TEST REPORT

Report No.: CHTEW21110198 Report Verification:

Project No...... SHT2110030701EW

FCC ID.....: TWNE32-A

Applicant's name: Pro-Lite, Inc.

Test item description: SMD Wireless Module

Trade Mark -

Model/Type reference..... E32-A

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.231

Date of receipt of test sample........... Nov.08, 2021

Date of testing...... Nov.08, 2021- Dec.14, 2021

Date of issue...... Dec.14, 2021

Result...... PASS

Compiled by

(Position+Printed name+Signature): File administrator Echo Wei

Tork Wei

Supervised by

(Position+Printed name+Signature): Project Engineer Kiki Kong

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Homsty

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW21110198 Page: 2 of 36 Issued: 2021-12-14

Contents

<u> 1 . </u>	IEST STANDARDS AND REPORT VERSION	აა
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
<u>J.</u>	COMMAN	<u> </u>
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	5
<u>4.</u>	TEST CONFIGURATION	6
<u></u>	TEOT GOM TOOK/MON	
4.1.	Test frequency list	6
4.2.	Test mode	6
4.3.	Support unit used in test configuration and system	6
4.4.	Testing environmental condition	7
4.5.	Measurement uncertainty	7
4.6.	Equipment Used during the Test	8
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
F 4	Automo Bouring and	10
5.1.	Antenna Requirement	10
5.2. 5.3.	AC Conducted Emission 20dB bandwidth	11 14
5.3. 5.4.	99% Occupied Bandwidth	15
5.4. 5.5.	Silent Period Time	16
5.6.	Duty Cycle Corrected Factor	17
5.6. 5.7.	Radiated field strength of the fundamental signal	18
5.7. 5.8.	Radiated Spurious Emission	22
J.O.	Radiated Spurious Linission	22
<u>6.</u>	TEST SETUP PHOTOS	32
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	34
8.	APPENDIX	36

Report No.: CHTEW21110198 Page: 3 of 36 Issued: 2021-12-14

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC Rules Part 15.231(e): Periodic operation in the band 40.66–40.70 MHz and above 70 MHz.
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

1.2. Report version

Revision No.	Date of issue	Description
N/A	2021-12-14	Original

Report No.: CHTEW21110198 Page: 4 of 36 Issued: 2021-12-14

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result
5.1	Antenna Requirement	15.203	PASS
5.2	AC Conducted Emission	15.207	PASS
5.3	20dB Bandwidth	15.231(c)	PASS
5.4	99% Occupied Bandwidth	-	PASS*1
5.5	Silent period time	15.231(e)	PASS
5.6	Duty cycle corrected factor	-	PASS*1
5.7	Field strength of the Fundamental signal	15.231(e)	PASS
5.8	Radiated Spurious Emission	15.231(e)/15.205/15.209	PASS

Note:

The measurement uncertainty is not included in the test result.

 ^{*1:} No requirement on standard, only report these test data.

Report No.: CHTEW21110198 Page: 5 of 36 Issued: 2021-12-14

3. **SUMMARY**

3.1. Client Information

Applicant:	Pro-Lite, Inc.	
Address:	3505 Cadillac Ave. Building D Costa Mesa. CA 92626	
Manufacturer:	Ningbo Youwon Technology Electronics Co., Ltd.	
Address:	NO.430 kemao Road, Wangchun Industrial Zone, Haishu District,NingBo,China.	
Factory:	Ningbo Youwon Technology Electronics Co., Ltd.	
Address:	NO.430 kemao Road, Wangchun Industrial Zone, Haishu District,NingBo,China.	

3.2. Product Description

Name of EUT:	SMD Wireless Module
Trade Mark:	-
Model No.:	E32-A
Listed Model(s):	-
Power supply:	DC 5V
Hardware version:	V1.0
Software version:	V1.0

3.3. Radio Specification Description

Operation frequency:	432-435MHz
Modulation:	LORA
Channel number:	4
Channel separation:	1MHz
Antenna type:	FPC Antenna
Antenna gain:	2.6dBi

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Phone: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn		
Qualifications	Type Accreditation Numbe		
Qualifications	FCC	762235	

Report No.: CHTEW21110198 Page: 6 of 36 Issued: 2021-12-14

4. TEST CONFIGURATION

4.1. Test frequency list

According to section ANSI C63.10 section 5.6.1,

Measurements of unlicensed wireless devices shall be performed and, if required, reported for each band in which the EUT can be operated with the device operating at the number of frequencies in each band specified in Table 4

Table 4—Number of frequencies to be tested

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

So test frequency as follow:

Channel	Frequency (MHz)
CH _L	432
CH _M	433
CH _{M1}	434
CH _H	435

4.2. Test mode

	\neg	44	:4
⊢or	КF	test	items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit.

The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?					
✓	✓ Yes					
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord	
1	Laptop	DELL	Inspiron 13-5378	-	-	
2						

Report No.: CHTEW21110198 Page: 7 of 36 Issued: 2021-12-14

4.4. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.5. Measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission (150kHz~30MHz)	3.00 dB
Radiated Emission (30MHz~1000MHz	4.36 dB
Radiated Emissions (1GHz~25GHz)	5.10 dB
Peak Output Power	0.77dB
Power Spectral Density	0.77dB
Conducted Spurious Emission	0.77dB
6dB Bandwidth	70Hz for <1GHz 130Hz for >1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW21110198 Page: 8 of 36 Issued: 2021-12-14

4.6. Equipment Used during the Test

•	Conducted Emission								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27		
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2021/9/14	2022/9/13		
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2021/9/17	2022/9/16		
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2021/9/13	2022/9/12		
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2021/9/17	2022/9/16		
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A		

•	Radiated emission-6th test site								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29		
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/9/14	2022/9/13		
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2022/04/05		
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2022/04/05		
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2021/11/5	2022/11/4		
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2021/02/26	2022/02/25		
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A		

•	Radiated emission-7th test site								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2022/09/26		
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/9/13	2022/9/12		
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31		
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/4/27	2023/4/27		
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/5	2022/11/4		
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25		
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A		

