

FCC Co-Location Test Report

FCC ID : TVE-26155013
Equipment : Secured Wireless Access Point
Model No. : FAP-S322C
Multiple Listing : Please refer to section 1.1.1 for more details.
Brand Name : Fortinet, Inc.
Applicant : Fortinet, Inc.
Address : 899 Kifer Road Sunnyvale, CA 94086, USA
Standard : 47 CFR FCC Part 15.247
47 CFR FCC Part 15.407
Received Date : Jun. 18, 2015
Tested Date : Jul. 20, 2015 ~ Jan. 27, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	The Equipment List	6
1.3	Test Standards	7
1.4	Measurement Uncertainty	7
2	TEST CONFIGURATION.....	8
2.1	Testing Condition	8
2.2	The Worst Test Modes and Channel Details	8
3	TRANSMITTER TEST RESULTS.....	9
3.1	Unwanted Emissions into Restricted Frequency Bands	9
4	TEST LABORATORY INFORMATION	15

Release Record

Report No.	Version	Description	Issued Date
FR562202CO	Rev. 01	Initial issue	Jun. 28, 2016

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)			
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 30.56MHz 38.88 (Margin -1.12dB) – QP	Pass
15.209			

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Multiple Listing	Product Name	Description
Fortinet, Inc.	FAP-S322C	FORTIAP-S322Cxxxxxx FortiAP S322Cxxxxxx FortiAP-S322Cxxxxxx FAP-S322Cxxxxxx	Secured Wireless Access Point	Outdoor device

Note: Where "x" can be used as "A-Z", or "0-9", or "-", or blank for software changes or marketing purposes only. No Safety related changes.

1.1.2 Specification of the Equipment under Test (EUT)

Operating Frequency	802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5745 MHz ~ 5825 MHz
Modulation Type	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n/ac: OFDM (BPSK / QPSK / 16QAM / 64QAM/256QAM)

1.1.3 Antenna Details

Model	Type	Connector	Operating Frequencies (MHz) / Antenna Gain (dBi)		
			2400~2483.5	5150~5250	5725~5850
2G_Left	Dipole	MCX	5.40	---	---
2G_Right	Dipole	MCX	5.45	---	---
2G_Middle	Dipole	MCX	4.84	---	---
5G_Left	Dipole	MCX	---	7.35	6.11
5G_Right	Dipole	MCX	---	7.34	7.50
5G_Middle	Dipole	MCX	---	6.85	6.55

Note: The antennas are professionally installed.

1.1.4 Accessories

Accessories		
No.	Equipment	Description
1	POE	Brand Name: Microsemi Model Name: PD-9001GR/AC Power Rating: I/P: 100-240Vac, 50-60Hz, 0.67A O/P: 55Vdc, 0.6A Power Line: DC 1.8m non-shielded w/o core

1.2 The Equipment List

Test Item	Radiated Emission below 1GHz				
Test Site	966 chamber 1 / (03CH01-WS)				
Tested Date	Jan. 27, 2016				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Receiver	R&S	ESR3	101658	Nov. 04, 2015	Nov. 03, 2016
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 20, 2015	Aug. 19, 2016
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 10, 2015	Sep. 09, 2016
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 10, 2015	Dec. 09, 2016
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 10, 2015	Dec. 09, 2016
Measurement Software	AUDIX	e3	6.120210g	NA	NA

Note: Calibration Interval of instruments listed above is one year.

Test Item	Radiated Emission above 1GHz				
Test Site	966 chamber1 / (03CH01-WS)				
Tested Date	Jul. 20, 2015				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Dec. 09, 2014	Dec. 08, 2015
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 11, 2014	Dec. 10, 2015
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 09, 2014	Sep. 08, 2015
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 15, 2014	Dec. 14, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 15, 2014	Dec. 14, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 15, 2014	Dec. 14, 2015
Measurement Software	AUDIX	e3	6.120210g	NA	NA

Note: Calibration Interval of instruments listed above is one year.

