FCC SAR TEST REPORT

FCC ID : TX2-RTL8852AE

Equipment: 11ax RTL8852AE Combo module

Brand Name : REALTEK

Model Name : RTL8852AE

Applicant : Realtek Semiconductor Corp.

No.2, Innovation Road II, Hsinchu Science Park, Hsinchu300, Taiwan

Standard : FCC 47 CFR Part 2 (2.1093)

Equipment: Realtek RTL8852AE tested inside of Lenovo Notebook Computer

The product was received on Dec. 11, 2020 and testing was started from Dec. 17, 2020 and completed on Dec. 17, 2020. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been pass the FCC requirement.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Cona Huang / Deputy Manager

lac-MRA

Report No.: FA010919-10

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Template version: 200414 Page 1 of 29 Issued Date : Jan. 02, 2021

SPORTON LAB. FCC SAR TEST REPORT

Report No. : FA010919-10

Table of Contents

1. Statement of Compliance	
2. Guidance Applied	4
3. Equipment Under Test (EUT) Information	5
3.1 General Information	
4. RF Exposure Limits	
4.1 Uncontrolled Environment	
4.2 Controlled Environment	
5. Specific Absorption Rate (SAR)	
5.1 Introduction	
5.2 SAR Definition	
6. System Description and Setup	8
6.1 Test Site Location	8
6.2 E-Field Probe	
6.3 Data Acquisition Electronics (DAE)	9
6.4 Phantom	.10
6.5 Device Holder	.11
7. Measurement Procedures	
7.1 Spatial Peak SAR Evaluation	
7.2 Power Reference Measurement	.13
7.3 Area Scan	.13
7.4 Zoom Scan	
7.5 Volume Scan Procedures	.14
7.6 Power Drift Monitoring	
8. Test Equipment List	
9. System Verification	.16
9.1 Tissue Verification	
9.2 System Performance Check Results	
10. WiFi/Bluetooth Output Power (Unit: dBm)	
11. SAR Test Results	
11.1 Body SAR	
11.2 Repeated SAR Measurement	
12. Simultaneous Transmission Analysis	
12.1 Body Exposure Conditions	
12.2 SPLSR Evaluation and Analysis	
13. Uncertainty Assessment	
14. References	.29
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

History of this test report

Report No. : FA010919-10

The control of the co						
Report No.	Version	Description	Issued Date			
FA010919-10	01	Initial issue of report	Jan. 02, 2021			

TEL: 886-3-327-3456 Page 3 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Realtek Semiconductor Corp., 11ax RTL8852AE Combo module, RTL8852AE, are as follows.

Report No.: FA010919-10

Equipment Class	Frequency Band		Highest SAR Summary Body (Separation 0mm) 1g SAR (W/kg)	Highest Simultaneous Transmission 1g SAR (W/kg)
DTS	WLAN	2.4GHz WLAN	0.45	1.33
NII	WLAIN	5GHz WLAN	1.00	1.33
DSS	2.4GHz Band	Bluetooth	0.02	1.04
Date of Testing:			2020/	12/17

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No.TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Paula Chen</u>

2. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards, the below KDB standard may not including in the TAF code without accreditation.

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02

TEL: 886-3-327-3456 Page 4 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

3. Equipment Under Test (EUT) Information

3.1 General Information

Equipment Name Brand Name REALTEK Model Name RTL8852AE FCC ID TX2-RTL8852AE Brand Name: Realtek Model Name: Realtek Model Name: RTL8852AE Wireless Technology and Frequency Range WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5GHz Band: 5150 MHz ~ 5350 MHz, 5470 MHz ~ 5725 MHz, 5725 MHz ~ 5 Bluetooth: 2400 MHz ~ 2483.5 MHz	Product Feature & Specification				
Model Name RTL8852AE FCC ID TX2-RTL8852AE Integrated WLAN Module Brand Name: Realtek Model Name: RTL8852AE Wireless Technology and Frequency Range WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5GHz Band: 5150 MHz ~ 5350 MHz, 5470 MHz ~ 5725 MHz, 5725 MHz ~ 5 Bluetooth: 2400 MHz ~ 2483.5 MHz	lame 11ax RT				
FCC ID TX2-RTL8852AE Integrated WLAN Module Brand Name: Realtek Model Name: RTL8852AE Wireless Technology and Frequency Range WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5GHz Band: 5150 MHz ~ 5350 MHz, 5470 MHz ~ 5725 MHz, 5725 MHz ~ 5 Bluetooth: 2400 MHz ~ 2483.5 MHz	REALTE				
Integrated WLAN Module Brand Name: Realtek Model Name: RTL8852AE Wireless Technology and Frequency Range WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5GHz Band: 5150 MHz ~ 5350 MHz, 5470 MHz ~ 5725 MHz, 5725 MHz ~ 5 Bluetooth: 2400 MHz ~ 2483.5 MHz	RTL8852				
Wireless Technology and Frequency Range Model Name: RTL8852AE WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5GHz Band: 5150 MHz ~ 5350 MHz, 5470 MHz ~ 5725 MHz, 5725 MHz ~ 5 Bluetooth: 2400 MHz ~ 2483.5 MHz	TX2-RTI				
Frequency Range WLAN 5GHz Band: 5150 MHz ~ 5350 MHz, 5470 MHz ~ 5725 MHz, 5725 MHz ~ 5 Bluetooth: 2400 MHz ~ 2483.5 MHz	I AN MODILLA				
M/I ANI: 000 44 c/b/g/a/cs/LIT20/LIT40/L/LT40/LI	ange WLAN 5				
Mode WLAN: 802.11a/b/g/n/ac/ax HT20/HT40/VHT20/VHT40/VHT80/HE20/HE40/HE80 Bluetooth BR/EDR/LE		/VHT20/VHT40/VHT80/HE20/HE40/HE80			
EUT Stage Identical Prototype	Identical				

Report No.: FA010919-10

Remark:

- This device had two antenna vendors, RF exposure evaluation is selected High-tek as the main tested, AWAN will spot check worst case found in High-tek.
- 2. This device is convertible type notebook PC, and there are two mode as usage way, one is laptop mode, another is tablet mode.