Report No.: CHTEW21110198 Page: 9 of 36 Issued: 2021-12-14

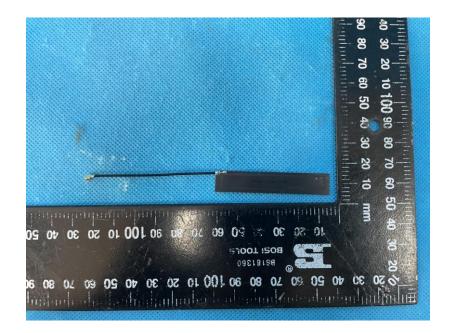
•	RF Conducted Method								
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2021/9/13	2022/9/12			
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2021/9/13	2022/9/12			
•	Power Meter	Anritsu	ML249A	N/A	2021/9/13	2022/9/12			
0	Radio communication tester	R&S	CMW500	137688-Lv	2021/9/13	2022/9/12			

Report No.: CHTEW21110198 Page: 10 of 36 Issued: 2021-12-14

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Requirement


FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

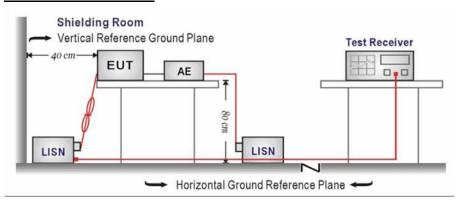
TEST RESULT

⊠ Passed	☐ Not Applicable
∠ i asseu	

The antenna type is a FPC antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: CHTEW21110198 Page: 11 of 36 Issued: 2021-12-14

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguesov rongo (MILIT)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

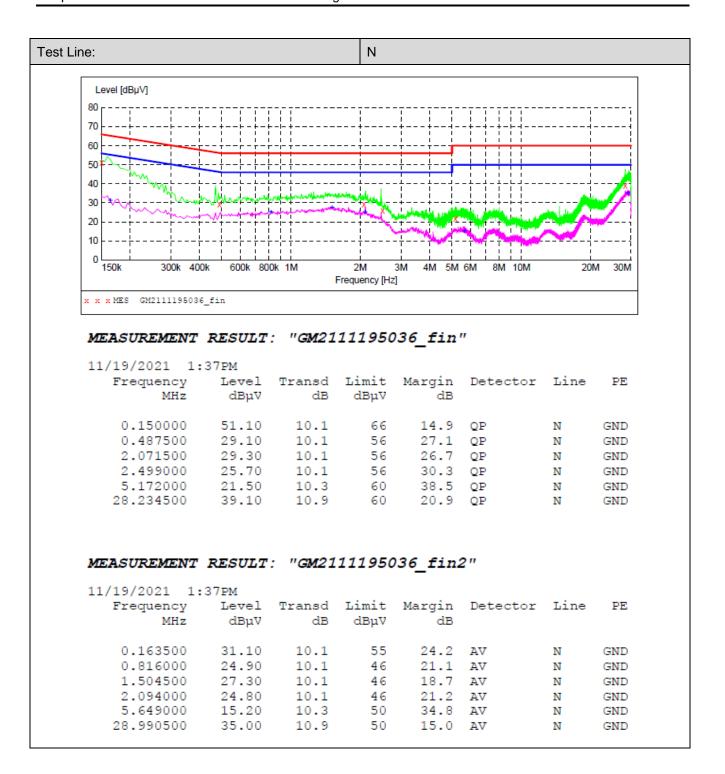
 Report No.: CHTEW21110198 Page: 12 of 36 Issued: 2021-12-14

Test Line: L Level [dBµV] 60 50 40 30 20 10 150k 300k 400k 600k 800k 1M 2M 4M 5M 6M 8M 10M 20M 30M Frequency [Hz] x x x MES GM2111195035_fin MEASUREMENT RESULT: "GM2111195035 fin" 11/19/2021 1:34PM Frequency Level Transd Limit Margin Detector Line PΕ dΒμ∇ MHz dΒμV dB dΒ 0.150000 53.10 10.1 66 12.9 QP L1GND 0.847500 31.00 10.1 56 25.0 QP ь1 GND 31.70 56 24.3 QP 1.954500 10.1 ь1 GND 2.260500 29.50 10.1 56 26.5 QP ь1 GND 12.313500 26.80 10.5 33.2 QP 60 L1GND 29.296500 39.30 10.9 20.7 QP 60 L1GND MEASUREMENT RESULT: "GM2111195035 fin2" 11/19/2021 1:34PM Frequency Level Transd Limit Margin Detector Line PEdΒμ∇ dB dBµ∇ dΒ MHz 0.150000 34.50 10.1 56 21.5 AV L1GND 0.748500 26.20 10.1 46 19.8 AV ь1 GND 19.4 AV 1.882500 26.60 10.1 46 ь1 GND 10.1 2.103000 25.30 46 20.7 AV ь1 GND 28.2 AV 12.408000 21.80 10.5 50 L1GND

50

10.9

16.1 AV


29.647500

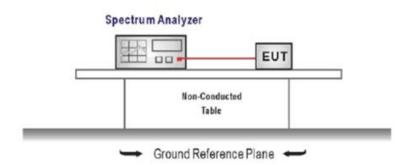
33.90

L1

GND

Report No.: CHTEW21110198 Page: 13 of 36 Issued: 2021-12-14

Report No.: CHTEW21110198 Page: 14 of 36 Issued: 2021-12-14


5.3. 20dB bandwidth

LIMIT

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900 MHz.

For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = channel center frequency

Span= approximately 2 to 3 times the 20 dB bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix A on the appendix report


Report No.: CHTEW21110198 Page: 15 of 36 Issued: 2021-12-14

5.4. 99% Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).

Center Frequency =channel center frequency

Span≥1.5 x OBW

RBW = 1%~5%OBW

VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

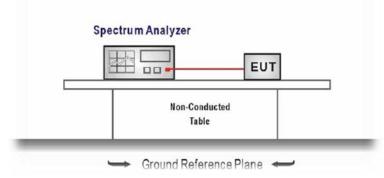
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix B on the appendix report


Report No.: CHTEW21110198 Page: 16 of 36 Issued: 2021-12-14

5.5. Silent Period Time

LIMIT

Devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Frequency=Center carrier frequency
 - RBW=1MHz, VBW=3MHz, Span= zero,
 - Sweep time= 10second, Detector function = peak, Trace = single
- Measure and record the results in the test report.

