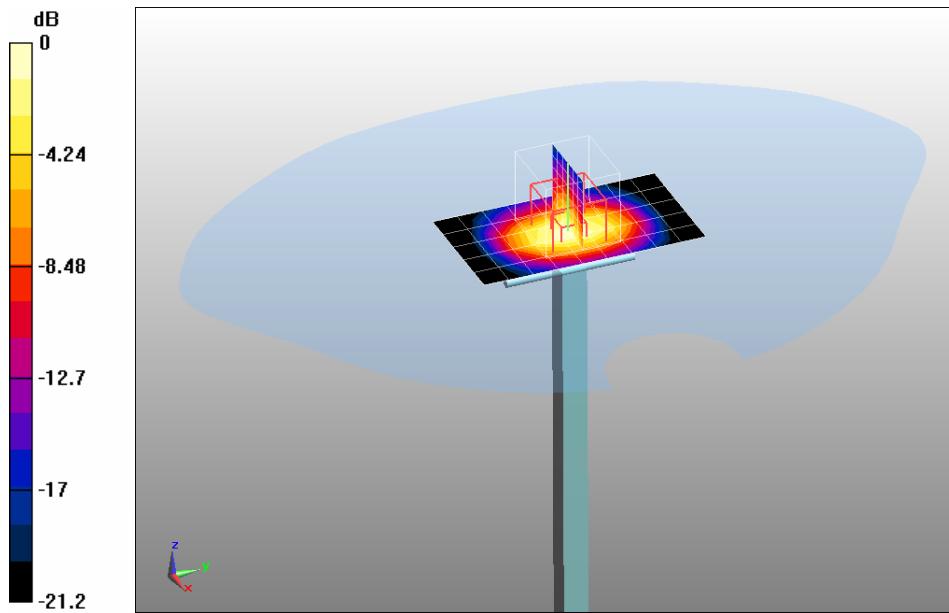
Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: $f = 2450$ MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³ ; Phantom section: Flat Section ; Input Power=250mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/Body 2450MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.7 mW/g

Configuration/Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 85.6 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.83 mW/g Maximum value of SAR (measured) = 14.5 mW/g

0 dB = 14.5mW/g

Appendix B. SAR measurement Data

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11b 2437MHz-Bottom

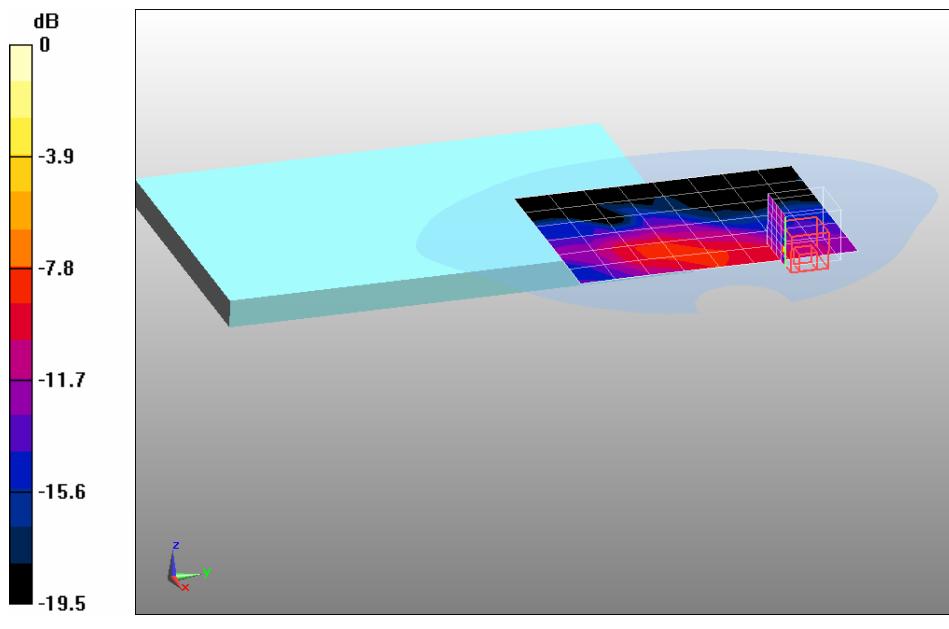
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;
Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11b Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.00998 mW/g

Configuration/802.11b Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.65 V/m; Power Drift = 0.123 dB

Peak SAR (extrapolated) = 0.069 W/kg

SAR(1 g) = 0.006 mW/g; SAR(10 g) = 0.0045 mW/g Maximum value of SAR (measured) = 0.069 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11b 2437MHz-Side

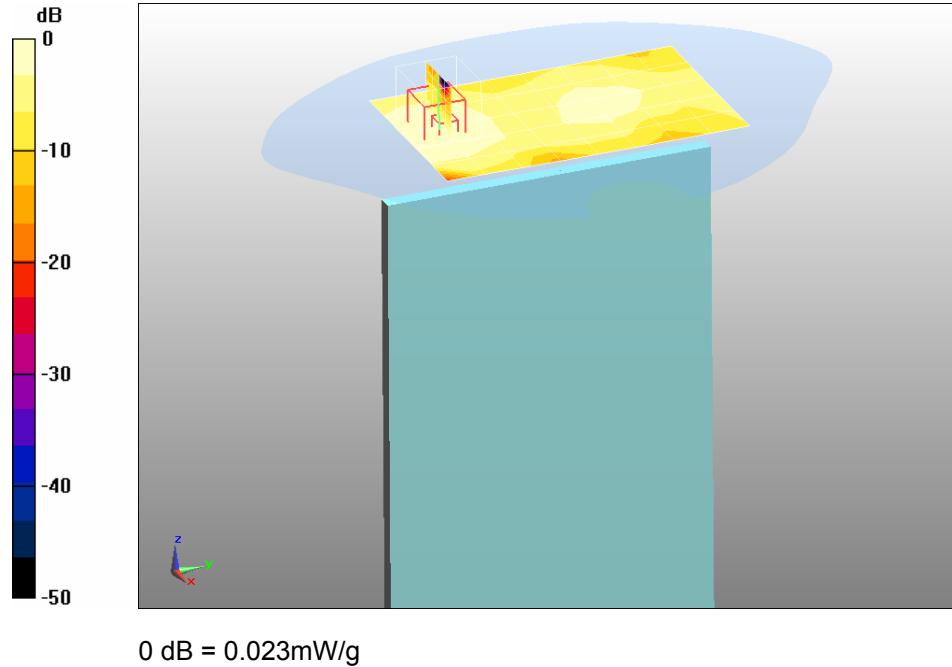
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid Channel/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.022 mW/g

Configuration/802.11b Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.27 V/m; Power Drift = -0.169 dB

