

FCC Test Report (BT-LE)

Report No.: RF180816E04I-3

FCC ID: TX2-RTL8822CE

Test Model: RTL8822CE

Received Date: Sep. 16, 2019

Test Date: Sep. 19, 2019

Issued Date: Oct. 17, 2019

Applicant: Realtek Semiconductor Corp.

Address: No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan.

Test Location : E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan.

**FCC Registration /
Designation Number:** 723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results.....	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT (BT-LE).....	6
3.2 Description of Test Modes	8
3.2.1 Test Mode Applicability and Tested Channel Detail.....	9
3.3 Duty Cycle of Test Signal	10
3.4 General Description of Applied Standards	11
4 Test Types and Results	12
4.1 6dB Bandwidth Measurement	12
4.1.1 Limits of 6dB Bandwidth Measurement.....	12
4.1.2 Test Setup.....	12
4.1.3 Test Instruments	12
4.1.4 Test Procedure	12
4.1.5 Deviation from Test Standard	12
4.1.6 EUT Operating Conditions.....	12
4.1.7 Test Result.....	13
4.2 Conducted Output Power Measurement.....	15
4.2.1 Limits of Conducted Output Power Measurement	15
4.2.2 Test Setup.....	15
4.2.3 Test Instruments	15
4.2.4 Test Procedures.....	15
4.2.5 Deviation from Test Standard	15
4.2.6 EUT Operating Conditions.....	15
4.2.7 Test Results	16
4.3 Power Spectral Density Measurement.....	17
4.3.1 Limits of Power Spectral Density Measurement	17
4.3.2 Test Setup.....	17
4.3.3 Test Instruments	17
4.3.4 Test Procedure	17
4.3.5 Deviation from Test Standard	17
4.3.6 EUT Operating Condition	17
4.3.7 Test Results	18
Appendix – Information of the Testing Laboratories	20

Release Control Record

Issue No.	Description	Date Issued
RF180816E04I-3	Original release.	Oct. 17, 2019

1 Certificate of Conformity

Product: 802.11a/b/g/n/ac RTL8822CE Combo module

Brand: Realtek

Test Model: RTL8822CE

Sample Status: ENGINEERING SAMPLE

Applicant: Realtek Semiconductor Corp.

Test Date: Sep. 19, 2019

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : Wendy Wu, **Date:** Oct. 17, 2019
Wendy Wu / Specialist

Approved by : May Chen, **Date:** Oct. 17, 2019
May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)			
FCC Clause	Test Item	Result	Remarks
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit
15.247(b)	Conducted power	PASS	Meet the requirement of limit
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit

Note:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
2. This report is supplementary report.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions	-	3.1 dB

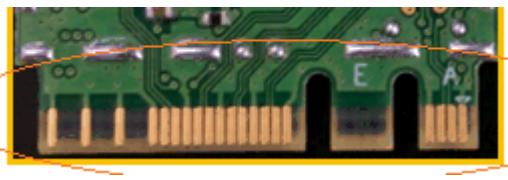
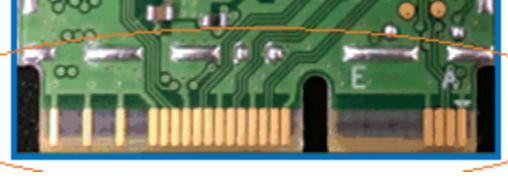
2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	802.11a/b/g/n/ac RTL8822CE Combo module
Brand	Realtek
Test Model	RTL8822CE
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 3.3V from host equipment
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 2Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	40
Output Power	BT-LE 1M: 4.977mW BT-LE 2M: 4.721mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA



Note:

1. This report is prepared for FCC class II permissive change. The difference compared with the Report No.: RF180816E04-3 as the following:
 - ◆ Reduce power from 11dBm to 6.5~7dBm.
2. According to above conditions, only 6dB bandwidth, Conducted power, Power Spectral Density need to be performed. And all data were verified to meet the requirements.
3. There are WLAN and Bluetooth technology used for the EUT.
4. The EUT has four SKUs, please refer to the following table:

SKU	Ant Port	Interface
A	Tri	PCI-E with A+E key
B	Tri	PCI-E with E key
C	Dual	PCI-E with A+E key
D	Dual	PCI-E with E key

Note: From the above SKUs, SKU: A was selected as representative model for the test and its data was recorded in this report.

