

SPORTS SELECT USA INC. TEST REPORT
FOR THE
900MHZ TRANSMITTER, BV900
FCC PART 15 SUBPART C SECTION 15.207
COMPLIANCE

DATE OF ISSUE: JANUARY 5, 2006

PREPARED FOR:

Sports Select USA Inc.
1920 North Shadeland Ave.
Indianapolis, IN 46219

W.O. No.: 84593

PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Date of test: January 2, 2006

Report No.: FC06-001

This report contains a total of 18 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Conditions for Compliance	4
Approvals.....	4
FCC 15.33(a) Frequency Ranges Tested	5
FCC 15.35 Analyzer Bandwidth Settings.....	5
EUT Operating Frequency	5
Temperature And Humidity During Testing.....	5
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Report of Measurements	6
Table 1: Six Highest Conducted Emission Levels.....	6
EUT Setup.....	7
Correction Factors.....	7
Table A: Sample Calculations	7
Test Instrumentation and Analyzer Settings	8
Spectrum Analyzer Detector Functions	8
Peak.....	8
Quasi-Peak	8
Average	8
EUT Testing.....	9
Mains Conducted Emissions.....	9
Appendix A: Test Setup Photographs.....	10
Photograph Showing Mains Conducted Emissions	11
Photograph Showing Mains Conducted Emissions	12
Appendix B: Test Equipment List	13
Appendix C: Measurement Data Sheets	14

ADMINISTRATIVE INFORMATION

DATE OF TEST: January 2, 2006

DATE OF RECEIPT: January 2, 2006

MANUFACTURER: Sports Select USA Inc.
1920 North Shadeland Ave.
Indianapolis, IN 46219

REPRESENTATIVE: Jon Sinder

TEST LOCATION: CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

TEST METHOD: ANSI C63.4 (2003)

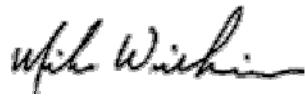
PURPOSE OF TEST: To demonstrate the compliance of the 900MHz
Transmitter, BV900 with the requirements for FCC
Part 15 Subpart C Section 15.207 devices.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services


QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

Mike Wilkinson, Lab Manager

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz

FCC SECTION 15.35:			
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz

EUT Operating Frequency

The EUT was operating at 902-928MHz.

Temperature And Humidity During Testing

The temperature during testing was within +15°C and + 35°C.

The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST
EUT Power Supply

 Manuf: Sports Select USA, Inc.
 Model: D35W120200-02/1
 Serial: 0450YW
 FCC ID: DoC

900MHz Transmitter

 Manuf: Sports Select USA, Inc.
 Model: BV900
 Serial: 15481
 FCC ID: M3R-BV900

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Input Signal Source

 Manuf: HP
 Model: 204D
 Serial: 1105A02034
 FCC ID: DoC

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the EUT. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

Table 1: Six Highest Conducted Emission Levels

FREQUENCY MHz	METER READING dB μ V	CORRECTION FACTORS				CORRECTED READING dB μ V	SPEC LIMIT dB μ V	MARGIN dB	NOTES
		Cable dB	Lisn dB	HPF dB	Att dB				
0.157272	12.9	0.1	0.3	2.0	10.2	25.5	55.6	-30.1	B
0.242355	9.6	0.1	0.3	0.36	10.3	20.6	52.0	-31.4	B
0.620502	3.9	0.1	0.2	0.3	10.3	14.8	46.0	-31.2	B
1.783035	4.2	0.2	0.3	0.14	10.3	15.1	46.0	-30.9	B
9.976770	11.2	0.3	0.4	0.1	10.3	22.3	50.0	-27.7	B
9.976770	7.9	0.3	0.5	0.1	10.3	19.1	50.0	-30.9	W

Test Method: ANSI C63.4 (2003)
 Spec Limit: FCC Part 15 Subpart C Section 15.207

NOTES:
 B = Black Lead
 W = White Lead

COMMENTS: Equipment is a transmitter operating in the 902-928MHz range that sends audio input signal to local receiver stations. EUT is operating on Channel 1. A 1kHz tone is supplied to the audio input via a support audio oscillator. Audio input is set such that the nominal reference input of 0dB is achieved. Transmit antenna is set vertically. EUT power supply is connected to 120VAC/60Hz AC mains supply via EUT LISN. Frequency Range Investigated: 150kHz to 30MHz. Temperature: 16°C, Relative Humidity: 42%.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables.

