Report No.: 24B0011R-SAUSV01S-B

Appendix A. System Check Data

System Performance Check_2450MHz-Head

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: UID 0, CW; Frequency: 2450 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 2450 MHz; $\sigma = 1.78 \text{ S/m}$; $\epsilon_r = 39.14$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3801; ConvF(7.41, 7.41, 7.41) @ 2450 MHz; Calibrated: 2024/06/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1305; Calibrated: 2024/04/18

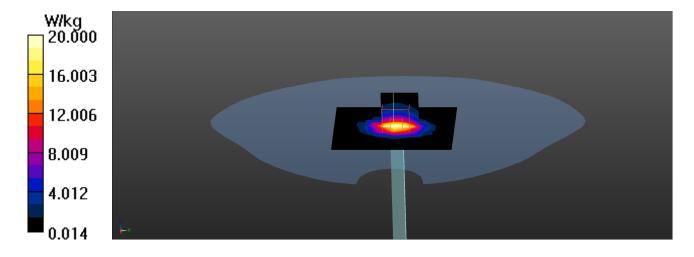
Phantom: SAM with left table; Type: SAM;

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/2450MHz-Head/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 20.0 W/kg

Configuration/2450MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 119.6 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.24 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 49%

Maximum value of SAR (measured) = 23.2 W/kg

System Performance Check_5250MHz-Head

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5250 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 5250 MHz; σ = 4.61 S/m; ε_r = 36.3; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3801; ConvF(5.23, 5.23, 5.23) @ 5250 MHz; Calibrated: 2024/06/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1305; Calibrated: 2024/04/18

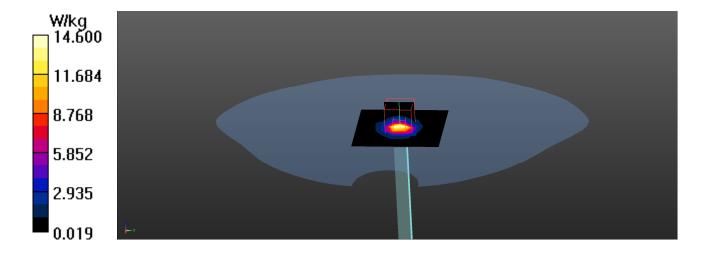
• Phantom: SAM with right table; Type: SAM;

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/5250MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.6 W/kg

Configuration/5250MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.33 V/m; Power Drift = 0.16 dB


Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 65.6%

Maximum value of SAR (measured) = 21.5 W/kg

System Performance Check_5600MHz-Head

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5600 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 5600 MHz; σ = 5.14 S/m; ϵ_r = 35.33; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3801; ConvF(4.63, 4.63, 4.63) @ 5600 MHz; Calibrated: 2024/06/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1305; Calibrated: 2024/04/18

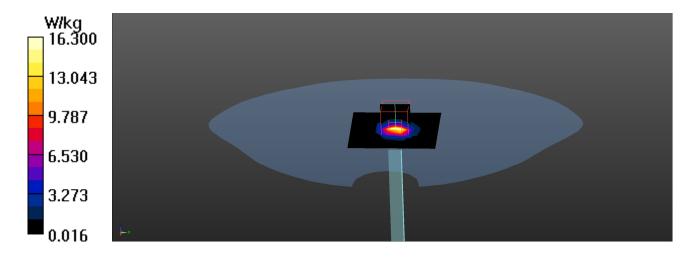
Phantom: SAM with Left; Type: SAM;

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/5600MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 16.3 W/kg

Configuration/5600MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.73 V/m; Power Drift = 0.18 dB


Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.36 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 61.5%

Maximum value of SAR (measured) = 22.4 W/kg

System Performance Check_5800MHz-Head

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5800 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 5800 MHz; σ = 5.4 S/m; ϵ_r = 34.78; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3801; ConvF(4.89, 4.89, 4.89) @ 5800 MHz; Calibrated: 2024/06/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1305; Calibrated: 2024/04/18

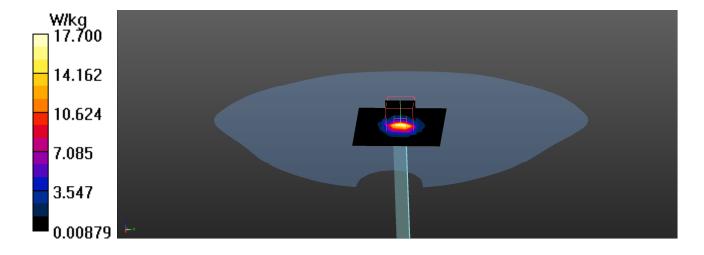
Phantom: SAM with right table; Type: SAM;

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/5800MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.7 W/kg

Configuration/5800MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.21 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.31 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 60.2%

Maximum value of SAR (measured) = 24.6 W/kg

System Performance Check_5800MHz-Head

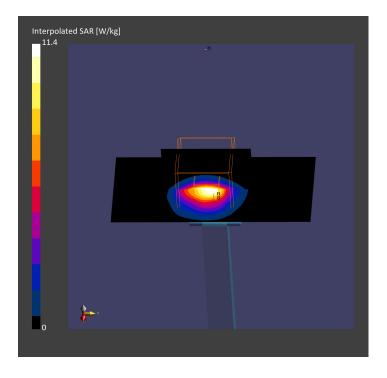
Communication System: UID 0--, CW; Frequency: 5800.000 MHz

Medium parameters used: f = 5800.000 MHz; Conductivity = 5.51 S/m; Permittivity = 34.88

Phantom section: Flat

DASY Configuration:

Probe: EX3DV4 - SN7784; ConvF(4.47, 4.6, 4.54); Calibrated: 2024-04-22


• Sensor-Surface: 1.4 mm

• Electronics: DAE4 Sn1791; Calibrated: 2024-04-22

Phantom: ELI V8.0 (20deg probe tilt)Measurement SW: V16.4.0.5005

Area Scan (40.0 mm x 80.0 mm): Measurement grid: $10.0 \text{ mm} \times 10.0 \text{ mm}$ SAR (1 g) = 7.44 W/kg; SAR (10 g) = 2.15 W/kg

Zoom Scan (22.0 mm x 22.0 mm x 22.0 mm): Measurement grid: $4.0 \text{ mm} \times 4.0 \text{ mm} \times 1.4 \text{ mm}$ Power Drift = -0.02 dB SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = $7.4 \text{ Ratio of SAR at M2 to SAR at M1} = <math>62.0 \text{ mm} \times 22.0 \text{ mm}$