5. The EUT has two interfaces. The main difference is interface, but RF is the same. Please refer to the following table:

Interface	Photo	Difference
PCI-E with A+E key		
PCI-E with E key		Interface (RF is the same.)

6. Simultaneously transmission condition (only for SKU A, B).

Condition	Technology	
1	WLAN (2.4GHz)	Bluetooth
2	WLAN (5GHz)	Bluetooth

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

7. The EUT has dual antenna and tri antenna, please refer to the following table:

Dual antenna
CON1+CON2 <ul style="list-style-type: none"> ➢ 2X2 WIFI Antenna port: CON1 & CON2 ➢ 1X1 BT Antenna port: CON1 ➢ WiFi/BT used Time-division duplex function at CON1, so WiFi/BT not transmitter simultaneous at CON1.
Tri antenna
CON1+CON2+CON3 <ul style="list-style-type: none"> ➢ 2X2 WIFI Antenna port: CON1 & CON2 ➢ 1X1 BT Antenna port: CON3 or CON1 ➢ If BT function at CON1, WiFi/BT used Time-division duplex function, so WiFi/BT not transmitter simultaneous at CON1. ➢ If BT function at CON3, WiFi/BT can transmitter simultaneous for BT at CON 3 and WiFi at CON1 & CON2.

8. The antennas provided to the EUT, please refer to the following table:

Antenna No.	CON No.	Brand	Model	Ant. Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Connector Type
1	CON1	LYNwave	ALA110-222050-300011	3.5	2.4~2.4835	PIFA	i-pex(MHF)
	CON2			5	5.15~5.85	PIFA	i-pex(MHF)
2	CON1	PSA	RFDPA171320E MLB301	3.14	2.4~2.4835	Dipole	i-pex(MHF)
	CON2			5	5.15~5.85	Dipole	i-pex(MHF)

9. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

BT-LE channels:

RF Channel	RF Center Frequency	Channel Index	Channels Type for BT 5.x		Channels Type for BT 4.x
			Maximum Data Rate 2Mbps	Maximum Data Rate 1Mbps	Maximum Data Rate 1Mbps
0	2402 MHz	37		●	●
1	2404 MHz	0	●		●
2	2406 MHz	1	●		●
3	2408 MHz	2	●		●
4	2410 MHz	3	●		●
5	2412 MHz	4	●		●
6	2414 MHz	5	●		●
7	2416 MHz	6	●		●
8	2418 MHz	7	●		●
9	2420 MHz	8	●		●
10	2422 MHz	9	●		●
11	2424 MHz	10	●		●
12	2426 MHz	38		●	●
13	2428 MHz	11	●		●
14	2430 MHz	12	●		●
15	2432 MHz	13	●		●
16	2434 MHz	14	●		●
17	2436 MHz	15	●		●
18	2438 MHz	16	●		●
19	2440 MHz	17	●		●
20	2442 MHz	18	●		●
21	2444 MHz	19	●		●
22	2446 MHz	20	●		●
23	2448 MHz	21	●		●
24	2450 MHz	22	●		●
25	2452 MHz	23	●		●
26	2454 MHz	24	●		●
27	2456 MHz	25	●		●
28	2458 MHz	26	●		●
29	2460 MHz	27	●		●
30	2462 MHz	28	●		●
31	2464 MHz	29	●		●
32	2466 MHz	30	●		●
33	2468 MHz	31	●		●
34	2470 MHz	32	●		●
35	2472 MHz	33	●		●
36	2474 MHz	34	●		●
37	2476 MHz	35	●		●
38	2478 MHz	36	●		●
39	2480 MHz	39		●	●

3.2.1 Test Mode Applicability and Tested Channel Detail

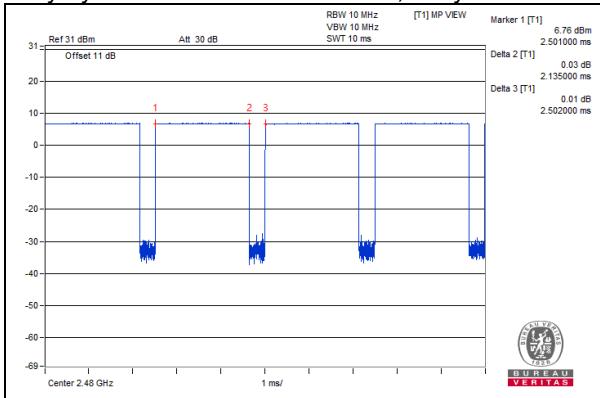
EUT CONFIGURE MODE	APPLICABLE TO	DESCRIPTION
	APCM	
	✓	