TABLE A: SAMPLE CALCULATIONS

Meter reading	(dB μ V)
+ Antenna Factor	(dB)
+ Cable Loss	(dB)
- Distance Correction	(dB)
- Preamplifier Gain	(dB)
= Corrected Reading	(dB μ V/m)

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect the conducted emissions data. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

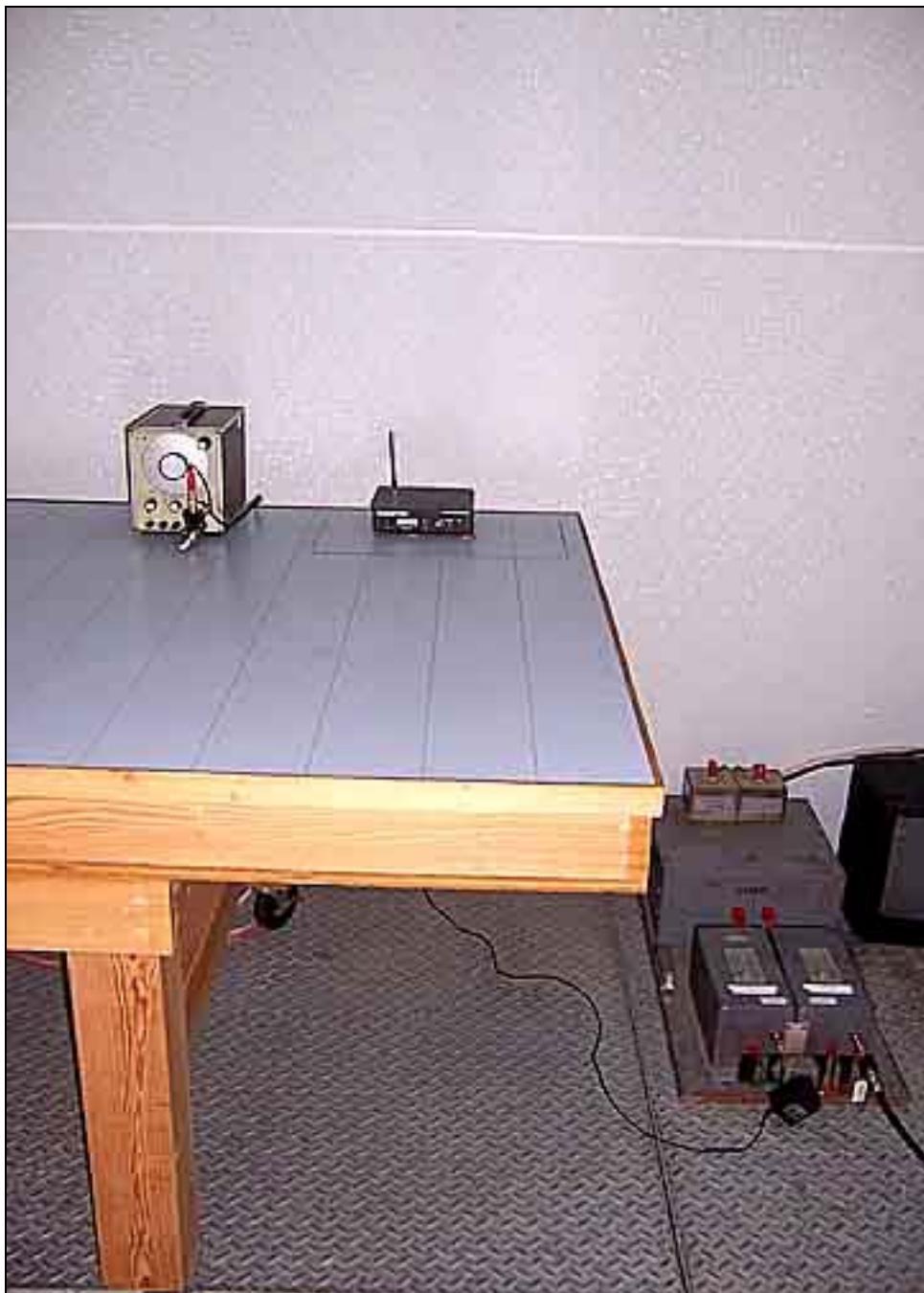
When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