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

47 CFR FCC Part 15.407

ANSI C63.10-2013

FCC KDB 558074 D01 DTS Meas Guidance v03r05

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02

FCC KDB 644545 D03 Guidance for IEEE 802.11ac New Rules v01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Radiated emission ≤ 1GHz	±3.66 dB
Radiated emission > 1GHz	±5.63 dB

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH01-WS	21-24°C / 64-66%	Aska Huang

➤ FCC site registration No.: 181692

➤ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Channel	Data Rate	Test Configuration
Radiated Emissions	2.4G 11n HT20 + 5G 11a	CH6 + CH157	MCS 0 + 6Mbps	---

NOTE: The selected channel is the maximum power channel of Wi-Fi mode

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

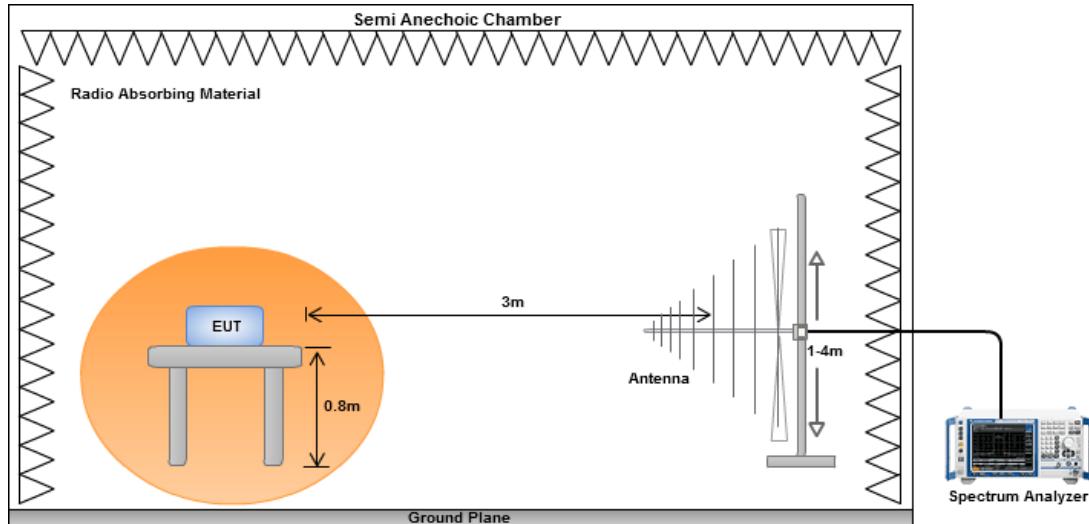
Note 1:

Quasi-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

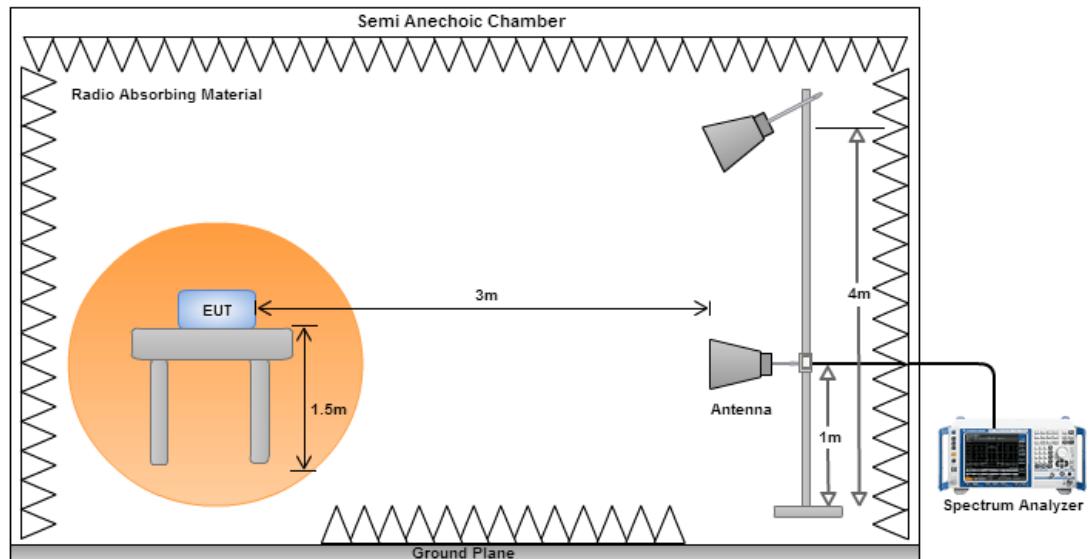
Note 2:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