Where **APCM**: Antenna Port Conducted Measurement

Antenna Port Conducted Measurement:

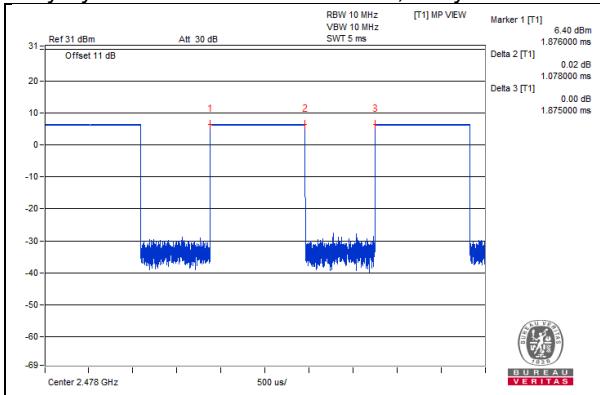
- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

CON 1 Mode			
AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 39	0, 19, 39	GFSK	1
1 to 38	1, 19, 38	GFSK	2


Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
APCM	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal


BT-LE 1M

Duty cycle = $2.135/2.502 = 0.853$, Duty factor = $10 * \log(1/\text{Duty cycle}) = 0.69$

BT-LE 2M

Duty cycle = $1.078/1.875 = 0.575$, Duty factor = $10 * \log(1/\text{Duty cycle}) = 2.4$

3.4 General Description of Applied Standards

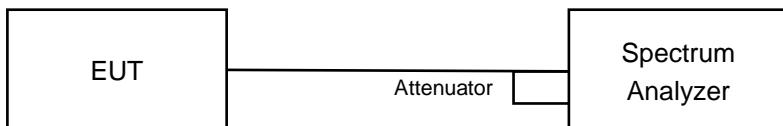
The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.


4 Test Types and Results

4.1 6dB Bandwidth Measurement

4.1.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.1.2 Test Setup

4.1.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10-01	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020