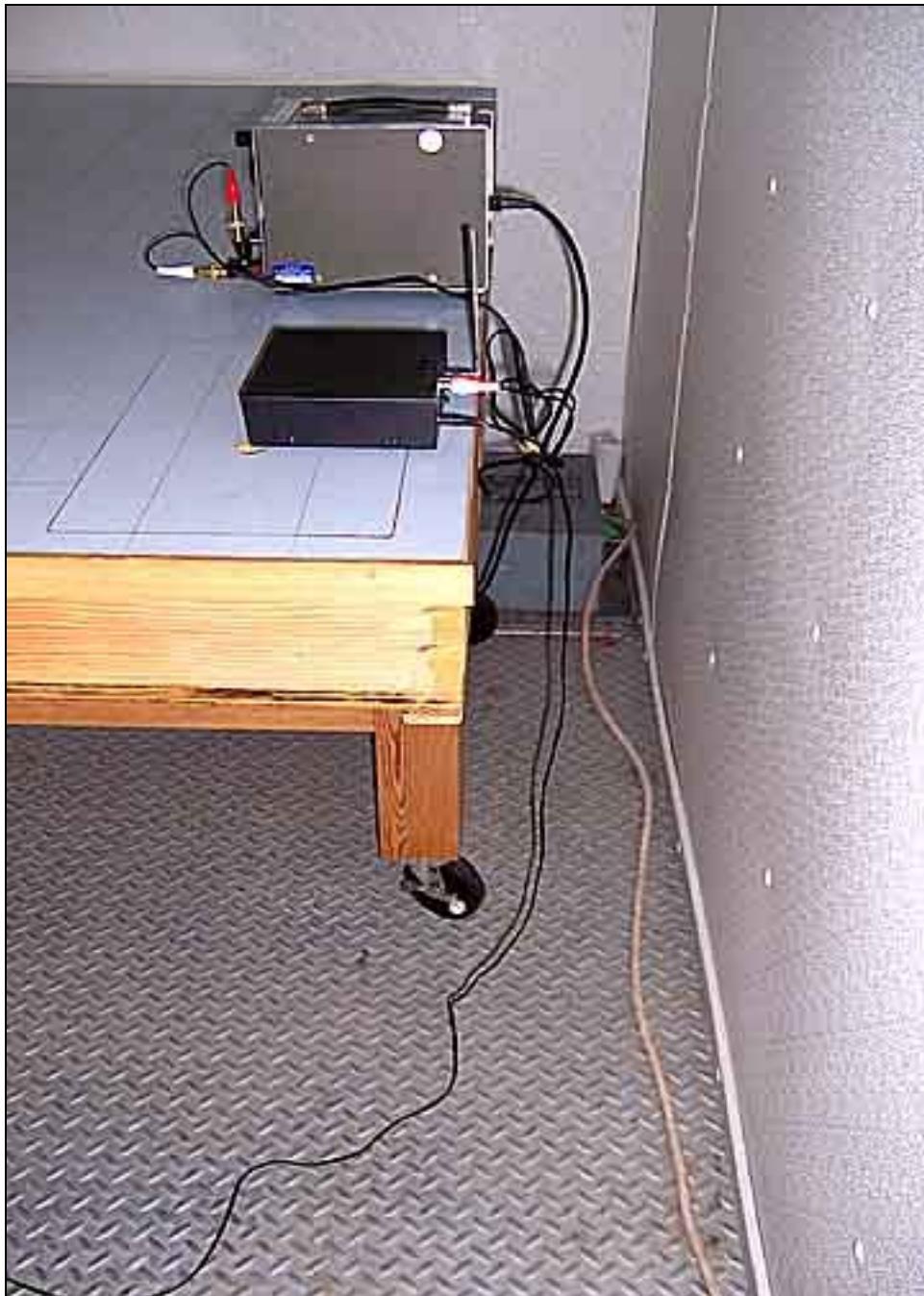
EUT TESTING

Mains Conducted Emissions


During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were 50 μ H-/+50 ohms. A 30 to 50 second sweep time was used for automated measurements in the frequency bands of 150 kHz to 500 kHz, and 500 kHz to 30 MHz. All readings within 20 dB of the limit were recorded, and those within 6 dB of the limit were examined with additional measurements using a slower sweep time.


