

FCC Part 15.247 RSS-247, ISSUE 3, August 2023 RSS-GEN, ISSUE 5, February 2021 Amendment 2 TEST REPORT

For

Fortinet, Inc.

909 Kifer Road, Sunnyvale, CA 94086, USA

FCC ID: TVE-FON780B IC: 7280B-FON780B

Report Type:
Original Report

Report Producer: Coco Lin

Report Number: RXZ250213056RF02

Report Date: 2025-05-26

Reviewed By: Andy Shih

Prepared By: Bay Area Compliance Laboratories Corp.
(New Taipei Laboratory)
70, Lane 169, Sec. 2, Datong Road, Xizhi Dist.,
New Taipei City 221, Taiwan, R.O.C.
Tel: +886 (2) 2647 6898
Fax: +886 (2) 2647 6895

www.baclcorp.com.tw

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ250213056	RXZ250213056RF02	2025-05-26	Original Report	Coco Lin

TABLE OF CONTENTS

1.	G	eneral Information	5
	1.1.	Product Description for Equipment under Test (EUT)	5
	1.2.	Objective	
	1.3.	Test Methodology	6
	1.4.	Statement	
	1.5.	Measurement Uncertainty	
	1.6.	Environmental Conditions	
	1.7.	Test Facility	
2.	Sy	stem Test Configuration	8
	2.1.	Description of Test Configuration	8
	2.2.	Equipment Modifications	
	2.3.	EUT Exercise Software	
	2.4.	Support Equipment List and Details	8
	2.5.	External Cable List and Details	
	2.6.	Test Mode	
	2.7.	Block Diagram of Test Setup	10
3.	Su	ımmary of Test Results	13
	Œ		1.4
4.	16	est Equipment List and Details	14
5	F	CC §15.203 & RSS-Gen §6.8– Antenna Requirements	15
	5.1	Applicable Standard	15
	5.2	Antenna Information	
	_	CC §15.207(a) & RSS-Gen §8.8– AC Line Conducted Emissions	
υ.	1.		
	6.1.	Applicable Standard	
	6.2.	EUT Setup	
	6.3.	EMI Test Receiver Setup	
	6.4.	Test Procedure	
	6.5.	Corrected Factor & Over Limit Calculation	
	6.6.	Test Results	18
7.	F(CC §15.209, §15.205 , §15.247(d) & RSS-247 §5.5, RSS-GEN §8.9, §8.10 –	
Sp	urio	ous Emissions	20
	7.1.	Applicable Standard	20
	7.2.	EUT Setup	
	7.3.	EMI Test Receiver & Spectrum Analyzer Setup	
	7.4.	Test Procedure	24
	7.5.	Corrected Factor & Margin Calculation	24
	7.6.	Test Results	25
8.	F	CC §15.247(a)(1) & RSS-247 §5.1(b), RSS-GEN §6.7– Emission Bandwidth	42
	8.1.	Applicable Standard	42
	8.2.	Test Procedure	
	8.3.	Test Results	
		CC §15.247(a)(1) & RSS-247 §5.1(b)– Channel Separation Test	
	9.1.	Applicable Standard	
	9.2.	Test Procedure	
	9.3.	Test Results	
10	. F(CC §15.247(a)(1)(iii) & RSS-247 §5.1 (d) – Time of Occupancy (Dwell Time)	56

Bay Area	Compliance Laboratories Corp. (New Taipei Laboratory) No.: RXZ250213056R	RF02
-		
10.3.	Test Results	57
11. FC	1. Applicable Standard 56 2. Test Procedure 56 3. Test Results 57 FCC §15.247(a)(1)(iii) & RSS-247 §5.1(d) – Quantity of hopping channel Test 72 1. Applicable Standard 72 2. Test Procedure 72 3. Test Results 72 FCC §15.247(b)(1) & RSS-247 §5.4 (b) – Maximum Output Power 75 1. Applicable Standard 75	
11.1.	Applicable Standard	72
11.2.	Test Procedure	72
11.3.	Test Results	72
12. FC	C §15.247(b)(1) & RSS-247 §5.4 (b)– Maximum Output Power	75
12.1.	Applicable Standard	75
12.2.	Test Procedure	75
12.3.		
13. FC	C §15.247(d) & RSS-247 §5.5–100 kHz Bandwidth of Frequency Band Edg	e.76
13.2.	Test Procedure	76
122	Toot Pagulto	77

1. General Information

1.1. Product Description for Equipment under Test (EUT)

-	1		
Applicant	Fortinet, Inc.		
Тррпсин	909 Kifer Road, Sunnyvale, CA 94086, USA		
Brand Name	FORTINET		
Product (Equipment) / PMN	FortiFone 780B		
Main Model Name	FON-780B		
HVIN	FON-780B		
	FON-780Bxxxxxxxxxx, FortiFone 780Bxxxxxxxxxxx,		
Series Model Name	FORTIFONE 780Bxxxxxxxxxx (where "x" can be used as "0-		
(Only FCC)	9", or "A-Z", or ", or blank for software changes or marketing		
	purpose only)		
Frequency Range	2402~2480 MHz		
Madulation Tasknique	BR Mode: GFSK		
Modulation Technique	EDR Mode: π/4-DQPSK, 8DPSK		
Maximum Conducted Peak	BR(GFSK) Mode: 3.82 dBm		
	EDR(π/4-DQPSK) Mode: 7.01 dBm		
Output Power	EDR(8DPSK) Mode: 7.04 dBm		
	BR(GFSK) Mode: 1 Mbps		
Transmit Data Rate	EDR(π/4-DQPSK) Mode: 2 Mbps		
	EDR(8DPSK) Mode: 3 Mbps		
Power Operation	101/1 6 41 401/1 6 707		
(Voltage Range)	12Vdc from Adapter, 48Vdc from POE		
Sample Received Date	2025/03/24		

^{*}All measurement and test data in this report was gathered from production sample serial number:

RXZ250213056-1 (Assigned by BACL, New Taipei Laboratory.).

1.2. Objective

This report is prepared on behalf of *Fortinet, Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules and RSS-247, Issue 3, August 2023, RSS-Gen, Issue 5, February 2021 Amendment 2 of the Innovation, Science and Economic Development Canada.

No.: RXZ250213056RF02

1.3. Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and KDB 558074 D01 15.247 Meas Guidance v05r02. And RSS-247, Issue 3, August 2023, RSS-Gen, Issue 5, February 2021 Amendment 2 of the Innovation, Science and Economic Development Canada.

1.4. Statement

Decision Rule: No, (The test results do not include MU judgment)

- 1. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).
- 2. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.
- 3. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
- 4. The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.
- 5. Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

1.5. Measurement Uncertainty

Parameter		Uncertainty	
AC Mains		+/- 3.02 dB	
RF output power, conducted		+/- 0.57 dB	
Occupied Bandwidth		+/- 0.09 %	
Unwanted Emissions, conduc	eted	+/- 1.09 dB	
	9 kHz~30 MHz	+/- 3.20 dB	
Emissions, radiated	30 MHz~1 GHz	+/- 3.30 dB	
Ellissions, faulated	1 GHz~18 GHz	+/- 5.14 dB	
	18 GHz~40 GHz	+/- 4.75 dB	
Temperature		+/- 0.76 °C	
Humidity		+/- 0.41 %	

No.: RXZ250213056RF02

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6. Environmental Conditions

Test Site	Test Date	Temperature	Relative Humidity (%)	Test Engineer
AC Line Conducted Emissions	2025/5/5	19.2	46	Sean
Radiation Spurious Emissions	2025/4/16~2025/5/07	23.3~24.6	57~68	Nick
Conducted Spurious Emissions	2025/4/16	25.9	47	Jing
Emission Bandwidth	2025/4/16	25.9	47	Jing
Channel Separation Test	2025/4/16	25.9	47	Jing
Time of Occupancy	2025/4/16	25.9	47	Jing
Quantity of hopping channel	2025/4/16	25.9	47	Jing
Maximum Output Power	2025/4/16	25.9	47	Jing
100 kHz Bandwidth of Frequency Band Edge	2025/4/16	25.9	47	Jing

1.7. Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 221, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: TW3732.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 7 of 83

2. System Test Configuration

2.1. Description of Test Configuration

For BT mode, 79 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403		
2	2404	76	2478
3	2405	77	2479
		78	2480
39	2441	/	/

No.: RXZ250213056RF02

For BT Modes were tested with channel 0, 39 and 78.

2.2. Equipment Modifications

No modification was made to the EUT.

2.3. EUT Exercise Software

The test software was used "adb v1.0.41"

The system was configured for testing in engineering mode, which was provided by Applicant.

Test Frequency		Low	Middle	High
	GFSK	Default	Default	Default
Power Level Setting	π/4-DQPSK	Default	Default	Default
	8DPSK	Default	Default	Default

2.4. Support Equipment List and Details

Description	Manufacturer	Model Number
NB	DELL	E6410
POE Adapter	Cisco	SB-PWR-INJ2
Adapter	Zhuznou Dachuan Electronic Technology Co., Ltd	DCT18W120150US-A0

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 8 of 83

2.5. External Cable List and Details

Description	Manufacturer	Model Number	
USB Cable	BACL	1.5m	
RJ-45 Cable	BACL	8m	
RJ-45 Cable	BACL	8m	
RJ-11 Cable	BACL	1m	
DI 11 Cabla	Dongguan Haoyu Yong	4C2 9mD+D D010#	
RJ-11 Cable	Industrial Co., Ltd.	4C2.8mP+P B019#	

No.: RXZ250213056RF02

2.6. Test Mode

Pre-scan

AC Line Conducted Emissions and Radiated Spurious Emissions

Mode 1: FON-780B + Adapter

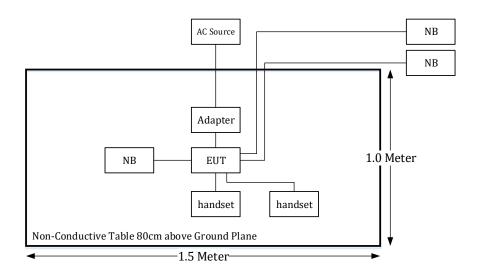
Mode 2: FON-780B + POE

Worst case is the Mode 1: FON-780B + Adapter

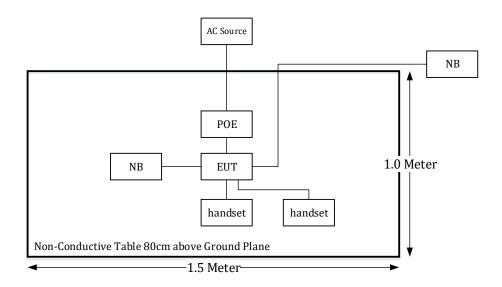
Mode 1: FON-780B + Adapter tested all measure item.

Mode 2: FON-780B + POE test Below 1GHz Radiated Spurious Emissions and AC Line Conducted Emissions.

2.7. Block Diagram of Test Setup


See test photographs attached in setup photos for the actual connections between EUT and support equipment.

No.: RXZ250213056RF02

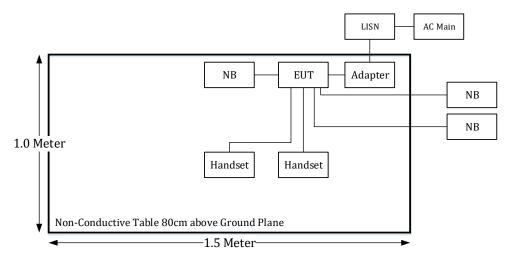

Radiation:

Below 1GHz:

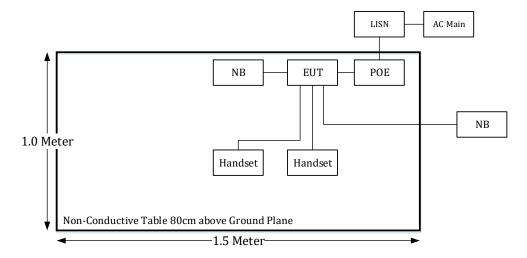
Adapter:



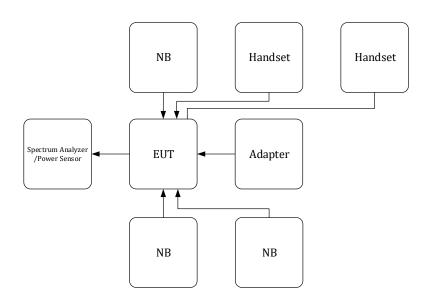
POE:


No.: RXZ250213056RF02

Above 1GHz:


Conduction:

Adapter:



No.: RXZ250213056RF02

POE:

Conducted:

3. Summary of Test Results

Rules	Description of Test	Results	
FCC §15.203	A	G I	
RSS-GEN §6.8	Antenna Requirement	Compliance	
FCC §15.207(a)	AC Line Conducted Emissions	Compliance	
RSS-GEN §8.8	AC Line Conducted Emissions		
FCC §15.205, §15.209, §15.247(d)			
RSS-247 §5.5	Ci	C1:	
RSS-GEN §8.9	Spurious Emissions	Compliance	
RSS-GEN §8.10			
FCC §15.247(a)(1)			
RSS-247 §5.1 (b)	Emission Bandwidth	Compliance	
RSS-GEN §6.7			
FCC §15.247 (a)(1)	Channal Compution Tost	Compliance	
RSS-247 §5.1 (b)	Channel Separation Test	Compliance	
FCC §15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance	
RSS-247 §5.1 (d)	Time of Occupancy (Dwell Time)	Compilance	
FCC §15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance	
RSS-247 §5.1 (d)	Quantity of nopping channel Test	Compliance	
FCC §15.247(b)(1)	Manianan Bada Ontont Banan	C1:	
RSS-247 §5.1 (b)	Maximum Peak Output Power	Compliance	
FCC §15.247(d)	100 kHz Dandwidth of Engagement Dand Educ	Compliance	
RSS-247 §5.5	100 kHz Bandwidth of Frequency Band Edge	Compliance	