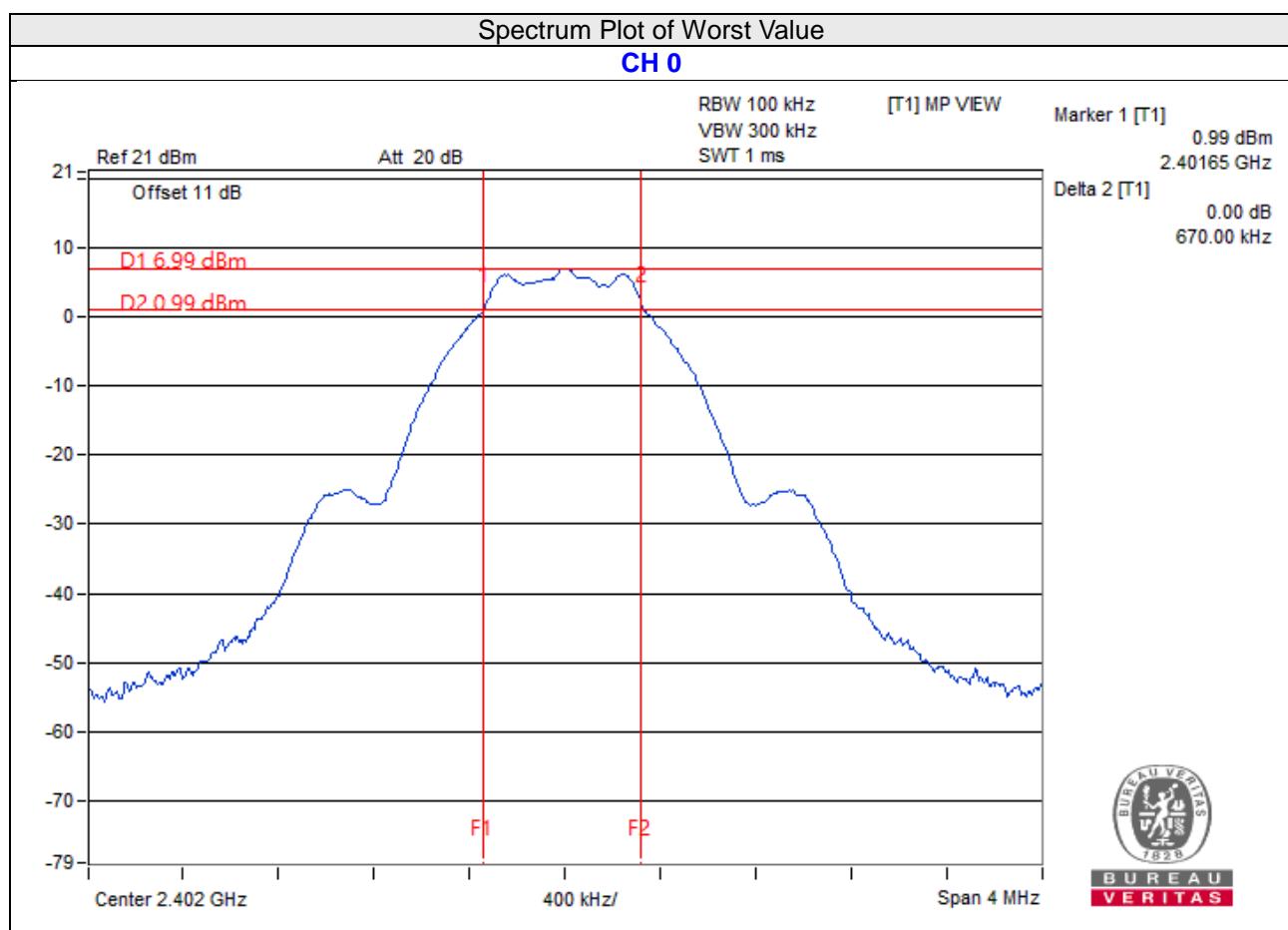
NOTE: 1. The test was performed in Oven room 2.
 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 3. Tested Date: Sep. 19, 2019

4.1.4 Test Procedure

- Set resolution bandwidth (RBW) = 100kHz
- Set the video bandwidth (VBW) $\geq 3 \times$ RBW, Detector = Peak.
- Trace mode = max hold.
- Sweep = auto couple.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