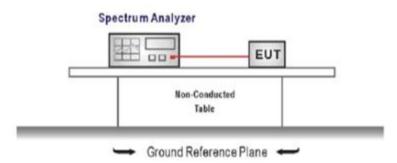
TEST MODE:

Please refer to the clause 4.2

TEST RESULTS

TEST Data

Please refer to appendix C on the appendix report


Report No.: CHTEW21110198 Page: 17 of 36 Issued: 2021-12-14

5.6. Duty Cycle Corrected Factor

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span=zero span, Frequency=centered channel, RBW= 1MHz, VBW \geq RBW
 - Sweep time=as necessary to capture the entire dwell time,
 - Detector function = peak, Trigger mode
- 4. Measure and record the duty cycle data

TEST MODE:

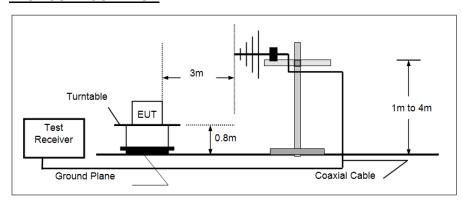
Please refer to the clause 4.2

TEST Data

Please refer to appendix D on the appendix report

Report No.: CHTEW21110198 Page: 18 of 36 Issued: 2021-12-14

5.7. Radiated field strength of the fundamental signal


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.231(e)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

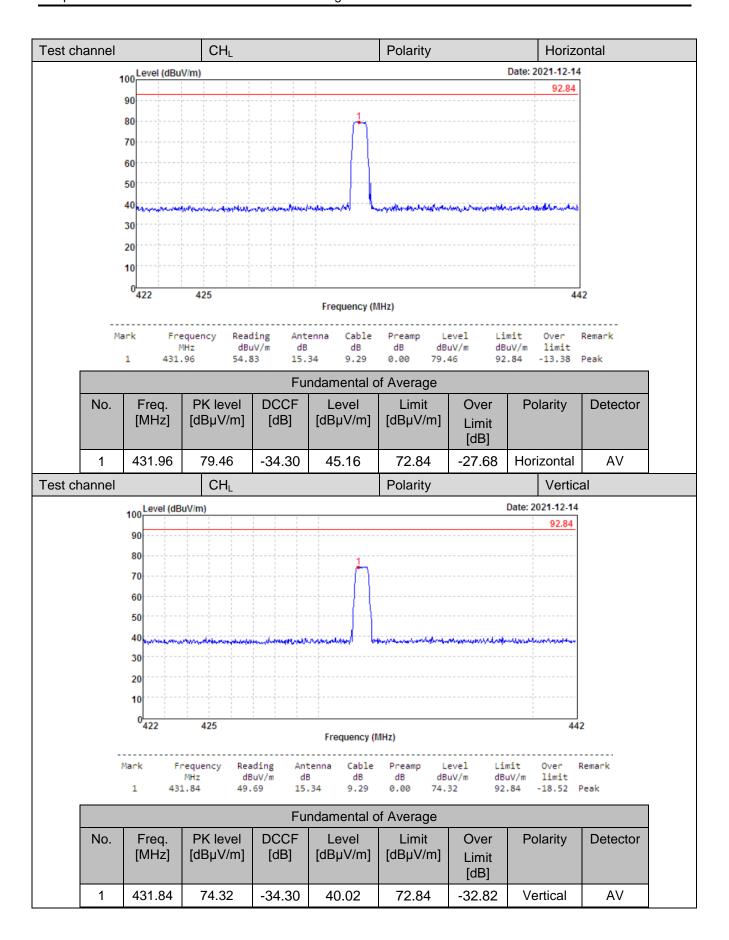
¹Linear interpolations.

TEST CONFIGURATION

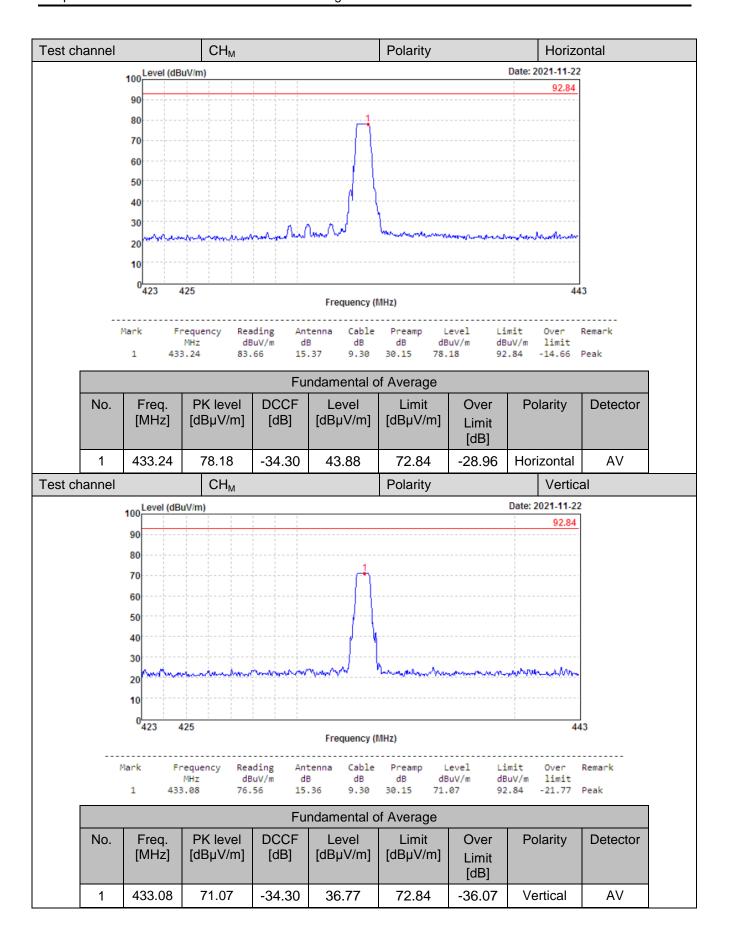
TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1GHz, The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