4. Test Equipment List and Details

4. Test Equipment List and Details Serial Calibration Calibration					
Description	Manufacturer	Model			
	A.C.1	 Line Conduction Roo	Number	Date	Due Date
LISN	Rohde & Schwarz	ENV216	101612	2025/2/17	2026/2/17
EMI Test	Ronde & Schwarz				
Receiver	Rohde & Schwarz	ESW8	100947	2024/5/24	2025/5/24
RF Cable	EMEC	EM-CB5D	1	2024/6/5	2025/6/5
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R
		Radiation 3M Room	(966-A)		l
Active Loop Antenna	ETS-Lindgren	6502	35796	2025/3/27	2026/3/27
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/1554 2_01	2025/1/16	2026/1/16
Double Ridged Guide Horn Antenna	A.H. system	SAS-571	1020	2024/5/21	2025/5/21
Horn Antenna	ETS-Lindgren	3116	62638	2024/8/30	2025/8/30
Preamplifier	Sonoma	310N	130602	2024/6/18	2025/6/18
Preamplifier	Channel	ERA-100M-18G- 01D1748	EC2300051	2025/4/10	2026/4/10
Preamplifier	BACL	BACL-1313- A1840	4011511	2025/2/12	2026/2/12
Spectrum Analyzer	Rohde & Schwarz	FSV40	101939	2025/3/27	2026/3/27
EMI Test Receiver	Rohde & Schwarz(R&S)	ESR3	102099	2024/6/24	2025/6/24
Microflex Cable	UTIFLEX	UFB197C-1- 2362-70U-70U	225757-001	2024/12/20	2025/12/20
Coaxial Cable	UTIFLEX	UFB311A-Q- 1440-300300	220490-006	2024/12/20	2025/12/20
Coaxial Cable	COMMATE	PEWC	8Dr	2024/12/20	2025/12/20
Cable	EMC	EMC105-SM- SM-10000	201003	2024/12/20	2025/12/20
Coaxial Cable	JUNFLON	J12J102248-00- B-5	AUG-07-15- 044	2024/12/20	2025/12/20
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2025/1/21	2026/1/21
Microflex Cable	ROSNOL	K1K50-UP0264- K1K50-80CM	160309-2	2025/1/21	2026/1/21
Band-stop filter	Woken	STI15-9831	STI15-9831-1	2024/10/19	2025/10/19
High-pass filter	XINGBOKEJI	XBLBQ-GTA54	200108-3-2	2024/10/19	2025/10/19
Software	AUDIX	E3	18621a	N.C.R	N.C.R
	•	Conducted Roo			
Spectrum Analyzer	Rohde & Schwarz(R&S)	FSV40	101204	2024/5/30	2025/5/30
Cable	UTIFLEX	UFA210A	9435	2024/10/1	2025/10/1
Power Sensor	Boonton	RTP5006	11037	2024/5/21	2025/5/21
Attenuator	MCL	BW-S10W5+	1419	2025/3/6	2026/3/6

No.: RXZ250213056RF02

^{*}Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

5 FCC §15.203 & RSS-Gen §6.8- Antenna Requirements

5.1 Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

No.: RXZ250213056RF02

According to RSS-Gen 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

5.2 Antenna Information

Manufacturer	Model	Туре	Antenna Gain	Impedance
Dongguan YiJia Electronics Communication Technology Co.,Ltd.	YJL01.106.071.302A	FPC Antenna	4.1 dBi	50Ω

Unit uses a unique coupling to the intentional radiator.

Result: Compliance

6. FCC §15.207(a) & RSS-Gen §8.8– AC Line Conducted Emissions

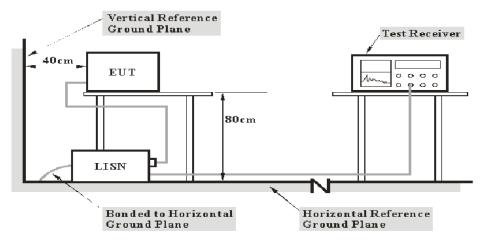
No.: RXZ250213056RF02

6.1. Applicable Standard

According to §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

According to RSS-GEN §8.8


Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a $50~\mu\text{H}$ / $50~\Omega$ line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Frequency of Emission	Conducted Limit (dBuV)								
(MHz)	Quasi-Peak	Average							
0.15-0.5	66 to 56 Note 1	56 to 46 Note 1							
0.5-5	56	46							
5-30	60	50							

Note 1: Decreases with the logarithm of the frequency.

6.2. EUT Setup

No.: RXZ250213056RF02

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 and RSS-GEN limits.

6.3. EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

6.4. Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

6.5. Corrected Factor & Over Limit Calculation

The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

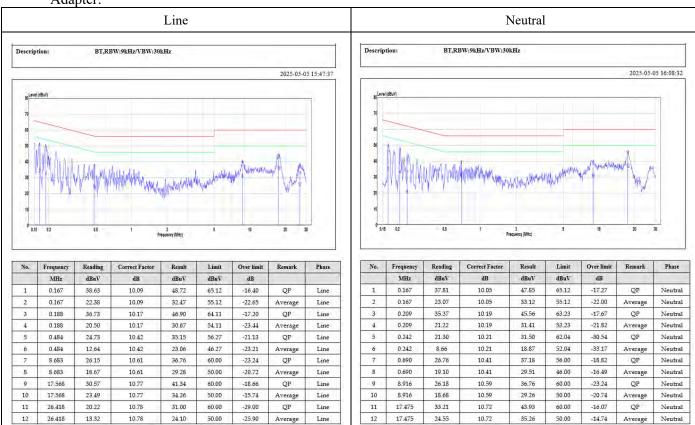
Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Level – Limit Line

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 17 of 83


6.6. Test Results

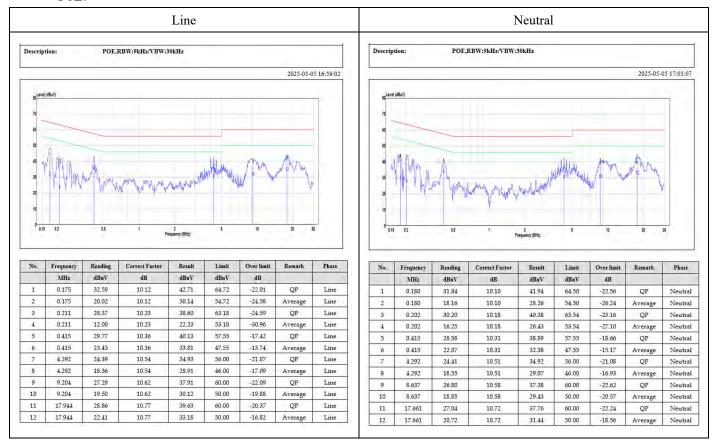
Test Mode: Transmitting

Main: AC120 V, 60 Hz

(Worst case is EDR(8DPSK) mode low channel)

Adapter:

No.: RXZ250213056RF02


Note:

Result = Read Level + Factor

 $Over\ Limit = Result - Limit\ Line$

 $Factor = (LISN, ISN, PLC \ or \ current \ probe) \ Factor + Cable \ Loss + Attenuator$

PoE:

Note:

 $Result = Read\ Level + Factor$

Over Limit = Result - Limit Line

 $Factor = (LISN,\, ISN,\, PLC \,\, or \,\, current \,\, probe) \,\, Factor + Cable \,\, Loss + Attenuator$

7. FCC §15.209, §15.205, §15.247(d) & RSS-247 §5.5, RSS-GEN §8.9, §8.10 – Spurious Emissions

No.: RXZ250213056RF02

7.1. Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As per RSS-Gen 8.10,

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply: (a)The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).

- (b)Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c)Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 - 614	4. 5 – 5. 15
0.495 - 0.505	16.69475 - 16.69525	960 - 1240	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 - 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	$3\ 3458 - 3\ 358$	31.2 - 31.8
12.51975 – 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 – 12.57725	322 - 335.4		Above 38.6
13.36 - 13.41	399.9 - 410		

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

(New Taipei Laboratory)

Page 20 of 83

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per RSS-GEN §8.9: Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Table 5 – General field strength limits at frequencie	s above 30 MHz
Frequency (MHz)	Field Strength (μV/m at 3 m)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

Table 6 – General field strength limits at frequencies below 30 MHz

Frequency (MHz)	Field Strength (H-Field) (μΑ/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Note 2: The limit was added 51.5dB to convert the limit from dBuA/m to dBuV/m.

According to ANSI C63.10-2013, section 5.3.3

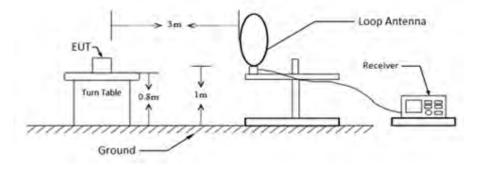
Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field, and the emissions to be measured can be detected by the measurement equipment (see 4.3.4). Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. Measurements from

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

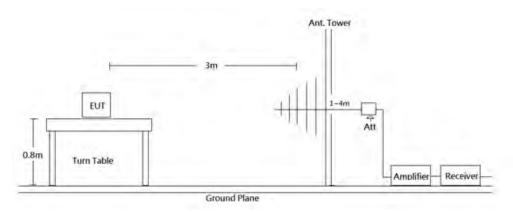
Page 21 of 83

18 GHz to 40 GHz are typically made at distances significantly less than 3 m from the EUT. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements or inverse of linear distance-squared for power-density measurements).

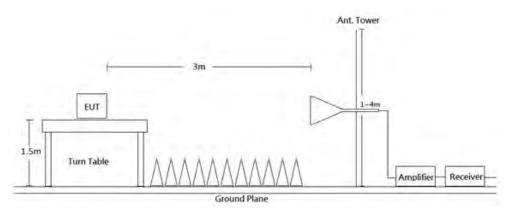
No.: RXZ250213056RF02

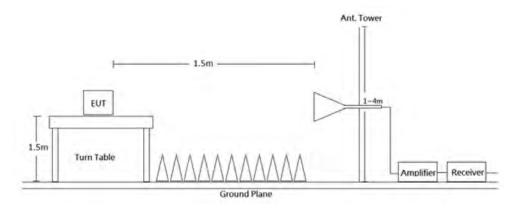

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

As per RSS-247 5.5,


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2. EUT Setup


9kHz-30MHz:


30MHz-1GHz:

1-18 GHz:

18-26.5 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

7.3. EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

No.: RXZ250213056RF02

Frequency Range	RBW	VBW	Measurement method	Detector								
9 kHz - 150 kHz	300 Hz	1 kHz	QP/AV	QP/AV								
150 kHz - 30 MHz	10 kHz	30 kHz	QP/AV	QP/AV								
30-1000 MHz	120 kHz	300 kHz	QP	QP								
	Pre-scan:											
	1 MHz	3 MHz	PK	PK								
Above 1 GHz	1 MHz	1 kHz	Ave	PK								
Above I GHZ	Final measurement for emission identified during pre-scan:											
	1 MHz	3 MHz	PK	PK								
	1 MHz	10 Hz	Ave	PK								

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

7.4. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in Quasi-peak and average detector mode from 9 kHz to 30 MHz, Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

7.5. Corrected Factor & Margin Calculation

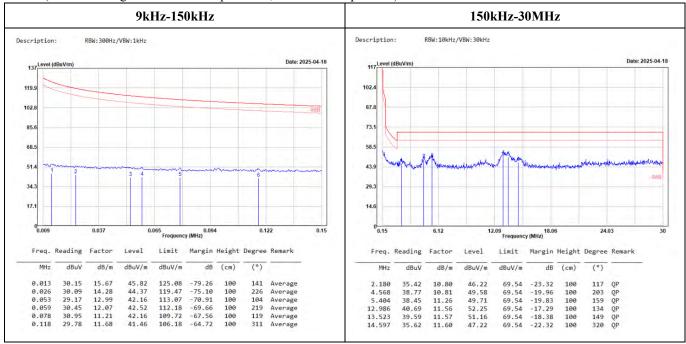
The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Level - Limit

7.6. Test Results

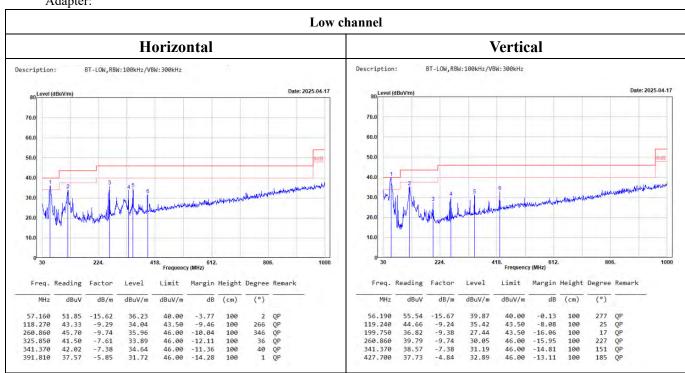

Test Mode: Transmitting

(Use Y axis test)

9kHz-30MHz:

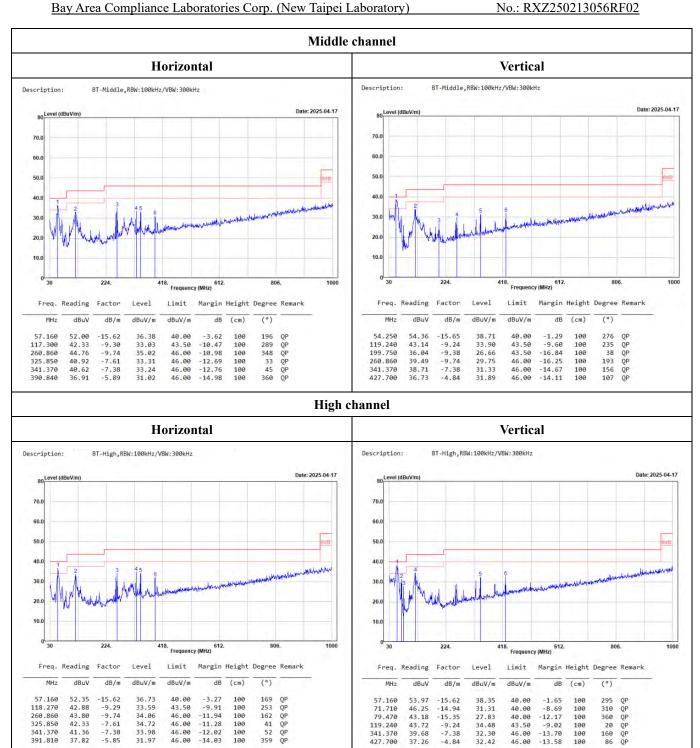
(Worst case is EDR(8DPSK) mode low channel)

(Pre-scan using three directional polarities, worst case as parallel.)