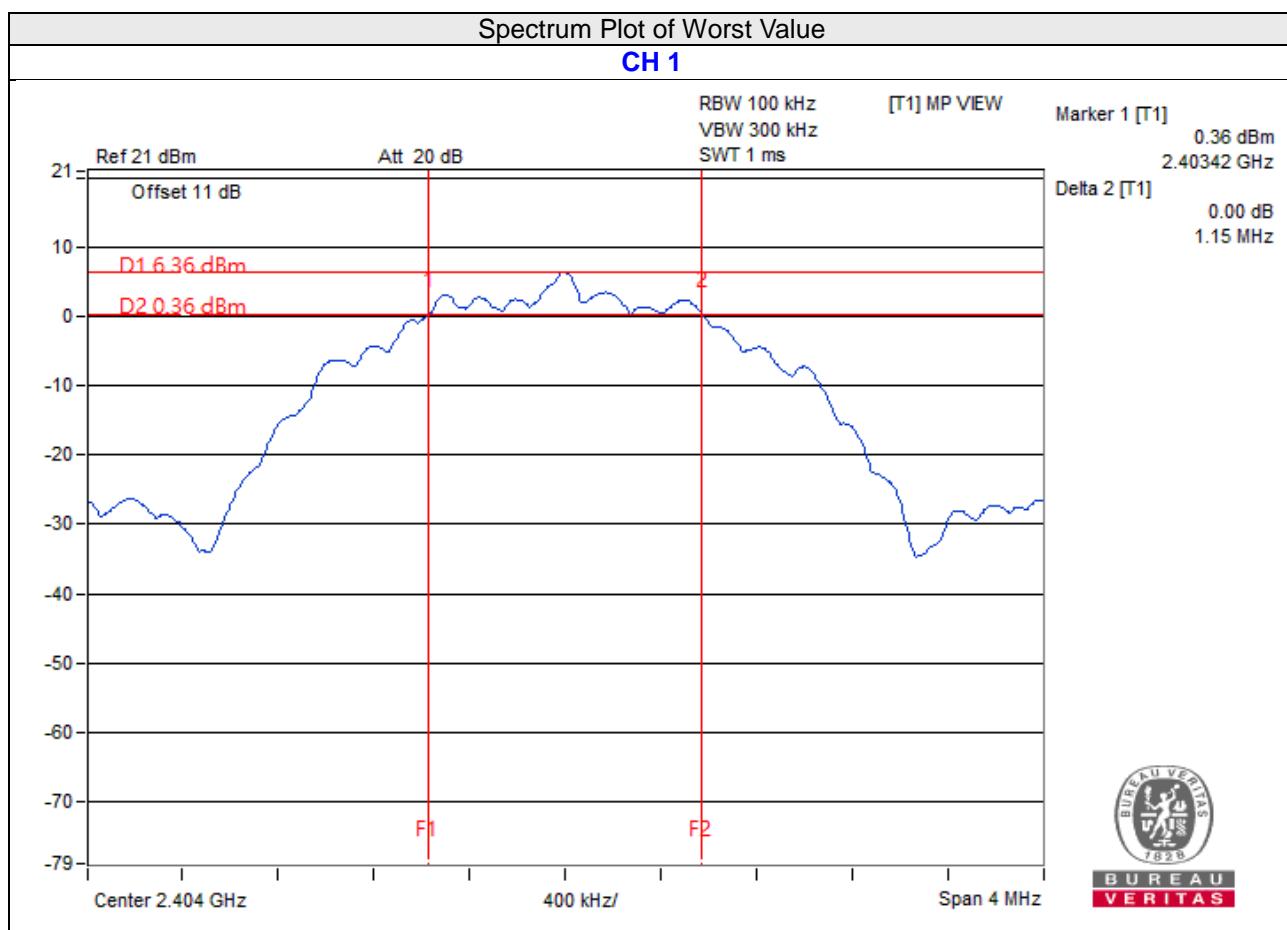
4.1.5 Deviation from Test Standard

No deviation.


4.1.6 EUT Operating Conditions

The software (Bluetooth RF test tool (5.2.1.21)) provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

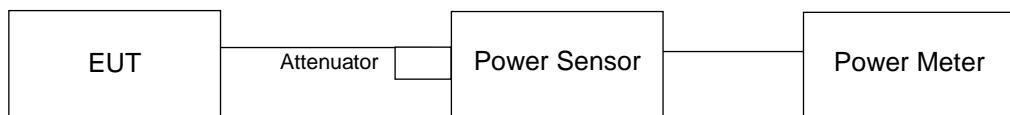
4.1.7 Test Result


BT-LE 1M

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.67	0.5	Pass
19	2440	0.67	0.5	Pass
39	2480	0.67	0.5	Pass

BT-LE 2M

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2404	1.15	0.5	Pass
19	2440	1.15	0.5	Pass
38	2478	1.15	0.5	Pass



4.2 Conducted Output Power Measurement

4.2.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.2.2 Test Setup

4.2.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Power meter Anritsu	ML2495A	1014008	May 13, 2019	May 12, 2020
Power sensor Anritsu	MA2411B	0917122	May 13, 2019	May 12, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10-01	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020

NOTE: 1. The test was performed in Oven room 2.
 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 3. Tested Date: Sep. 19, 2019

4.2.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.2.5 Deviation from Test Standard

No deviation.

4.2.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 Test Results

BT-LE 1M FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	4.977	6.97	30	Pass
19	2440	4.955	6.95	30	Pass
39	2480	4.819	6.83	30	Pass

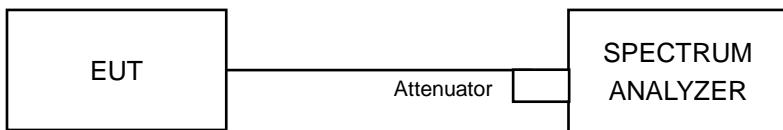
FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	4.909	6.91
19	2440	4.831	6.84
39	2480	4.624	6.65

BT-LE 2M FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2404	4.721	6.74	30	Pass
19	2440	4.688	6.71	30	Pass
38	2478	4.56	6.59	30	Pass

FOR AVERAGE POWER


Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2404	4.519	6.55
19	2440	4.498	6.53
38	2478	4.345	6.38

4.3 Power Spectral Density Measurement

4.3.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3kHz.