Peak SAR (extrapolated) = 0.042 W/kg

SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.011 mW/g Maximum value of SAR (measured) = 0.023 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11g 2412MHz-Bottom

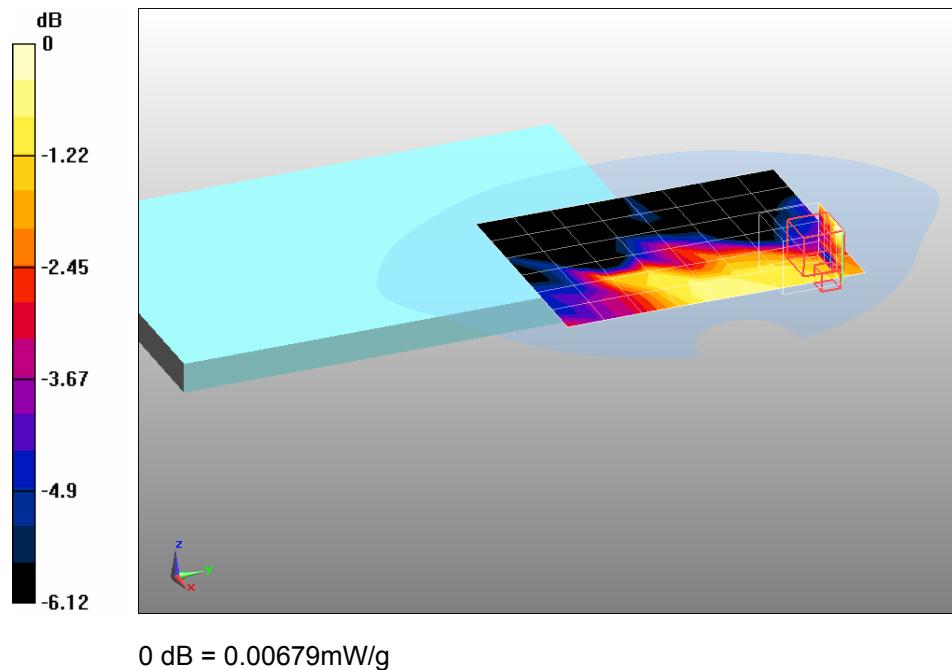
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2412 MHz; Medium parameters used: $f = 2412$ MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g Low Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.00602 mW/g

Configuration/802.11g Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.37 V/m; Power Drift = 0.166 dB

Peak SAR (extrapolated) = 0.00951 W/kg

SAR(1 g) = 0.005 mW/g; SAR(10 g) = 0.004 mW/g Maximum value of SAR (measured) = 0.00679 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11g 2437MHz-Bottom

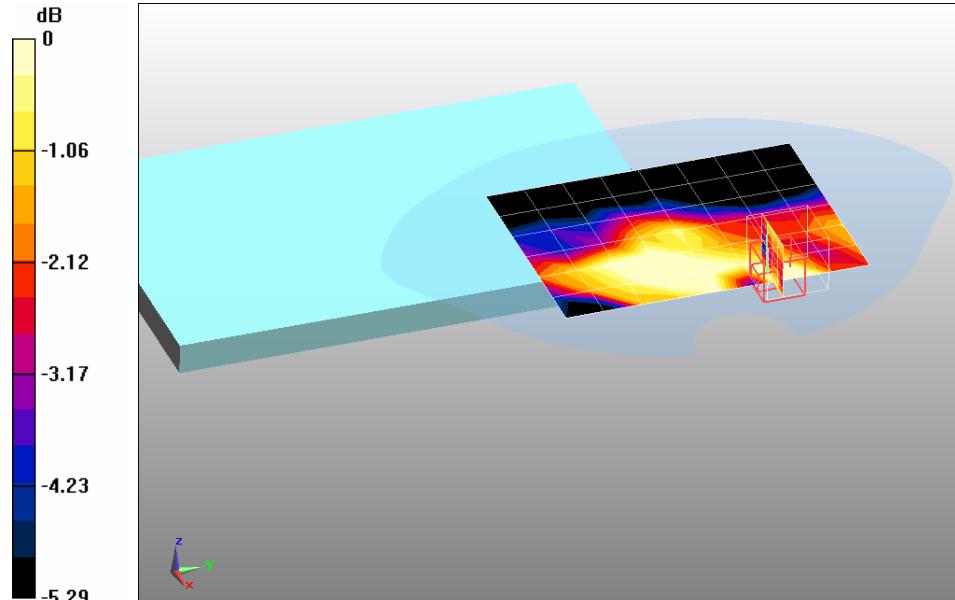
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.013 mW/g

Configuration/802.11g Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.59 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.011 W/kg

SAR(1 g) = 0.007 mW/g; SAR(10 g) = 0.005 mW/g Maximum value of SAR (measured) = 0.00761 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11g 2462MHz-Bottom

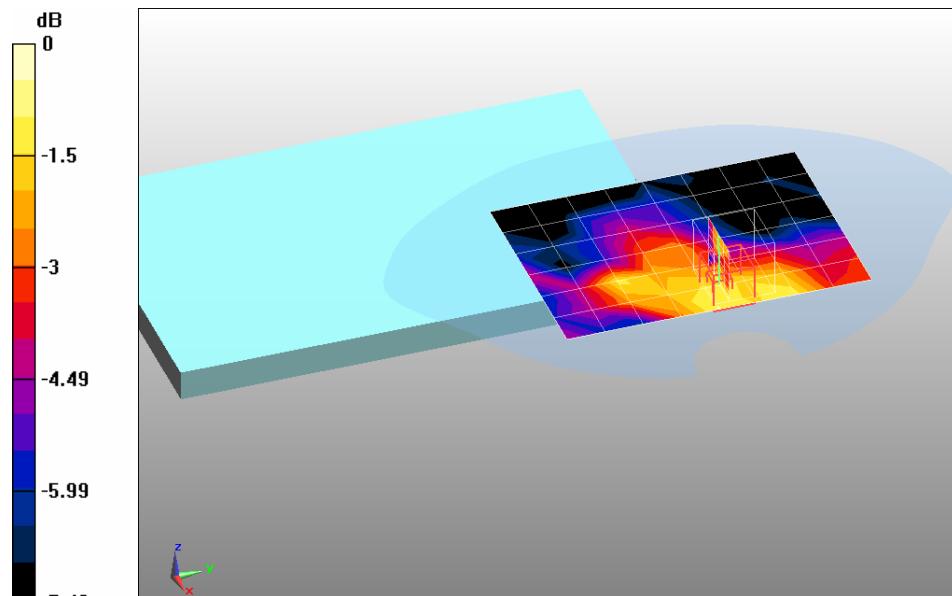
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: $f = 2462$ MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g High Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.00684 mW/g

Configuration/802.11g High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.34 V/m; Power Drift = 0.154 dB

