

Appendix B – System Check Plots

Date: 2024/8/28

System Performance Check at 2450 MHz

DUT: D2450V2_SN712

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450 \text{ MHz}$; $\sigma = 1.816 \text{ S/m}$; $\epsilon_r = 41.514$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5

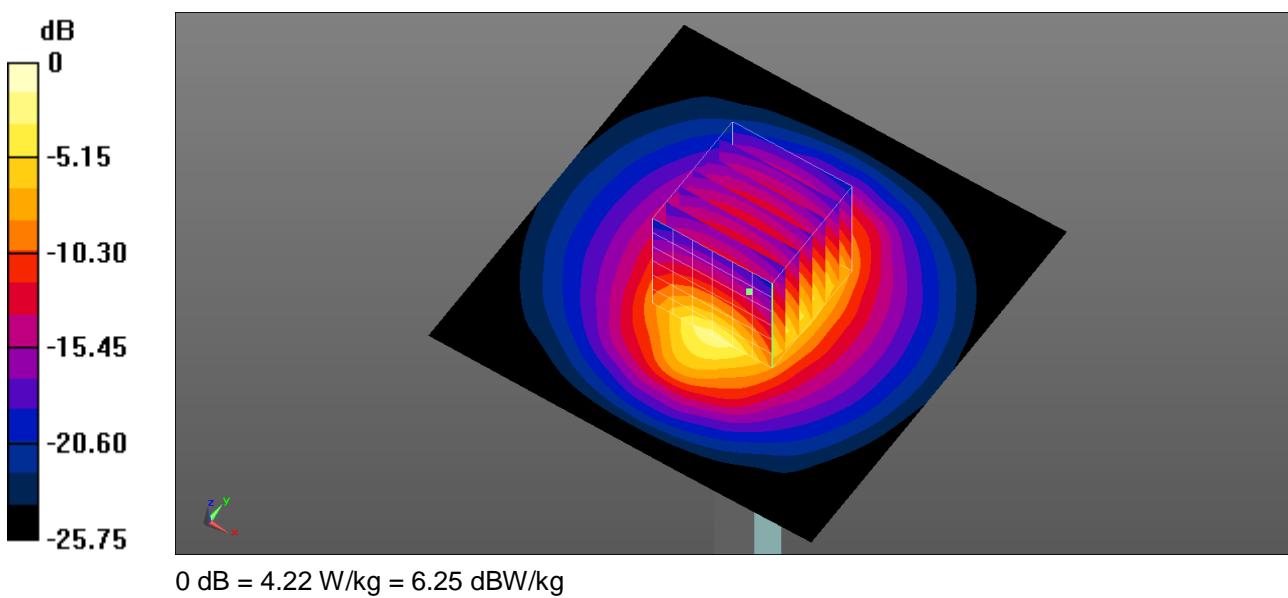
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN7647; ConvF(7.67, 7.58, 8.79) @ 2450 MHz; Calibrated: 2024/4/24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2024/3/11
- Phantom: ELI; Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 2450MHz/Area Scan (81x81x1): Interpolated grid: $dx=1.200 \text{ mm}$, $dy=1.200 \text{ mm}$
Maximum value of SAR (interpolated) = 4.22 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 57.80 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 5.18 W/kg

SAR(1 g) = 2.56 W/kg; SAR(10 g) = 1.21 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mm

Ratio of SAR at M2 to SAR at M1 = 57.1%

Maximum value of SAR (measured) = 4.22 W/kg

Date: 2024/8/29

System Performance Check at 5250 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 5250 \text{ MHz}$; $\sigma = 4.552 \text{ S/m}$; $\epsilon_r = 37.749$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5