Host Information			
Equipment Name	Notebook Computer		
Brand Name	Lenovo		
Model Name	IdeaPad Flex 5 15ALC05xxxxxxxx (The "x" in model name can be 0 to 9,A to Z, a to z,"-" or blank, for marketing purpose only)		
EUT Stage	Production Unit		

Antenna Information													
		Manufactu	ırer		AWA	N			Manufactu	irer		AWA	N
		Ant. Typ	е		PIFA	١			Ant. Typ	е		PIFA	١
		Part Num	ber		025.901N2	2.0001			Part Numb	ber		025.901N	1.0001
Antenna 1	Min Freq.	Max Freq.	Peak Gain (dBi)	Min Freq.	Max Freq.	Peak Gain (dBi)	Antenna 2	Min Freq.	Max Freq.	Peak Gain (dBi)	Min Freq.	Max Freq.	Peak Gain (dBi)
	2400MHz	2483.5MHz	-3.24	5470MHz	5725MHz	-3.1		2400MHz	2483.5MHz	-4.94	5470MHz	5725MHz	-5.95
	5150MHz	5250MHz	-4.06	5725MHz	5850MHz	-3.09		5150MHz	5250MHz	-6.77	5725MHz	5850MHz	-5.9
	5250MHz	5350MHz	-3.95					5250MHz	5350MHz	-5.78			
		Manufactu	ırer		High-t	ek			Manufactu	ırer		High-t	ek
		Ant. Typ	е		PIFA	1			Ant. Typ	е		PIFA	A
		Part Num	ber		025.901N	5.0001			Part Numb	ber		025.901N	6.0001
Antenna 1	Min Freq.	Max Freq.	Peak Gain (dBi)	Min Freq.	Max Freq.	Peak Gain (dBi)	Antenna 2	Min Freq.	Max Freq.	Peak Gain (dBi)	Min Freq.	Max Freq.	Peak Gain (dBi)
	2400MHz	2483.5MHz	2.62	5470MHz	5725MHz	2.99		2400MHz	2483.5MHz	1.61	5470MHz	5725MHz	1.86
	5150MHz	5250MHz	2.16	5725MHz	5850MHz	2.99		5150MHz	5250MHz	2.16	5725MHz	5850MHz	1.57
	5250MHz	5350MHz	2.02					5250MHz	5350MHz	1.72			

TEL: 886-3-327-3456 Page 5 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

4. RF Exposure Limits

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA010919-10

4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: 886-3-327-3456 Page 6 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

5. Specific Absorption Rate (SAR)

5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

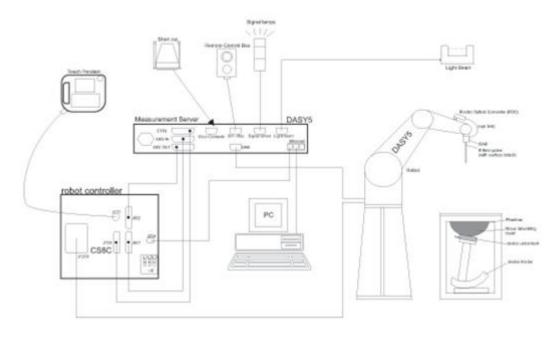
Report No.: FA010919-10

5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)


$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: 886-3-327-3456 Page 7 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

6. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA010919-10

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.1 Test Site Location

The SAR measurement facilities used to collect data are within both Sporton Lab list below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190 and 0007) and the FCC designation No.TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory				
Test Site Location	No. 52, Huaya 1st	City 333,	TW0007 No. 58, Aly. 75, Ln. 564, Wehnua 3rd, Rd., Guishan Dist., Taoyuan City, CHINESE TAIPEI		
	SAR01-HY	SAR03-HY	SAR08-HY	SAR09-HY	
Test Site No.	SAR04-HY	SAR05-HY	SAR11-HY	SAR12-HY	
	SAR06-HY	SAR10-HY			

TEL: 886-3-327-3456 Page 8 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

6.2 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz – 4 GHz; Linearity: ±0.2 dB (30 MHz – 4 GHz)
Directivity	± 0.2 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μW/g – >100 mW/g; Linearity: ±0.2 dB
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm

Report No.: FA010919-10

<EX3DV4 Probe>

Construction	Symmetric design with triangular core
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic
	solvents, e.g., DGBE)
Frequency	10 MHz – >6 GHz
	Linearity: ±0.2 dB (30 MHz – 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis)
	±0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – >100 mW/g
	Linearity: ±0.2 dB (noise: typically <1 µW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm)
	Tip diameter: 2.5 mm (body: 12 mm)
	Typical distance from probe tip to dipole centers: 1
	mm

6.3 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

TEL: 886-3-327-3456 Page 9 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

6.4 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA010919-10

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

\LLIT Hantom>		
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

TEL: 886-3-327-3456 Page 10 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