Peak SAR (extrapolated) = 0.012 W/kg

SAR(1 g) = 0.007 mW/g; SAR(10 g) = 0.005 mW/g Maximum value of SAR (measured) = 0.00844 mW/g

0 dB = 0.00844mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11g 2437MHz-Rear

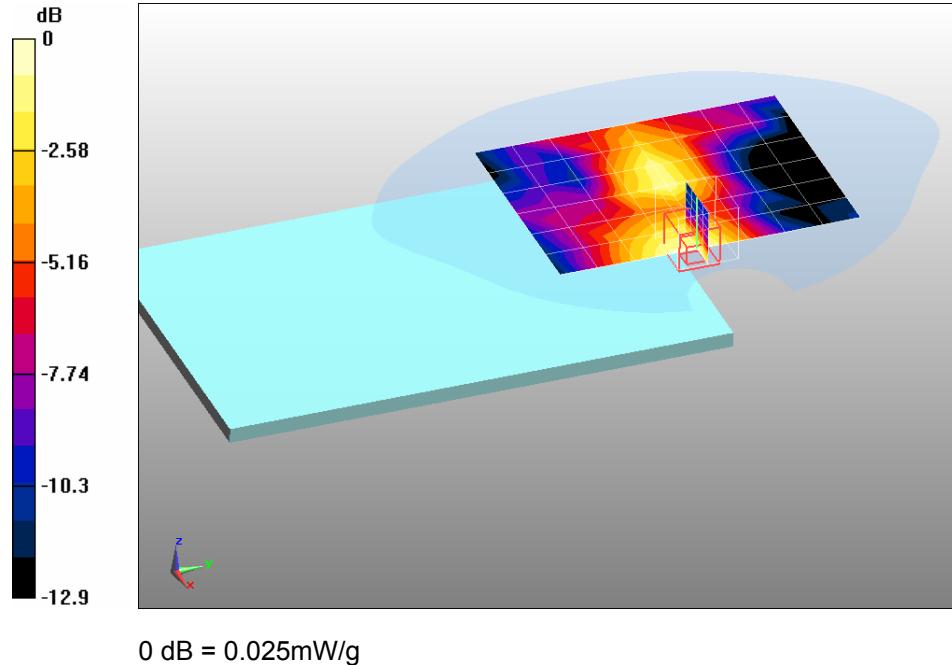
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.022 mW/g

Configuration/802.11g Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.28 V/m; Power Drift = -0.148 dB

Peak SAR (extrapolated) = 0.044 W/kg

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.013 mW/g Maximum value of SAR (measured) = 0.025 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11g 2412MHz-Side

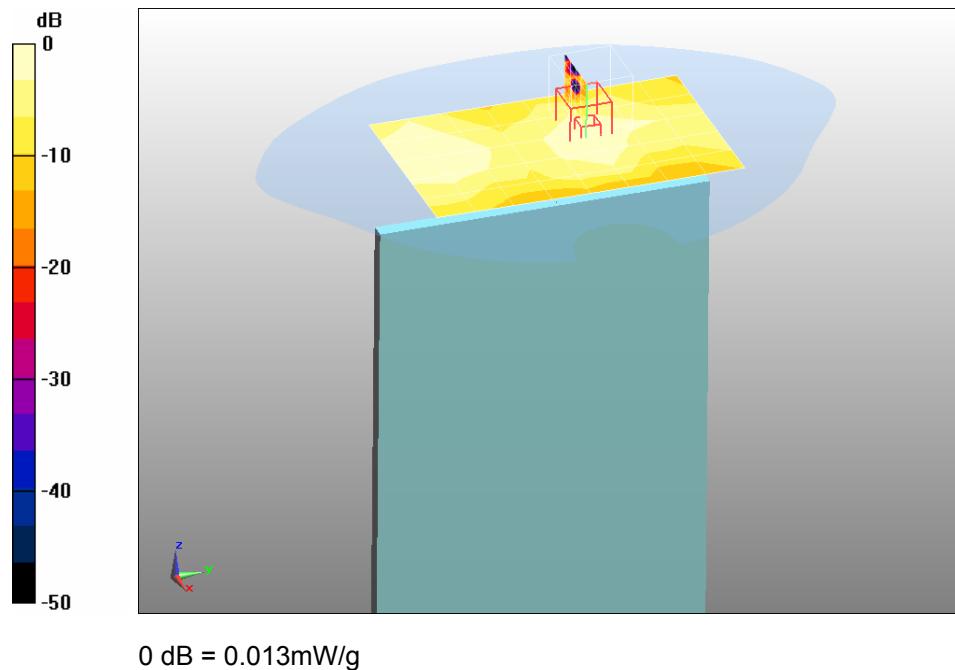
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2412 MHz; Medium parameters used: $f = 2412$ MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g Low Channel/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.014 mW/g

Configuration/802.11g Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.17 V/m; Power Drift = -0.122 dB

Peak SAR (extrapolated) = 0.029 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00555 mW/g Maximum value of SAR (measured) = 0.013 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11g 2437MHz-Side

