

FCC RADIO TEST REPORT

FCC ID : TX2-RTL8822C
Equipment : Module
Brand Name : Realtek
Model Name : RTL8822C
Marketing Name : 11a/b/g/n/ac RTL8822C Combo module
Applicant : Realtek Semiconductor Corp.
No. 2, Innovation Road II, Hsinchu
Science Park, Hsinchu 300, Taiwan
Standard : FCC Part 15 Subpart E §15.407

The product was received on Sep. 01, 2022 and testing was performed from Sep. 16, 2022 to Oct. 27, 2022. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Sportun International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

History of this test report	3
Summary of Test Result	4
1 General Description	5
1.1 Product Feature of Equipment Under Test.....	5
1.2 Modification of EUT	7
1.3 Testing Location	8
1.4 Applicable Standards.....	8
2 Test Configuration of Equipment Under Test	9
2.1 Carrier Frequency and Channel	9
2.2 Test Mode.....	10
2.3 Connection Diagram of Test System.....	11
2.4 Support Unit used in test configuration and system	11
2.5 EUT Operation Test Setup	11
3 Test Result	12
3.1 Maximum Conducted Output Power Measurement	12
3.2 Unwanted Emissions Measurement.....	13
3.3 AC Conducted Emission Measurement.....	18
3.4 Antenna Requirements	20
4 List of Measuring Equipment	21
5 Uncertainty of Evaluation	23
Appendix A. Conducted Test Results	
Appendix B. AC Conducted Emission Test Result	
Appendix C. Radiated Spurious Emission	
Appendix D. Radiated Spurious Emission Plots	
Appendix E. Duty Cycle Plots	
Appendix F. Setup Photographs	

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.403(i)	6dB & 26dB Bandwidth	-	See Note
-	2.1049	99% Occupied Bandwidth	-	See Note
3.1	15.407(a)	Maximum Conducted Output Power	Pass	-
-	15.407(a)	Power Spectral Density	-	See Note
3.2	15.407(b)	Unwanted Emissions	Pass	11.38 dB under the limit at 11570.000 MHz
3.3	15.207	AC Conducted Emission	Pass	11.81 dB under the limit at 0.179 MHz
3.4	15.203	Antenna Requirement	Pass	-

Note: The module (Model: RTL8822C) makes no difference after verifying output power, this report reuses test data from the module report.

Declaration of Conformity:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
2. The measurement uncertainty please refer to report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng

Report Producer: Ming Chen

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac and Wi-Fi 5GHz 802.11a/n/ac

Product Feature	
Installed into the Host	Equipment Name: Steam Deck Brand Name: Valve Model Name: 1010
Sample 1	Host with INPAQ Antenna
Sample 2	Host with AWAN Antenna
Sample 3	Host with HTK Antenna
Antenna Type	WLAN <Main>: PIFA Antenna <Aux.>: PIFA Antenna Bluetooth: PIFA Antenna

Antenna Information			
INPAQ Antenna	Antenna Type	PIFA Antenna	
	Part Number	DQ600015300 (WA-P-LE-02-153)	DQ600004300 (WA-P-LE-01-043)
	Peak gain (dBi)	Main Antenna WLAN (5GHz B4): 3.64	Aux. Antenna WLAN (5GHz B4):3.53
AWAN Antenna	Antenna Type	PIFA Antenna	
	Part Number	DQ610001400 (AEP6Y-100014)	DQ610001500 (AEP6Y-100015)
	Peak gain (dBi)	Main Antenna WLAN (5GHz B4): 0.10	Aux. Antenna WLAN (5GHz B4): 2.47
HTK Antenna	Antenna Type	PIFA Antenna	
	Part Number	DQ60ACQD0E5 (0ACQD022049N)	DQ60ACQD0E4 (0ACQD022050N)
	Peak gain (dBi)	Main Antenna WLAN (5GHz B4): 2.29	Aux. Antenna WLAN (5GHz B4): 1.99

Remark: The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.1.1 Antenna Directional Gain

<For CDD Mode>

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)ii)

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$.

G_{ANT} is set equal to the gain of the antenna having the highest gain.

For PSD measurements, the directional gain calculation.

$$Directional\ Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

N_{SS} = the number of independent spatial streams of data;

N_{ANT} = the total number of antennas

$g_{j,k} = 10^{G_k / 20}$ if the k th antenna is being fed by spatial stream j , or zero if it is not;
 G_k is the gain in dBi of the k th antenna.

As minimum $N_{SS}=1$ is supported by EUT, the formula can be simplified as:

Directional gain = $10 \cdot \log [(10^{G1/20} + 10^{G2/20} + \dots + 10^{GN/20})^2 / N_{ANT}]$ dBi

Where $G1, G2, \dots, GN$ denote single antenna gain.

The directional gain "DG" is calculated as following table.

			DG for Power	DG for PSD	Power Limit Reduction	PSD Limit Reduction
	Chain 1 (dBi)	Chain 0 (dBi)	(dBi)	(dBi)	(dB)	(dB)
Band IV	3.64	3.53	3.64	6.60	0.00	0.60

Calculation example:

If a device has two antenna, $G_{ANT1} = 3.64 \text{ dBi}$; $G_{ANT2} = 3.53 \text{ dBi}$

Directional gain of power measurement = $\max(3.64, 3.53) + 0 = 3.64 \text{ dBi}$

Directional gain of PSD derived from formula which is

$$10 \times \log \{ \{ [10^{\frac{3.64 \text{ dBi}}{20}} + 10^{\frac{3.53 \text{ dBi}}{20}}]^2 \} / 2 \}$$

$$= 6.60 \text{ dBi}$$

PSD limit reduction = Composite gain + PSD Array gain - 6dB, (min = 0)

Power and PSD limit reduction = Composite gain - 6dB, (min = 0)

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sportun International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sportun Site No. CO05-HY, 03CH07-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sportun International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sportun Site No. TH05-HY (TAF Code: 3786)
Remark	The Conducted test item subcontracted to Sporton International Inc. Wensan Laboratory.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5725-5850 MHz Band 4 (U-NII-3)	149	5745	157	5785
	151*	5755	159*	5795
	153	5765	161	5805
	155#	5775	165	5825