4.3.2 Test Setup

4.3.3 Test Instruments

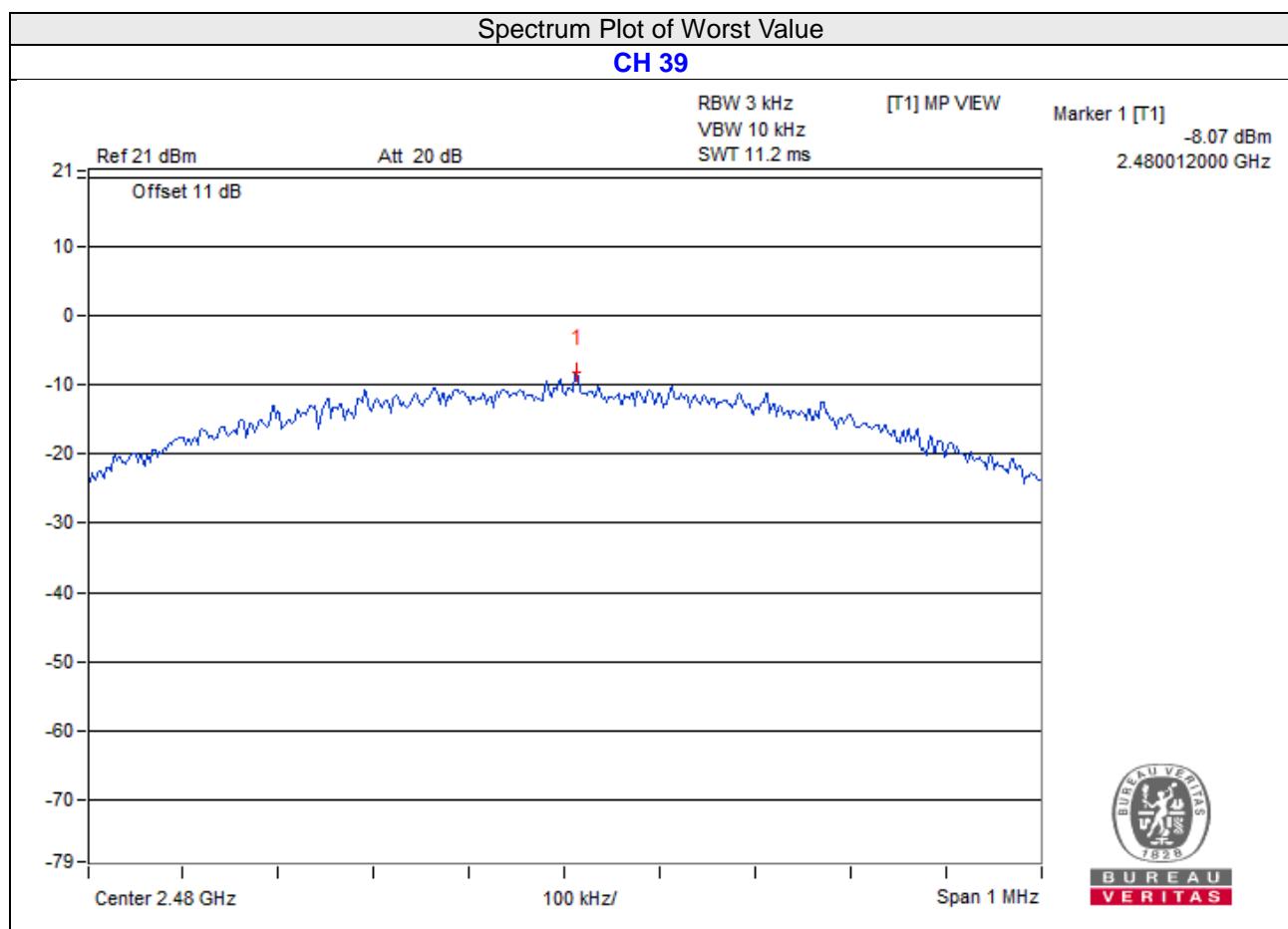
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW $\geq 3 \times \text{RBW}$.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