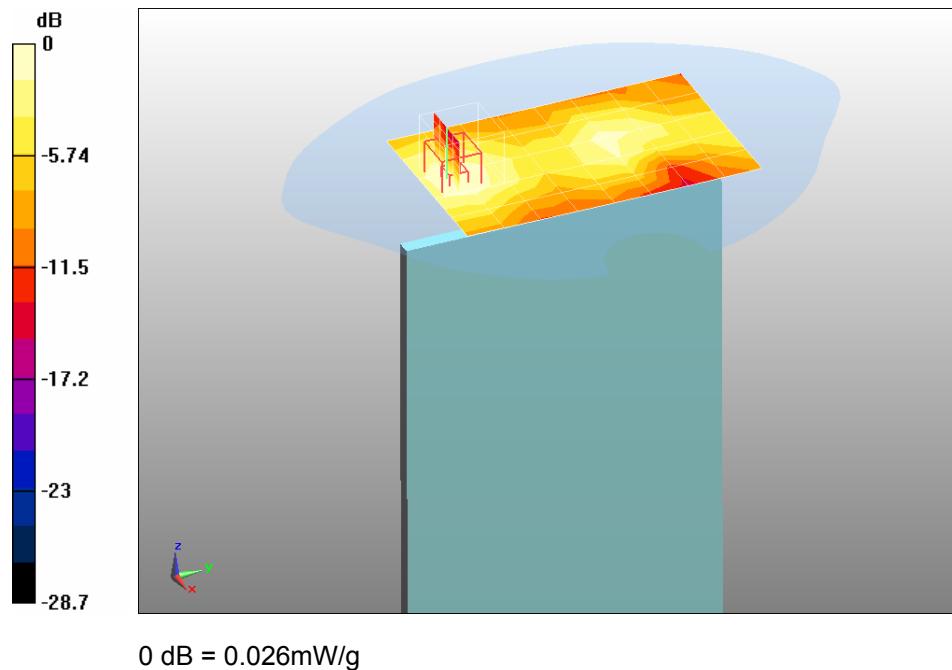
DUT: Notebook; Type: S100xxxx

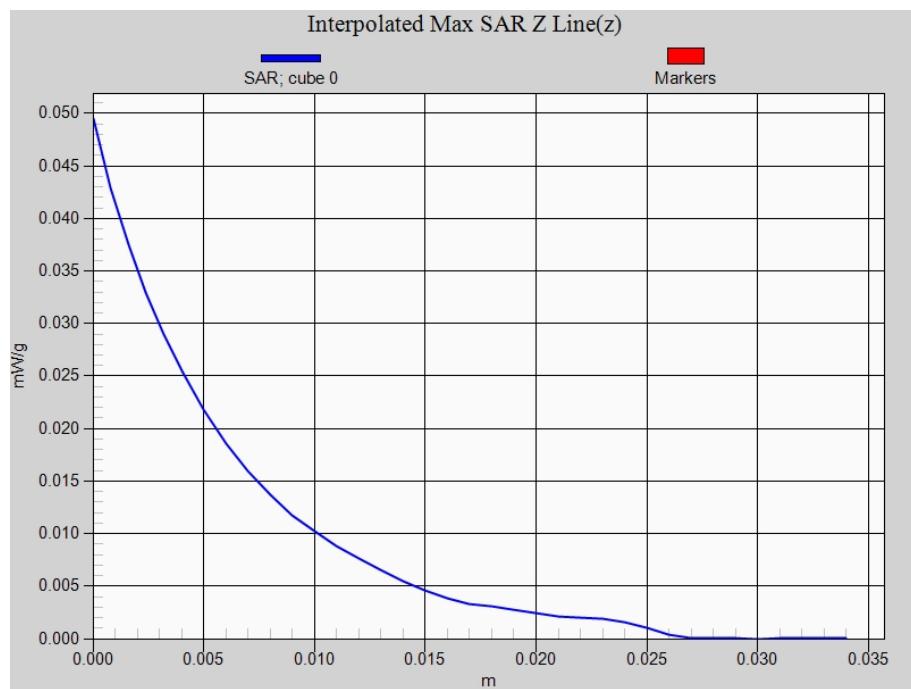
Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11g Mid Channel/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.025 mW/g

Configuration/802.11g Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.53 V/m; Power Drift = -0.134 dB

Peak SAR (extrapolated) = 0.049 W/kg

SAR(1 g) = 0.024 mW/g; SAR(10 g) = 0.014 mW/g Maximum value of SAR (measured) = 0.026 mW/g

802.11g EUT Rear, Z-Axis Plot

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11g 2462MHz-Side

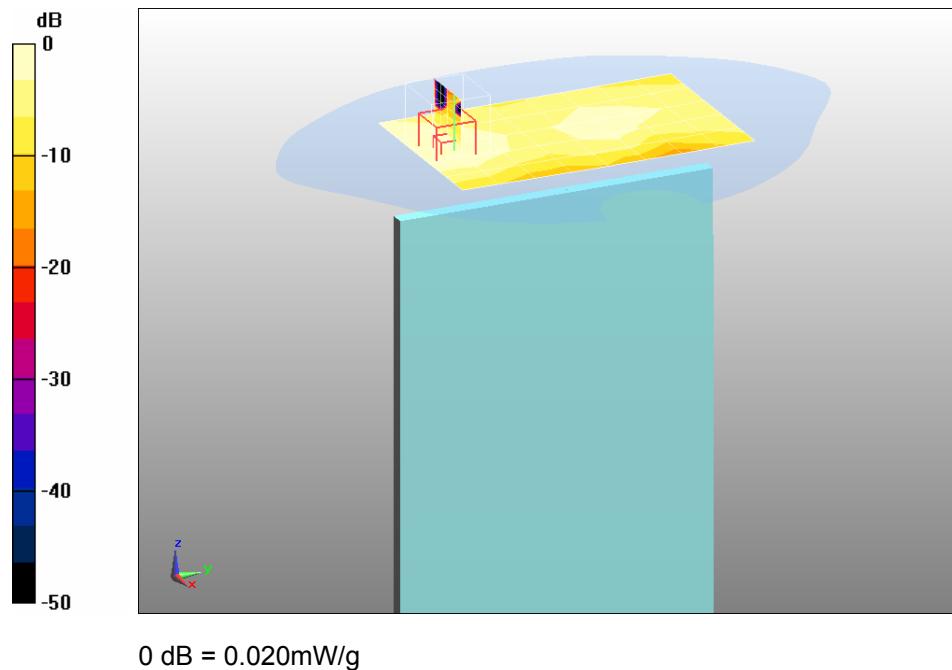
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: $f = 2462$ MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g High Channel/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.023 mW/g

Configuration/802.11g High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.1 V/m; Power Drift = -0.160 dB

Peak SAR (extrapolated) = 0.030 W/kg

SAR(1 g) = 0.018 mW/g; SAR(10 g) = 0.009 mW/g Maximum value of SAR (measured) = 0.020 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11n(20) 2437MHz-Bottom

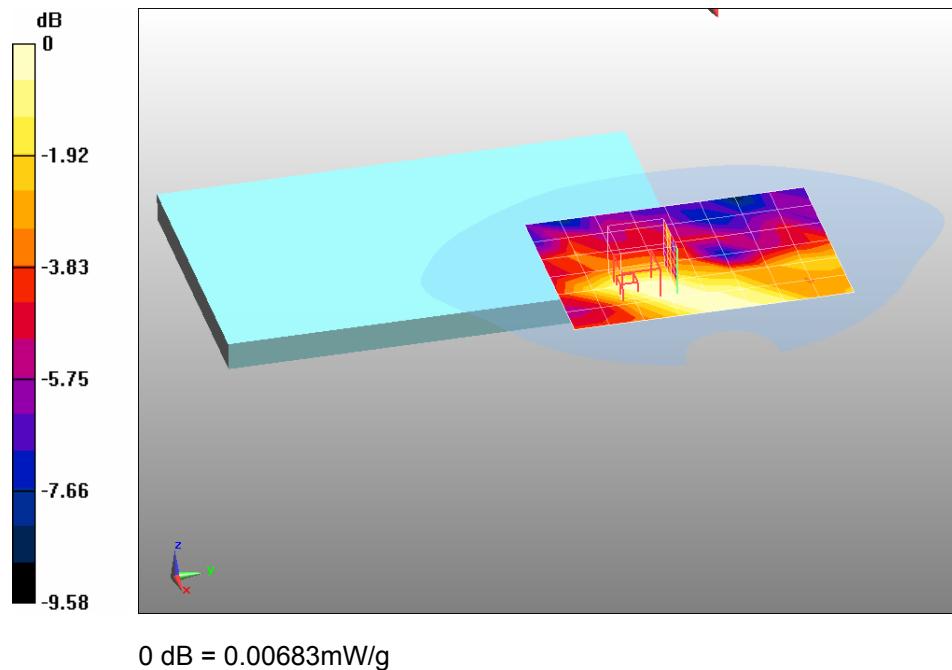
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.00665 mW/g