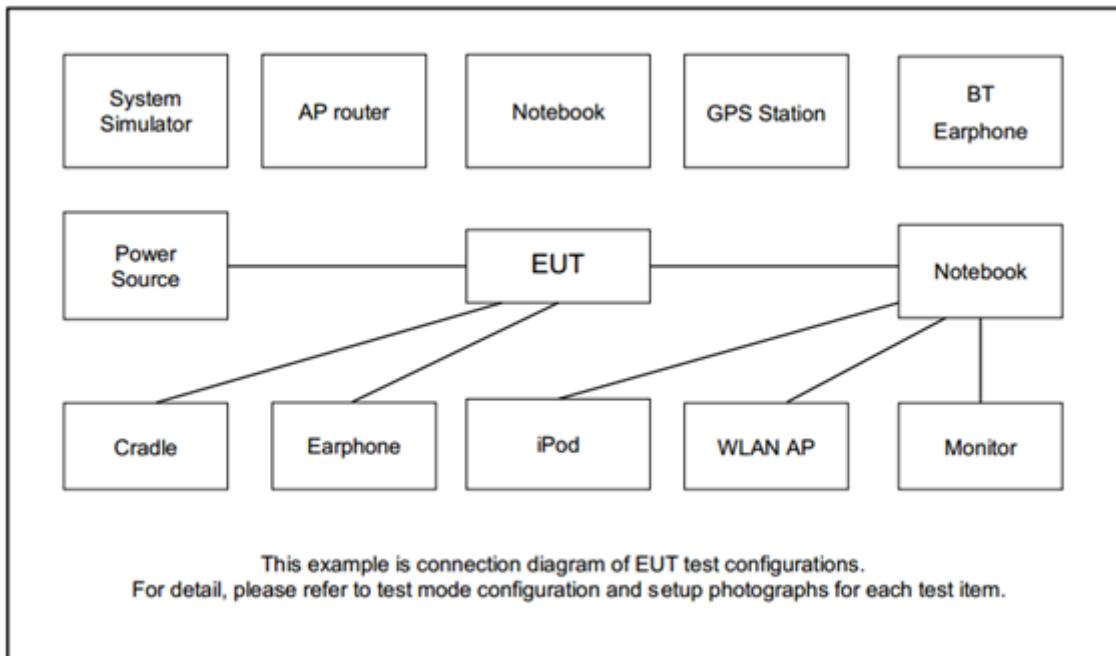
Note:

1. The above Frequency and Channel with "*" are 802.11n HT40 and 802.11ac VHT40.
2. The above Frequency and Channel with "#" are 802.11ac VHT80.

2.2 Test Mode

The final test modes include the worst data rates for each modulation shown in the table below.

MIMO Mode


Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

Test Cases	
AC Conducted Emission	Mode 1 : Bluetooth Link + WLAN (5GHz) Link + Adapter for Sample 1
Remark: For Radiated Test Cases, the tests were performed with Sample 1.	

Ch. #	Band IV : 5725-5850 MHz	
	802.11a	802.11ac VHT80
L Low	-	-
M Middle	157	155
H High	-	-

Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility “VTE version 0.60.3” was installed in Host which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Maximum Conducted Output Power Measurement

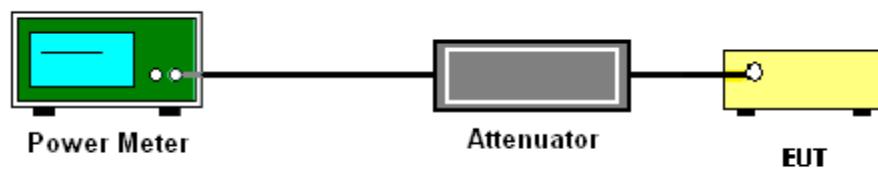
3.1.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.1.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using a gated RF average power meter):

1. Measurement is performed using a wideband RF power meter.
2. The EUT is configured to transmit at its maximum power control level.
3. Measure the average power of the transmitter.
4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01

3.1.4 Test Setup

3.1.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

3.2 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.2.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5.725-5.85 GHz band:

15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(2) Unwanted spurious emissions falls in restricted bands shall comply with the general field strength limits as below table,

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3} \text{ } \mu\text{V/m, where P is the eirp (Watts)}$$

EIRP (dBm)	Field Strength at 3m (dBμV/m)
- 27	68.3

(3) KDB789033 D02 v02r01 G)2)c)

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.

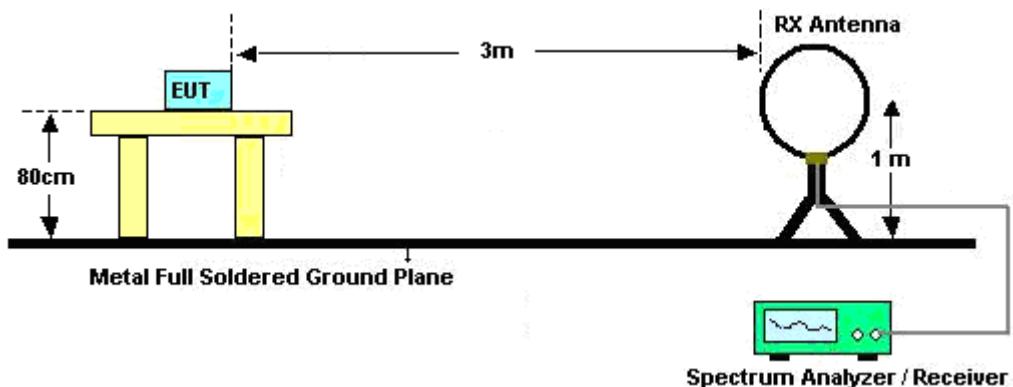
(ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.2.2 Measuring Instruments

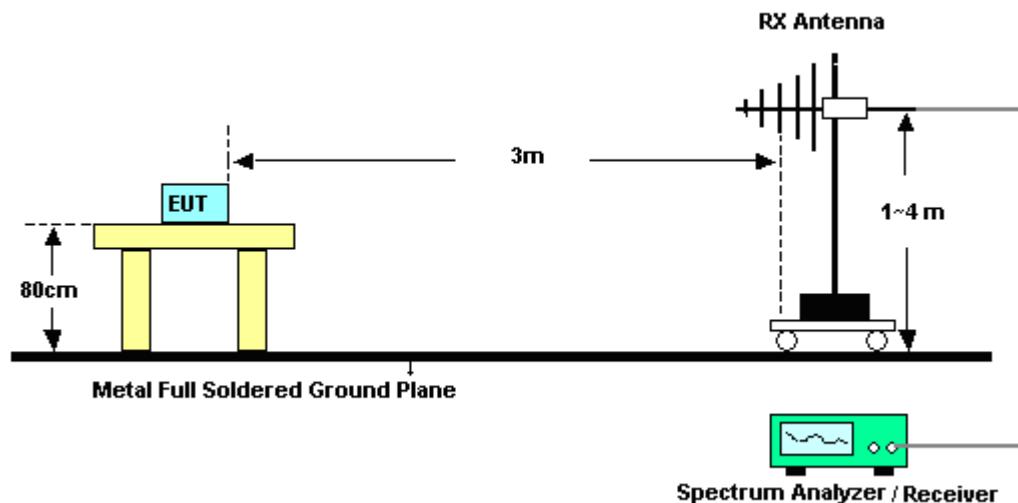
Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