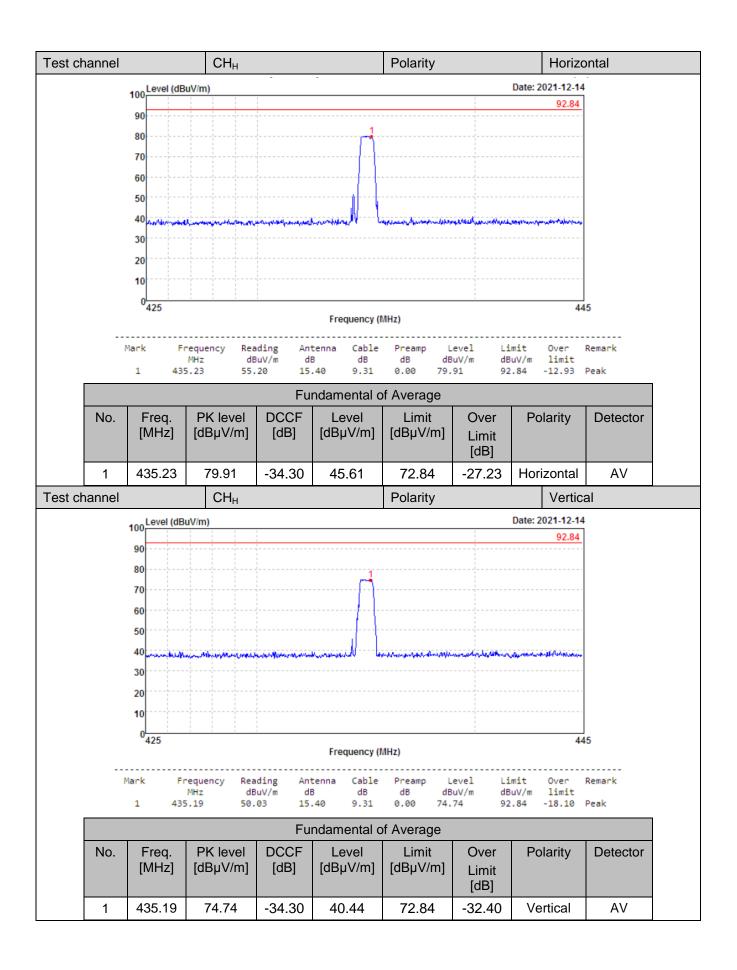
TEST MODE:


Please refer to the clause 4.2

TEST RESULTS


Note:

- Level= Reading + Factor; Factor = Antenna Factor + Cable Loss- Preamp Factor
- 2) Over Limit = Level Limit


Report No.: CHTEW21110198 Page: 19 of 36 Issued: 2021-12-14

Report No.: CHTEW21110198 Page: 20 of 36 Issued: 2021-12-14

Report No.: CHTEW21110198 Page: 21 of 36 Issued: 2021-12-14

Report No.: CHTEW21110198 Page: 22 of 36 Issued: 2021-12-14

5.8. Radiated Spurious Emission

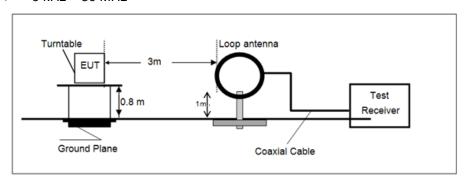
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.231(e)

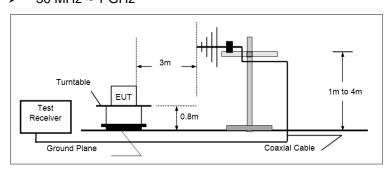
Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

¹Linear interpolations.

FCC CFR Title 47 Part 15 Subpart C Section 15.209

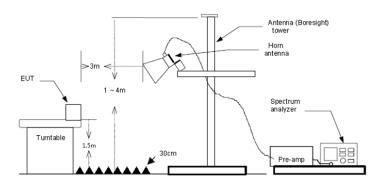

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80, Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

TEST CONFIGURATION

→ 9 kHz ~ 30 MHz



> 30 MHz ~ 1 GHz

Above 1 GHz

Report No.: CHTEW21110198 Page: 23 of 36 Issued: 2021-12-14

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

Average level = Peak level - DCCF

TEST MODE:

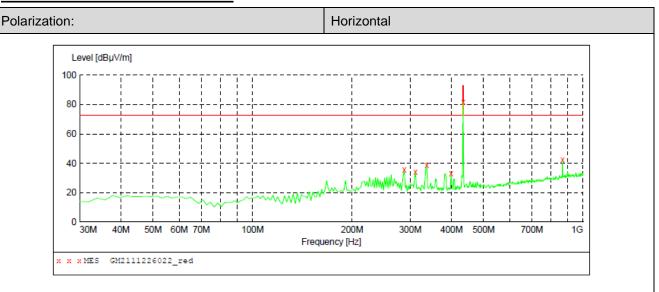
Please refer to the clause 4.2

TEST RESULT

Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- 3) Over Limit = Level Limit

TEST DATA FOR 9 kHz ~ 30 MHz


The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

TEST DATA FOR 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH_M which it was worst case, so only show the worst case's data on this report.