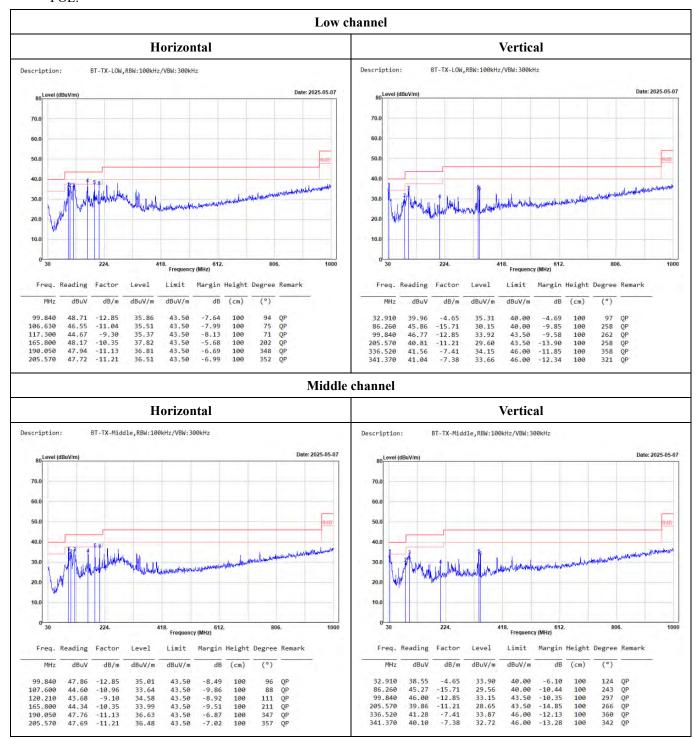


No.: RXZ250213056RF02

30MHz-1GHz:


(worst case is EDR(8DPSK) mode)

Adapter:

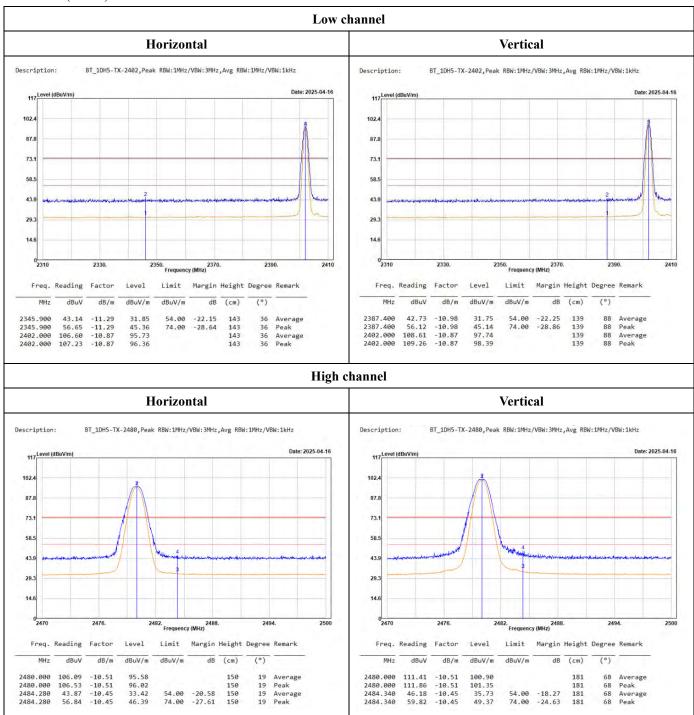


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 25 of 83

POE:

No.: RXZ250213056RF02

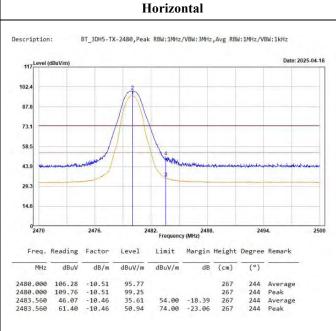

Level = Reading + Factor.

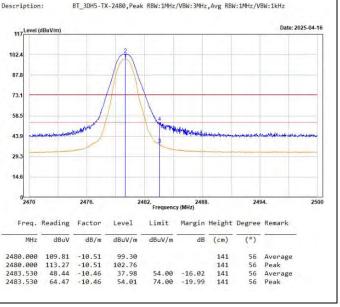
Margin = Level - Limit.

 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

Band-Edge:

BR(GFSK) mode


No.: RXZ250213056RF02

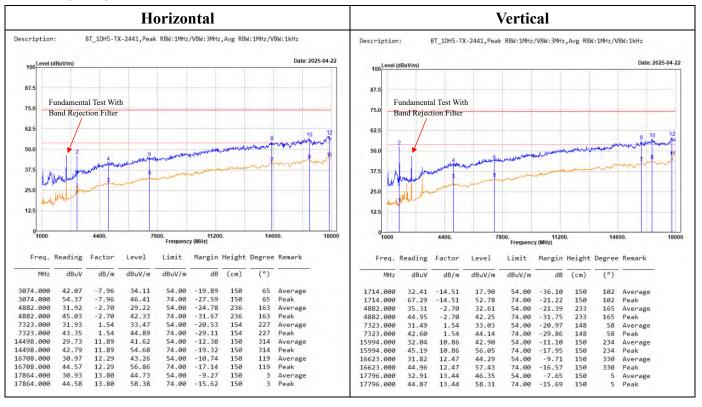

Low channel Vertical Horizontal BT_2DH5-TX-2402, Peak RBW:1MHz/VBW:3MHz, Avg RBW:1MHz/VBW:1kHz BT_2DH5-TX-2402,Peak RBW:1MHz/VBW:3MHz,Avg RBW:1MHz/VBW:1kHz Description: Description: 117 Level (dBuV/m) Date: 2025-04-16 117 Level (dBuV/m) 102. 102. 87. 87.8 73.1 58.5 58.5 43.5 29.3 29.3 14.6 14.6 2310 2310 2330. 2350. 2370. Frequency (MHz) 2330. 2350. Frequency (MHz) 2370. 2390. 2410 Freq. Reading Factor Margin Height Degree Remark Freq. Reading Factor Margin Height Degree Remark MHz dBuV dBuV/m dB (cm) (°) dBuV/m dBuV/m dB (cm) (°) dB/m dBuV/m MHz dBuV dB/m 43.50 56.67 106.45 -11.58 -11.58 -10.87 31.92 45.09 95.58 88 88 88 2310.500 2310.500 -22.08 -28.91 2364.200 2364.200 44.21 56.49 -11.15 -11.15 33.06 45.34 54.00 -20.94 74.00 -28.66 Average Peak 2402.000 36 Average 36 Peak -10.87 143 2402.000 109.16 98.29 139 88 Average 88 Peak 2402.000 109.82 -10.87 98.95 143 2402.000 112.24 -10.87 101.37 High channel Horizontal Vertical Description: BT_2DH5-TX-2480,Peak RBW:1MHz/VBW:3MHz,Avg RBW:1MHz/VBW:1kHz BT_2DH5-TX-2480,Peak RBW:1MHz/VBW:3MHz,Avg RBW:1MHz/VBW:1kHz Description: 117 Level (dBuV/m) Date: 2025-04-16 117 Level (dBuV 102 102 87.8 87. 73.1 58.5 43.9 29. 14.6 2482. Frequency (MHz) 2488. 2470 2476 2500 Limit Margin Height Degree Remark Level Freq. Reading Factor Limit Margin Height Degree Remark dBuV/m dBuV/m dB (cm) (°) MHz dB/m MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°) -10.51 -10.51 -10.45 95.77 98.96 36.06 242 Average 242 Peak 242 Average 128 99.45 56 Average 56 Peak -10.51 2480.000 2483.950 102.62 38.48 53.85 2480,000 113.13 -10.51 142 128 -10.46 -10.46 46.51 242 Average 242 Peak 2483.650 2483.950 60.89 -10.45 50.44 74.00 -23.56 128

No.: RXZ250213056RF02

EDR (8DPSK) mode

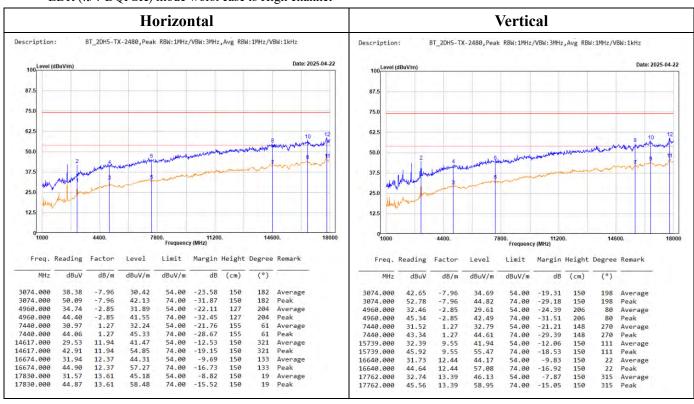
Low channel Horizontal Vertical BT_3DH5-TX-2402,Peak RBW:1MHz/VBW:3MHz,Avg RBW:1MHz/VBW:1kHz BT_3DH5-TX-2402, Peak RBW: 1MHz/VBW: 3MHz, Avg RBW: 1MHz/VBW: 1kHz Description: Description: Date: 2025-04-16 Date: 2025-04-16 117 Level (dBuV/m) 102. 102. 87.8 87.8 73.1 73. 58.5 58.5 29.3 29. 2310 2330. 2390. 2410 2410 2350. Frequency (MHz) 2370 Limit Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°) dBuV/m dB (cm) -11.15 32.07 234 Average 234 Peak 32.33 54.00 2318.400 43.84 -11.51 -21.67 14 Average -11.51 -10.87 -10.87 45.53 97.12 100.63 Peak Average Peak 2364.200 56.25 -11.15 45.10 74.00 -28.90 121 2318.400 57.04 74.00 -28.47 244 2402.000 2402.000 107.99 111.50 2402.000 107.30 96.43 121 High channel Horizontal Vertical BT_3DH5-TX-2480,Peak RBW:1MHz/VBW:3MHz,Avg RBW:1MHz/VBW:1kHz Description: BT_3DH5-TX-2480, Peak RBW:1MHz/VBW:3MHz, Avg RBW:1MHz/VBW:1kHz Description:

No.: RXZ250213056RF02


Level = Reading + Factor.

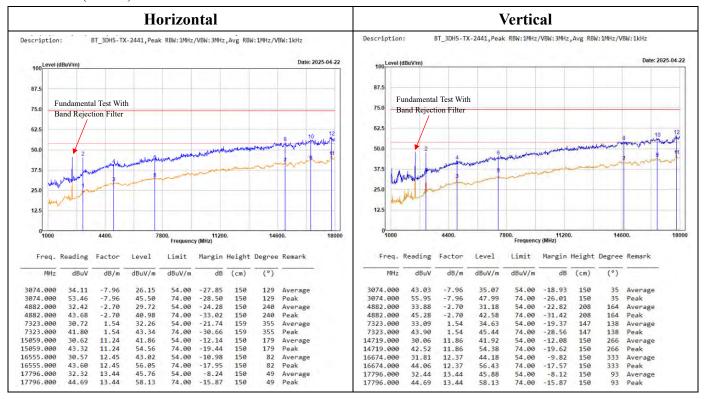
Margin = Level-Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.


1GHz-18GHz:

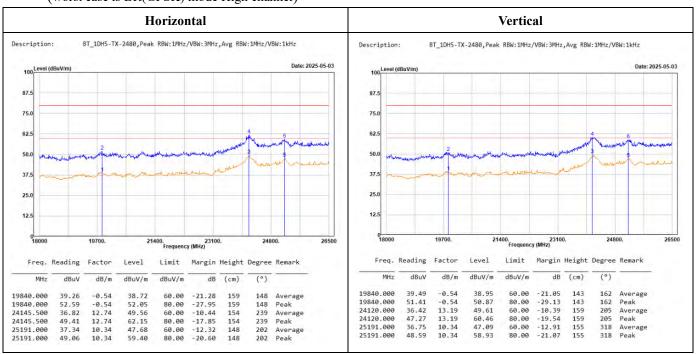
BR(GFSK) mode worst case is Middle channel

No.: RXZ250213056RF02


EDR ($\pi/4$ -DQPSK) mode worst case is High channel

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 32 of 83


EDR (8DPSK) mode worst case is Middle channel

No.: RXZ250213056RF02

18GHz-26.5GHz:

(worst case is BR(GFSK) mode High channel)

Level = Reading + Factor.