APPENDIX A
TEST SETUP PHOTOGRAPHS

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Side View

APPENDIX B

TEST EQUIPMENT LIST

Conducted Emissions

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
150kHz HP Filter TTE	G7754	04/20/2004	04/20/2006	02608
LISN, 8028-50-TS-24-BNC	8379276, 280	06/03/2005	06/03/2007	1248 & 1249
10 dB Attenuator 10W	None	08/18/2005	08/18/2007	P04255

APPENDIX C:
MEASUREMENT DATA SHEETS

Test Location: CKC Laboratories • 4933 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: **Sports Select USA Inc.**
 Specification: **FCC 15.207 - AVE**
 Work Order #: **84593** Date: **1/2/2006**
 Test Type: **Conducted Emissions** Time: **2:45:15 PM**
 Equipment: **900MHz Transmitter** Sequence#: **1**
 Manufacturer: Sports Select USA, Inc. Tested By: **Mike Wilkinson**
 Model: **BV900** **120V 60Hz**
 S/N: **15481**

Equipment Under Test (* = EUT):

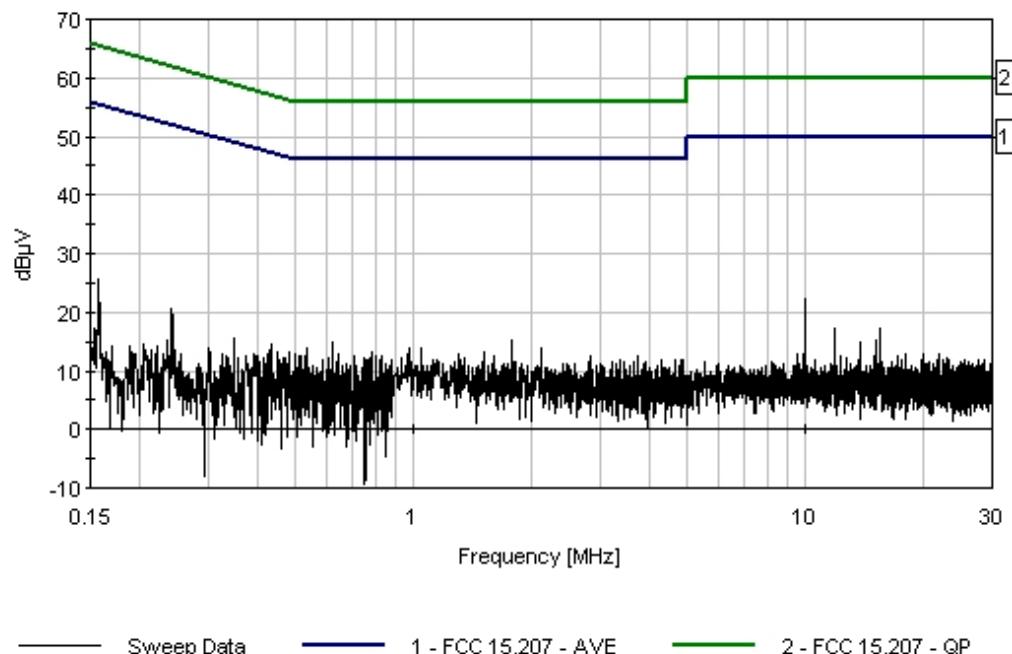
Function	Manufacturer	Model #	S/N
EUT Power Supply	Sports Select USA, Inc.	D35W120200-02/1	0450YW
900MHz Transmitter*	Sports Select USA, Inc.	BV900	15481

Support Devices:

Function	Manufacturer	Model #	S/N
Input Signal Source	HP	204D	1105A02034

Test Conditions / Notes:

Equipment is a transmitter operating in the 902-928MHz range that sends audio input signal to local receiver stations. EUT is operating on Channel 1. A 1kHz tone is supplied to the audio input via a support audio oscillator. Audio input is set such that the nominal reference input of 0dB is achieved. Transmit antenna is set vertically. EUT power supply is connected to 120VAC/60Hz AC mains supply via EUT LISN. Frequency Range Investigated: 150kHz to 30MHz. Temperature: 16°C, Relative Humidity: 42%.


Transducer Legend:

T1=Cable - Internal + cab	T2=LISN Insertion Loss s/n280
T3=HP Filter AN02608	T4=ATT 10d B Site D Conducted

Measurement Data:		Reading listed by margin.						Test Lead: Black			
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	9.977M	11.2	+0.3	+0.4	+0.1	+10.3	+0.0	22.3	50.0	-27.7	Black
2	157.272k	12.9	+0.1	+0.3	+2.0	+10.2	+0.0	25.5	55.6	-30.1	Black
3	1.783M	4.2	+0.2	+0.3	+0.1	+10.3	+0.0	15.1	46.0	-30.9	Black
4	620.502k	3.9	+0.1	+0.2	+0.3	+10.3	+0.0	14.8	46.0	-31.2	Black
5	242.355k	9.6	+0.1	+0.3	+0.3	+10.3	+0.0	20.6	52.0	-31.4	Black
6	1.052M	3.0	+0.2	+0.3	+0.2	+10.3	+0.0	14.0	46.0	-32.0	Black
7	2.115M	3.1	+0.2	+0.3	+0.1	+10.3	+0.0	14.0	46.0	-32.0	Black
8	533.965k	2.9	+0.1	+0.3	+0.3	+10.3	+0.0	13.9	46.0	-32.1	Black
9	979.270k	2.9	+0.2	+0.3	+0.2	+10.3	+0.0	13.9	46.0	-32.1	Black