Configuration/802.11n(20) Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.25 V/m; Power Drift = 0.161 dB

Peak SAR (extrapolated) = 0.020 W/kg

SAR(1 g) = 0.006 mW/g; SAR(10 g) = 0.00379 mW/g Maximum value of SAR (measured) = 0.00683 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11n(20) 2437MHz-Side

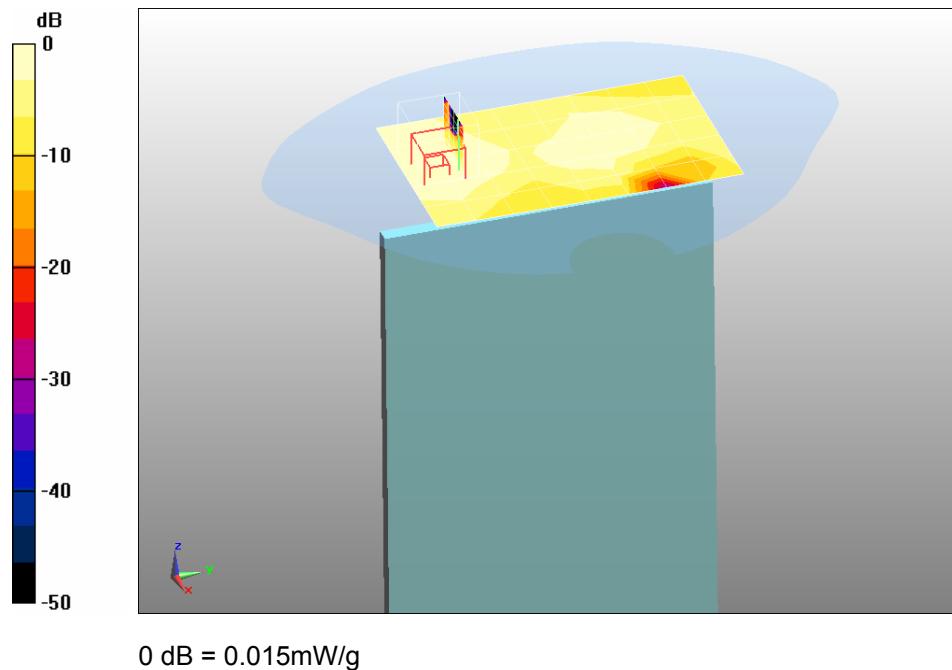
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Mid Channel/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.017 mW/g

Configuration/802.11n(20) Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.11 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 0.032 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00745 mW/g Maximum value of SAR (measured) = 0.015 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11n(40) 2437MHz-Bottom

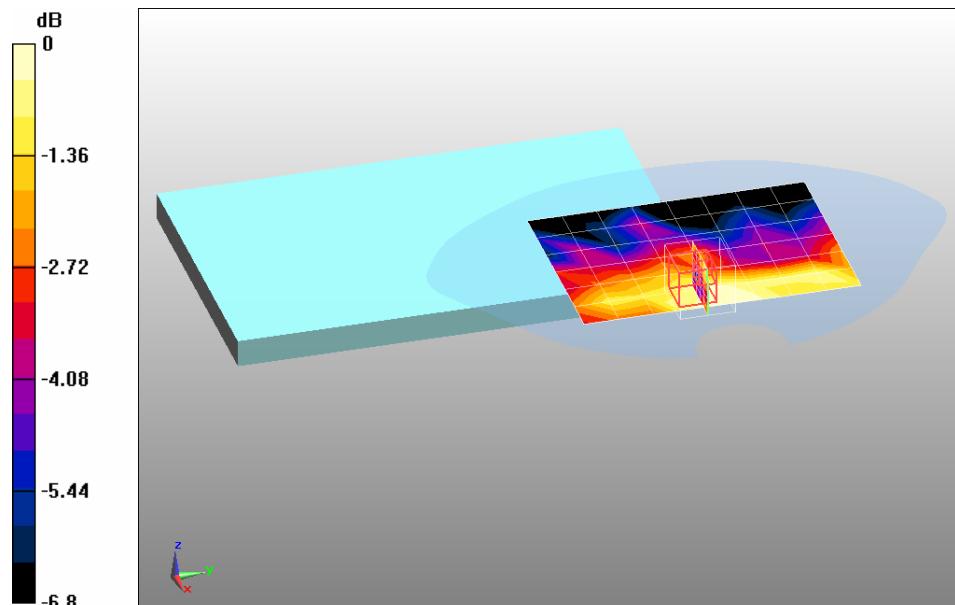
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.00686 mW/g

Configuration/802.11n(40) Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.26 V/m; Power Drift = -0.187 dB

Peak SAR (extrapolated) = 0.00659 W/kg

SAR(1 g) = 0.005 mW/g; SAR(10 g) = 0.00317 mW/g Maximum value of SAR (measured) = 0.00659 mW/g

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab

802.11n(40) 2437MHz-Side

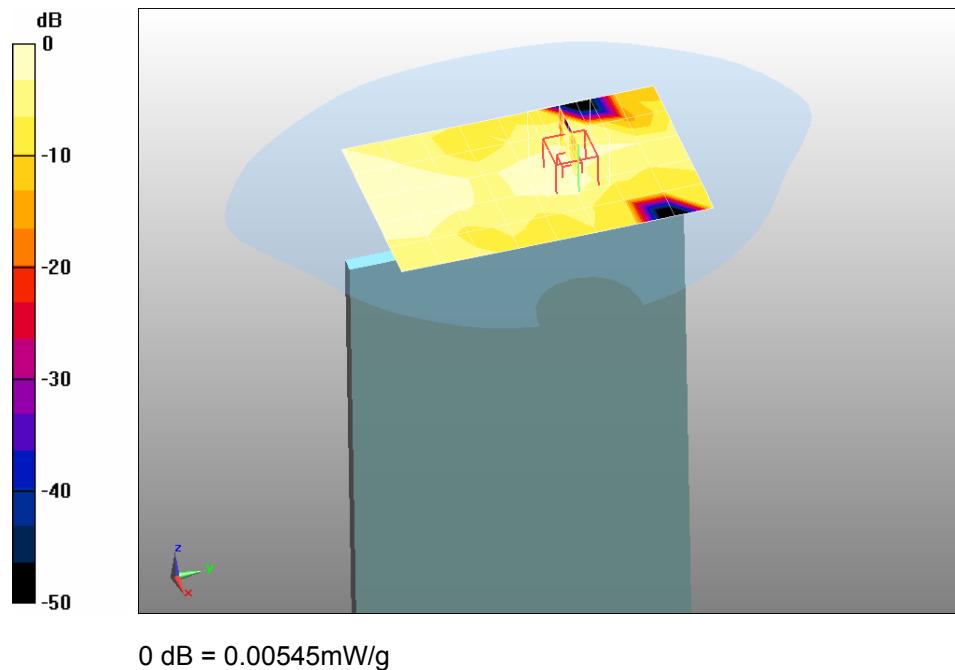
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Mid Channel/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.00608 mW/g