Margin = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

For 18-26.5GHz Convert the test distance limit of 3 meters to a limit of 1.5 meter:

Conversion factor = $20 \log (1.5 \text{m/3m}) = 6 \text{ dB}$,

Average Limit = 54+6 = 60 dBuV/m@1.5m, Peak Limit = 60+20 = 80 dBuV/m@1.5m

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 33 of 83

Above 1GHz

BR (GFSK)

								Low c	таппет								
			Hori	zonta	ıl							Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cn)	(°)		Metz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
3839.000	39.78 51.91	-6.87 -6.87	32.91 45.04	54.00 74.00	-21.09	150 150	33	Average Peak	1935.000		-12.28	19.91		-34.09	150	87	Averag
4884.888	33.90	-3.28	30.62	54.00	-23.38	221	203	Average	1935.000 4804.000	56.35 36.43	-12.28 -3.28	44.07 33.15	74.00 54.00	-29.93 -20.85	150 187	87 358	Peak Average
4884.000 7206.000	44.53 31.89	-3.28 1.47	41.25	74.00 54.00	-32.75 -20.64	221 143	203 105	Peak Average	4894.000 7296.000	44.18	-3.28 1.47	40.98	74.00	-33.10	187 158	358 162	Peak Average
7206.000 15280.000	43.79	1.47	45.26	74.00	-28.74 -12.42	143 150	105 327	Peak Average	7206.000 15297.000	42.44	1.47	43.91	74.00	-30.09 -12.67	158 158	162 207	Peak Average
15280.000	44.67	10.36	55.03	74.00	-18.97	150	327	Peak	15297.000	44.71	10.27	54.98	74.00	-19.02	150	207	Peak
16555.000 16555.000	30.60 45.10	12.45	43.05 57.55	54.00 74.00		150 150	174 174		16640.000 16640.000	31.71 44.40	12.44	44.15 56.84	74.00	-9.85 -17.16	150	1	Averag
17745.000 17745.000	32.18 44.33	13.36 13.36	45.54 57.69	54.00 74.00		150 150	98 98	Average Peak	17779.000 17779.000	32.32 44.93	13.41 13.41	45.73 58.34	54.00 74.00	-8.27 -15.66	150 150	124 124	Average Peak
								Middle	channel								
			Hori	zonta	 ıl			Middle	Chamici			Ver	tical				
Freq.	Reading	Factor	Level		Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level		Margin	Height	Degree	Remark
MHz	dBuV	d8/m	dBuV/m	dBuV/m		(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	_
3074.000	42.07	-7.96	34.11	54.00	-19.89	150	65	Average	1714,000	32.41	-14.51	17.90	54.00	-36.10	150		Average
3074.000	54.37	-7.96 -2.70	46.41	74.00	-27.59 -24.78	150 236	65 163	Peak Average	1714.000 4882.000	67.29 35.31	-14.51	52.78 32.61	74.00	-21.22	150 233	165	Peak Average
4882.000	45.03	-2.70	42.33	74.00	-31.67	236	163	Peak	4882.000 7323.000	44.95	-2.70	42.25	74.00	-31.75	233	165	Peak
7323.000	31.93 43.35	1.54	33.47 44.89	54.00 74.00	-20.53	154 154	227	Average Peak	7323.000	42.60	1.54	44.14	74.00	-29.86	148	58	Average Peak
14498.000	29.73	11.89	41.62	54.00 74.00	-12.38	150	314	Average Peak	15994.000 15994.000	32.04 45.19	10.86	42.90 56.05	74.00	-11.10 -17.95	150	234	Average
16708.000 16708.000	30.97 44.57	12.29	43.26	54.00 74.00	-10.74	150 150	119	Average	16623.000 16623.000	31.82	12.47	44.29 57.43	54.00 74.00	-9.71 -16.57	150	330 330	Average
17864.000 17864.000	30.93 44.58	12.29 13.80 13.80	56.86 44.73 58.38	54.00 74.00	-17.14 -9.27 -15.62	150	3	Peak Average Peak	17796.000 17796.000	32.91 44.87	13.44	46.35 58.31	54.00	-7.65 -15.69	150		Average
17004.000	44,50	15.00	30.30	74.00	17.01	130		, can									
								High c	hannel								
			Hori	zonta	ıl							Ver	rtical				
Freq. 1	Reading	Factor	Level	Limit	Margin 1	deight (Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height		Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)		MHZ	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)	
3924.000 3924.000	33.51 46.50	-5.99 -5.99	27.52 40.51	54.00 74.00	-26.48 -33.49	150	139 139	Average Peak	1714.000 1714.000	31.88 63.98	-14.51 -14.51	17.37 49.47	54.00 74.00	-36.63 -24.53	150 150	208 208	Averag Peak
4960.000 4960.000	32.94 45.31	-2.85 -2.85	30.09 42.46	54.00 74.00	-23.91 -31.54	157 157	205	Average Peak	4960.000 4960.000	39.28 45.91	-2.85	36.43	54.00 74.00	-17.57 -30.94	289 289	164	Averag Peak
7440.000	31.15	1.27	32.42	54.00	-21.58	144	42	Average	7440.000 7440.000	31.85	1.27	33.12	54.00	-20.88	159 159	75 75	Averag
7440.000 15739.000	43.97	9.55	45.24 41.66	74.00 54.00	-28.76 -12.34	144	182	Peak Average	15790.000	42.65 32.01	9.86	43.92	54.00	-30.08 -12.13	150	313	Peak Averag
15739.000	45.39	9.55	54.94 43.77	74.00	-19.06 -10.23	150 150	182 338	Peak Average	15790.000 16623.000	45.60	9.86	55.46 44.20	74.00 54.00	-18.54 -9.80	150	313 127	Peak Averag
16691.000	44.43	12.33	56.76	74.00	-17.24	150	338	Peak	16623.000 17779.000	44.12	12.47	56.59 45.58	74.00	-17.41	150	127	Peak Averag
17745.000 17745.000	32.14 46.05	13.36 13.36	45.50 59.42	74.00	-8.50 -14.58	150	7	Average Peak	17779.000	45.48	13.41	58.89	74.00	-15.11	150	9	

Level = Reading + Factor.

Margin = Level-Limit.

 $Correct\ Factor = Antenna\ Factor + Cable\ Loss - Amplifier\ Gain.$

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 34 of 83

EDR $(\pi/4$ -DQPSK)

			TT a		.1			Low c				17.	42 1				
				zonta									tical				
	Reading		Level	Limit				Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height		Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
3839.000		-6.87 -6.87	30.82 46.59	54.00 74.00		150	140	Average Peak	3074.000 3074.000	43.81 55.01	-7.96 -7.96	35.85 47.05	54.00 74.00	-18.15 -26.95	150 150	126 126	Averag Peak
4884.000	33.70	-3.28	30.42	54.00	-23.58	188	197	Average	4884.888	32.69	-3.28	29.41	54.00	-24,59	235	167	Averag
4894.000 7206.000		1.47	40.97 37.79	74.00 54.00	-33.03 -16.21	188 156	197 33	Peak Average	4808.000 7206.000	45.35	1.47	42.11	74.00	-31.89 -18.79	235 141	167 221	Peak Averag
7286.000	45.54	1.47	47.01	74.00	-26.99	156	33	Peak	7206.000	43.19	1.47	44.66	74.00	-29.34	141	221	Peak
14736.000		11.86	41.64	74.00	-12.36 -18.66	150	236	Average Peak	16028.000	31.95 44.66	10.93	42.88	74.00	-11.12	150	9	Averag Peak
16334.000	31.73	11.44	43.17	54.00	-10.83	150	346	Average	16691.000	31.29	12.33	43.62	54.00	-10.38	150	300	Averag
16334.000		11.44	56.75 45.91	74.00	-17.25 -8.09	150	346 88	Peak Average	16691.000 17762.000	45.05	12.33	57.38 45.88	74.00	-16.62 -8.12	150	300	Peak Averag
17762.000	44.41	13.39	57,80	74.00	-16.20	150	88	Peak	17762.000	44.76	13.39	58.15	74.00	-15.85	150	16	Peak
			II out					Middle	channel			Von	4 ; a a l				
Fren	Reading	Factor	HOFE	zonta	Margin	Haiaht	Degree	Renark	V. (ello	n 11	2.02.0	Ver	tical		11.5-11		w i
MHz	dBuV	dB/m	dBuV/m	dBuV/m		-	(°)	neudi X		Reading				Margin		-	Remark
						(cm)			MMZ	d8uV	dB/m	d8uV/m	dBuV/m	dB	(cm)	(°)	
3074.000	42.90 56.16	-7.96 -7.96	34.94 48.20	54.00 74.00	-19.06 -25.80	150	55 55	Average Peak	3907,000 3907,000	34.43 52.83	-6.25 -6.25	28.18 46.58	54.00 74.00	-25.82	150 150	77	Averag Peak
4882.000	34.80	-2.70	32.10	54.00 74.00	-21.90 -31.80	233	163 163	Average Peak	4882.000	33.96	-2.70	31.26	54.00	-22.74	207	199	Averag
7323.000	32.65	1.54	42.20 34.19	54.00	-19.81	233	258	Average	4882.000	45.46	1.54	42.76	74.00	-31.24 -18.83	207	199	Peak Averag
7323.000	45.74	9.41	47.28	74.00 54.00	-26.72 -12.83	144 150	258 107	Peak Average	7323.000	43.65	1.54	45.19	74.00	-28.81	153	272	Peak
15671.000		9.41	55.48	74.00	-18.52	150	107	Peak	14770.000 14770.000	29.38	11.87	41.25 55.19	74.00	-12.75 -18.81	150	306 306	Averag
16640.000	32.21	12.44	44.65 56.78	54.00 74.00	-9.35 -17.22	150	322	Average Peak	16436.000	31.17	11.89	43.06	54.00	-10.94	150	145	Averag
17779.000	32.47	13.41	45.88	54.00	-8.12	150	12	Average	16436.000 17762.000		11.89	57.20 46.06	74.00 54.00	-16.80	150	145 39	Peak Averag
17779.000	45.21	13.41	58.62	74,00	-15,38	150	12	Peak	17762.000	44.48	13.39	57.87	74.00	-16.13	150	39	Peak
								High c	hannel								
			Hori	zonta	ıl							Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(0)		PMHz	dBuV	dB/m	d8uV/m	dBuV/m	dB	(cm)	(°)	
3074.000	38.38	-7.96 -7.96	30.42	54.00 74.00	-23.58 -31.87	150 150	182 182	Average Peak	3074.000		-7.96	34.69	54.00	-19.31	150	198	Averag
4960.000	34.74	-2.85	31.89	54.00	-22.11	127	204	Average	3074.000 4960.000		-7.96 -2.85	44.82 29.61	74.00 54.00	-29.18 -24.39	150 206	198	Peak
4960.000	44.40	-2.85 1.27	41.55	74.00	-32.45	127	204	Peak Average	4960.000	45.34	-2.85	42.49	74.00	-31.51	206	89	Peak
7440.000	44.06	1.27	45.33	74.00	-28.67	155	61	Peak	7440.000		1.27	32.79 44.61	54.00 74.00	-21.21	148	278	Averag
14617.000	29.53 42.91	11.94	41.47 54.85	74.00	-12.53 -19.15	150 150	321	Average Peak	15739.000	32.39	9.55	41.94	54.00	-12.06	150	111	Averag
16674,000	31,94	12.37	44.31	54.00	-9.69	150	133	Average	15739.000 16640.000		9.55	55.47 44.17	74.00 54.00	-18.53 -9.83	150	111	Peak
16674.000	44.90 31.57	12.37	57.27 45.18	74.00 54.00	-16.73 -8.82	150 150	133	Peak Average	16640.000 17762.000	44.64	12.44	57.08	74.00	-16.92	150	22	Peak
17830.000		13.61	58.48	74.00	-15.52	150	19	Peak	17762.000		13.39 13.39	46.13 58.95	74.00	-7.87 -15.05	150	315 315	Avera; Peak

Level = Reading + Factor.

Margin = Level-Limit.

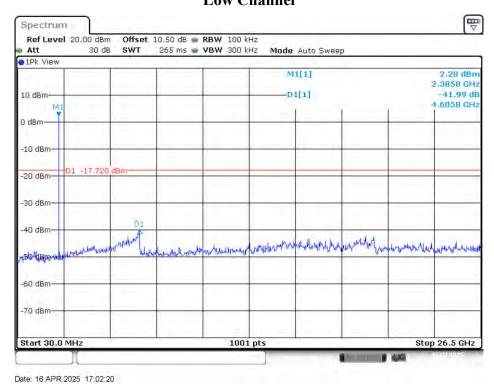
 $Correct\ Factor = Antenna\ Factor + Cable\ Loss - Amplifier\ Gain.$

EDR (8DPSK)