10	433.610k	3.7	+0.1	+0.3	+0.2	+10.3	+0.0	14.6	47.2	-32.6	Black
11	786.305k	2.4	+0.1	+0.2	+0.3	+10.3	+0.0	13.3	46.0	-32.7	Black
12	1.043M	2.3	+0.2	+0.3	+0.2	+10.3	+0.0	13.3	46.0	-32.7	Black
13	1.515M	2.4	+0.2	+0.3	+0.1	+10.3	+0.0	13.3	46.0	-32.7	Black
14	15.445M	6.1	+0.4	+0.4	+0.1	+10.3	+0.0	17.3	50.0	-32.7	Black
15	11.896M	5.9	+0.4	+0.4	+0.1	+10.3	+0.0	17.1	50.0	-32.9	Black
16	483.060k	2.2	+0.1	+0.3	+0.2	+10.3	+0.0	13.1	46.3	-33.2	Black
17	497.605k	1.9	+0.1	+0.3	+0.2	+10.3	+0.0	12.8	46.0	-33.2	Black
18	966.512k	1.8	+0.2	+0.3	+0.2	+10.3	+0.0	12.8	46.0	-33.2	Black
19	1.311M	1.8	+0.2	+0.3	+0.2	+10.3	+0.0	12.8	46.0	-33.2	Black
20	640.864k	1.8	+0.1	+0.2	+0.3	+10.3	+0.0	12.7	46.0	-33.3	Black

CKC Laboratories Date: 1/2/2006 Time: 2:45:15 PM Sports Select USA Inc. WO#: 84593
 FCC 15.207 - AVE Test Lead: Black 120V 60Hz Sequence#: 1
 Sports Select USA, Inc. MN BV900

Test Location: CKC Laboratories • 4933 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: **Sports Select USA Inc.**
 Specification: **FCC 15.207 - AVE**
 Work Order #: **84593** Date: **1/2/2006**
 Test Type: **Conducted Emissions** Time: **2:43:52 PM**
 Equipment: **900MHz Transmitter** Sequence #: **2**
 Manufacturer: Sports Select USA, Inc. Tested By: **Mike Wilkinson**
 Model: **BV900** **120V 60Hz**
 S/N: **15481**

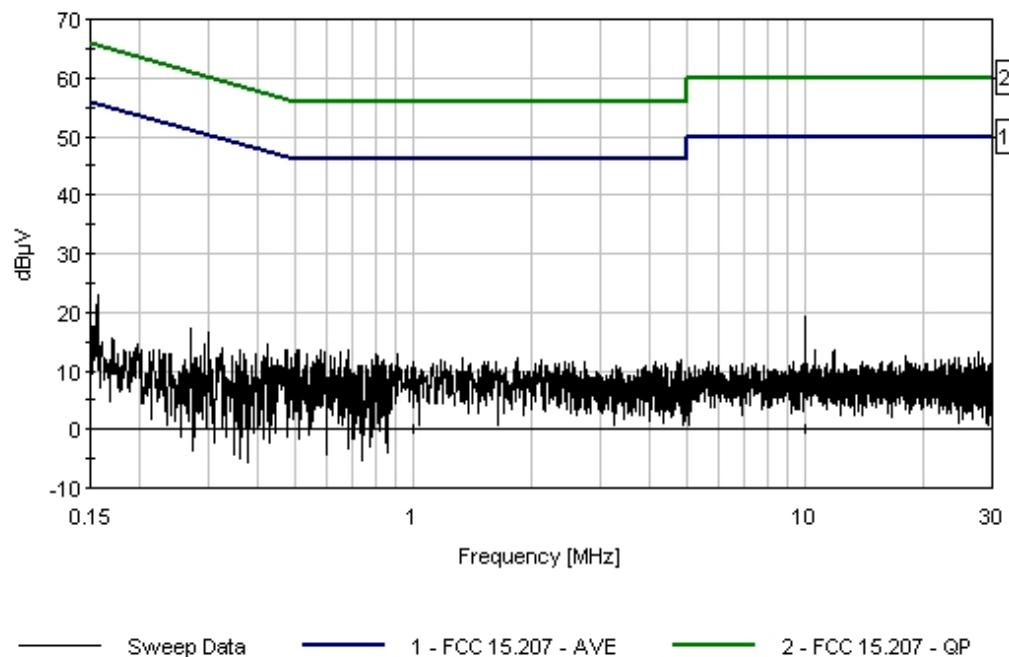
Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
EUT Power Supply	Sports Select USA, Inc.	D35W120200-02/1	0450YW
900MHz Transmitter*	Sports Select USA, Inc.	BV900	15481