Configuration/802.11n(40) Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.15 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 0.024 W/kg

SAR(1 g) = 0.006 mW/g; SAR(10 g) = 0.002 mW/g Maximum value of SAR (measured) = 0.00545 mW/g

Appendix D. Probe Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Quietek (Auden)

Certificate No: EX3-3710_Mar10

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3710					
Calibration procedure(s)	QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes					
Calibration date:	March 5, 2010					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity < 70%.						
Calibration Equipment used (M&TE critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10			
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10			
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10			
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10			
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10			
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10			
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10			
DAE4	SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11			
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct-10			
Calibrated by:	Name Katja Pokovic	Function Technical Manager	Signature 			
Approved by:	Niels Kuster	Quality Manager				
Issued: March 5, 2010						
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.						

Certificate No: EX3-3710_Mar10

Page 1 of 11

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- $Ax,y,z; Bx,y,z; Cx,y,z$; VRx,y,z ; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 SN:3710

March 5, 2010

Probe EX3DV4

SN:3710

Manufactured: July 21, 2009
Calibrated: March 5, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4 SN:3710

March 5, 2010

DASY - Parameters of Probe: EX3DV4 SN:3710**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m) ²) ^A	0.48	0.58	0.60	\pm 10.1%
DCP (mV) ^B	90.8	94.4	91.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	C	VR mV	Unc ^E (k=2)
10000	CW	0.00	X Y Z	0.00 0.00 0.00	0.00 0.00 0.00	1.00 1.00 1.00	300 300 300	\pm 1.5%

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E-field uncertainty inside TSL (see Pages 5 and 6)^B Numerical linearization parameter: uncertainty not required^E Uncertainty is determined using the maximum deviation from linear response applying rectangular distribution and is expressed for the square of the field value

EX3DV4 SN:3710

March 5, 2010

DASY - Parameters of Probe: EX3DV4 SN:3710**Calibration Parameter Determined in Head Tissue Simulating Media**

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	8.83	8.83	8.83	0.68	0.64 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	0.97 ± 5%	8.73	8.73	8.73	0.83	0.58 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.69	7.69	7.69	0.62	0.63 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.35	7.35	7.35	0.70	0.60 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	6.96	6.96	6.96	0.46	0.75 ± 11.0%
2600	± 50 / ± 100	39.0 ± 5%	1.96 ± 5%	6.88	6.88	6.88	0.31	0.92 ± 11.0%
3500	± 50 / ± 100	37.9 ± 5%	2.91 ± 5%	6.64	6.64	6.64	0.33	1.18 ± 13.1%
5200	± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.92	4.92	4.92	0.40	1.90 ± 13.1%
5300	± 50 / ± 100	35.9 ± 5%	4.76 ± 5%	4.60	4.60	4.60	0.40	1.90 ± 13.1%
5500	± 50 / ± 100	35.6 ± 5%	4.96 ± 5%	4.42	4.42	4.42	0.50	1.90 ± 13.1%
5600	± 50 / ± 100	35.5 ± 5%	5.07 ± 5%	4.42	4.42	4.42	0.40	1.90 ± 13.1%
5800	± 50 / ± 100	35.3 ± 5%	5.27 ± 5%	4.26	4.26	4.26	0.50	1.90 ± 13.1%

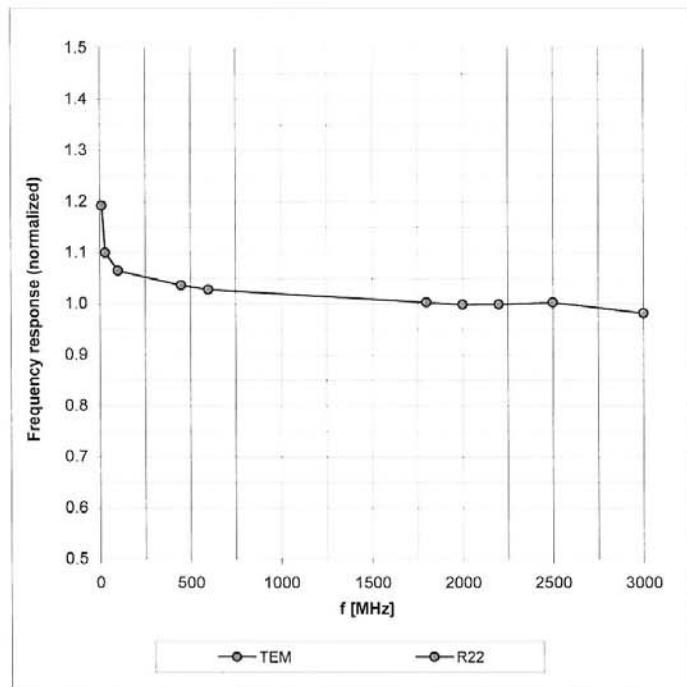
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band