								Low c	nannel								
			Hori	zonta	ıl							Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	d8/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
3839.000 3839.000 4804.000 7206.000 7206.000 15365.000 15365.000 16521.000 17796.000	53.59 32.22 43.40 31.49 42.32 31.48 45.21 30.63 45.21	-6.87 -6.87 -3.28 -3.28 1.47 1.47 10.05 10.05 12.40 13.44	29.36 46.72 28.94 40.12 32.96 43.79 41.53 55.26 43.03 57.61 45.86	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	-24.64 -27.28 -25.06 -33.88 -21.04 -30.21 -12.47 -18.74 -10.97 -16.39 -8.14	150 150 112 112 156 156 150 150 150 150	109 109 242 242 67 67 188 188 343 343 343	Average Peak Average Peak Average Peak Average Peak Average Peak Average	3074.000 3074.000 4894.000 4894.000 7206.000 14464.000 14464.000 16436.000 17762.000	43.04 55.32 33.53 43.57 34.35 44.02 29.82 43.57 31.57 44.04 32.13	-7.96 -7.96 -3.28 -3.28 1.47 11.78 11.78 11.89 11.89 13.39	35.08 47.36 30.25 40.29 35.82 45.49 41.60 55.35 43.46 55.35	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00	-18.92 -26.64 -23.75 -33.71 -18.18 -28.51 -12.40 -18.65 -10.54 -18.07 -8.48	150 150 236 236 140 140 150 150 150	229 229 163 163 71 71 306 306 105 105 51	Average Peak Average Peak Average Peak Average Peak Average Peak Average
17796.000	44.67	13.44	58.11	74.00	-15.89	150	23	Peak	17762.000	45.10	13.39	58.49	74.00	-15.51	150	51	Peak
								Middle	channel								
		- 0 0.		zonta	_	r tora-					C-99 at 16		tical			200	
	Reading		Level	Limit	Margin		_	Remark		Reading		Level	Limit	Margin			Remark
MHz 3074.000	dBuV 34.11	dB/m -7.96	dBuV/m	dBuV/m	-27.85	(cm)	(°)	******	MHz 3074.000	dBuV 43.03	dB/m -7.96	dBuV/m 35.07	dBuV/m 54.00	-18.93	(cm)	(°)	
3074.000 3074.000 4882.000	53.46 32.42	-7.96 -7.96 -2.70	25.15 45.50 29.72		-27.85 -28.50 -24.28	150 150	129	Average Peak Average	3074.000 3074.000 4882.000	55.95 33.88	-7.96	47.99 31.18	74.00	-18.93 -26.01 -22.82	150 150 208	35 164	Average Peak
4882.000	43.68	-2.70	40.98	74.00	-33.02	150	240	Peak	4882.000	45.28	-2.70 -2.70	42.58	74.00	-31.42	208	164	Average Peak
7323.000 7323.000	30.72 41.80	1.54	32.26 43.34	74.00	-21.74 -30.66	159 159	355 355	Average Peak	7323.000 7323.000	33.09 43.90	1.54	34.63 45.44	54.00 74.00	-19.37 -28.56	147 147	138 138	Average Peak
15059.000	30.62 43.32	11.24	41.86 54.56	54.00 74.00	-12.14 -19.44	150	179	Average Peak	14719.000 14719.000	30.06	11.86	41.92 54.38	74.00	-12.08 -19.62	150 150	266 266	Average Peak
6555.000	30.57 43.60	12.45	43.02 56.05	74.00	-10.98 -17.95	150	82	Average Peak	16674.000 16674.000	31.81	12.37	44.18 56.43	54.00 74.00	-9.82 -17.57	150	333 333	Average Peak
17796.000 17796.000	32.32 44.69	13.44 13.44	45.76 58.13	54.00 74.00	-8.24 -15.87	150 150	49 49	Average Peak	17796.000 17796.000	32.44 44.69	13.44 13.44	45.88 58.13	54.00 74.00	-8.12 -15.87	150 150	93 93	Average Peak
								High c	hannel								
			Hori	zonta	ıl							Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		Metz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
3992,000 3992,000	32.23	-5.56 -5.56	26.67	54.00	-27.33 -32.93	150 150	132 132	Average Peak	3074.000 3074.000	44.06	-7.96 -7.96	36.10	54.00 74.00	-17.90 -26.46	150 150	137 137	Average
4960.000	34.46	-2.85 -2.85	31.61	54.00	-22.39 -32.70	202	204	Average Peak	4960.000	34.97	-2.85	32.12	54.00	-21.88	199	79	Average
7440.000	32.10	1.27	33.37	54.00	-20.63	157	60	Average	4960.000 7440.000	45.47 31.16	1.27	42.62	74.00 54.00	-31,38 -21.57	199	79 199	Peak Average
7440.000 14430.000	42.91 30.00	1.27	44.18 41.69	74.00 54.00	-29.82 -12.31	157 150	60 183	Peak Average	7440.000 15756.000	44.66 32.38	9.66	45.93	74.00 54.00	-28.07 -11.96	142 150	199 201	Peak Average
14430.000 16640.000	43.05	11.69 12.44	54.74 44.25	74.00 54.00	-19.26 -9.75	150	183 323	Peak Average	15756.000 16691.000	46.02	9.66	55.68 43.99	74.00 54.00	-18.32 -10.01	150 150	201 317	Peak Average
16640.000 17762.000	43.72 32.46	12.44	56.16 45.85	74.00 54.00	-17.84 -8.15	150 150	323 22	Peak Average	16691.000 17762.000	45.39	12.33	57.72 45.85	74.00	-16.28 -8.15	150	317 57	Peak Average
7762.000	44.61	13.39	58.00	74.00	-16.00	150	22	Peak	17762.000	45.05	13.39	58.44	74.00	-15.56	150	57	Peak

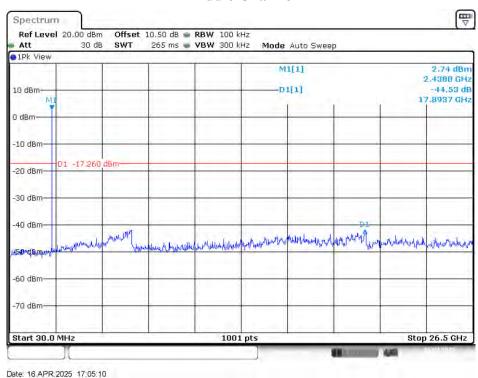
Level = Reading + Factor.

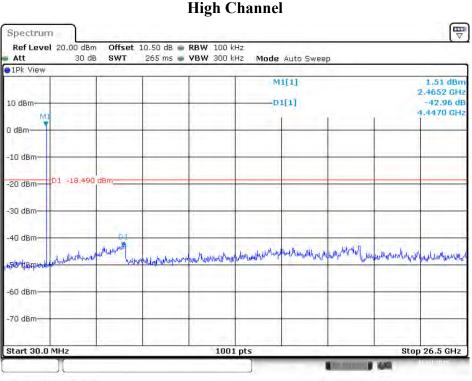
Margin = Level-Limit.


 $Correct\ Factor = Antenna\ Factor + Cable\ Loss - Amplifier\ Gain.$

Conducted Spurious Emissions:

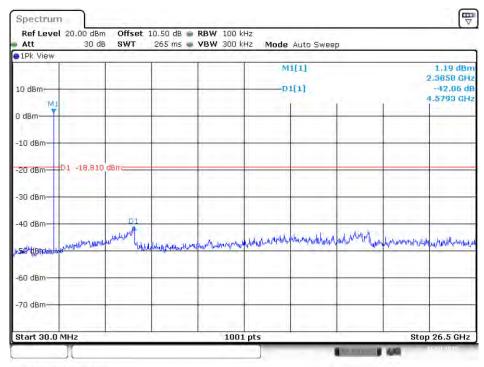
Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result			
		BR Mode (GFSK)					
Low	2402	41.99	≥ 20	PASS			
Mid	2441	44.53	≥ 20	PASS			
High	2480	42.96	≥ 20	PASS			
	EDR Mode (π/4-DQPSK)						
Low	2402	42.06	≥ 20	PASS			
Mid	2441	41.70	≥ 20	PASS			
High	2480	41.03	≥ 20	PASS			
EDR Mode (8DPSK)							
Low	2402	42.78	≥ 20	PASS			
Mid	2441	44.96	≥ 20	PASS			
High	2480	40.96	≥ 20	PASS			


No.: RXZ250213056RF02

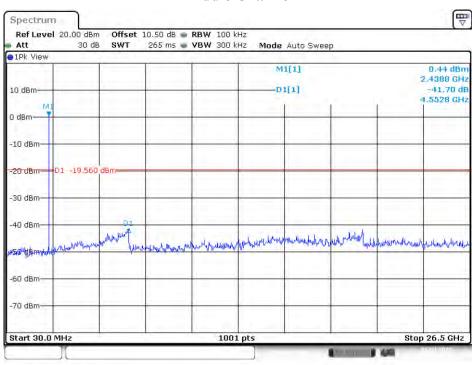

BR Mode (GFSK) Low Channel

Middle Channel

No.: RXZ250213056RF02

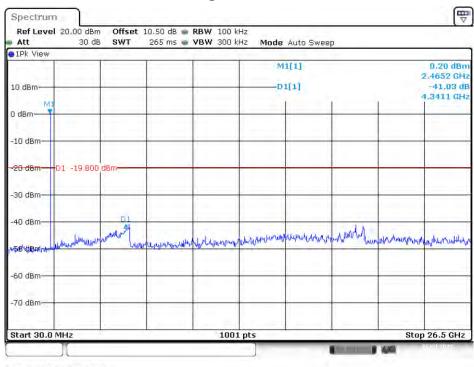


Date: 16.APR.2025 17:07:28


EDR Mode (π/4-DQPSK) Low Channel

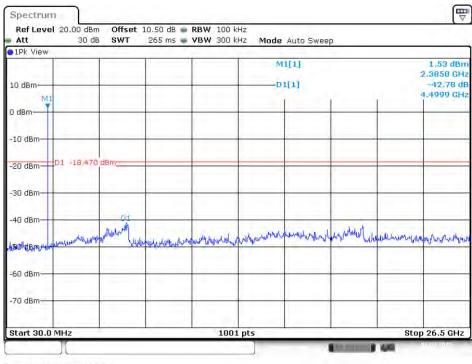
No.: RXZ250213056RF02

Date: 16.APR.2025 17:10:28


Middle Channel

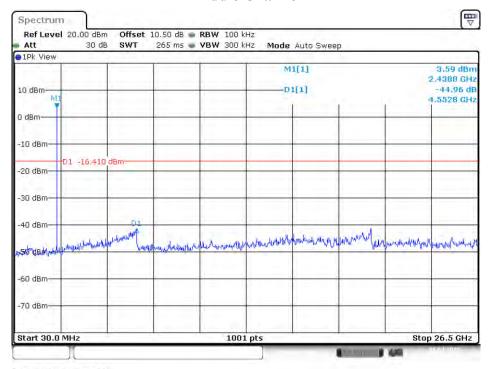
Date: 16.APR.2025 17:12:11

High Channel

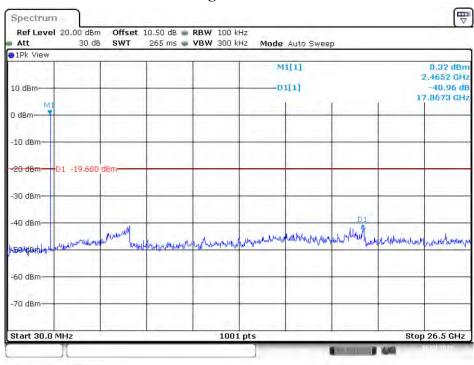

No.: RXZ250213056RF02

Date: 16.APR.2025 17:15:40

EDR Mode (8DPSK)


Low Channel

Date: 16.APR.2025 17:19:22


Middle Channel

No.: RXZ250213056RF02

Date: 16.APR.2025 17:21:32

High Channel

Date: 16.APR.2025 17:23:30

8. FCC §15.247(a)(1) & RSS-247 §5.1(b), RSS-GEN §6.7– Emission Bandwidth

8.1. Applicable Standard

According to FCC §15.247(a) (1) the maximum 20 dB bandwidth of the hopping channel shall be presented.

No.: RXZ250213056RF02

According to RSS-247 §5.1(b)

FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

According to RSS-GEN §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

8.2. Test Procedure

According to ANSI C63.10-2013, section 6.9.2

20 dB Emission Bandwidth

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3 Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

According to ANSI C63.10-2013 Section 6.9.3

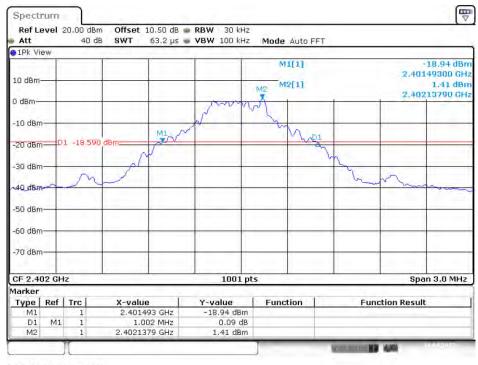
For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 42 of 83

8.3. Test Results

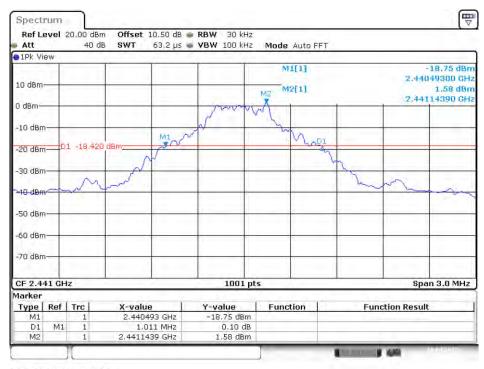
Channel	Frequency	20 dB Bandwidth	99% Bandwidth				
Channel	(MHz)	(MHz)	(MHz)				
	BR Mode (GFSK)						
Low	2402	1.00	0.90				
Middle	2441	1.01	0.91				
High	2480	1.04	0.90				
	EDR Mode (π/4-DQPSK)						
Low	2402	1.36	1.23				
Middle	2441	1.36	1.25				
High	2480	1.37	1.27				
EDR Mode (8DPSK)							
Low	2402	1.34	1.22				
Middle	2441	1.34	1.25				
High	2480	1.34	1.26				


No.: RXZ250213056RF02

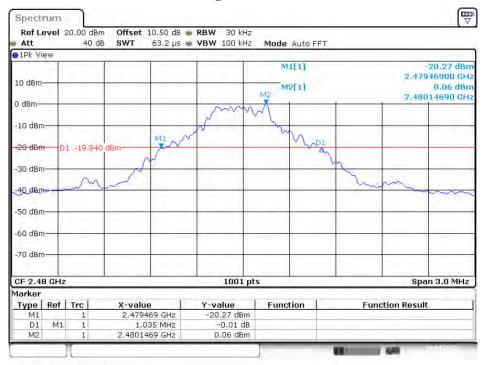
Please refer to the following plots

20 dB Emission Bandwidth

BR Mode (GFSK)