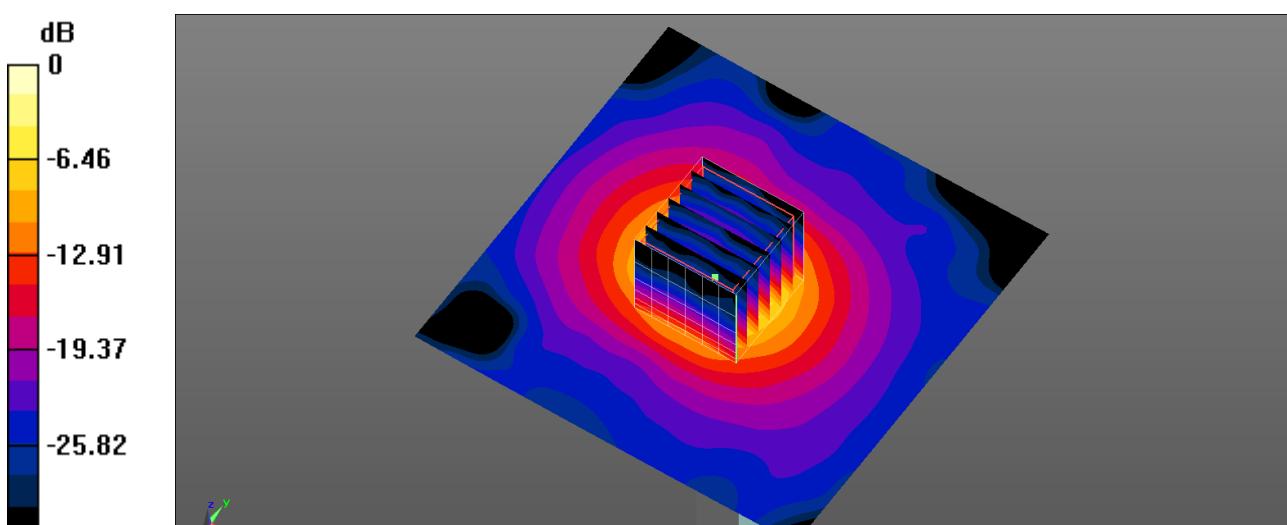
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN7647; ConvF(5.2, 5.3, 6.06) @ 5250 MHz; Calibrated: 2024/4/24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2024/3/11
- Phantom: ELI; Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5250MHz/Area Scan (91x91x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$
Maximum value of SAR (interpolated) = 9.25 W/kg

System Performance Check at 5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=4 \text{ mm}$, $dy=4 \text{ mm}$, $dz=1.4 \text{ mm}$

Reference Value = 50.54 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 16.5 W/kg

SAR(1 g) = 3.81 W/kg; SAR(10 g) = 1.07 W/kg

Smallest distance from peaks to all points 3 dB below = 7.8 mm

Ratio of SAR at M2 to SAR at M1 = 68.5%

Maximum value of SAR (measured) = 9.37 W/kg

Date: 2024/8/30

System Performance Check at 5600 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 5600$ MHz; $\sigma = 4.864$ S/m; $\epsilon_r = 37.49$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

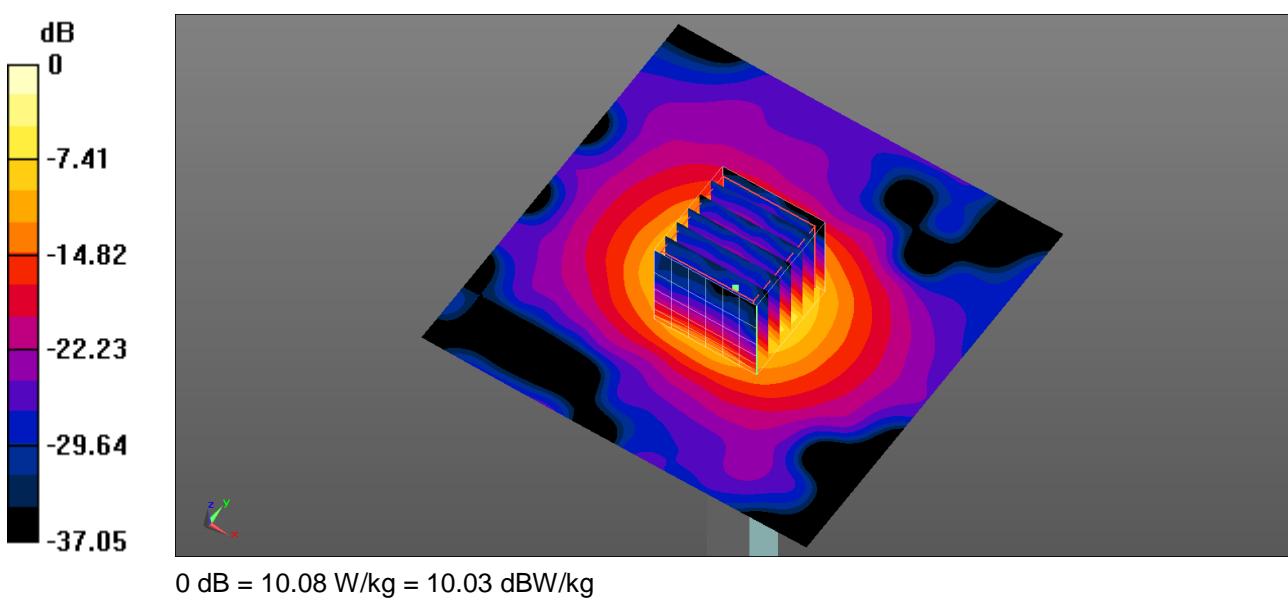
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN7647; ConvF(4.54, 4.58, 5.27) @ 5600 MHz; Calibrated: 2024/4/24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2024/3/11
- Phantom: ELI; Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5600MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 9.57 W/kg