6.5 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA010919-10

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: 886-3-327-3456 Page 11 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

7. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA010919-10

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

7.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

TEL: 886-3-327-3456 Page 12 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

7.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA010919-10

7.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

TEL: 886-3-327-3456 Page 13 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

7.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA010919-10

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·∆z	Zoom(n-1)
Minimum zoom scan volume x, y, z			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

7.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

7.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

TEL: 886-3-327-3456 Page 14 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

8. Test Equipment List

	Non-official and	T (0.0 . 1.1	0. 1.11	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	2450MHz System Validation Kit ⁽²⁾	D2450V2	736	Aug. 31, 2018	Aug. 28, 2021
SPEAG	5GHz System Validation Kit ⁽²⁾	D5GHzV2	1006	Sep. 27, 2018	Sep. 24, 2021
SPEAG	Data Acquisition Electronics	DAE4	1311	Aug. 25, 2020	Aug. 24, 2021
SPEAG	Dosimetric E-Field Probe	EX3DV4	3642	Apr. 29, 2020	Apr. 28, 2021
RCPTWN	Thermometer	HTC-1	TM685-1	Nov. 10, 2020	Nov. 09, 2021
R&S	BT Base Station	CBT	100815	Feb. 15, 2020	Feb. 14, 2021
SPEAG	Device Holder	N/A	N/A	N/A	N/A
R&S	Signal Generator	SMA100A	101091	Jul. 20, 2020	Jul. 19, 2021
Keysight	ENA Network Analyzer	E5071C	MY46101588	Jun. 10, 2020	Jun. 09, 2021
SPEAG	Dielectric Probe Kit	DAK-3.5	1146	Jul. 22, 2020	Jul. 21, 2021
LINE SEIKI	Digital Thermometer	DTM3000-spezial	3252	Jun. 23, 2020	Jun. 22, 2021
Anritsu	Power Meter	ML2495A	1419002	Aug. 19, 2020	Aug. 18, 2021
Anritsu	Power Sensor	MA2411B	1911176	Aug. 18, 2020	Aug. 17, 2021
Anritsu	Power Meter	ML2495A	1804003	Oct. 21, 2020	Oct. 20, 2021
Anritsu	Power Sensor	MA2411B	1726150	Oct. 21, 2020	Oct. 20, 2021
Anritsu	Spectrum Analyzer	MS2830A	6201396378	Jun. 30, 2020	Jun. 29, 2021
Anritsu	Spectrum Analyzer	N9010A	MY53470118	Mar. 12, 2020	Mar. 11, 2021
Mini-Circuits	Power Amplifier	ZVE-8G+	6418	Oct. 21, 2020	Oct. 20, 2021
Mini-Circuits	Power Amplifier	ZVE-8G+	479102029	Aug. 26, 2020	Aug. 25, 2021
ATM	Dual Directional Coupler	C122H-10	P610410z-02	No	te 1
Woken	Attenuator 1	WK0602-XX	N/A	No	te 1
PE	Attenuator 2	PE7005-10	N/A	No	te 1
PE	Attenuator 3	PE7005- 3	N/A	No	te 1

Report No.: FA010919-10

General Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

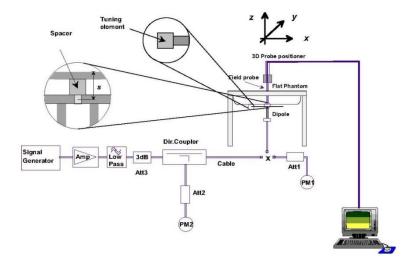
TEL: 886-3-327-3456 Page 15 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

9. System Verification

9.1 Tissue Verification

The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18° C to 25° C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements.

The liquid tissue depth was at least 15cm in the phantom for all SAR testing


<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ϵ_r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
2450	22.2	1.834	38.812	1.80	39.20	1.89	-0.99	±5	2020/12/17
5250	22.2	4.649	35.540	4.71	35.95	-1.30	-1.14	±5	2020/12/17
5600	22.2	4.990	35.010	5.07	35.50	-1.58	-1.38	±5	2020/12/17
5750	22.2	5.163	34.819	5.22	35.35	-1.09	-1.50	±5	2020/12/17

9.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured Targeted 1g SAR 1g SAR (W/kg) (W/kg)		Normalized 1g SAR (W/kg)	Deviation (%)
2020/12/17	2450	250	D2450V2-736	EX3DV4 - SN3642	DAE4 Sn1311	13.00	52.70	52	-1.33
2020/12/17	5250	100	D5GHzV2-1006-5250	EX3DV4 - SN3642	DAE4 Sn1311	8.46	80.70	84.6	4.83
2020/12/17	5600	100	D5GHzV2-1006-5600	EX3DV4 - SN3642	DAE4 Sn1311	8.85	83.30	88.5	6.24
2020/12/17	5750	100	D5GHzV2-1006-5750	EX3DV4 - SN3642	DAE4 Sn1311	8.42	80.40	84.2	4.73

Report No.: FA010919-10

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: 886-3-327-3456 Page 16 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

10. WiFi/Bluetooth Output Power (Unit: dBm)

General Note:

1. For each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode.

Report No.: FA010919-10

- 2. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO.
- 3. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band or when MIMO mode was not performed, due to for each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode. Additional output power measurements were not necessary.
- 4. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
- 5. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 6. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 7. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 8. Per 201904 TCBC workshops, General principles of FCC KDB Publication 248227 D01 can be applied to determine the SAR Initial Test Configurations and test reduction for 802.11ax SAR testing. For the table below the 802.11ax maximum power is SU (non-OFDMA), and the SU maximum power also higher than RU (OFDMA)
- In applying the test guidance, the IEEE 802.11 mode with the maximum output power (out of all modes) should be considered for testing
- 10. For modes with the same maximum output power, the guidance from section 5.3.2 a) of FCC KDB Publication 248227 D01 should be applied, with 802.11ax being considered as the highest 802.11 mode for the appropriate frequency bands
- 11. When SAR testing for 802.11ax is required
 - a. If the maximum output power is highest for OFDMA scenarios, choose the tone size with the maximum number of tones and the highest maximum output power
 - b. Otherwise, consider the fully allocated channel for SAR testing
 - c. When SAR testing is required on RU sizes less than the fully allocated channel, use the RU number closest to the middle of the channel, choosing the higher RU number when two RUs are equidistant to the middle of the channel

TEL: 886-3-327-3456 Page 17 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

2.4GHz WLAN			Ant 1				Ant 2		Ant 1+2		
Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	1	2412	13.90	14.00		13.90	14.00			17.00	
	6	2437	13.70	14.00		13.90	14.00			17.00	
802.11b 1Mbps	11	2462	13.70	14.00	100	13.90	14.00	100		17.00	
	12	2467	13.70	14.00		13.80	14.00			17.00	
	13	2472	13.80	14.00		13.90	14.00			17.00	

Report No. : FA010919-10

	Mode	Channel	(MHz)	power (dBm)	Limit	%	power (dBm)	Limit	%	power (dBm)	Limit	%
		1	2412	13.90	14.00		13.90	14.00			17.00	
		6	2437	13.70	14.00		13.90	14.00			17.00	
	802.11b 1Mbps	11	2462	13.70	14.00	100	13.90	14.00	100		17.00	
		12	2467	13.70	14.00		13.80	14.00			17.00	
		13	2472	13.80	14.00		13.90	14.00			17.00	
		1	2412		14.00			14.00			17.00	
		6	2437		14.00			14.00			17.00	
2.4GHz	802.11g 6Mbps	11	2462		14.00			14.00			17.00	
WLAN		12	2467	-	14.00			14.00		Not required	17.00	
		13	2472		14.00 14.00			14.00	_		17.00	Not required
		1	2412					14.00			17.00	Not required
	802.11n-HT20 MCS0	6	2437		14.00			14.00			17.00	
	802.11ac-VHT20 MCS0 802.11ax-HE20 MCS0	11	2462	Not required		Not required	Not required	14.00	Not required		17.00	
	002.11ax-ne20 WC30	12	2467		14.00			14.00			17.00	
		13	2472		14.00			14.00			17.00	
		3	2422		14.00			14.00			17.00	
	802.11n-HT40 MCS0	6	2437		14.00			14.00			17.00	
	802.11ac-VHT40 MCS0 802.11ax-HE40 MCS0	9	2452		14.00			14.00			17.00	
		10	2457		14.00			14.00			17.00	
		11	2462		14.00			14.00			17.00	

	5.2GHz WLAN				Ant 1			Ant 2		Ant 1+2																										
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %																								
		36	5180		11.50			11.50			14.50																									
	802.11a 6Mbps	40	5200		11.50			11.50			14.50																									
	002.11a divibps	44	5220	<u> </u>	11.50	1		11.50			14.50																									
		48	5240		11.50			11.50			14.50																									
		36	5180		11.50			11.50			14.50																									
	802.11n-HT20 MCS0	40	5200		11.50			11.50			14.50																									
	602.11II-H120 MC30	44	5220		11.50			11.50			14.50																									
	802.11n-HT40 MCS0	48	5240	Not required				11.50			11.50			14.50																						
		38	5190		11.50			11.50			14.50																									
T 0011		46	5230		11.50			11.50			14.50																									
5.2GHz WLAN		36	5180		Not required	Not required	Not required							11.50			11.50			14.50																
	802.11ac-VHT20 MCS0	40	5200					11.50	Not required	Not required	11.50	Not required	Not required	14.50	Not required																					
	602.11ac-vH120 WC30	44	5220					Not required	Not required	inoi required	not required	Not required	- Not required	11.50	Not required	Not required	11.50	Not required	Not required	14.50	Not required															
		48	5240											-	11.50			11.50			14.50															
	802.11ac-VHT40 MCS0	38	5190												1	1		11.50			11.50			14.50												
	802.11ac-vn140 MCS0	46	5230																11.50			11.50			14.50											
	802.11ac-VHT80 MCS0	42	5210					11.50			11.50			14.50																						
		36	5180		11.50			11.50			14.50																									
	802.11ax-HE20 MCS0	40	5200		1	_	11.50			11.50			14.50																							
	OUZ.TTAX-MEZU MICSU	44	5220		11.50			11.50			14.50																									
		48	5240		11.50			11.50			14.50																									
	902 44 av UE 40 MCC0	38	5190				1			11.50			11.50			14.50	_																			
	802.11ax-HE40 MCS0	46	5230							1		†	1											1			1	1	1	1	1	1		† †	11.50	
	802.11ax-HE80 MCS0	42	5210		11.50			11.50			14.50																									

TEL: 886-3-327-3456 Page 18 of 29 FAX: 886-3-328-4978 Issued Date : Jan. 02, 2021