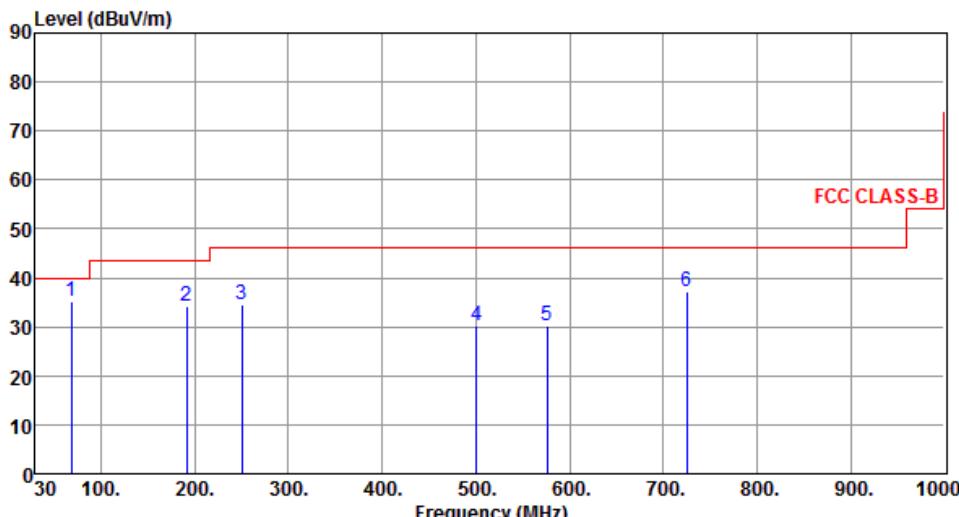
3.1.2 Test Procedures

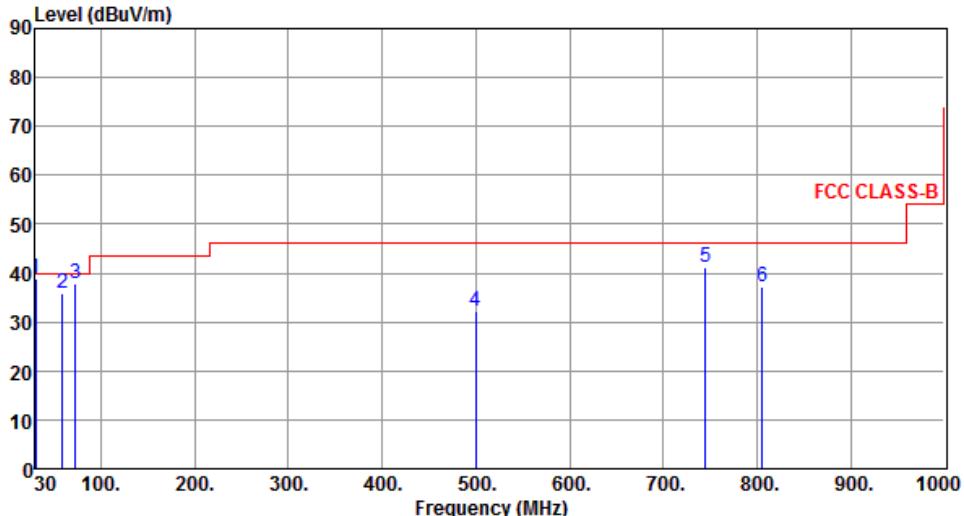

1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

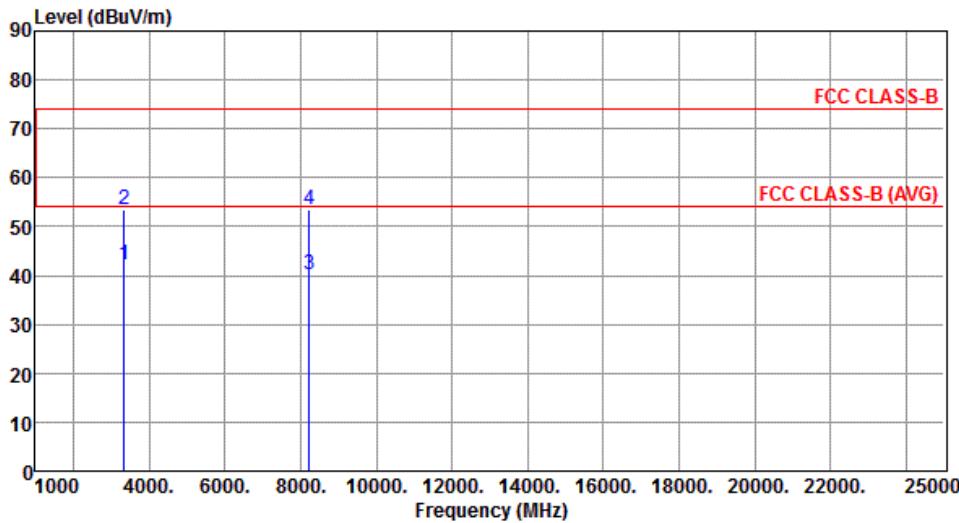

1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

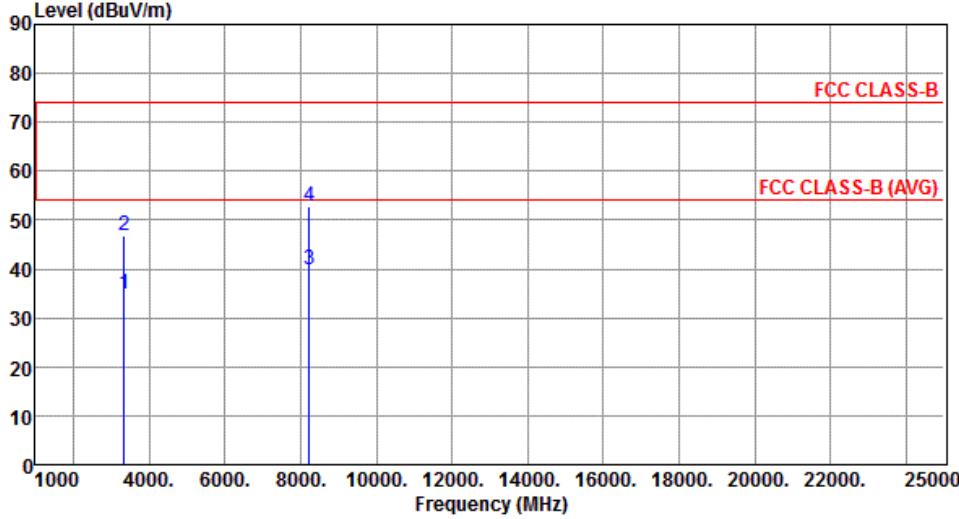
3.1.3 Test Setup


Radiated Emissions below 1 GHz



Radiated Emissions above 1 GHz




3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Modulation	2.4G 11n HT20 + 5G 11a	Test Channel	CH6 + CH157																																																															
Polarization	Horizontal																																																																	
 FCC CLASS-B																																																																		
<table border="1"> <thead> <tr> <th>Freq. MHz</th> <th>Emission level dBuV/m</th> <th>Limit dBuV/m</th> <th>Margin dB</th> <th>SA reading dBuV</th> <th>Factor dB</th> <th>Remark</th> <th>ANT High cm</th> <th>Turn Table