Report No.: CHTEW21110198 Page: 24 of 36 Issued: 2021-12-14

TEST DATA FOR 30 MHz ~ 1000 MHz

MEASUREMENT RESULT: "GM2111226022_red"

11/22/2021 9 Frequency MHz			Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
288.020000	35.70	-7.4	72.8	37.1	PK	100.0	154.00	HORIZONTAL
311.300000	34.30	-6.8	72.8	38.5	PK	100.0	154.00	HORIZONTAL
336.520000	38.80	-5.7	72.8	34.0	PK	100.0	165.00	HORIZONTAL
398.600000	33.10	-3.9	72.8	39.7	PK	100.0	24.00	HORIZONTAL
433.520000	81.80	-3.1	92.8	11.0	PK	100.0	328.00	HORIZONTAL
866.140000	42.20	6.7	72.8	30.6	PK	100.0	192.00	HORIZONTAL

			Spuri	ous Emissio	n of Average	e		
No.	Freq. [MHz]	PK level [dBµV/m]	DCCF [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	288.02	35.70	-34.30	1.40	52.80	51.40	Horizontal	AV
2	311.30	34.30	-34.30	0.00	52.80	52.80	Horizontal	AV
3	336.52	38.80	-34.30	4.50	52.80	48.30	Horizontal	AV
4	398.60	33.10	-34.30	-1.20	52.80	54.00	Horizontal	AV
5	433.52	81.80	-34.30	47.50	72.80	25.30	Horizontal	AV
6	866.14	42.20	-34.30	7.90	52.80	44.90	Horizontal	AV

Report No.: CHTEW21110198 Page: 25 of 36 Issued: 2021-12-14

Polarization: Vertical Level [dBµV/m] 100 80 60 40 20 40M 50M 60M 70M 100M 200M 300M 400M 500M 700M 30M 1G Frequency [Hz]

MEASUREMENT RESULT: "GM2111226021_red"

GM2111226021_red

x x x MES

11/22/2021 9 Frequency MHz			Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
37.760000	28.10	-10.6	72.8	44.7	PK	100.0	258.00	VERTICAL
41.640000	29.00	-9.6	72.8	43.8	PK	100.0	270.00	VERTICAL
45.520000	30.10	-8.8	72.8	42.7	PK	100.0	236.00	VERTICAL
49.400000	28.70	-8.8	72.8	44.1	PK	100.0	247.00	VERTICAL
433.520000	72.70	-3.1	92.8	20.1	PK	100.0	359.00	VERTICAL
982.540000	36.20	8.4	72.8	36.6	PK	100.0	247.00	VERTICAL

			Spuri	ous Emissio	n of Average	е		
No.	Freq. [MHz]	PK level [dBµV/m]	DCCF [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	37.76	28.10	-34.30	-6.20	52.80	59.00	Vertical	AV
2	41.64	29.00	-34.30	-5.30	52.80	58.10	Vertical	AV
3	45.52	30.10	-34.30	-4.20	52.80	57.00	Vertical	AV
4	49.40	28.70	-34.30	-5.60	52.80	58.40	Vertical	AV
5	433.52	72.70	-34.30	38.40	72.80	34.40	Vertical	AV
6	982.54	36.20	-34.30	1.90	52.80	50.90	Vertical	AV

Report No.: CHTEW21110198 Page: 26 of 36 Issued: 2021-12-14

TEST DATA FOR 1 GHz ~ 5 GHz

est channe	d .	CH∟			Polarity		Horizon	tal
4	00 Level (dBuV/n	1)					Date: 2021-12-14	
	90							
	80					<u>-</u>	FCC 15.231 E PK	
	70							
	60						FCC 45 224 F AV	
	50						FCC 15.231 E AV	
	40		2					
	30	يسييها لسيبي	بهدا لساسيها	hand harried anneally	الطوطية المطارب وعند مراس	egyad bir mayor yaqqaba vadbalar	Artical Brighton	
			.1					
	20							
	10							
	0 1000 1200			2000			500	0
				Frequency (M	Hz)			
Ma	rk Frequ	ency Readi	ng Ante	nna Cable	Preamp (Level Li	mit Over N	Remark
	MHz	dBuV		dB .1 4.17			uV/m limit	Doole
	1 1397.61 2 1799.39							Peak Peak
	3 2001.04							Peak
	4 2396.30						.84 -23.06	
	5 3191.23 6 4787.38						.84 -33.27 F	
			Spurio	ous Emissio	n of Averag	ge		
No.	Freq.	PK level	DCCF	Level	Limit	Over	Polarity	Detector
		[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]			
	[[GD# V/III]	[aD]	[GD# V/III]	[GD# V/III]			
						[dB]		
1	1397.61	41.85	-34.30	7.55	54.00	-45.29	Horizontal	AV
2	1799.39	40.87	-34.30	6.57	52.84	-46.27	Horizontal	AV
3	2001.04	39.85	-34.30	5.55	52.84	-47.29	Horizontal	AV
4	2396.30	49.78	-34.30	15.48	52.84	-37.36	Horizontal	AV
5	3191.23	39.57	-34.30	5.27	52.84	-47.57	Horizontal	AV
6	4787.38	42.92	-34.30	8.62	52.84	-44.22	Horizontal	AV

Report No.: CHTEW21110198 Page: 27 of 36 Issued: 2021-12-14

est channel	CH∟		Polarity	/		Vertica	I
100 Level (dBi	uV/m)				Date:	2021-12-1	4
100	1 1 1 1 1	1 1 1 1		1			7
90							
80		l					
				ـ	FCC 15	5.231 E PK	<u>.</u>
70							
60		ļļļļ					
			-4	- 	FCC 15	5.231 E AV	<u>'</u>
50	1 1	2 3		- 5		6	
40			callus sakacene	·			-
has adia. An	My harman	والمراق والأروبي أصلوان المحالة المحال	hall before the formal	ووالعدومالما كالمياليوليون	A-characteristic property	ALL CONTRACTOR OF THE PARTY OF	
30							
20							
10							
0 1000	1200 1500	2000		!		50)00
1000	1200 1300	Frequenc	y (MHz)			30	700
Mark Fr	equency Reading	Antenna Cabi	le Preamp	Level	Limit	Over	Remark
	MHz dBuV/m	dB dB	dB	dBuV/m	dBuV/m	limit	remark.
	.61 50.52	26.11 4.17	7 36.56	44.24	74.00	-29.76	Peak
1 1397				43.81	72.84	-29.03	Peak
2 1790		25.36 4.74					
2 1790 3 1997	.82 50.84	26.09 5.00	37.22	44.72	72.84	-28.12	Peak
2 1790 3 1997 4 2392	7.82 50.84 2.44 55.13	26.09 5.00 27.71 5.53	37.22 37.22	44.72 51.15	72.84 72.84	-28.12 -21.69	Peak Peak
2 1790 3 1997	7.82 50.84 2.44 55.13 5.37 44.01	26.09 5.00	37.22 37.22 37.10	44.72	72.84	-28.12	Peak Peak Peak