SPORTON LAB. FCC SAR TEST REPORT

	5.3GHz WLAN				Ant 1			Ant 2			Ant 1+2	
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		52	5260		11.50			11.50			14.50	
	802.11a 6Mbps	56	5280		11.50			11.50			14.50	
	002.11a 0lvlbps	60	5300		11.50			11.50			14.50	
		64	5320	Not required	11.50	Not required		11.50			14.50	
		52	5260	Not required	11.50	-		11.50			14.50	
	802.11n-HT20 MCS0	56	5280		11.50		Not required	11.50			14.50	
	802.1111-11120 IVIC30	60	5300		11.50			11.50			14.50	
		64	5320		11.50			11.50	Not required		14.50	Not required
	802.11n-HT40 MCS0	54	5270	11.40 11.40	11.50	100	Not required	11.50	Two required	Not required	14.50	
5.0011		62	5310		11.50	100		11.50			14.50	
5.3GHz WLAN		52	5260	-Not required	11.50			11.50			14.50	
	802.11ac-VHT20 MCS0	56	5280		11.50	Not required		11.50			14.50	
	002.11ac-v11120 W000	60	5300		11.50			11.50			14.50	
		64	5320	Not required	11.50	140t roquirou		11.50			14.50	
	802.11ac-VHT40 MCS0	54	5270		11.50			11.50			14.50	
	002.11ac-V11140 WC30	62	5310		11.50			11.50			14.50	
	802.11ac-VHT80 MCS0	58	5290	11.40	11.50	100	11.30	11.50	100		14.50	
		52	5260		11.50			11.50			14.50	
	802.11ax-HE20 MCS0	56	5280		11.50			11.50			14.50	
	COZ. I TOX TIEZO WIGOU	60	5300		11.50			11.50			14.50	
		64	5320	Not required	11.50	Not required	Not required	11.50	Not required		14.50	
	802.11ax-HE40 MCS0	54	5270		11.50			11.50			14.50	
	802.11ax-HE40 MCS0	62	5310		11.50			11.50			14.50	
	802.11ax-HE80 MCS0	58	5290		11.50			11.50			14.50	

Report No. : FA010919-10

TEL: 886-3-327-3456 Page 19 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

SPORTON LAB. FCC SAR TEST REPORT

	5.5GHz WLAN				Ant 1			Ant 2		Ant 1+2		
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		100	5500		11.50			11.50			14.50	
		116	5580		11.50			11.50			14.50	
	802.11a 6Mbps	124	5620		11.50			11.50			14.50	
		132	5660		11.50			11.50			14.50	
		144	5720	Not required	11.50	Not required		11.50			14.50	
		100	5500	Not required	11.50	Not required		11.50			14.50	
		116	5580		11.50			11.50			14.50	
	802.11n-HT20 MCS0	124	5620		11.50			11.50			14.50	
		132	5660		11.50			11.50			14.50	
		144	5720		11.50			11.50			14.50	
		102	5510	11.30	11.50			11.50			14.50	
		110	5550	11.40	11.50			11.50			14.50	
	802.11n-HT40 MCS0	126	5630	11.40	11.50	100	Not required	11.50	Not required		14.50	
		134	5670	11.30	11.50			11.50			14.50	
		142	5710	11.40	11.50			11.50			14.50	
		100	5500	-	11.50			11.50			14.50	
		116	5580		11.50			11.50		Not required	14.50	
	802.11ac-VHT20 MCS0	124	5620		11.50			11.50			14.50	
5.5GHz		132	5660	Not required	11.50			11.50			14.50	
WLAN		144	5720		11.50			11.50			14.50	
		102	5510		11.50	Not required		11.50			14.50	Not required
		110	5550		11.50			11.50			14.50	
	802.11ac-VHT40 MCS0	126	5630		11.50			11.50			14.50	
		134	5670		11.50			11.50			14.50	
		142	5710		11.50			11.50			14.50	
		106	5530	11.30	11.50		11.30	11.50			14.50	
	802.11ac-VHT80 MCS0	122	5610	11.30	11.50	100	11.30	11.50	100		14.50	
		138	5690	11.40	11.50		11.30	11.50			14.50	
		100	5500		11.50			11.50			14.50	
		116	5580		11.50			11.50			14.50	
	802.11ax-HE20 MCS0	124	5620		11.50			11.50			14.50	
		132	5660		11.50			11.50			14.50	
		144	5720		11.50			11.50			14.50	
		102	5510		11.50			11.50			14.50	
		110	5550	Not required	11.50	Not required	Not required	11.50	Not required		14.50	
	802.11ax-HE40 MCS0	126	5630		11.50			11.50			14.50	
		134	5670		11.50			11.50			14.50	
		142	5710	—	11.50			11.50			14.50	
		106	5530		11.50	50		11.50			14.50	
	802.11ax-HE80 MCS0	122	5610	-	11.50			11.50			14.50	
	802.11ax-HE80 MCS0	138	5690		11.50			11.50			14.50	