Support Devices:

Function	Manufacturer	Model #	S/N
Input Signal Source	HP	204D	1105A02034

Test Conditions / Notes:


Equipment is a transmitter operating in the 902-928MHz range that sends audio input signal to local receiver stations. EUT is operating on Channel 1. A 1kHz tone is supplied to the audio input via a support audio oscillator. Audio input is set such that the nominal reference input of 0dB is achieved. Transmit antenna is set vertically. EUT power supply is connected to 120VAC/60Hz AC mains supply via EUT LISN. Frequency Range Investigated: 150kHz to 30MHz. Temperature: 16°C, Relative Humidity: 42%.

Transducer Legend:

T1=Cable - Internal + cab	T2=LISN Insertion Loss s/n276
T3=HP Filter AN02608	T4=ATT 10d B Site D Conducted

#	Freq MHz	Reading listed by margin.					Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
		Rdng dB μ V	T1 dB	T2 dB	T3 dB	T4 dB					
1	9.977M	7.9	+0.3	+0.5	+0.1	+10.3	+0.0	19.1	50.0	-30.9	White
2	507.058k	2.7	+0.1	+0.3	+0.2	+10.3	+0.0	13.6	46.0	-32.4	White
3	577.597k	2.7	+0.1	+0.3	+0.2	+10.3	+0.0	13.6	46.0	-32.4	White
4	680.133k	2.6	+0.1	+0.3	+0.3	+10.3	+0.0	13.6	46.0	-32.4	White
5	423.430k	3.7	+0.1	+0.4	+0.2	+10.3	+0.0	14.7	47.4	-32.7	White
6	595.777k	2.3	+0.1	+0.3	+0.3	+10.3	+0.0	13.3	46.0	-32.7	White
7	156.545k	10.0	+0.1	+0.4	+2.1	+10.2	+0.0	22.8	55.6	-32.8	White
8	651.772k	2.2	+0.1	+0.3	+0.3	+10.3	+0.0	13.2	46.0	-32.8	White
9	474.334k	2.6	+0.1	+0.3	+0.2	+10.3	+0.0	13.5	46.4	-32.9	White

10	536.146k	2.0	+0.1	+0.3	+0.3	+10.3	+0.0	13.0	46.0	-33.0	White
11	802.304k	2.1	+0.1	+0.2	+0.3	+10.3	+0.0	13.0	46.0	-33.0	White
12	497.605k	2.0	+0.1	+0.3	+0.2	+10.3	+0.0	12.9	46.0	-33.1	White
13	911.227k	1.8	+0.2	+0.3	+0.2	+10.3	+0.0	12.8	46.0	-33.2	White
14	300.532k	5.8	+0.1	+0.3	+0.2	+10.3	+0.0	16.7	50.2	-33.5	White
15	616.139k	1.5	+0.1	+0.3	+0.3	+10.3	+0.0	12.5	46.0	-33.5	White
16	811.030k	1.6	+0.1	+0.2	+0.3	+10.3	+0.0	12.5	46.0	-33.5	White
17	566.689k	1.5	+0.1	+0.3	+0.2	+10.3	+0.0	12.4	46.0	-33.6	White
18	628.502k	1.2	+0.1	+0.3	+0.3	+10.3	+0.0	12.2	46.0	-33.8	White
19	1.838M	1.2	+0.2	+0.4	+0.1	+10.3	+0.0	12.2	46.0	-33.8	White
20	1.336M	1.1	+0.2	+0.3	+0.2	+10.3	+0.0	12.1	46.0	-33.9	White

 CKC Laboratories Date: 1/2/2006 Time: 2:43:52 PM Sports Select USA Inc. WO#: 84593
 FCC 15.207 - AVE Test Lead: White 120V 60Hz Sequence#: 2
 Sports Select USA, Inc. MN BV900