EX3DV4 SN:3710

March 5, 2010

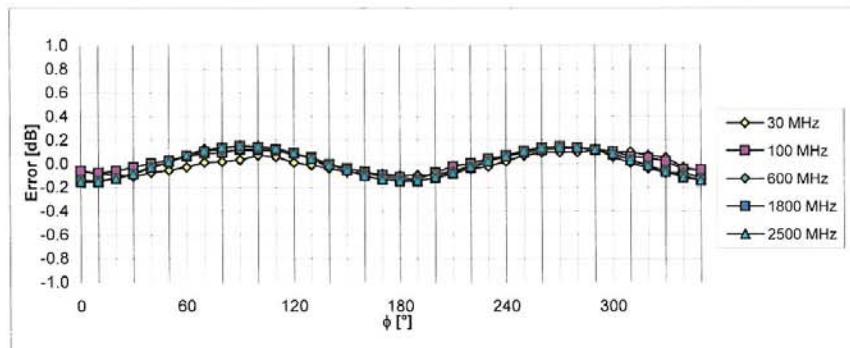
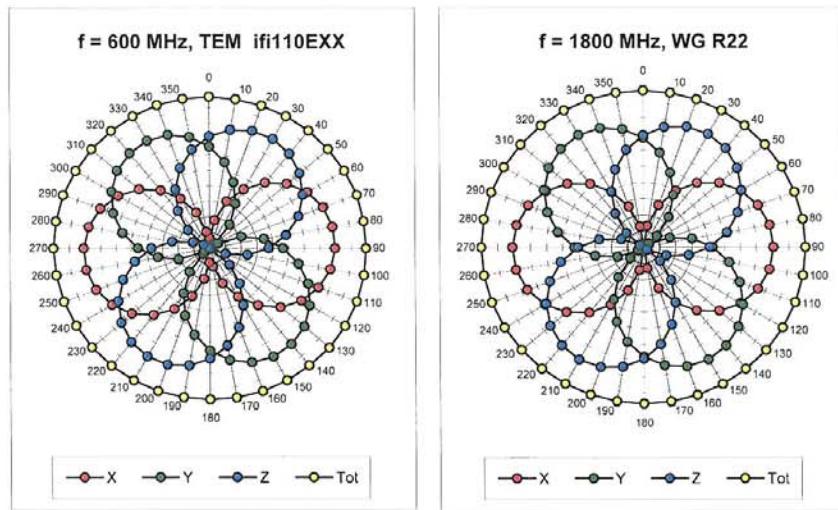
DASY - Parameters of Probe: EX3DV4 SN:3710**Calibration Parameter Determined in Body Tissue Simulating Media**

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	8.95	8.95	8.95	0.84	0.62 ± 11.0%
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	8.80	8.80	8.80	0.65	0.69 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.71	7.71	7.71	0.57	0.72 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.45	7.45	7.45	0.38	0.87 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	7.00	7.00	7.00	0.32	0.95 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.90	6.90	6.90	0.47	0.79 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	6.19	6.19	6.19	0.31	1.44 ± 13.1%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	4.13	4.13	4.13	0.50	1.90 ± 13.1%
5300	± 50 / ± 100	48.5 ± 5%	5.42 ± 5%	3.91	3.91	3.91	0.55	1.90 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	5.65 ± 5%	3.81	3.81	3.81	0.55	1.90 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.58	3.58	3.58	0.60	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.97	3.97	3.97	0.60	1.90 ± 13.1%


^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band

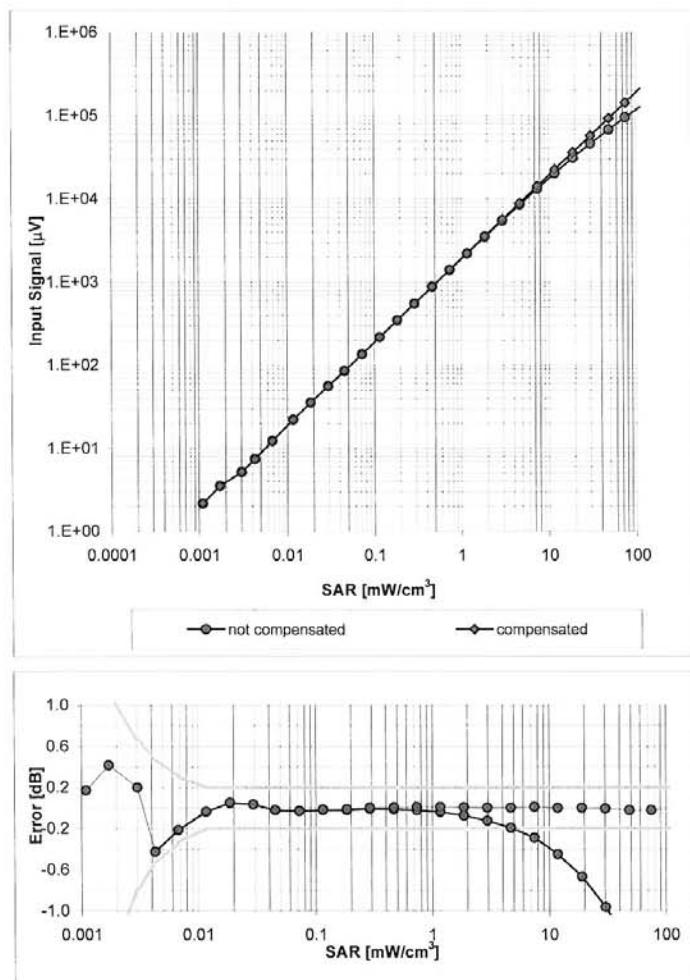
EX3DV4 SN:3710

March 5, 2010



Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

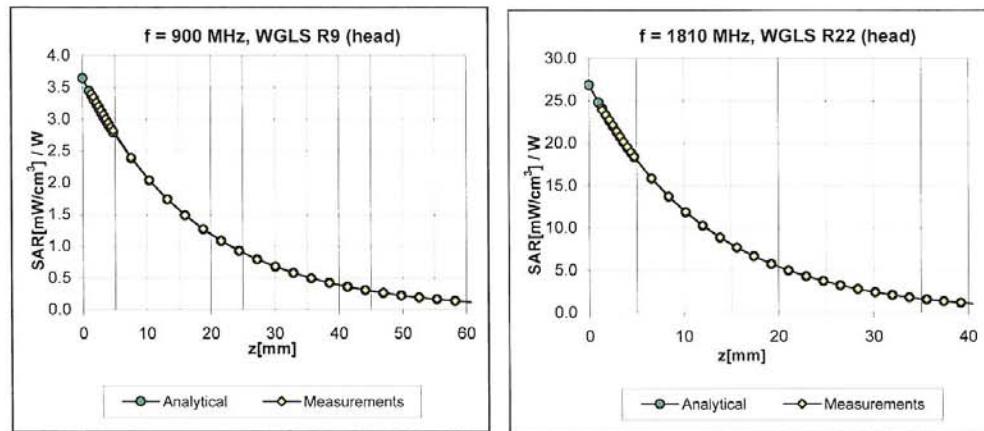
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)