Report No. : FA010919-10

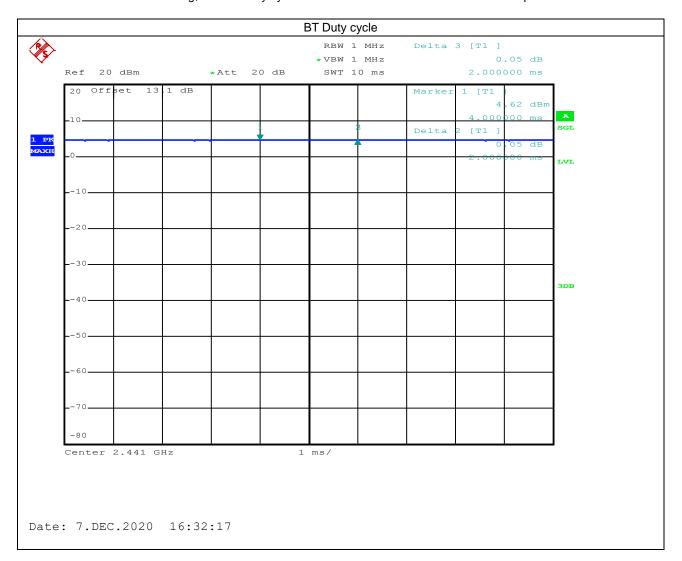
TEL: 886-3-327-3456 Page 20 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

C SAR TEST REPORT Report No. : FA010919-10

	5.8GHz WLAN				Ant 1			Ant 2		Ant 1+2		
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		149	5745		11.50			11.50			14.50	
	802.11a 6Mbps	157	5785		11.50			11.50			14.50	
		165	5825	Not required	11.50	Not required		11.50			14.50	
		149	5745	Not required	11.50			11.50			14.50	
	802.11n-HT20 MCS0	157	5785		11.50			11.50			14.50	
		165	5825		11.50			11.50		Not required	14.50	Not required
	802.11n-HT40 MCS0	151	5755	11.40 11.40	11.50	100	Not required	11.50	Not required		14.50	
5.8GHz		159	5795		11.50	100		11.50			14.50	
5.8GHZ WLAN		149	5745		11.50			11.50			14.50	
	802.11ac-VHT20 MCS0	157	5785		11.50		4	11.50			14.50	
		165	5825	Not required	11.50	Not required		11.50			14.50	
	802.11ac-VHT40 MCS0	151	5755		11.50			11.50			14.50	
	802.11ac-V11140 WC30	159	5795		11.50			11.50			14.50	
	802.11ac-VHT80 MCS0	155	5775	11.40	11.50	100	11.40	11.50	100		14.50	
		149	5745		11.50			11.50			14.50	
	802.11ax-HE20 MCS0	157	5785		11.50			11.50			14.50	
		165	5825	Not required	11.50	Not required	Not required	11.50	Not required		14.50	
	802.11ax-HE40 MCS0	151	5755	_	11.50	i vot required	Not required	11.50	rvot required		14.50	
	802.11ax-HE40 MCS0	159	5795		11.50)		11.50			14.50	
	802.11ax-HE80 MCS0	155	5775		11.50			11.50			14.50	

TEL: 886-3-327-3456 Page 21 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

2.4GHz Bluetooth>


	Mode	Channel	Frequency	Average power (dBm)					
	Mode	Cildille	(MHz)	1Mbps	2Mbps	3Mbps			
		CH 00	2402	6.40	6.50	6.40			
	BR / EDR	CH 39	2441	6.50	6.40	6.40			
		CH 78	2480	6.50	6.50	6.50			
		Tune-up Limit	7.00	7.00	7.00				

Report No.: FA010919-10

Mode	Channel	Frequency	Average power (dBm)				
Mode	Charmer	(MHz)	1Mbps	2Mbps			
	CH 00	2402	6.40	6.40			
LE	CH 19	2440	6.30	6.40			
	CH 39	2480	6.40	6.40			
	Tune-up Limit	7.00	7.00				

General Note:

1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps due to its highest average power and duty cycle is 100% considered in SAR testing, and the duty cycle would be scaled to theoretical 83.3% in reported SAR calculation.

TEL: 886-3-327-3456 Page 22 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

<SAR test exclusion table>

General Note:

1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"

Report No.: FA010919-10

- 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz

	Wireless Interface	2.4GHz WLAN ANT 1	2.4GHz WLAN ANT 2	5GHz WLAN ANT 1	5GHz WLAN ANT 2
Exposure Position	Calculated Frequency	2472MHz	2472MHz	5825MHz	5825MHz
,	Maximum power (dBm)	14	14	11.5	11.5
	Maximum rated power(mW)	25.0	25.0	14.0	14.0
	Separation distance(mm)	6.00	5.30	6.00	5.30
Bottom Face	exclusion threshold	6.6	7.4	5.6	6.4
	Testing required?	Yes	Yes	Yes	Yes
	Separation distance(mm)	25.85	12.58	25.85	12.58
Edge 1	exclusion threshold	1.5	3.1	1.3	2.7
	Testing required?	No	Yes	No	No
	Separation distance(mm)	337.56	24.00	337.56	24.00
Edge 2	exclusion threshold	2971.0	1.6	2938.0	1.4
	Testing required?	No	No	No	No
	Separation distance(mm)	169.94	213.21	169.94	213.21
Edge 3	exclusion threshold	1295.0	1728.0	1262.0	1694.0
	Testing required?	No	No	No	No
	Separation distance(mm)	10.00	293.56	10.00	293.56
Edge 4	exclusion threshold	3.9	2531.0	3.4	2498.0
	Testing required?	Yes	No	Yes	No
	Separation distance(mm)	5.97	6.49	5.97	6.49
Bottom of Laptop	exclusion threshold	6.6	6.1	5.7	5.2
	Testing required?	Yes	Yes	Yes	Yes

TEL: 886-3-327-3456 Page 23 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

11. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA010919-10

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

WLAN Note:

- 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.
- 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- 6. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO.
- 7. During SAR testing the WLAN transmission was verified using a spectrum analyzer.
- 8. Based on WLAN2.4GHz and Bluetooth share the same antenna; therefore, Bluetooth RF exposure evaluation chose the same of WLAN 2.4GHz Antenna to perform Bluetooth SAR test.