			Spuriou	us Emission	of Average			
No.	Freq. [MHz]	PK level [dBµV/m]	DCCF [dB]	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Polarity	Detector
1	1397.61	44.24	-34.30	7.47	54.00	-45.37	Vertical	AV
2	1790.72	43.81	-34.30	9.94	52.84	-42.90	Vertical	AV
3	1997.82	44.72	-34.30	9.51	52.84	-43.33	Vertical	AV
4	2392.44	51.15	-34.30	10.42	52.84	-42.42	Vertical	AV
5	3196.37	42.27	-34.30	16.85	52.84	-35.99	Vertical	AV
6	4802.81	43.84	-34.30	7.97	52.84	-44.87	Vertical	AV

Report No.: CHTEW21110198 Page: 28 of 36 Issued: 2021-12-14

Test channel	С	H _M		Polarity	y		Horizo	ntal
400 Leve	el (dBuV/m)					Date:	2021-11-2	3
100						!		7
90								-
80					-			-
70					<u> </u>	FCC 15	5.231 E PK	_
60			<u> </u>			FCC 15	5.231 E AV	, i
50				45			aLOT LA	-
40	1	2		. I	6			
40	والمعاصين فالمعاومين المع	1 1	Lucian Isaack	allykung lungkary	minima	ويواله المالية المالية والمالية	Harris Market Mary	1
30	WORKSHIEL MANIETALIA	" waterward from interest	***					-
	1 1 1							
20								
20								
10								
10	0 1200	1500	2000				50	
10	0 1200	1500	2000 Frequency	(MHz)			50	00
10 0 1000			Frequency		Level	Limit		
10	0 1200 Frequency	Reading A			Level dBuV/m	Limit dBuV/m	50 Over	000 Remark
10 0 1000	Frequency	Reading A dBuV/m	Frequency ntenna Cable	Preamp			 Over	
10 0 1000 Mark 1 2	Frequency MHz 1195.60 1397.61	Reading A dBuV/m 49.03 2 47.34 2	Frequency ntenna Cable dB dB 5.58 3.86 6.11 4.17	Preamp dB 36.70 36.56	dBuV/m 41.77 41.06	dBuV/m 74.00 74.00	Over limit -32.23 -32.94	Remark Peak Peak
10 0 1000 Mark	Frequency MHz 1195.60 1397.61 1799.39	Reading A dBuV/m 49.03 2 47.34 2 52.70 2	Frequency ntenna Cable dB dB 5.58 3.86 6.11 4.17 5.40 4.75	Preamp dB 36.70 36.56 37.11	dBuV/m 41.77 41.06 45.74	dBuV/m 74.00 74.00 72.84	Over limit -32.23 -32.94 -27.10	Remark Peak Peak Peak
10 0 1000	Frequency MHz 1195.60 1397.61	Reading A dBuV/m 49.03 2 47.34 2 52.70 2	Frequency ntenna Cable dB dB 5.58 3.86 6.11 4.17	Preamp dB 36.70 36.56	dBuV/m 41.77 41.06	dBuV/m 74.00 74.00	Over limit -32.23 -32.94	Remark Peak Peak
10 0 1000 Mark 1 2 3	Frequency MHz 1195.60 1397.61 1799.39	Reading A dBuV/m 49.03 2 47.34 2 52.70 2 52.24 2	Frequency ntenna Cable dB dB 5.58 3.86 6.11 4.17 5.40 4.75	Preamp dB 36.70 36.56 37.11	dBuV/m 41.77 41.06 45.74	dBuV/m 74.00 74.00 72.84	Over limit -32.23 -32.94 -27.10	Remark Peak Peak Peak

			Spuri	ous Emissio	n of Averag	е		
No.	Freq. [MHz]	PK level [dBµV/m]	DCCF [dB]	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Polarity	Detector
1	1195.60	41.77	-34.30	7.47	54.00	-46.53	Horizontal	AV
2	1397.61	41.06	-34.30	6.76	54.00	-47.24	Horizontal	AV
3	1799.39	45.74	-34.30	11.44	52.84	-41.40	Horizontal	AV
4	2396.30	48.25	-34.30	13.95	52.84	-38.89	Horizontal	AV
5	2601.29	45.91	-34.30	11.61	52.84	-41.23	Horizontal	AV
6	3196.37	39.37	-34.30	5.07	52.84	-47.77	Horizontal	AV

Report No.: CHTEW21110198 Page: 29 of 36 Issued: 2021-12-14

st channel		CH _M			Polarity			Vertica	ıl
100	Level (dBuV/m)							Date: 2021-1	1-23
90									
80							· · · []- · · · · · · · · · · ·		
70								FCC 15.231 E	PK
60									
50			w u	-3				FCC 15.231 E	AV 6
40				- Ah. 1 albah	Md				L
30	my market med have	hammer I bearing	بالمهمة كالمعطوبين	MACHINA		Markeyon	ll-livery (lasy tramas	Particular Control	
20									
10									
o	1000 1200	1500		2000					5000
	1000 1200	1500	,	Frequency (M	IHz)				5000
Mark	Freque	ncy Reading	Anten	na Cable	Preamp	Le	evel Li	mit Over	r Remark
1	MHz 1395.36	dBuV/n 46.82	n dB 26.12	dB 4.17	dB 36.55	dB:		BuV/m limi	
2	1793.60	52.19	25.37		37.12	45.1		2.84 -27.6	
3	1994.61	50.15	26.08		37.22	44.0			82 Peak
4	2388.60	55.38	27.72		37.20	51.4			57 Peak
5	2801.18	43.43	28.40		37.36	40.5		1.00 -33.4	
6	4787.38	40.71	31.40	8.41	34.15	46.	5/ /2	2.84 -26.4	47 Peak
			Spurio	us Emissior	of Aver	age			
No.	Freq.	PK level	DCCF	Level	Limi	it	Over	Polarity	Detector
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV	/m]	Limit		
							[dB]		
1	1395.36	40.56	-34.30	6.26	54.0	0	-46.58	Vertical	AV
2	1793.60	45.19	-34.30	10.89	52.8	4	-41.95	Vertical	AV
3	1994.61	44.02	-34.30	9.72	52.8	4	-43.12	Vertical	AV
4	2388.60	51.43	-34.30	17.13	54.0	0	-36.87	Vertical	AV
5	2801.18	40.51	-34.30	6.21	54.0	0	-47.79	Vertical	AV
6	4787.36	46.37	-34.30	12.07	52.8	4	-40.77	Vertical	AV