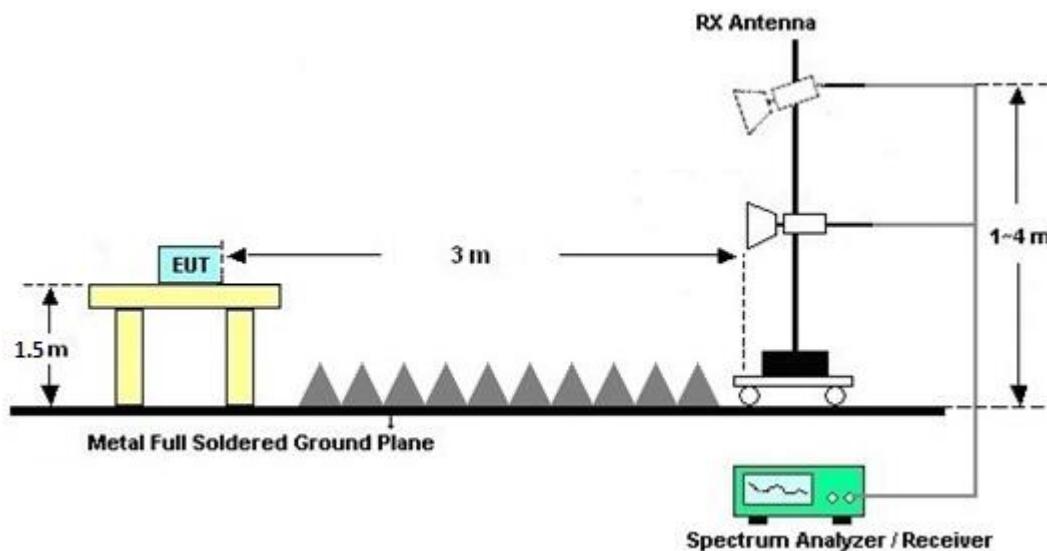
1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000 MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW \geq 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
2. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
3. The EUT is set 3 meters away from the receiving antenna which is mounted on the top of a variable height antenna tower.
4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
5. For each suspected emission, the EUT is arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading.
When there is no suspected emission found and the emission level is with at least 6 dB margin

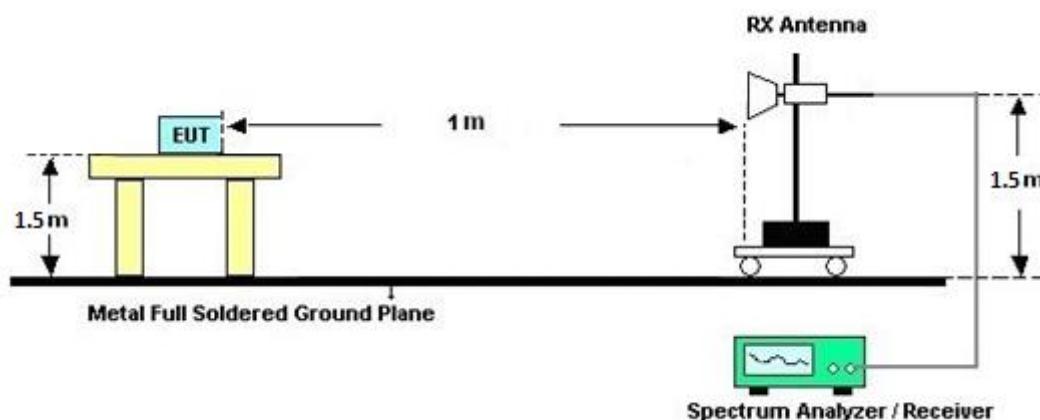

against QP limit line, the position is marked as “-”..

7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies.


When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as “-”.

3.2.4 Test Setup


For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

3.2.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Radiated Band Edges

Please refer to Appendix C and D.

3.2.7 Duty Cycle

Please refer to Appendix E.

3.2.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

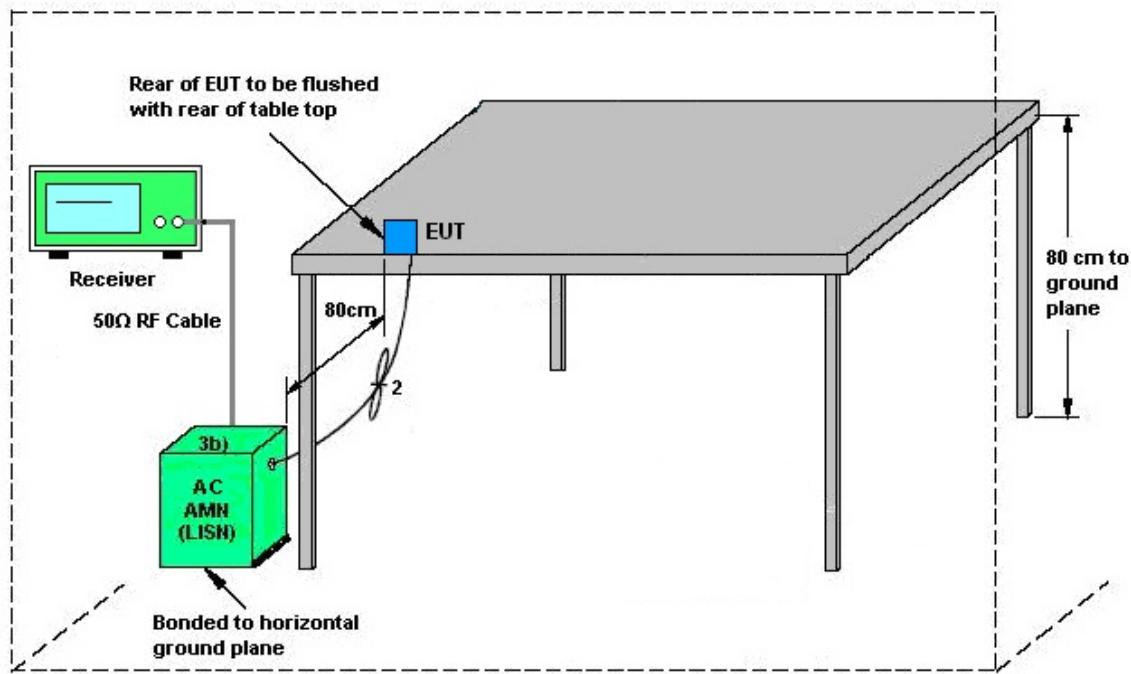
3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
7. The frequency range from 150 kHz to 30 MHz is scanned.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.3.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.4 Antenna Requirements