deg</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>68.52</td> <td>35.20</td> <td>40.00</td> <td>-4.80</td> <td>54.27</td> <td>-19.07</td> <td>Peak</td> <td>---</td> </tr> <tr> <td>2</td> <td>191.52</td> <td>34.29</td> <td>43.50</td> <td>-9.21</td> <td>53.43</td> <td>-19.14</td> <td>Peak</td> <td>---</td> </tr> <tr> <td>3</td> <td>250.12</td> <td>34.65</td> <td>46.00</td> <td>-11.35</td> <td>52.37</td> <td>-17.72</td> <td>Peak</td> <td>---</td> </tr> <tr> <td>4</td> <td>500.36</td> <td>30.23</td> <td>46.00</td> <td>-15.77</td> <td>41.35</td> <td>-11.12</td> <td>Peak</td> <td>---</td> </tr> <tr> <td>5</td> <td>575.65</td> <td>30.25</td> <td>46.00</td> <td>-15.75</td> <td>40.23</td> <td>-9.98</td> <td>Peak</td> <td>---</td> </tr> <tr> <td>6</td> <td>725.25</td> <td>37.23</td> <td>46.00</td> <td>-8.77</td> <td>44.73</td> <td>-7.50</td> <td>Peak</td> <td>---</td> </tr> </tbody> </table>				Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg	1	68.52	35.20	40.00	-4.80	54.27	-19.07	Peak	---	2	191.52	34.29	43.50	-9.21	53.43	-19.14	Peak	---	3	250.12	34.65	46.00	-11.35	52.37	-17.72	Peak	---	4	500.36	30.23	46.00	-15.77	41.35	-11.12	Peak	---	5	575.65	30.25	46.00	-15.75	40.23	-9.98	Peak	---	6	725.25	37.23	46.00	-8.77	44.73	-7.50	Peak	---
Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg																																																										
1	68.52	35.20	40.00	-4.80	54.27	-19.07	Peak	---																																																										
2	191.52	34.29	43.50	-9.21	53.43	-19.14	Peak	---																																																										
3	250.12	34.65	46.00	-11.35	52.37	-17.72	Peak	---																																																										
4	500.36	30.23	46.00	-15.77	41.35	-11.12	Peak	---																																																										
5	575.65	30.25	46.00	-15.75	40.23	-9.98	Peak	---																																																										
6	725.25	37.23	46.00	-8.77	44.73	-7.50	Peak	---																																																										
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.																																																																		