Low Channel

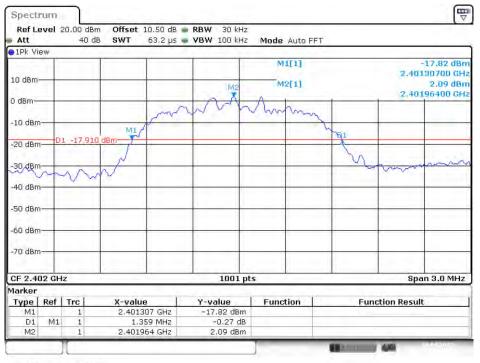
Date: 16.APR.2025 17:01:34


Middle Channel

No.: RXZ250213056RF02

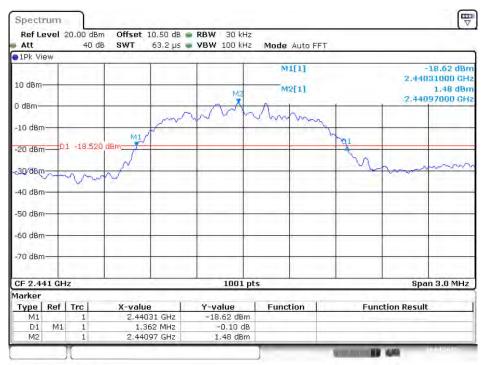
Date: 16 APR 2025 17:04:39

High Channel



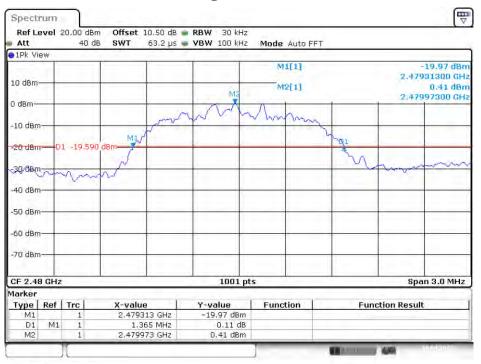
Date: 16.APR.2025 17:06:42

EDR Mode ($\pi/4$ -DQPSK)


No.: RXZ250213056RF02

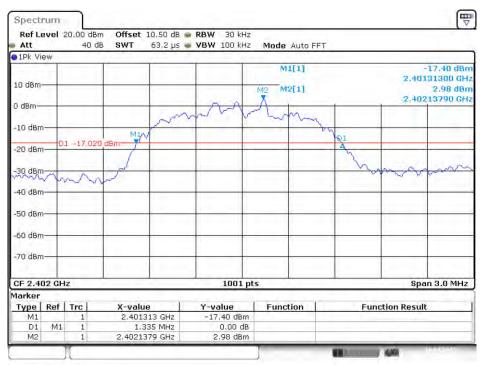
Low Channel

Date: 16 APR 2025 17:09:41


Middle Channel

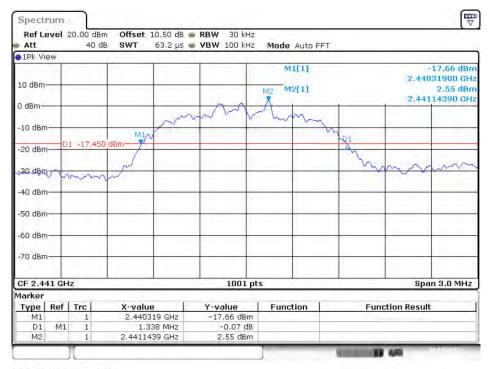
Date: 16.APR.2025 17:11:40

High Channel

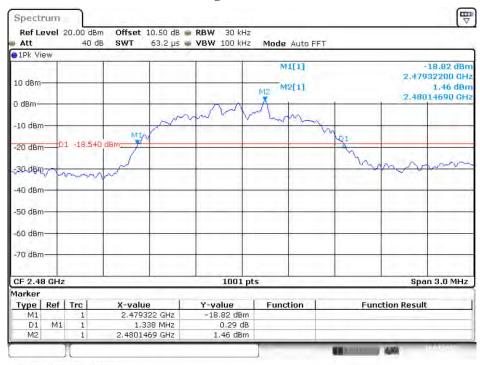

No.: RXZ250213056RF02

Date: 16.APR.2025 17:14:54

EDR Mode (8DPSK)


Low Channel

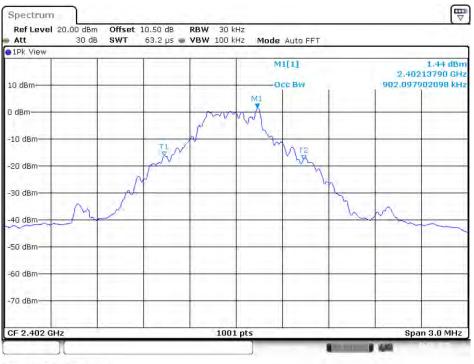
Date: 16.APR.2025 17:18:36


Middle Channel

No.: RXZ250213056RF02

Date: 16 APR 2025 17:21:01

High Channel


Date: 16.APR.2025 17:22:44

99% Bandwidth

BR Mode (GFSK)

No.: RXZ250213056RF02

Low Channel

Date: 16.APR.2025 17:01:49

Middle Channel

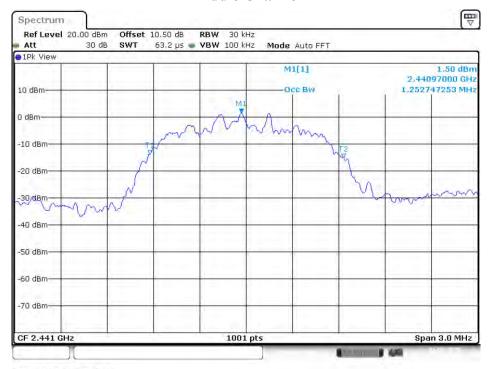
Date: 16.APR.2025 17:04:54

High Channel

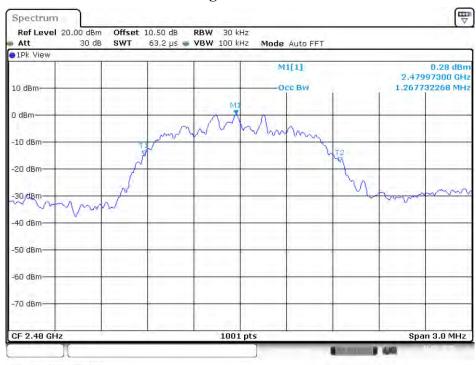

No.: RXZ250213056RF02

Date: 16.APR.2025 17:06:57

EDR Mode ($\pi/4$ -DQPSK)


Low Channel

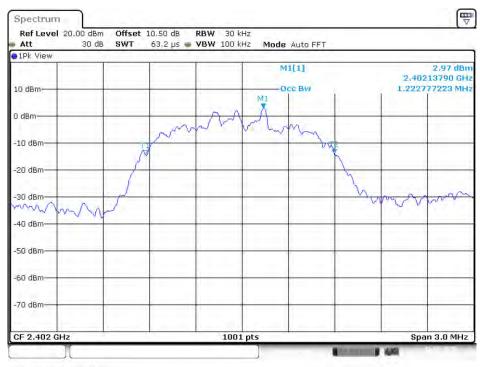
Date: 16.APR.2025 17:09:56


Middle Channel

No.: RXZ250213056RF02

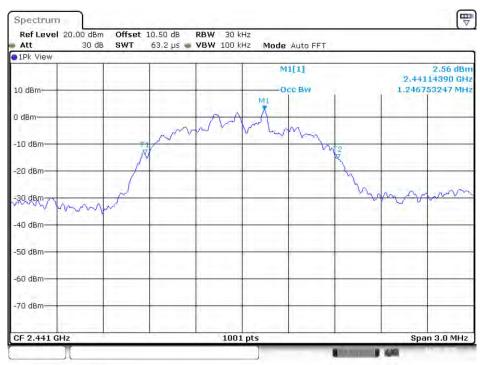
Date: 16.APR.2025 17:11:55

High Channel



Date: 16.APR.2025 17:15:09

EDR Mode (8DPSK)


No.: RXZ250213056RF02

Low Channel

Date: 16.APR.2025 17:18:51

Middle Channel

Date: 16.APR.2025 17:21:16

High Channel

Date: 16.APR.2025 17:22:59

9. FCC §15.247(a)(1) & RSS-247 §5.1(b)— Channel Separation Test

No.: RXZ250213056RF02

9.1. Applicable Standard

According to FCC §15.247(a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to RSS-247 §5.1(b)

FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

9.2. Test Procedure

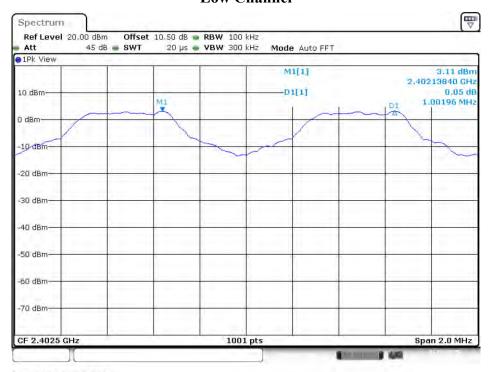
According to ANSI C63.10-2013, section 7.8.2

- 1. Set the EUT in transmitting mode, max hold the channel.
- 2. Set the adjacent channel of the EUT and max hold another trace.
- 3. Measure the channel separation.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 53 of 83

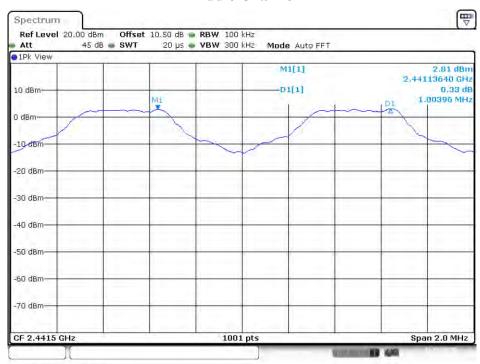
9.3. Test Results


Channel	Channel Separation (MHz)	20 dBc BW (MHz)	Two-thirds of the 20 dB bandwidth (MHz)	Channel Separation Limit	Result
		В	R Mode (GFSK)		
Low	1.00	1.00	0.66	>two-thirds of the 20 dB bandwidth	Compliance
Middle	1.00	1.01	0.67	>two-thirds of the 20 dB bandwidth	Compliance
High	1.00	1.04	0.69	>two-thirds of the 20 dB bandwidth	Compliance

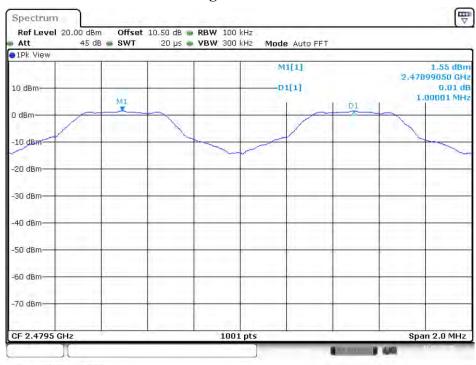
No.: RXZ250213056RF02

Note: Only the BDR (GFSK) mode result is reported since EDR (π /4-DQPSK) and EDR (8DPSK) modes have the exact same channel plan, and the limit is the maximum 20dB bandwidth *2/3.

Please refer to the following plots.


BR Mode (GFSK) Low Channel

Date: 16.APR.2025 18:28:22


Middle Channel

No.: RXZ250213056RF02

Date: 16.APR.2025 18:28:06

High Channel

Date: 16.APR.2025 18:27:48

10. FCC §15.247(a)(1)(iii) & RSS-247 §5.1 (d) – Time of Occupancy (Dwell Time)

No.: RXZ250213056RF02

10.1. Applicable Standard

According to FCC §15.247(a) (1) (iii).

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to RSS-247 §5.1 (d).

FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

10.2. Test Procedure

According to ANSI C63.10-2013, section 7.8.4

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \leq channel spacing and where possible RBW should be set >> 1/T, where T is the expected dwell time per channel Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements.

Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

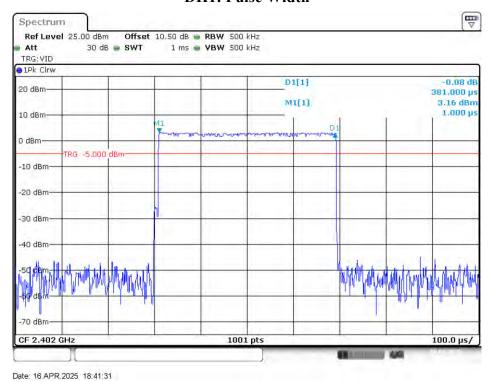
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 56 of 83

10.3. Test Results

BR mode (GFSK)							
DK HIOUE (GFSK)							
Mode	Pulse Time	Hopping	Period Time	Total of Dwell	Limit	Result	
	(ms)	Number	(s)	(ms)	(ms)		
DH1	0.381	320	31.6	121.92	<400	PASS	
DH3	1.634	190	31.6	310.46	<400	PASS	
DH5	2.875	130	31.6	373.75	<400	PASS	
		EDF	R mode (π/4-DQPS	K)			
M . 1.	Pulse Time	Hopping	Period Time	Total of Dwell	Limit	Result	
Mode	(ms)	Number	(s)	(ms)	(ms)		
2DH1	0.386	310	31.6	119.66	<400	PASS	
2DH3	1.638	160	31.6	262.08	<400	PASS	
2DH5	2.88	100	31.6	288.00	<400	PASS	
EDR mode (8DPSK)							
3.6.1	Pulse Time	Hopping	Period Time	Total of Dwell	Limit	D 1:	
Mode	(ms)	Number	(s)	(ms)	(ms)	Result	
3DH1	0.387	310	31.6	119.97	<400	PASS	
3DH3	1.638	120	31.6	196.56	<400	PASS	
3DH5	2.88	110	31.6	316.80	<400	PASS	

Note 1: Period time = 0.4*79 = 31.6 (s), Total of Dwell=Pulse Time * Hopping Number

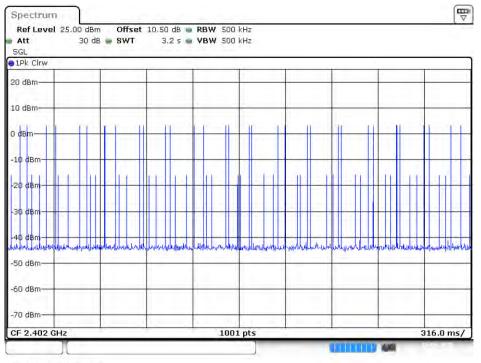

Note 2: Hopping Number = Hopping Number/10 * 10

Note 3: Hopping Number/10 = Total of highest signals in 3.16s. (Second high signals were other channel)