3.4.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 26, 2022	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2021	Sep. 26, 2022	Nov. 30, 2022	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2021	Sep. 26, 2022	Nov. 16, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 03, 2021	Sep. 26, 2022	Dec. 02, 2022	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Sep. 26, 2022	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBECK	VTSD 9561-F N	00691	N/A	Aug. 01, 2022	Sep. 26, 2022	Jul. 31, 2023	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 30, 2021	Sep. 26, 2022	Dec. 29, 2022	Conduction (CO05-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Sep. 16, 2022~Oct. 27, 2022	Nov. 15, 2022	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Dec. 29, 2021	Sep. 16, 2022~Oct. 27, 2022	Dec. 28, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz	Aug. 03, 2022	Sep. 16, 2022~Oct. 27, 2022	Aug. 02, 2023	Conducted (TH05-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N-06	35419 & 03	30MHz~1GHz	Apr. 24, 2022	Oct. 21, 2022~Oct. 26, 2022	Apr. 23, 2023	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 03, 2021	Oct. 21, 2022~Oct. 26, 2022	Dec. 02, 2022	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 07, 2022	Oct. 21, 2022~Oct. 26, 2022	Jan. 06, 2023	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-00101 800-30-10P	1590075	1GHz~18GHz	Apr. 21, 2022	Oct. 21, 2022~Oct. 26, 2022	Apr. 20, 2023	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	Oct. 03, 2022	Oct. 21, 2022~Oct. 26, 2022	Oct. 02, 2023	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 03, 2022	Oct. 21, 2022~Oct. 26, 2022	Oct. 02, 2023	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Jul. 21, 2022	Oct. 21, 2022~Oct. 26, 2022	Jul. 20, 2023	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Jul. 22, 2022	Oct. 21, 2022~Oct. 26, 2022	Jul. 21, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682/4	30MHz to 18GHz	Feb. 23, 2022	Oct. 21, 2022~Oct. 26, 2022	Feb. 22, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4	9kHz to 18GHz	Feb. 23, 2022	Oct. 21, 2022~Oct. 26, 2022	Feb. 22, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4	9kHz to 18GHz	Feb. 23, 2022	Oct. 21, 2022~Oct. 26, 2022	Feb. 22, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 16, 2022	Oct. 21, 2022~Oct. 26, 2022	Sep. 15, 2023	Radiation (03CH07-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2	18GHz~40GHz	Feb. 23, 2022	Oct. 21, 2022~Oct. 26, 2022	Feb. 22, 2023	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	N/A	Oct. 21, 2022~Oct. 26, 2022	N/A	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Oct. 21, 2022~Oct. 26, 2022	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	N/A	Oct. 21, 2022~Oct. 26, 2022	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Oct. 21, 2022~Oct. 26, 2022	N/A	Radiation (03CH07-HY)
Software	Audix	E3	N/A	N/A	N/A	Oct. 21, 2022~Oct. 26, 2022	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	Mar. 07, 2022	Oct. 21, 2022~Oct. 26, 2022	Mar. 06, 2023	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290053	20Hz~26.5GHz	May 27, 2022	Oct. 21, 2022~Oct. 26, 2022	May 26, 2023	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170251	18GHz~40GHz	Nov. 30, 2021	Oct. 21, 2022~Oct. 26, 2022	Nov. 29, 2022	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	3.10 dB
---	----------------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	6.50 dB
---	----------------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	4.50 dB
---	----------------

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	4.20 dB
---	----------------

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	5.30 dB
---	----------------

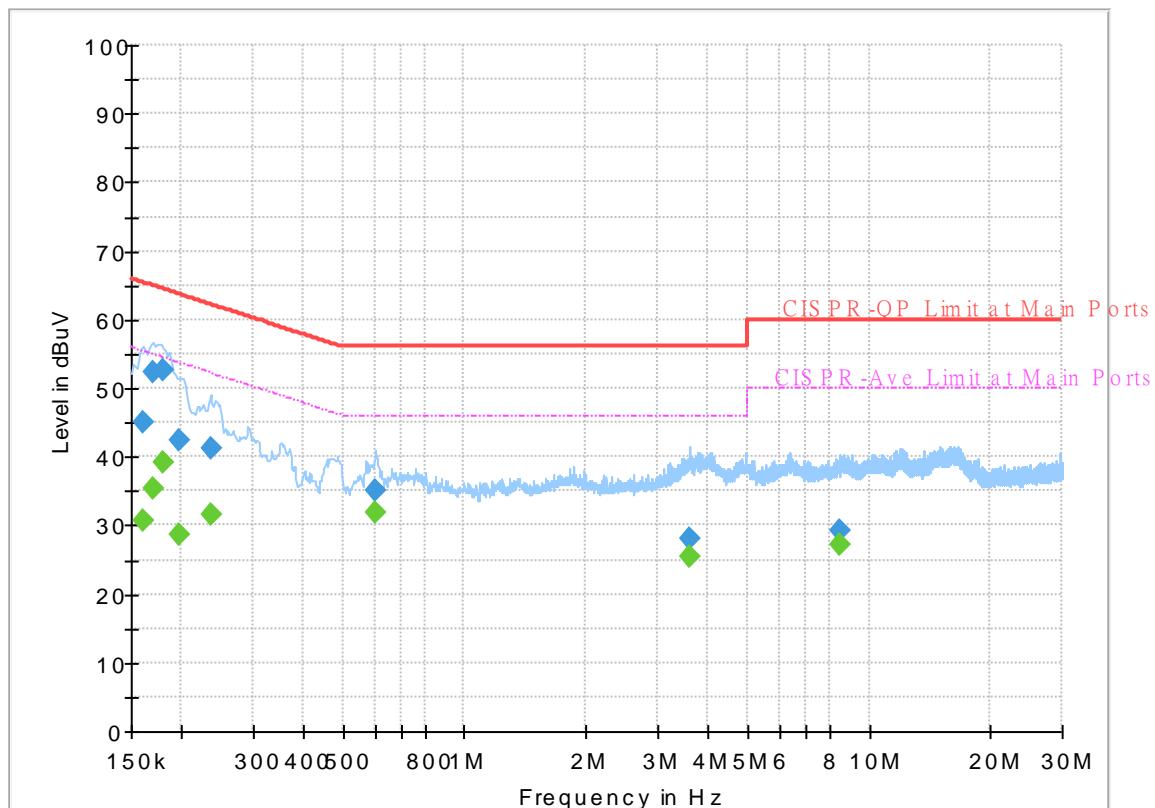
Appendix A. Test Result of Conducted Test Items

Test Engineer:	Willy Chang / Paul Lin / Ching Chen	Temperature:	21~25	°C
Test Date:	2022/9/16-2022/10/27	Relative Humidity:	51~54	%

Remark: For Conducted Test Items, Ant. 1 means Chain 1 and Ant. 2 means Chain 0.