Modulation	2.4G 11n HT20 + 5G 11a	Test Channel	CH6 + CH157																																																																															
Polarization	Vertical																																																																																	
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Freq.</th> <th style="text-align: left;">Emission</th> <th style="text-align: left;">Limit</th> <th style="text-align: left;">Margin</th> <th style="text-align: left;">SA</th> <th style="text-align: left;">Factor</th> <th style="text-align: left;">Remark</th> <th style="text-align: left;">ANT</th> <th style="text-align: left;">Turn</th> </tr> <tr> <th style="text-align: left;">MHz</th> <th style="text-align: left;">level</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">dBuV</th> <th style="text-align: left;">deg</th> <th style="text-align: left;">High</th> <th style="text-align: left;">Table</th> </tr> </thead> <tbody> <tr> <td style="text-align: left;">1</td> <td style="text-align: left;">30.56</td> <td style="text-align: left;">38.88</td> <td style="text-align: left;">40.00</td> <td style="text-align: left;">-1.12</td> <td style="text-align: left;">56.68</td> <td style="text-align: left;">-17.80</td> <td style="text-align: left;">QP</td> <td style="text-align: left;">100</td> <td style="text-align: left;">120</td> </tr> <tr> <td style="text-align: left;">2</td> <td style="text-align: left;">59.02</td> <td style="text-align: left;">35.95</td> <td style="text-align: left;">40.00</td> <td style="text-align: left;">-4.05</td> <td style="text-align: left;">53.34</td> <td style="text-align: left;">-17.39</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">100</td> <td style="text-align: left;">142</td> </tr> <tr> <td style="text-align: left;">3</td> <td style="text-align: left;">72.53</td> <td style="text-align: left;">37.70</td> <td style="text-align: left;">40.00</td> <td style="text-align: left;">-2.30</td> <td style="text-align: left;">57.53</td> <td style="text-align: left;">-19.83</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> <td style="text-align: left;">---</td> </tr> <tr> <td style="text-align: left;">4</td> <td style="text-align: left;">500.25</td> <td style="text-align: left;">32.30</td> <td style="text-align: left;">46.00</td> <td style="text-align: left;">-13.70</td> <td style="text-align: left;">43.42</td> <td style="text-align: left;">-11.12</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> <td style="text-align: left;">---</td> </tr> <tr> <td style="text-align: left;">5</td> <td style="text-align: left;">745.35</td> <td style="text-align: left;">41.08</td> <td style="text-align: left;">46.00</td> <td style="text-align: left;">-4.92</td> <td style="text-align: left;">48.12</td> <td style="text-align: left;">-7.04</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> <td style="text-align: left;">---</td> </tr> <tr> <td style="text-align: left;">6</td> <td style="text-align: left;">805.43</td> <td style="text-align: left;">37.29</td> <td style="text-align: left;">46.00</td> <td style="text-align: left;">-8.71</td> <td style="text-align: left;">43.73</td> <td style="text-align: left;">-6.44</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> <td style="text-align: left;">---</td> </tr> </tbody> </table>				Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	dBuV/m	dBuV/m	dB	reading	dBuV	deg	High	Table	1	30.56	38.88	40.00	-1.12	56.68	-17.80	QP	100	120	2	59.02	35.95	40.00	-4.05	53.34	-17.39	Peak	100	142	3	72.53	37.70	40.00	-2.30	57.53	-19.83	Peak	---	---	4	500.25	32.30	46.00	-13.70	43.42	-11.12	Peak	---	---	5	745.35	41.08	46.00	-4.92	48.12	-7.04	Peak	---	---	6	805.43	37.29	46.00	-8.71	43.73	-6.44	Peak	---	---
Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																										
MHz	level	dBuV/m	dBuV/m	dB	reading	dBuV	deg	High	Table																																																																									
1	30.56	38.88	40.00	-1.12	56.68	-17.80	QP	100	120																																																																									
2	59.02	35.95	40.00	-4.05	53.34	-17.39	Peak	100	142																																																																									
3	72.53	37.70	40.00	-2.30	57.53	-19.83	Peak	---	---																																																																									
4	500.25	32.30	46.00	-13.70	43.42	-11.12	Peak	---	---																																																																									
5	745.35	41.08	46.00	-4.92	48.12	-7.04	Peak	---	---																																																																									
6	805.43	37.29	46.00	-8.71	43.73	-6.44	Peak	---	---																																																																									
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.																																																																																		