TEL: 886-3-327-3456 Page 24 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

SPORTON LAB. FCC SAR TEST REPORT

11.1 **Body SAR**

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna Vendor	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	WLAN2.4GHz	802.11b 1Mbps	Bottom of Laptop	0mm	HT	Ant 1	1	2412	13.90	14.00	1.023	100	1.000	-0.12	0.442	0.452
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	HT	Ant 1	1	2412	13.90	14.00	1.023	100	1.000	0.01	0.344	0.352
	WLAN2.4GHz	802.11b 1Mbps	Edge 4	0mm	HT	Ant 1	1	2412	13.90	14.00	1.023	100	1.000	0	0.001	0.001
	WLAN2.4GHz	802.11b 1Mbps	Bottom of Laptop	0mm	HT	Ant 1	6	2437	13.70	14.00	1.072	100	1.000	-0.08	0.417	0.447
	WLAN2.4GHz	802.11b 1Mbps	Bottom of Laptop	0mm	HT	Ant 1	11	2462	13.70	14.00	1.072	100	1.000	-0.13	0.407	0.436
	WLAN2.4GHz	802.11b 1Mbps	Bottom of Laptop	0mm	HT	Ant 1	12	2467	13.70	14.00	1.072	100	1.000	-0.02	0.390	0.418
	WLAN2.4GHz	802.11b 1Mbps	Bottom of Laptop	0mm	HT	Ant 1	13	2472	13.80	14.00	1.047	100	1.000	0.02	0.379	0.397
	WLAN2.4GHz	802.11b 1Mbps	Bottom of Laptop	0mm	AWAN	Ant 1	1	2412	13.90	14.00	1.023	100	1.000	0.02	0.163	0.167
	WLAN2.4GHz	802.11b 1Mbps	Bottom of Laptop	0mm	HT	Ant 2	1	2412	13.90	14.00	1.023	100	1.000	-0.03	0.122	0.125
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	HT	Ant 2	1	2412	13.90	14.00	1.023	100	1.000	0.11	0.148	0.151
	WLAN2.4GHz	802.11b 1Mbps	Edge 1	0mm	HT	Ant 2	1	2412	13.90	14.00	1.023	100	1.000	0	0.001	0.001
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	AWAN	Ant 2	1	2412	13.90	14.00	1.023	100	1.000	0.02	0.318	0.325
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom of Laptop	0mm	HT	Ant 1	58	5290	11.40	11.50	1.023	100	1.000	-0.03	0.184	0.188
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	HT	Ant 1	58	5290	11.40	11.50	1.023	100	1.000	0.1	0.213	0.218
	WLAN5GHz	802.11ac-VHT80 MCS0	Edge 4	0mm	HT	Ant 1	58	5290	11.40	11.50	1.023	100	1.000	0.16	0.060	0.061
02	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	58	5290	11.40	11.50	1.023	100	1.000	-0.05	0.980	1.003
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Face	0mm	AWAN	Ant 1	62	5310	11.40	11.50	1.023	100	1.000	-0.11	0.968	0.991
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom of Laptop	0mm	HT	Ant 2	58	5290	11.30	11.50	1.047	100	1.000	0.09	0.065	0.068
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	HT	Ant 2	58	5290	11.30	11.50	1.047	100	1.000	-0.16	0.101	0.106
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 2	58	5290	11.30	11.50	1.047	100	1.000	0.12	0.635	0.665
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom of Laptop	0mm	HT	Ant 1	138	5690	11.40	11.50	1.023	100	1.000	-0.04	0.259	0.265
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	HT	Ant 1	138	5690	11.40	11.50	1.023	100	1.000	0.13	0.278	0.284
	WLAN5GHz	802.11ac-VHT80 MCS0	Edge 4	0mm	HT	Ant 1	138	5690	11.40	11.50	1.023	100	1.000	0.15	0.086	0.088
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	138	5690	11.40	11.50	1.023	100	1.000	-0.07	0.587	0.601
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	106	5530	11.30	11.50	1.047	100	1.000	0.01	0.525	0.550
03	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	122	5610	11.30	11.50	1.047	100	1.000	-0.05	0.615	0.644
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom of Laptop	0mm	HT	Ant 2	138	5690	11.30	11.50	1.047	100	1.000	0.11	0.112	0.117
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	HT	Ant 2	138	5690	11.30	11.50	1.047	100	1.000	-0.18	0.220	0.230
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 2	138	5690	11.30	11.50	1.047	100	1.000	-0.01	0.454	0.475
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom of Laptop	0mm	HT	Ant 1	155	5775	11.40	11.50	1.023	100	1.000	0.09	0.201	0.206
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	HT	Ant 1	155	5775	11.40	11.50	1.023	100	1.000	0.13	0.211	0.216
	WLAN5GHz	802.11ac-VHT80 MCS0	Edge 4	0mm	HT	Ant 1	155	5775	11.40	11.50	1.023	100	1.000	-0.14	0.084	0.086
04	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	155	5775	11.40	11.50	1.023	100	1.000	-0.12	0.964	0.986
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Face	0mm	AWAN	Ant 1	159	5795	11.40	11.50	1.023	100	1.000	-0.02	0.927	0.949
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom of Laptop	0mm	HT	Ant 2	155	5775	11.40	11.50	1.023	100	1.000	0.04	0.074	0.076
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	HT	Ant 2	155	5775	11.40	11.50	1.023	100	1.000	-0.15	0.086	0.088
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 2	155	5775	11.40	11.50	1.023	100	1.000	-0.05	0.460	0.471