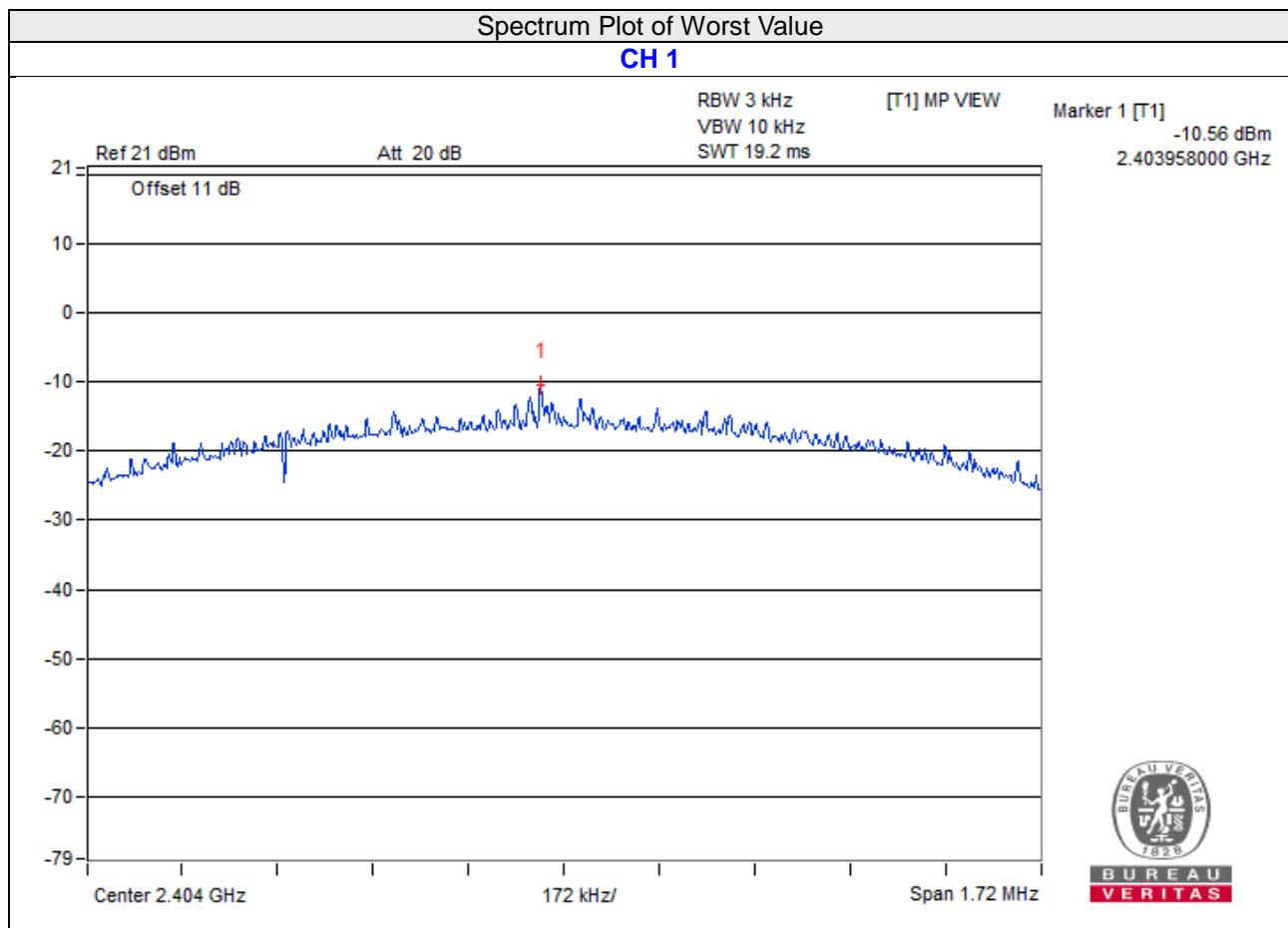
4.3.5 Deviation from Test Standard

No deviation.


4.3.6 EUT Operating Condition

Same as Item 4.2.5.

4.3.7 Test Results


BT-LE 1M

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	-8.57	8	Pass
19	2440	-9.39	8	Pass
39	2480	-8.07	8	Pass

BT-LE 2M

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2404	-10.56	8	Pass
19	2440	-10.74	8	Pass
38	2478	-10.85	8	Pass

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---