Frequency: 2450 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used (interpolated): f = 2450 MHz; σ = 1.837 S/m; ϵ_r = 40.257; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Date: 2021/5/5

- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(7.6, 7.6, 7.6) @ 2450 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

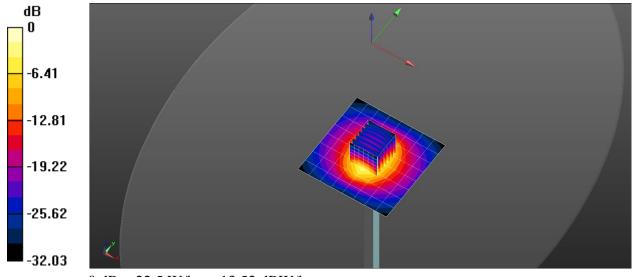
System Performance Check at Frequencies above 1 GHz/Pin=250mW/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 22.5 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 117.8 V/m; Power Drift = -0.11 dB


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.84 W/kg

Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 45.5%

Maximum value of SAR (measured) = 22.1 W/kg

0 dB = 22.5 W/kg = 13.52 dBW/kg

Frequency: 5200 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5200 MHz; σ = 4.621 S/m; ϵ_r = 35.761; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(5.13, 5.13, 5.13) @ 5200 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

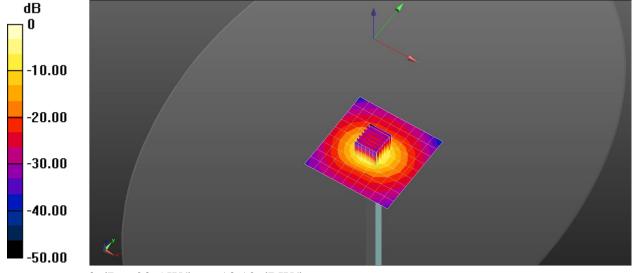
dy=10mm

Maximum value of SAR (measured) = 13.0 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 64.21 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 54.9%

Maximum value of SAR (measured) = 20.5 W/kg

0 dB = 20.5 W/kg = 13.12 dBW/kg

Frequency: 5300 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5300 MHz; σ = 4.728 S/m; ϵ_r = 35.539; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(4.96, 4.96, 4.96) @ 5300 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

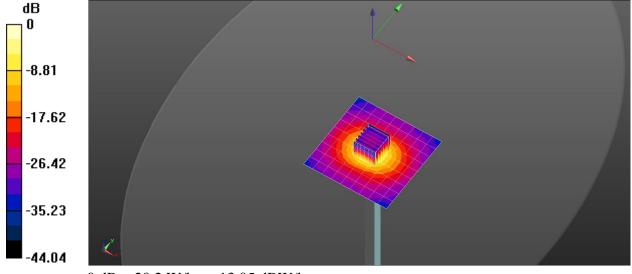
dy=10mm

Maximum value of SAR (measured) = 12.9 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 62.79 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 54.1%

Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg

Frequency: 5600 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5600 MHz; σ = 5.083 S/m; ϵ_r = 34.681; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(4.7, 4.7, 4.7) @ 5600 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

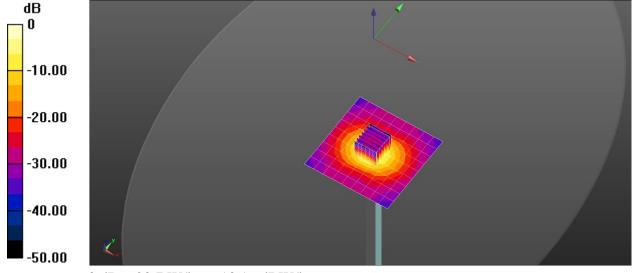
dy=10mm

Maximum value of SAR (measured) = 12.9 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.93 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 51.2%

Maximum value of SAR (measured) = 20.7 W/kg

0 dB = 20.7 W/kg = 13.16 dBW/kg

Frequency: 5800 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5800 MHz; σ = 5.304 S/m; ϵ_r = 34.337; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Date: 2021/5/4

- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(4.68, 4.68, 4.68) @ 5800 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

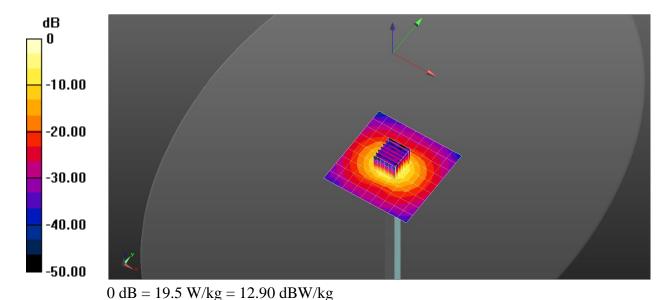
Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

Maximum value of SAR (measured) = 18.0 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 51.85 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 36.6 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.2%

Maximum value of SAR (measured) = 21.1 W/kg