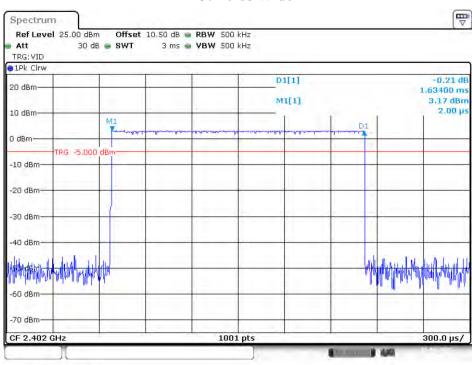

Please refer to the following plots

BR Mode (GFSK) DH1: Pulse Width

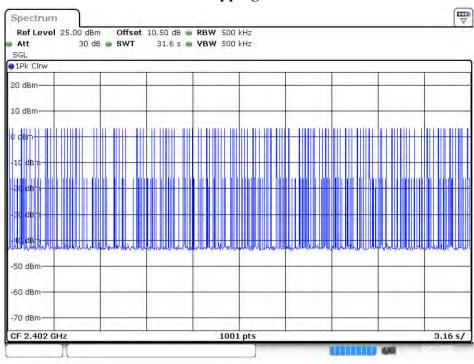
No.: RXZ250213056RF02


DH1: Hopping Number

DH1: Hopping Number /10

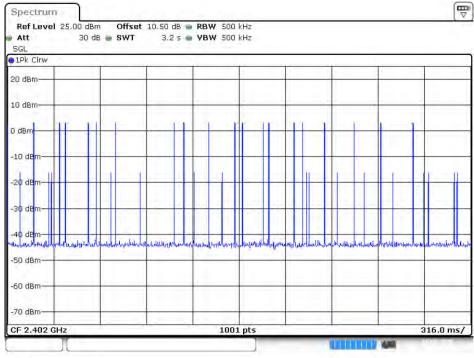

No.: RXZ250213056RF02

(Hopping Number = 32 in 1/10 period of highest signals, Second High signals were other channel)

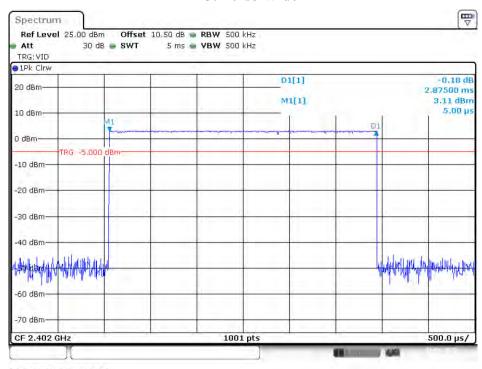

Date: 16.APR.2025 18:42:11

DH3: Pulse Width

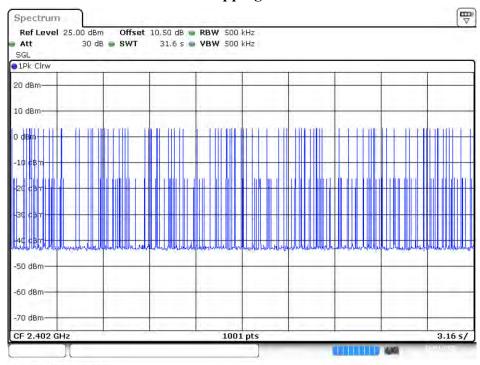
Date: 16.APR.2025 18:43:29


DH3: Hopping Number

Date: 16.APR.2025 18;44:01


DH3: Hopping Number /10

(Hopping Number = 19 in 1/10 period of highest signals, Second High signals were other channel)

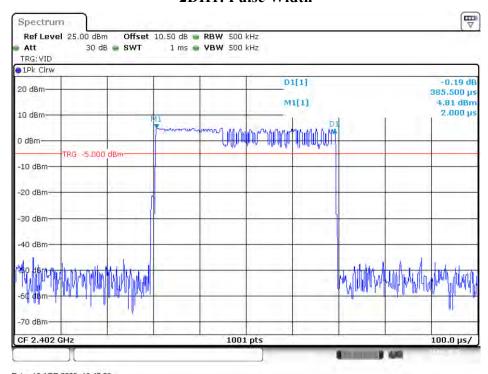

Date: 16.APR.2025 18:44:09

DH5: Pulse Width

Date: 16.APR.2025 18:45:09

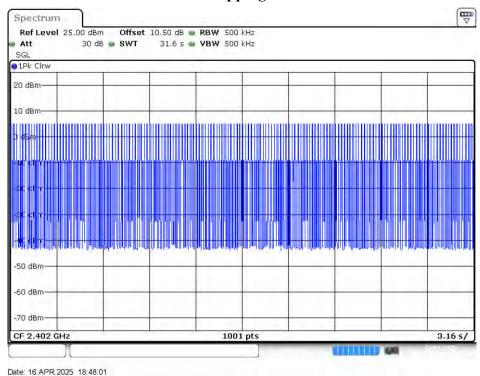

DH5: Hopping Number

Date: 16.APR.2025 18:45:41

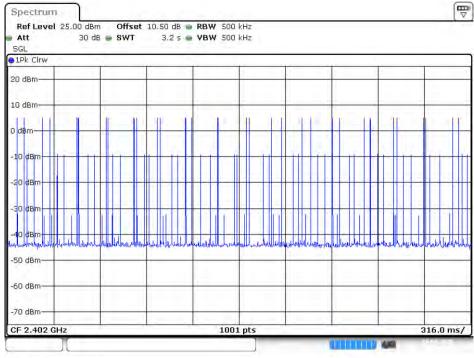

DH5: Hopping Number /10

(Hopping Number = 13 in 1/10 period of highest signals, Second High signals were other channel)

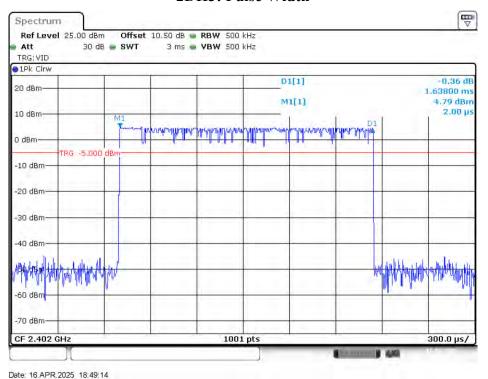
Date: 16 APR 2025 18:45:57


EDR Mode (π/4-DQPSK) 2DH1: Pulse Width

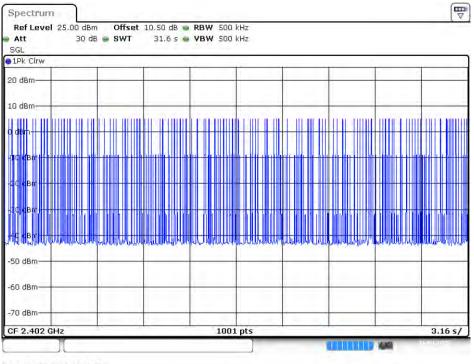
Date: 16.APR.2025 18:47:28


2DH1: Hopping Number

No.: RXZ250213056RF02


2DH1: Hopping Number /10

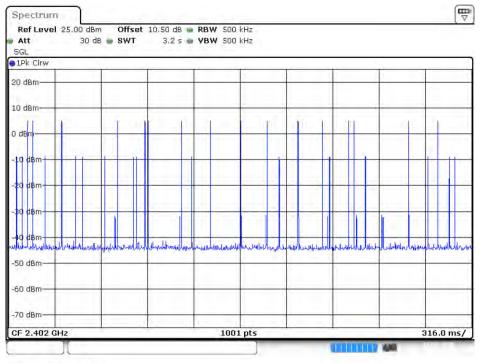
(Hopping Number = 31 in 1/10 period of highest signals, Second High signals were other channel)



Date: 16.APR.2025 18:48:09

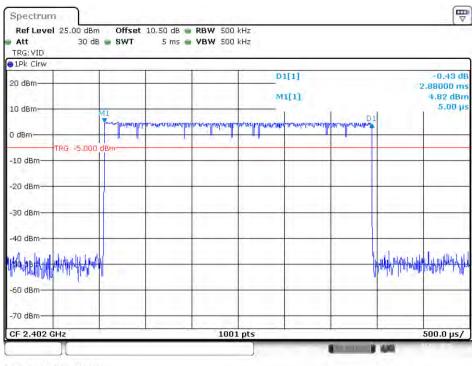
2DH3: Pulse Width

2DH3: Hopping Number



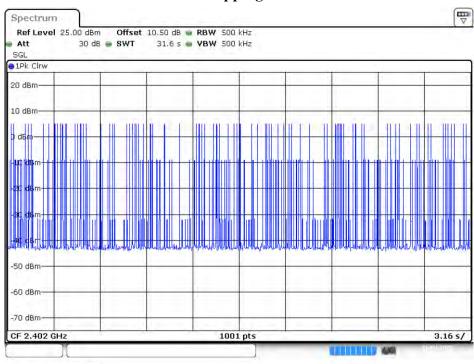
Date: 16.APR.2025 18:49:47

2DH3: Hopping Number /10


No.: RXZ250213056RF02

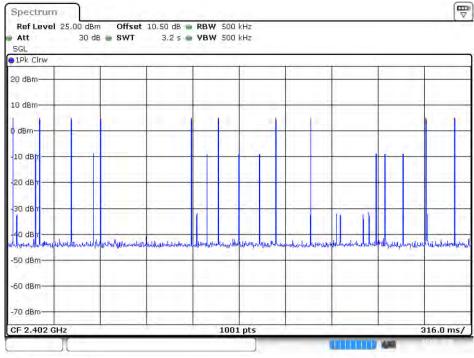
(Hopping Number = 16 in 1/10 period of highest signals, Second High signals were other channel)

Date: 16.APR.2025 18:49:54


2DH5: Pulse Width

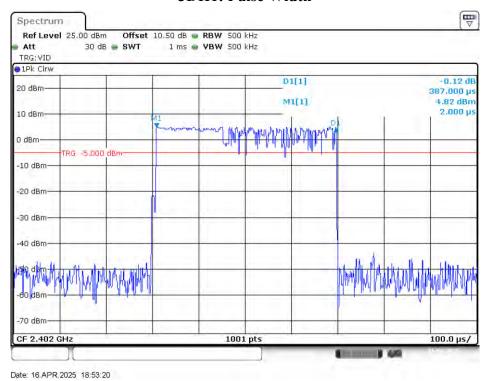
Date: 16.APR:2025 18:51:04

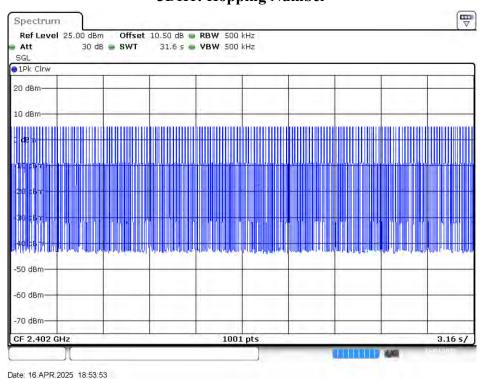
2DH5: Hopping Number


No.: RXZ250213056RF02

Date: 16.APR.2025 18:51;37

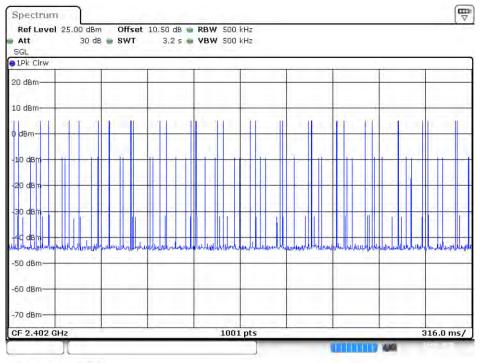
2DH5: Hopping Number /10


(Hopping Number = 10 in 1/10 period of highest signals, Second High signals were other channel)

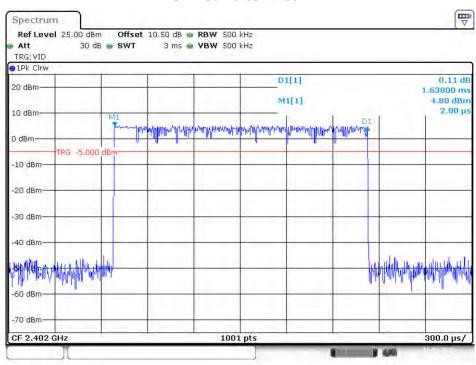

Date: 16.APR.2025 18:51:52

EDR Mode (8DPSK) 3DH1: Pulse Width

No.: RXZ250213056RF02

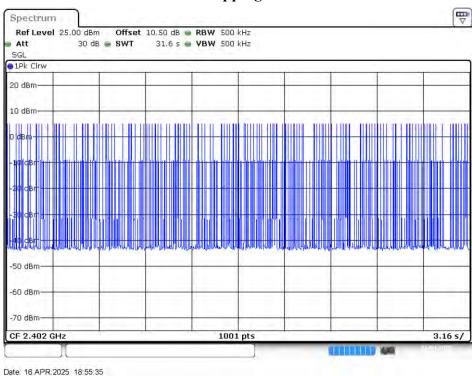


3DH1: Hopping Number


3DH1: Hopping Number /10

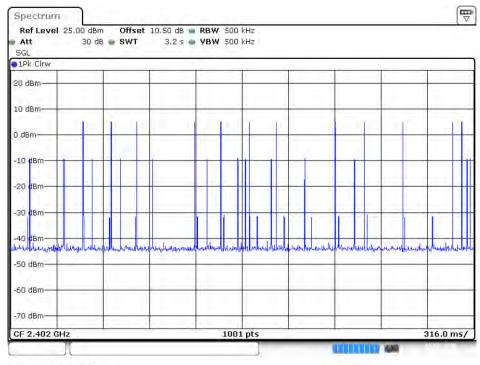
(Hopping Number = 31 in 1/10 period of highest signals, Second High signals were other channel)