TEST RESULTS DATA
Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)			FCC Conducted Power Limit (dBm)		DG (dBi)		Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	149	5745	15.80	15.70	18.76	30.00		3.64		Pass
11a	6Mbps	2	157	5785	15.80	15.90	18.86	30.00		3.64		Pass
11a	6Mbps	2	165	5825	15.60	15.60	18.61	30.00		3.64		Pass
HT20	MCS0	2	149	5745	15.70	15.60	18.66	30.00		3.64		Pass
HT20	MCS0	2	157	5785	15.70	15.80	18.76	30.00		3.64		Pass
HT20	MCS0	2	165	5825	15.40	15.50	18.46	30.00		3.64		Pass
HT40	MCS0	2	151	5755	15.20	15.00	18.11	30.00		3.64		Pass
HT40	MCS0	2	159	5795	15.20	15.10	18.16	30.00		3.64		Pass
VHT20	MCS0	2	149	5745	15.80	15.70	18.76	30.00		3.64		Pass
VHT20	MCS0	2	157	5785	15.80	15.90	18.86	30.00		3.64		Pass
VHT20	MCS0	2	165	5825	15.60	15.50	18.56	30.00		3.64		Pass
VHT40	MCS0	2	151	5755	15.30	15.10	18.21	30.00		3.64		Pass
VHT40	MCS0	2	159	5795	15.30	15.30	18.31	30.00		3.64		Pass
VHT80	MCS0	2	155	5775	15.30	15.10	18.21	30.00		3.64		Pass

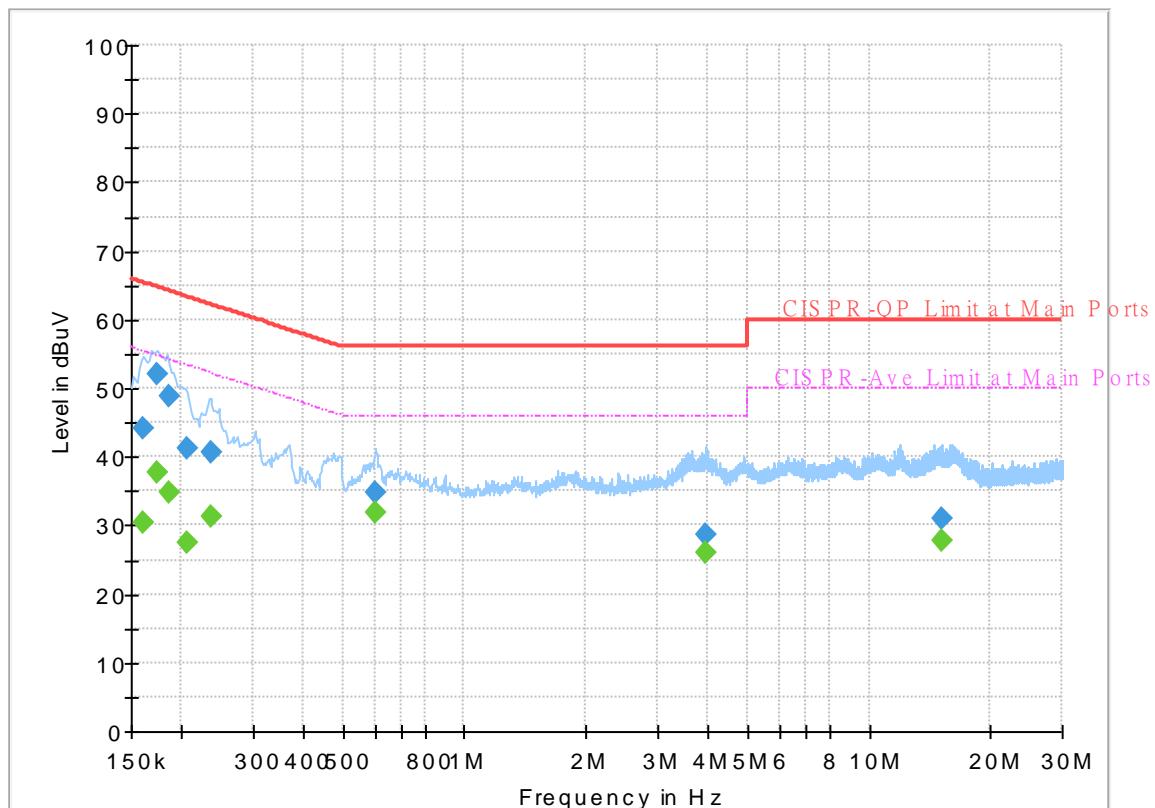

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Calvin Wang	Temperature :	23~26°C
		Relative Humidity :	45~55%

EUT Information

Report NO : 290129
 Test Mode : Mode 1
 Test Voltage : 120Vac/60Hz
 Phase : Line

Full Spectrum


Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.161250	---	30.80	55.40	24.60	L1	OFF	19.8
0.161250	45.10	---	65.40	20.30	L1	OFF	19.8
0.170250	---	35.34	54.95	19.61	L1	OFF	19.8
0.170250	52.44	---	64.95	12.51	L1	OFF	19.8
0.179250	---	39.26	54.52	15.26	L1	OFF	19.8
0.179250	52.71	---	64.52	11.81	L1	OFF	19.8
0.197250	---	28.52	53.73	25.21	L1	OFF	19.8
0.197250	42.33	---	63.73	21.40	L1	OFF	19.8
0.235500	---	31.54	52.25	20.71	L1	OFF	19.8
0.235500	41.21	---	62.25	21.04	L1	OFF	19.8
0.602250	---	31.87	46.00	14.13	L1	OFF	19.8
0.602250	35.04	---	56.00	20.96	L1	OFF	19.8
3.588000	---	25.49	46.00	20.51	L1	OFF	19.9
3.588000	28.17	---	56.00	27.83	L1	OFF	19.9
8.479500	---	27.09	50.00	22.91	L1	OFF	20.1
8.479500	29.30	---	60.00	30.70	L1	OFF	20.1