EX3DV4 SN:3710

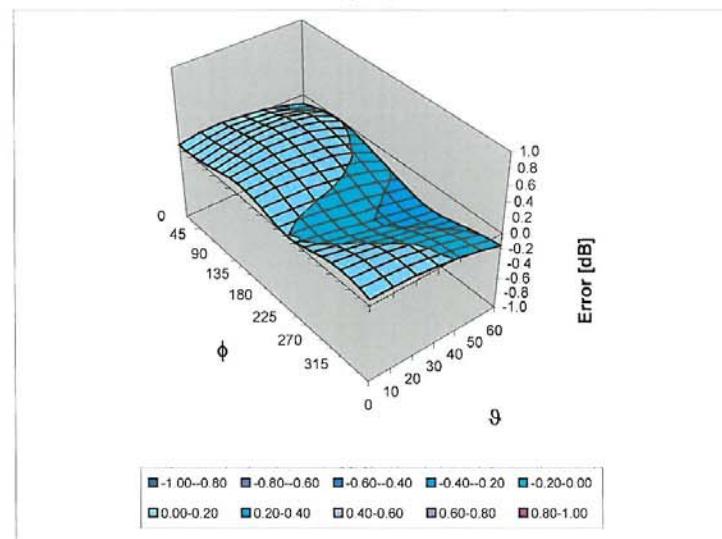
March 5, 2010

Receiving Pattern (ϕ), $\theta = 0^\circ$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

EX3DV4 SN:3710


March 5, 2010

Dynamic Range $f(\text{SAR}_{\text{head}})$
(Waveguide R22, $f = 1800$ MHz)Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


EX3DV4 SN:3710

March 5, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, θ), f = 900 MHzUncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ (k=2)

EX3DV4 SN:3710

March 5, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Appendix E. Dipole Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Quietek (Auden)**

Certificate No: **D2450V2-839_Mar10**

CALIBRATION CERTIFICATE

Object **D2450V2 - SN: 839**

Calibration procedure(s) **QA CAL-05.v7**
 Calibration procedure for dipole validation kits

Calibration date: **March 12, 2010**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	02-Mar-10 (No. DAE4-601_Mar10)	Mar-11

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10

Calibrated by:	Name	Function	Signature
	Mike Meili	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: March 18, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.11 mW / g
SAR normalized	normalized to 1W	24.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.06 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	53.5 Ω - 0.6 $j\Omega$
Return Loss	- 29.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω + 0.9 $j\Omega$
Return Loss	- 40.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

DASY5 Validation Report for Head TSL

Date/Time: 12.03.2010 13:24:52

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.81$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

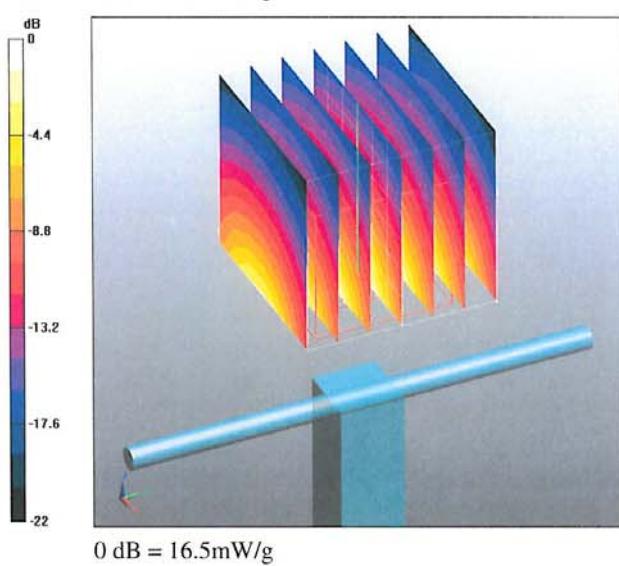
Phantom section: Flat Section

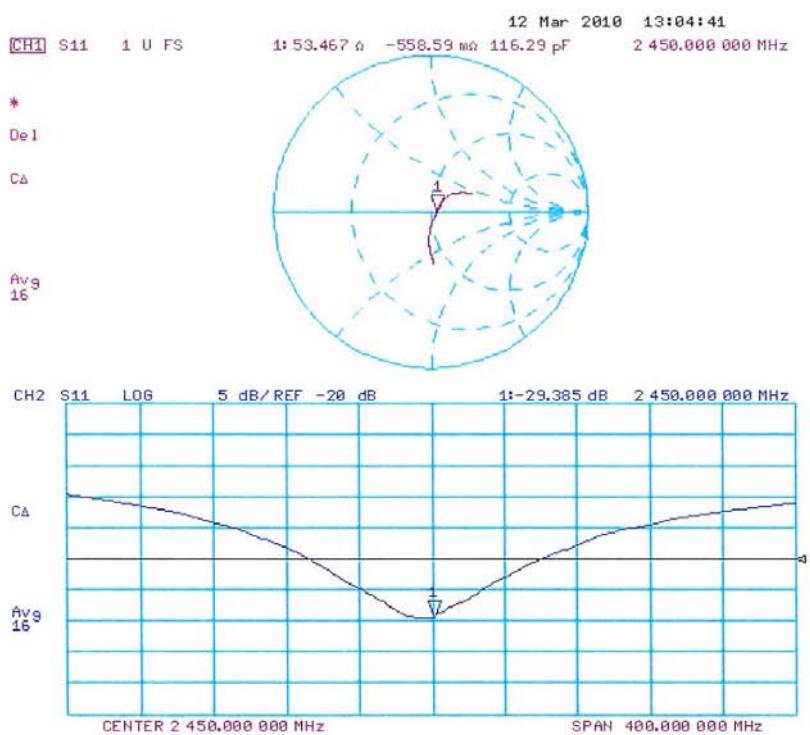
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 99.1 V/m; Power Drift = 0.060 dB

Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.11 mW/g

Maximum value of SAR (measured) = 16.5 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 12.03.2010 15:25:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 54.5$; $\rho = 1000$ kg/m³

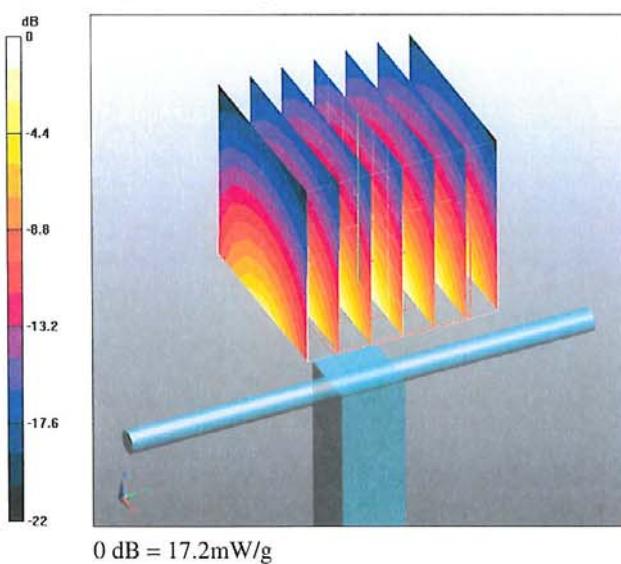
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Body/d=10mm, Pin250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.9 V/m; Power Drift = -0.0047 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/g

Maximum value of SAR (measured) = 17.2 mW/g

Impedance Measurement Plot for Body TSL