Report No.: CHTEW21110198 Page: 30 of 36 Issued: 2021-12-14

Date: 2021-12-14	t channe	el	CH _H			Polarity		Horizor	ntal
90 80 70 70 60 60 60 60 60 60 60 60 60 60 60 60 60	1	00 Level (dBuV	/m)					Date: 2021-12-1	4
Second									
Mark Frequency Reading Antenna Cable Preamp Level Limit Over Nemark Limit Over Nemark Limit Limi									
No. Freq. PK level DCCF Level Limit (dB) V/m (dBμV/m)				<u> </u>				FCC 15.231 E PK	
No. Freq. PK level GB μV/m GB μV/					<u>.</u>				
No. Freq. PK PK PK PK PK PK Pk Pk Pk Pk				<u> </u>				FCC 15.231 E AV	
No. Freq. PK level CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m CB V/m		1	2	3			5	6	,
No. Freq. PK PK PK PK PK PK PK P		السوماليين ليأ	Marine Laboration	Muchhan	المعرضيان المؤرية	Minoria (Angelinia) primana	سهديد وسيقي بسيالهم	A STREET AND A STREET AND A STREET	
No. Freq. PK Evel GB μV/m GB μV/m GB μV/m Frequency Fream Frequency Frequency Frequency Frequency Frequency									
No. Freq. PK evel [dBμV/m] [dBμ									
Mark Frequency Reading Antenna Cable Preamp Level Limit Over Remark									
Mark Frequency Reading Antenna Cable Preamp Level Limit Over Remark		1000 120	00 1500)		ЛНz)		00	
MHz dBuV/m dB dB dB dB dBuV/m dBuV/m limit 1 1195.60 48.02 25.58 3.86 36.70 40.76 74.00 -33.24 Peak 2 1397.61 47.68 26.11 4.17 36.56 41.40 74.00 -32.60 Peak 3 1796.49 47.26 25.39 4.75 37.12 40.28 72.84 -32.56 Peak 4 2392.44 54.56 27.71 5.53 37.22 50.58 72.84 -32.26 Peak 5 3191.23 43.71 28.92 6.45 37.07 42.01 72.84 -30.83 Peak 6 4787.38 37.20 31.40 8.41 34.15 42.86 72.84 -29.98 Peak Peak 72.84 -29.98 Peak Peak 72.84 -29.98 Peak Peak 72.84 -29.98 Peak Peak Peak 72.84 -29.98 Peak Peak 72.84 -29.98 Peak Peak 72.84 -29.98 Peak									
2 1397.61 47.68 26.11 4.17 36.56 41.40 74.00 -32.60 Peak 3 1796.49 47.26 25.39 4.75 37.12 40.28 72.84 -32.56 Peak 4 2392.44 54.56 27.71 5.53 37.22 50.58 72.84 -32.56 Peak 5 3191.23 43.71 28.92 6.45 37.07 42.01 72.84 -30.83 Peak 6 4787.38 37.20 31.40 8.41 34.15 42.86 72.84 -29.98 Peak No. Freq. [MHz] [M	Ma								Remark
3 1796.49 47.26 25.39 4.75 37.12 40.28 72.84 -32.56 Peak 4 2392.44 54.56 27.71 5.53 37.22 50.58 72.84 -32.26 Peak 5 3191.23 43.71 28.92 6.45 37.07 42.01 72.84 -30.83 Peak 6 4787.38 37.20 31.40 8.41 34.15 42.86 72.84 -29.98 Peak No. Freq. PK level [dBμV/m] [dBμV/m] Limit [dB] 1 1195.60 40.76 -34.30 6.46 54.00 -47.54 Horizontal AV 2 1397.61 41.40 -34.30 7.10 54.00 -46.90 Horizontal AV 3 1796.49 40.28 -34.30 5.98 52.84 -46.86 Horizontal AV 4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV							-		
5 3191.23 43.71 37.20 28.92 31.40 6.45 8.41 37.07 34.15 42.86 72.84 -30.83 Peak 72.84 -29.98 Peak Spurious Emission of Average No. Freq. [MHz] PK level [dBμV/m] DCCF [dBμV/m] Limit [dBμV/m] Over Limit [dB] Polarity Detector 1 1195.60 40.76 -34.30 6.46 54.00 -47.54 Horizontal AV 2 1397.61 41.40 -34.30 7.10 54.00 -46.90 Horizontal AV 3 1796.49 40.28 -34.30 5.98 52.84 -46.86 Horizontal AV 4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV									
Spurious Emission of Average No. Freq. [MHz] PK level [dBμV/m] [dB] Fig. [dBμV/m] Freq. [dBμV/									
No. Freq. [MHz] PK level [dBμV/m] DCCF [dBμV/m] Level [dBμV/m] Limit [dB] Over Limit [dB] Polarity Detector 1 1195.60 40.76 -34.30 6.46 54.00 -47.54 Horizontal AV 2 1397.61 41.40 -34.30 7.10 54.00 -46.90 Horizontal AV 3 1796.49 40.28 -34.30 5.98 52.84 -46.86 Horizontal AV 4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV									
[MHz] [dBμV/m] [dB] [dBμV/m] [dBμV/m] Limit [dB] 1 1195.60 40.76 -34.30 6.46 54.00 -47.54 Horizontal AV 2 1397.61 41.40 -34.30 7.10 54.00 -46.90 Horizontal AV 3 1796.49 40.28 -34.30 5.98 52.84 -46.86 Horizontal AV 4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV				Spuri	ous Emissio	n of Averag	е		
1 1195.60 40.76 -34.30 6.46 54.00 -47.54 Horizontal AV 2 1397.61 41.40 -34.30 7.10 54.00 -46.90 Horizontal AV 3 1796.49 40.28 -34.30 5.98 52.84 -46.86 Horizontal AV 4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV	No.	Freq.	PK level	DCCF	Level	Limit	Over	Polarity	Detector
1 1195.60 40.76 -34.30 6.46 54.00 -47.54 Horizontal AV 2 1397.61 41.40 -34.30 7.10 54.00 -46.90 Horizontal AV 3 1796.49 40.28 -34.30 5.98 52.84 -46.86 Horizontal AV 4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV		[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	Limit		
2 1397.61 41.40 -34.30 7.10 54.00 -46.90 Horizontal AV 3 1796.49 40.28 -34.30 5.98 52.84 -46.86 Horizontal AV 4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV							[dB]		
3 1796.49 40.28 -34.30 5.98 52.84 -46.86 Horizontal AV 4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV	1	1195.60	40.76	-34.30	6.46	54.00	-47.54	Horizontal	AV
4 2392.44 50.58 -34.30 16.28 52.84 -36.56 Horizontal AV 5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV	2	1397.61	41.40	-34.30	7.10	54.00	-46.90	Horizontal	AV
5 3191.23 42.01 -34.30 7.71 52.84 -45.13 Horizontal AV	3	1796.49	40.28	-34.30	5.98	52.84	-46.86	Horizontal	AV
	4	2392.44	50.58	-34.30	16.28	52.84	-36.56	Horizontal	AV
6 4787.38 42.86 -34.30 8.56 52.84 -44.28 Horizontal AV	5	3191.23	42.01	-34.30	7.71	52.84	-45.13	Horizontal	AV
	6	4787.38	42.86	-34.30	8.56	52.84	-44.28	Horizontal	AV