EUT Information

Report NO : 290129
 Test Mode : Mode 1
 Test Voltage : 120Vac/60Hz
 Phase : Neutral

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.161250	---	30.35	55.40	25.05	N	OFF	19.8
0.161250	44.19	---	65.40	21.21	N	OFF	19.8
0.174750	---	37.62	54.73	17.11	N	OFF	19.8
0.174750	51.94	---	64.73	12.79	N	OFF	19.8
0.186000	---	34.78	54.21	19.43	N	OFF	19.8
0.186000	48.97	---	64.21	15.24	N	OFF	19.8
0.206250	---	27.38	53.36	25.98	N	OFF	19.8
0.206250	41.34	---	63.36	22.02	N	OFF	19.8
0.237750	---	31.22	52.17	20.95	N	OFF	19.8
0.237750	40.60	---	62.17	21.57	N	OFF	19.8
0.602250	---	31.79	46.00	14.21	N	OFF	19.8
0.602250	34.87	---	56.00	21.13	N	OFF	19.8
3.936750	---	26.17	46.00	19.83	N	OFF	20.0
3.936750	28.70	---	56.00	27.30	N	OFF	20.0
15.069750	---	27.77	50.00	22.23	N	OFF	20.4
15.069750	31.04	---	60.00	28.96	N	OFF	20.4

Appendix C. Radiated Spurious Emission

Test Engineer :	Jesse Wang, Stan Hsieh, Ken Wu and Howard Huang	Temperature :	22.6~24.5°C
		Relative Humidity :	58.6~61.3%

Remark: For Radiated Spurious Emission Test Items, Ant. 1 means Chain 1 and Ant. 2 means Chain 0.

Band 4 5725~5850MHz

WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI Ant. 1+2	Note	Frequency (MHz)	Level (dB μ V/m)	Margin (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB/m)	Path Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Peak Avg. (P/A)	Pol. (H/V)
		5635.8	48.37	-19.83	68.2	36.62	34.7	12.26	35.21	100	241	P	H
		5677.4	50.06	-38.46	88.52	38.18	34.81	12.27	35.2	100	241	P	H
		5718	57.34	-52.9	110.24	45.22	35.01	12.29	35.18	100	241	P	H
		5720.2	55.36	-55.9	111.26	43.23	35.02	12.29	35.18	100	241	P	H
802.11ac VHT80 CH 155 5775MHz	*	5775	95.63	-	-	83.26	35.2	12.32	35.15	100	241	P	H
	*	5775	88.62	-	-	76.25	35.2	12.32	35.15	100	241	A	H
		5854.8	60.42	-50.84	111.26	48	35.2	12.41	35.19	100	241	P	H
		5859.2	60.23	-49.39	109.62	47.81	35.2	12.42	35.2	100	241	P	H
		5875.8	52.61	-52	104.61	40.19	35.2	12.44	35.22	100	241	P	H
		5926.4	50.25	-17.95	68.2	37.86	35.15	12.51	35.27	100	241	P	H
													H
													H
		5638.6	48.72	-19.48	68.2	36.97	34.7	12.26	35.21	318	19	P	V
		5694.8	51.65	-49.72	101.37	39.68	34.88	12.28	35.19	318	19	P	V
		5716.6	56.75	-53.1	109.85	44.64	35	12.29	35.18	318	19	P	V
		5724.6	58.47	-62.82	121.29	46.29	35.05	12.3	35.17	318	19	P	V
	*	5775	98.74	-	-	86.37	35.2	12.32	35.15	318	19	P	V
	*	5775	91.9	-	-	79.53	35.2	12.32	35.15	318	19	A	V
		5852	57.59	-60.05	117.64	45.17	35.2	12.41	35.19	318	19	P	V
		5870	56.68	-49.92	106.6	44.26	35.2	12.43	35.21	318	19	P	V
		5918.8	52.13	-20.64	72.77	39.73	35.16	12.5	35.26	318	19	P	V
		5947.2	49.8	-18.4	68.2	37.44	35.11	12.54	35.29	318	19	P	V
													V
													V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

Band 4 5725~5850MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI Ant. 1+2	Note	Frequency (MHz)	Level (dB μ V/m)	Margin (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB/m)	Path Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Peak Avg. (P/A)	Pol. (H/V)
802.11a CH 157 5785MHz		11570	53.79	-20.21	74	52.93	38.24	19.37	56.75	100	254	P	H
		11570	41.6	-12.4	54	40.74	38.24	19.37	56.75	100	254	A	H
		17355	51.55	-16.65	68.2	41.61	41.44	24	55.5	-	-	P	H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
Remark	1.	No other spurious found.											
	2.	All results are PASS against Peak and Average limit line.											
	3.	The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.											

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a													
CH 149		5650	55.45	-12.75	68.2	54.51	32.22	4.58	35.86	103	308	P	H
5745MHz													

1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
2. Level(dB μ V/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)
3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

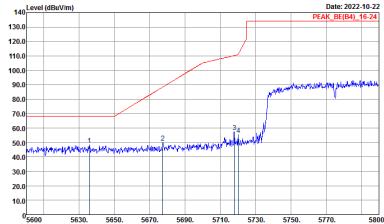
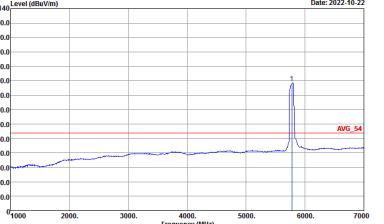
1. Level(dB μ V/m)
= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)
= 32.22(dB/m) + 4.58(dB) + 54.51(dB μ V) – 35.86 (dB)
= 55.45 (dB μ V/m)
2. Over Limit(dB)
= Level(dB μ V/m) – Limit Line(dB μ V/m)
= 55.45(dB μ V/m) – 68.2(dB μ V/m)
= -12.75 (dB)