Date: 16.APR.2025 18:54:00

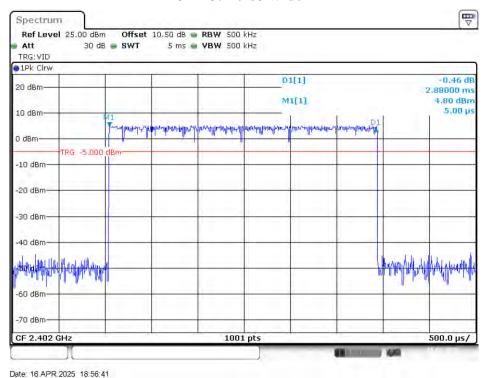

3DH3: Pulse Width

Date: 16.APR.2025 18:55:03

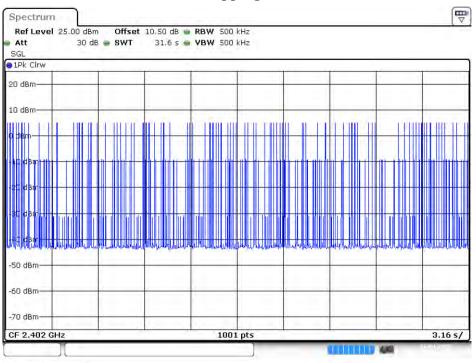
3DH3: Hopping Number


No.: RXZ250213056RF02

Date: 10.74 14.2020 10.00.00

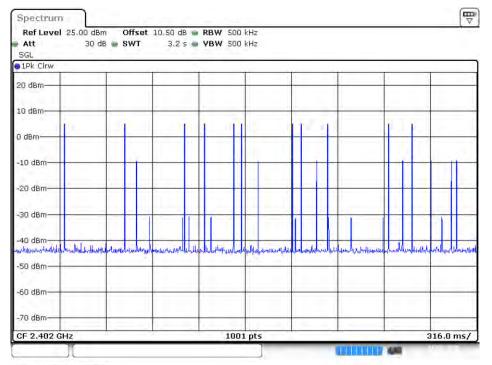

3DH3: Hopping Number /10

(Hopping Number = 12 in 1/10 period of highest signals, Second High signals were other channel)



Date: 16.APR.2025 18:55:44

3DH5: Pulse Width



3DH5: Hopping Number

Date: 16.APR.2025 18:57:14

(Hopping Number = 11 in 1/10 period of highest signals, Second High signals were other channel)

Date: 16 APR 2025 18:57:30

11. FCC §15.247(a)(1)(iii) & RSS-247 §5.1(d) — Quantity of hopping channel Test

11.1. Applicable Standard

According to FCC §15.247(a) (1) (iii).

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

No.: RXZ250213056RF02

According to RSS-247 §5.1(d).

FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

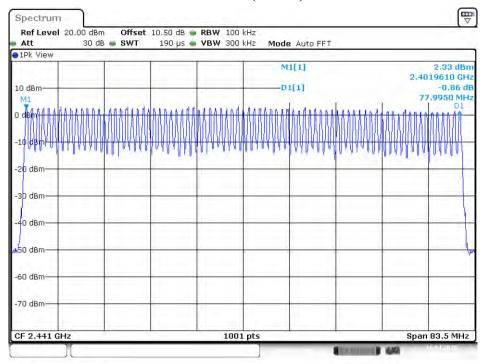
11.2. Test Procedure

According to ANSI C63.10-2013, section 7.8.3

- 1. The EUT shall have its hopping function enabled.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

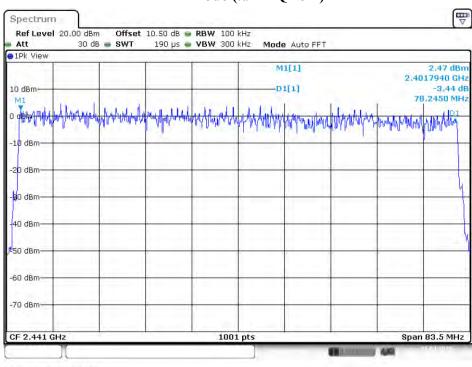
11.3. Test Results

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)	Result
GFSK	2402-2480	79	>15	Compliance
π/4-DQPSK	2402-2480	79	>15	Compliance
8DPSK	2402-2480	79	>15	Compliance


Please refer to the following plots

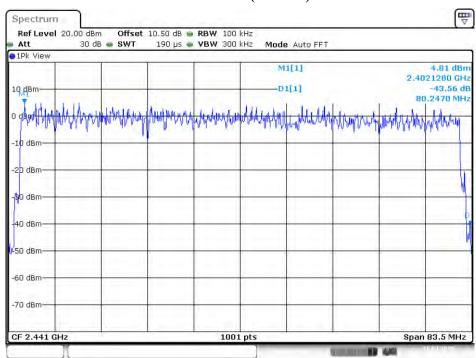
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 72 of 83


BR Mode (GFSK)

No.: RXZ250213056RF02

Date: 16.APR.2025 18:29:00


EDR Mode ($\pi/4$ -DQPSK)

Date: 16.APR.2025 18:32:08

EDR Mode (8DPSK)

No.: RXZ250213056RF02

Date: 16.APR.2025 18:34:53

12. FCC §15.247(b)(1) & RSS-247 §5.4 (b)- Maximum Output Power

No.: RXZ250213056RF02

12.1. Applicable Standard

According to FCC §15.247(b) (1).

Frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

According to RSS-247 §5.4(b).

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

12.2. Test Procedure

According to ANSI C63.10-2013, section 7.8.5

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

12.3. Test Results

Channel	Frequency (MHz)	Peak Conducted Output Power (dBm)	Limit (dBm)	Antenna Gain (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	
		Bl	R Mode (GFS	SK)			
Low	2402	3.82	21	4.1	7.92	36	
Middle	2441	3.76	21	4.1	7.86	36	
High	2480	2.32	21	4.1	6.42	36	
	EDR Mode (π/4-DQPSK)						
Low	2402	7.01	21	4.1	11.11	36	
Middle	2441	6.17	21	4.1	10.27	36	
High	2480	4.93	21	4.1	9.03	36	
EDR Mode (8DPSK)							
Low	2402	7.04	21	4.1	11.14	36	
Middle	2441	6.23	21	4.1	10.33	36	
High	2480	4.99	21	4.1	9.09	36	

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 75 of 83

13. FCC §15.247(d) & RSS-247 §5.5–100 kHz Bandwidth of Frequency Band Edge

No.: RXZ250213056RF02

13.1. Applicable Standard

According to FCC §15.247(d)

For FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

According to RSS-247 §5.5

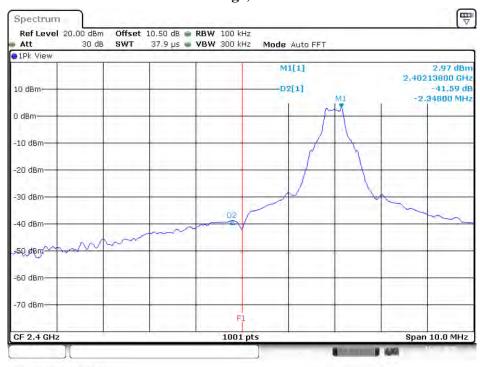
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

13.2. Test Procedure

According to ANSI C63.10-2013, section 7.8.6

Band-edge measurements shall be tested both on single channels, and with the EUT hopping.

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.


13.3. Test Results

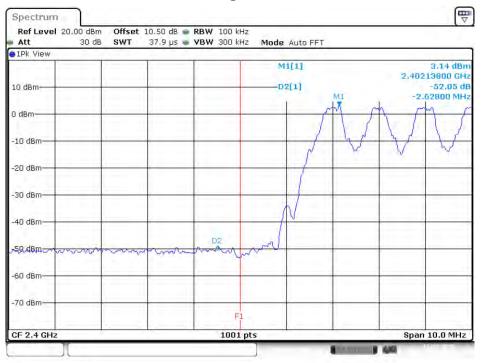
Channel	Frequency (MHz)	Delta Peak to Band Emission	Limit (dBc)	Result			
	(1/112)	(dBc)	(ubt)				
		BR Mode (GFSK)					
Low	2402	41.59	≥ 20	PASS			
High	2480	44.25	≥ 20	PASS			
	BI	R Hopping Mode (GFS	K)				
Low	2402-2480	52.05	≥ 20	PASS			
High	2402-2480	49.14	≥ 20	PASS			
	EDR Mode (π/4-DQPSK)						
Low	2402	41.24	≥ 20	PASS			
High	2480	46.16	≥ 20	PASS			
	EDR Hopping Mode (π/4-DQPSK)						
Low	2402-2480	51.08	≥ 20	PASS			
High	2402-2480	48.84	≥ 20	PASS			
	EDR Mode (8DPSK)						
Low	2402	39.84	≥ 20	PASS			
High	2480	43.64	≥ 20	PASS			
	EDR Hopping Mode (8DPSK)						
Low	2402-2480	50.51	≥ 20	PASS			
High	2402-2480	51.19	≥ 20	PASS			

Please refer to the following plots.

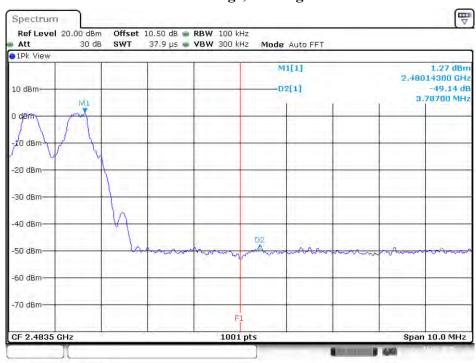
BR Mode (GFSK) Band Edge, CH Low

No.: RXZ250213056RF02

Date: 16.APR:2025 17:02:05


Band Edge, CH High

Date: 16.APR.2025 17:07:12


BR Hopping Mode (GFSK) Band Edge, CH Low

No.: RXZ250213056RF02

Date: 16.APR.2025 18;26:51

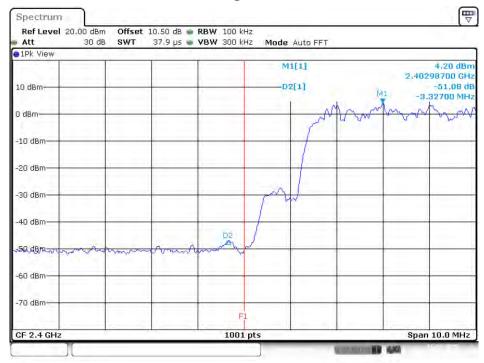
Band Edge, CH High

Date: 16.APR.2025 18:27:16

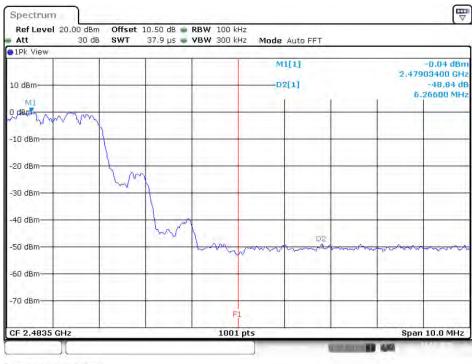
EDR Mode (π/4-DQPSK) Band Edge, CH Low

No.: RXZ250213056RF02

Date: 16.APR.2025 17:10:12


Band Edge, CH High

Date: 16.APR.2025 17:15:24

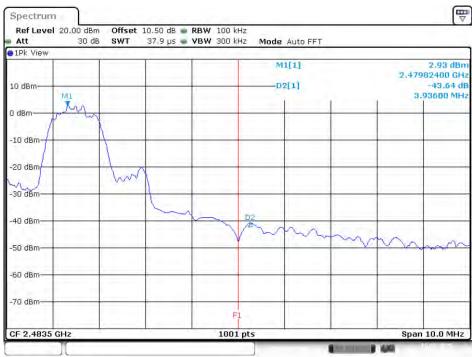

EDR Hopping Mode (π /4-DQPSK) Band Edge, CH Low

No.: RXZ250213056RF02

Date: 16.APR.2025 18:30:28

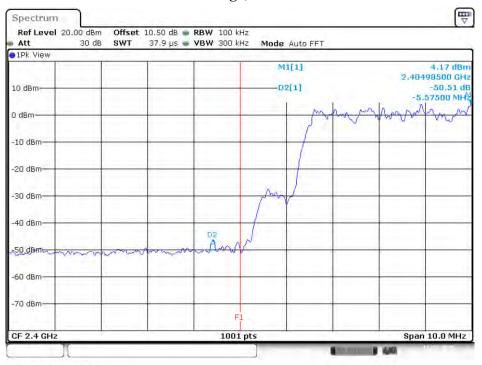

Band Edge, CH High

Date: 16.APR.2025 18:30:48

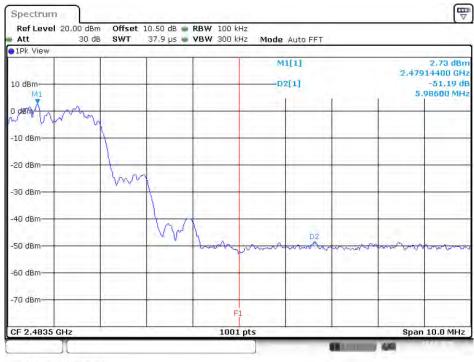

EDR Mode (8DPSK) Band Edge, CH Low

No.: RXZ250213056RF02

Date: 16.APR.2025 17:19:06


Band Edge, CH High

Date: 16.APR.2025 17:23:14


EDR Hopping Mode (8DPSK) Band Edge, CH Low

No.: RXZ250213056RF02

Date: 16.APR.2025 18:33:04

Band Edge, CH High

Date: 16.APR.2025 18:33:27

***** END OF REPORT *****