System Performance Check at 5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.07 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 18.25 W/kg

SAR(1 g) = 3.96 W/kg; SAR(10 g) = 1.09 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 53.5%

Maximum value of SAR (measured) = 10.08 W/kg

Date: 2024/8/31

System Performance Check at 5800 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 5800$ MHz; $\sigma = 5.082$ S/m; $\epsilon_r = 37.298$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5

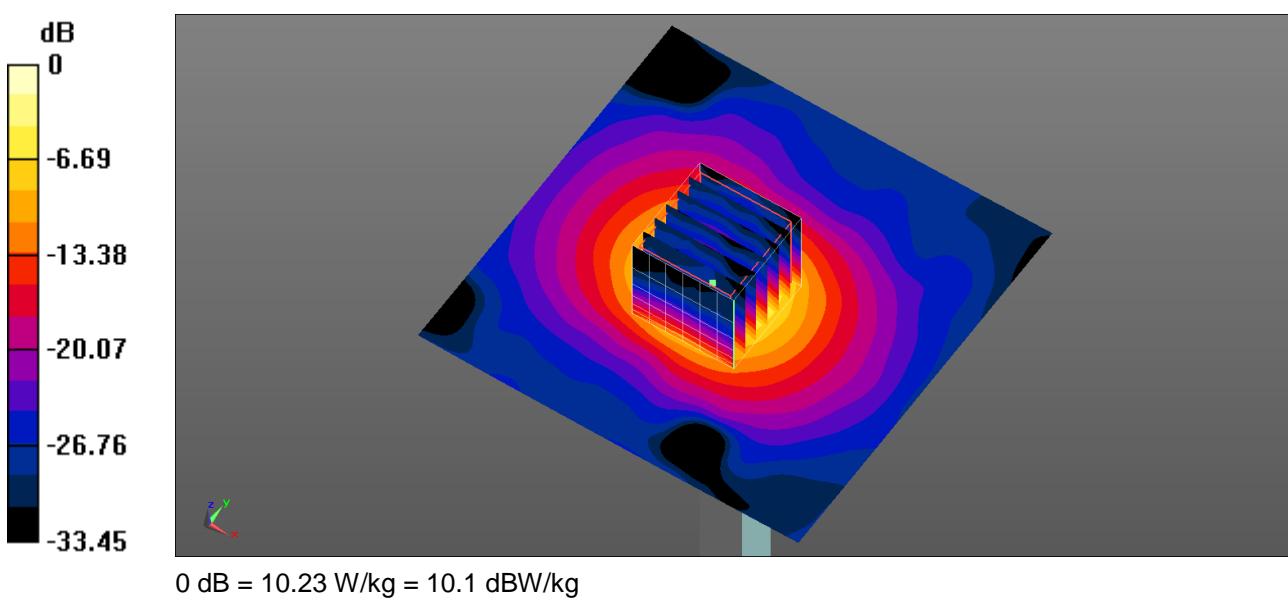
DASY5.2 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 - SN7647; ConvF(4.55, 4.63, 5.33) @ 5800 MHz; Calibrated: 2024/4/24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2024/3/11
- Phantom: ELI; Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5800MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 10.4 W/kg

System Performance Check at 5800MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 53.72 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 19.58 W/kg

SAR(1 g) = 4.1 W/kg; SAR(10 g) = 1.13 W/kg

Smallest distance from peaks to all points 3 dB below = 8.3 mm

Ratio of SAR at M2 to SAR at M1 = 56.5%

Maximum value of SAR (measured) = 10.23 W/kg