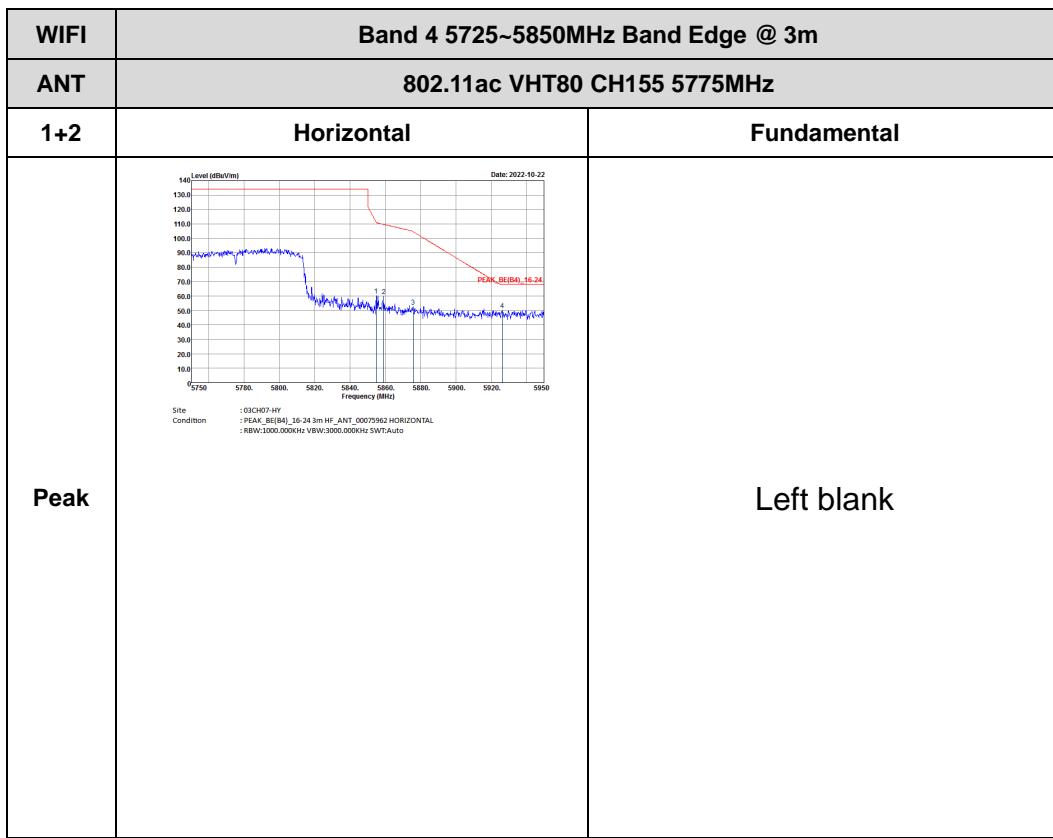
Both peak and average measured complies with the limit line, so test result is “PASS”.

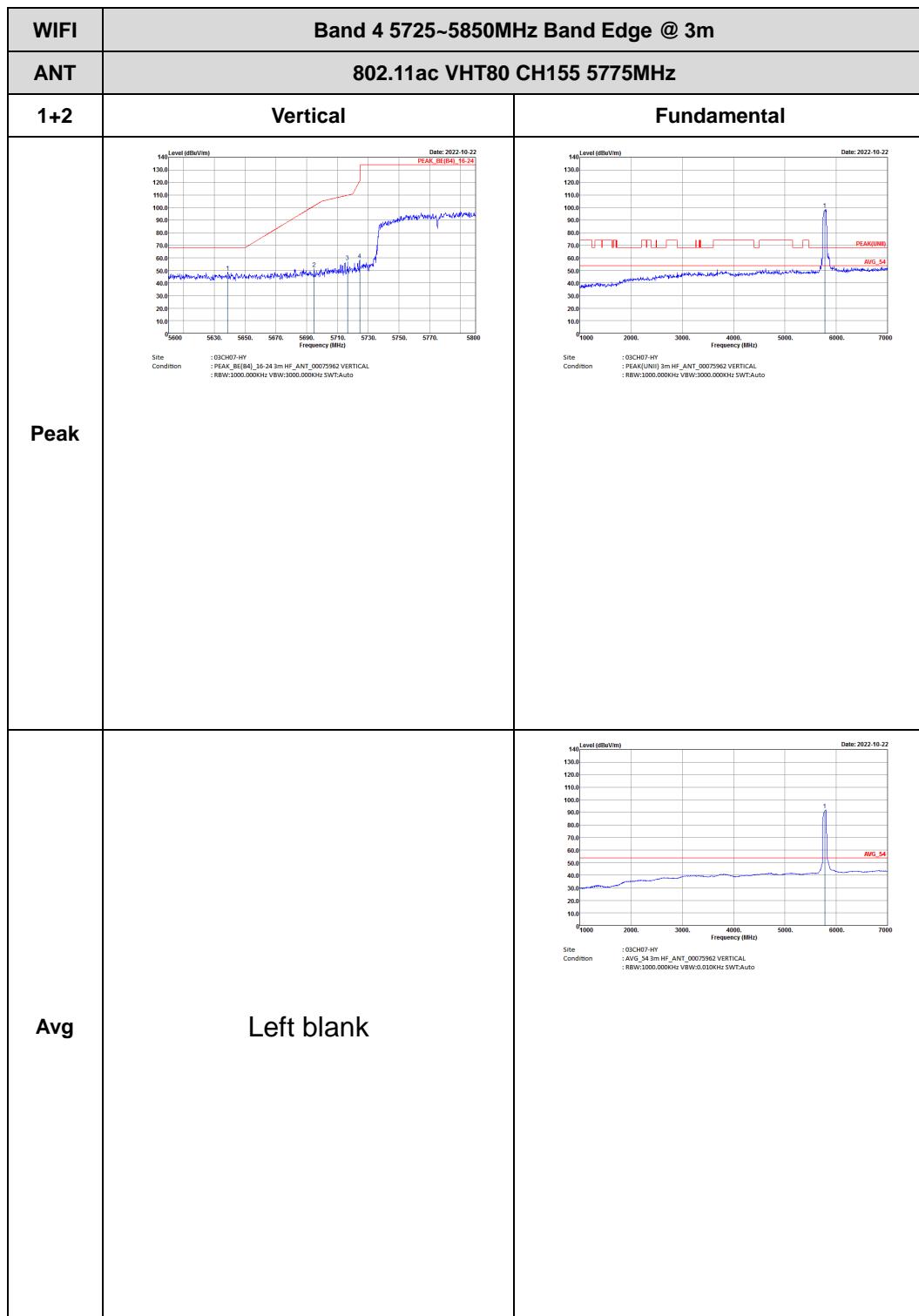
Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Jesse Wang, Stan Hsieh, Ken Wu and Howard Huang	Temperature :	22.6~24.5°C
		Relative Humidity :	58.6~61.3%

Remark: For Radiated Spurious Emission Plots Test Items, Ant. 1 means Chain 1 and Ant. 2 means Chain 0.