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna Vendor	Antenna	Ch.		Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle	Duty Cycle Scaling Factor	Drift	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	1Mbps	Bottom of Laptop	0mm	HT	Ant 2	78	2480	6.50	7.00	1.122	100	1.000	-0.03	0.013	0.015
05	Bluetooth	1Mbps	Bottom Face	0mm	HT	Ant 2	78	2480	6.50	7.00	1.122	100	1.000	-0.19	0.016	0.018
	Bluetooth	1Mbps	Edge 1	0mm	HT	Ant 2	78	2480	6.50	7.00	1.122	100	1.000	0	0.001	0.001
	Bluetooth	1Mbps	Bottom Face	0mm	HT	Ant 2	0	2402	6.40	7.00	1.148	100	1.000	-0.13	0.008	0.009
	Bluetooth	1Mbps	Bottom Face	0mm	HT	Ant 2	39	2441	6.50	7.00	1.122	100	1.000	-0.15	0.013	0.015
	Bluetooth	1Mbps	Bottom Face	0mm	AWAN	Ant 2	78	2480	6.50	7.00	1.122	100	1.000	0	0.006	0.007

TEL: 886-3-327-3456

FAX: 886-3-328-4978 Issue
Template version: 200414

Page 25 of 29 Issued Date : Jan. 02, 2021

Report No. : FA010919-10

11.2 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Antenna Vendor	Antenna	Ch.	Freq. (MHz)	Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	58	5290	11.4	11.5	1.023	100	1	-0.05	0.98		1.003
2nd	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	58	5290	11.4	11.5	1.023	100	1	0.02	0.954	1.027	0.976
1st	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	155	5775	11.4	11.5	1.023	100	1	-0.12	0.964		0.986
2nd	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face	0mm	AWAN	Ant 1	155	5775	11.4	11.5	1.023	100	1	0.02	0.941	1.024	0.963

Report No.: FA010919-10

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

TEL: 886-3-327-3456 Page 26 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

12. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations	Body
1.	2.4GHz WLAN Ant 1 + 2.4GHz WLAN Ant 2	Yes
2.	2.4GHz WLAN Ant 2 + 5GHz WLAN Ant 1	Yes
3.	5GHz WLAN Ant 1 + 5GHz WLAN Ant 2 + Bluetooth Ant 2	Yes
4.	2.4GHz WLAN Ant 1 + 5GHz WLAN Ant 2 + Bluetooth Ant 2	Yes

General Note:

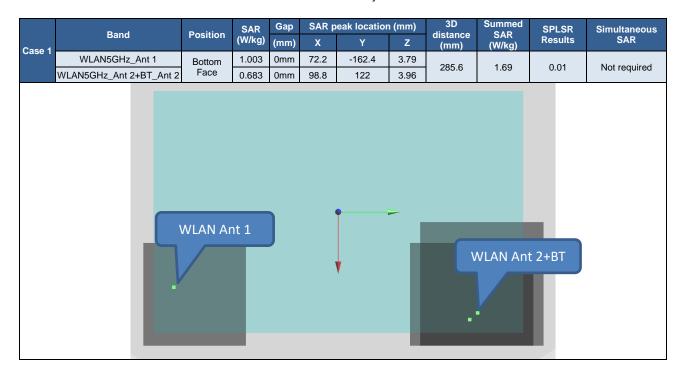
 For SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.

Report No.: FA010919-10

- 2. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment.
- 3. The Scaled SAR summation is calculated based on the same configuration and test position.
- 4. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant, if
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
 - v) The SPLSR calculated results please refer to section 12.2.

12.1 Body Exposure Conditions

	1	2	3	4	5						
Exposure Position	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Bluetooth Ant 2	1g SAR	2+3 Summed 1g SAR	3+4+5 Summed 1g SAR	1+4+5 Summed 1g SAR (W/kg)	3+4+5 SPLSR	3+4+5 Case No
	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)			
Bottom of Laptop at 0mm	0.452	0.125	0.265	0.117	0.015	0.577	0.390	0.397	0.584		
Bottom Face at 0mm	0.352	0.325	1.003	0.665	0.018	0.677	1.328	1.686	1.035	0.01	Case 1
Edge 1 at 0mm		0.001			0.001	0.001	0.001	0.001	0.001		
Edge 4 at 0mm	0.001		0.088			0.001	0.088	0.088	0.001		


TEL: 886-3-327-3456 Page 27 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

12.2 SPLSR Evaluation and Analysis

General Note:

- SPLSR = (SAR₁ + SAR₂)^{1.5} / (min. separation distance, mm). If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary
- 2. The detail hotspot point for each transmitter in each exposure condition are showing as below figure and the minimum 3D distance for each sum combination is used for SPLSR analysis.

Report No.: FA010919-10

Test Engineer: Jay Jian

TEL: 886-3-327-3456 Page 28 of 29
FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021

13. <u>Uncertainty Assessment</u>

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\le 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No.: FA010919-10

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

14. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015
- [8] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [9] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

TEL: 886-3-327-3456 Page 29 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 02, 2021