Report No.: CHTEW21110198 Page: 31 of 36 Issued: 2021-12-14

est channel		СНн			Polarity	y		Vertica	ı		
10	Level (dBuV/n	n)					Da	te: 2021-12-1	4		
9											
8]			-				
7		<u> </u>	1				FC	C 15.231 E PK	_		
6											
5			FCC 15.2						31 E AV		
4			1					بيأنين برديد			
3	Mark College Hay all Inch	يباريه الإيهبيدي	Landpater Holphan	May make production	MATAN INVOLUTION	بالمهاليسيديد	and the second second second second	er and the first term			
2											
1											
						1					
	°1000 1200	1500	2	2000 Frequency (M	Hz)			50	00		
Mar	MHz	dBuV/		na Cable dB	Preamp dB	dBuV,			Remark		
1 2			25.41 25.39	4.46 4.75	37.15 37.12	43.99	74.0 72.8		Peak Peak		
3			25.39		37.12	47.06 44.99	72.8				
4			27.72		37.20	49.85	74.0				
5			27.49		37.26	45.59	72.8				
6	4787.38	39.70	31.40	8.41	34.15	45.36	72.8	4 -27.48	Peak		
			Spuriou	ıs Emissio	n of Ave	erage					
No.	Freq.	PK level	DCCF	Level	Lir	nit	Over	Polarity	Detector		
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµ	V/m]	Limit				
							[dB]				
1	1594.78	43.99	-34.30	9.69	54.	.00	-43.15	Vertical	AV		
2	1796.49	47.06	-34.30	12.76	52.	.84	-40.08	Vertical	AV		
3	1991.40	44.99	-34.30	10.69	52.	.84	-42.15	Vertical	AV		
4	2388.60	49.85	-34.30	15.55	54.	.00	-38.45	Vertical	AV		
5	2595.93	45.59	-34.30	11.29	52.	.84	-41.55	Vertical	AV		

6

4787.38

45.36

-34.30

11.06

52.84

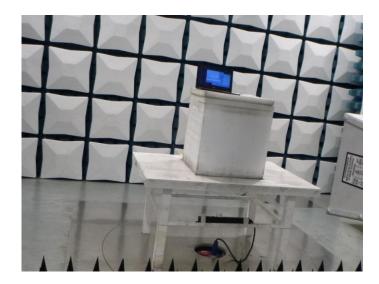
-41.78

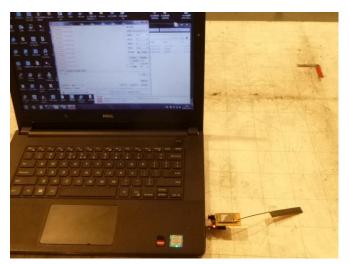
Vertical

 AV

Report No.: CHTEW21110198 Page: 32 of 36 Issued: 2021-12-14

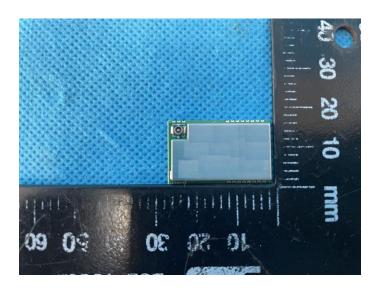
6. TEST SETUP PHOTOS


Radiated Emission

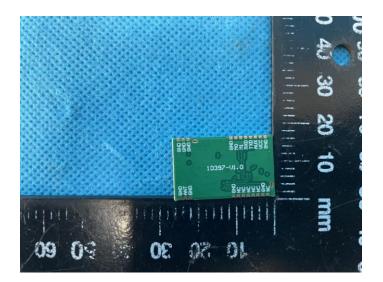


Report No.: CHTEW21110198 Page: 33 of 36 Issued: 2021-12-14

AC Conducted Emission


Report No.: CHTEW21110198 Page: 34 of 36 Issued: 2021-12-14

7. EXTERANAL AND INTERNAL PHOTOS


External Photos

Report No.: CHTEW21110198 Page: 35 of 36 Issued: 2021-12-14

Report No.: CHTEW21110198 Page: 36 of 36 Issued: 2021-12-14

Internal Photos

8. Appendix