Note symbol

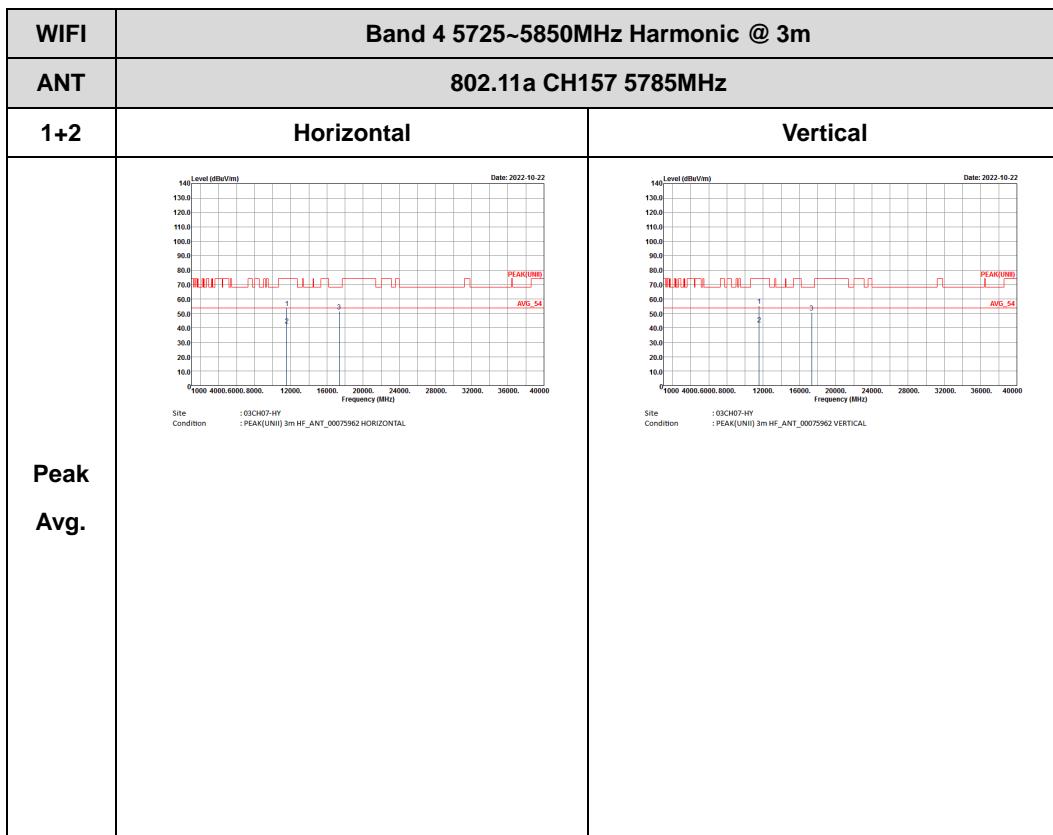

-L	Low channel location
-R	High channel location



Band 4 - 5725~5850MHz

WIFI 802.11ac VHT80 (Band Edge @ 3m)

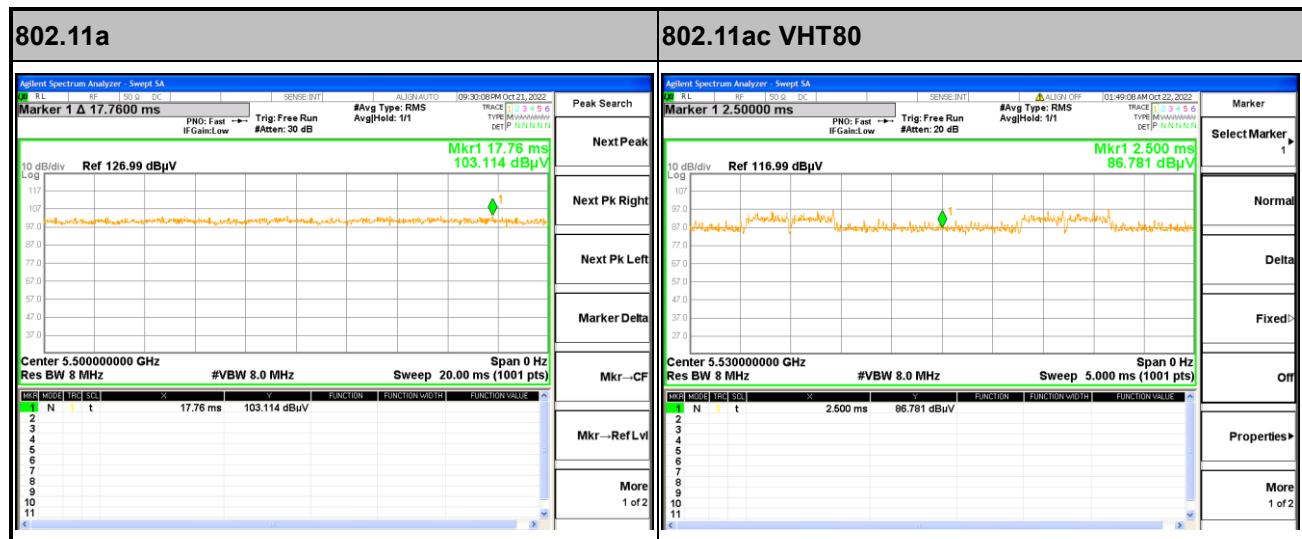
WIFI	Band 4 5725~5850MHz Band Edge @ 3m	
ANT	802.11ac VHT80 CH155 5775MHz	
1+2	Horizontal	Fundamental
Peak	 Site: 03CH07-HY Condition: PEAK_BE(B4-16-24 3m HF ANT_00075982 HORIZONTAL :RBW:3200.000KHz VBW:3000.000KHz SWF:Auto	 Site: 03CH07-HY Condition: PEAK(B4) 3m HF ANT_00075982 HORIZONTAL :RBW:3200.000KHz VBW:3000.000KHz SWF:Auto
Avg	Left blank	 Site: 03CH07-HY Condition: AVG_54 3m HF ANT_00075982 HORIZONTAL :RBW:10000.000KHz VBW:0.010KHz SWF:Auto



WIFI	Band 4 5725~5850MHz Band Edge @ 3m	
ANT	802.11ac VHT80 CH155 5775MHz	
1+2	Vertical	Fundamental
Peak	<p>Site : 03CH07-HY Condition : PEAK_BE[BA]_16-24 3m HF_ANT_00075982 VERTICAL : RBW:1000.000Hz VSW:3000.000KHz SW:Auto</p>	Left blank

Band 4 - 5725~5850MHz

WIFI 802.11a (Harmonic @ 3m)



Appendix E. Duty Cycle Plots

Chain	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
1+0	802.11a	100.00	-	-	10Hz
1+0	5GHz 802.11ac VHT80	100.00	-	-	10Hz

MIMO <Chain 1+0>