3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Modulation	2.4G 11n HT20 + 5G 11a	Test Channel	CH6 + CH157																																																								
Polarization	Horizontal																																																										
 <table border="1"> <thead> <tr> <th>Freq.</th> <th>Emission level</th> <th>Margin</th> <th>SA reading</th> <th>Factor</th> <th>Remark</th> <th>ANT High</th> <th>Turn Table</th> </tr> <tr> <th>MHz</th> <th>dBuV/m</th> <th>dBuV/m</th> <th>dB</th> <th>dB</th> <th></th> <th>cm</th> <th>deg</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>3348.00</td> <td>42.32</td> <td>54.00</td> <td>-11.68</td> <td>42.91</td> <td>-0.59</td> <td>Average</td> <td>---</td> <td>---</td> </tr> <tr> <td>2</td> <td>3348.00</td> <td>53.38</td> <td>74.00</td> <td>-20.62</td> <td>53.97</td> <td>-0.59</td> <td>Peak</td> <td>---</td> <td>---</td> </tr> <tr> <td>3</td> <td>8222.00</td> <td>40.31</td> <td>54.00</td> <td>-13.69</td> <td>29.72</td> <td>10.59</td> <td>Average</td> <td>---</td> <td>---</td> </tr> <tr> <td>4</td> <td>8222.00</td> <td>53.36</td> <td>74.00</td> <td>-20.64</td> <td>42.77</td> <td>10.59</td> <td>Peak</td> <td>---</td> <td>---</td> </tr> </tbody> </table>				Freq.	Emission level	Margin	SA reading	Factor	Remark	ANT High	Turn Table	MHz	dBuV/m	dBuV/m	dB	dB		cm	deg	1	3348.00	42.32	54.00	-11.68	42.91	-0.59	Average	---	---	2	3348.00	53.38	74.00	-20.62	53.97	-0.59	Peak	---	---	3	8222.00	40.31	54.00	-13.69	29.72	10.59	Average	---	---	4	8222.00	53.36	74.00	-20.64	42.77	10.59	Peak	---	---
Freq.	Emission level	Margin	SA reading	Factor	Remark	ANT High	Turn Table																																																				
MHz	dBuV/m	dBuV/m	dB	dB		cm	deg																																																				
1	3348.00	42.32	54.00	-11.68	42.91	-0.59	Average	---	---																																																		
2	3348.00	53.38	74.00	-20.62	53.97	-0.59	Peak	---	---																																																		
3	8222.00	40.31	54.00	-13.69	29.72	10.59	Average	---	---																																																		
4	8222.00	53.36	74.00	-20.64	42.77	10.59	Peak	---	---																																																		
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).																																																											

Modulation	2.4G 11n HT20 + 5G 11a	Test Channel	CH6 + CH157																																																															
Polarization	Vertical																																																																	
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Freq.</th> <th style="text-align: left;">Emission</th> <th style="text-align: left;">Limit</th> <th style="text-align: left;">Margin</th> <th style="text-align: left;">SA</th> <th style="text-align: left;">Factor</th> <th style="text-align: left;">Remark</th> <th style="text-align: left;">ANT</th> <th style="text-align: left;">Turn</th> </tr> <tr> <th style="text-align: left;">level</th> <th style="text-align: left;">level</th> <th style="text-align: left;">level</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">High</th> <th style="text-align: left;">Table</th> </tr> <tr> <th style="text-align: left;">MHz</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">dBuV</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">deg</th> <th style="text-align: left;">cm</th> <th style="text-align: left;">deg</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>3348.00</td> <td>34.73</td> <td>54.00</td> <td>-19.27</td> <td>35.32</td> <td>-0.59</td> <td>Average</td> <td>---</td> </tr> <tr> <td>2</td> <td>3348.00</td> <td>46.85</td> <td>74.00</td> <td>-27.15</td> <td>47.44</td> <td>-0.59</td> <td>Peak</td> <td>---</td> </tr> <tr> <td>3</td> <td>8222.00</td> <td>39.82</td> <td>54.00</td> <td>-14.18</td> <td>29.23</td> <td>10.59</td> <td>Average</td> <td>---</td> </tr> <tr> <td>4</td> <td>8222.00</td> <td>52.88</td> <td>74.00</td> <td>-21.12</td> <td>42.29</td> <td>10.59</td> <td>Peak</td> <td>---</td> </tr> </tbody> </table>				Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn	level	level	level	reading	reading	reading	reading	High	Table	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	deg	cm	deg	1	3348.00	34.73	54.00	-19.27	35.32	-0.59	Average	---	2	3348.00	46.85	74.00	-27.15	47.44	-0.59	Peak	---	3	8222.00	39.82	54.00	-14.18	29.23	10.59	Average	---	4	8222.00	52.88	74.00	-21.12	42.29	10.59	Peak	---
Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn																																																										
level	level	level	reading	reading	reading	reading	High	Table																																																										
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	deg	cm	deg																																																										
1	3348.00	34.73	54.00	-19.27	35.32	-0.59	Average	---																																																										
2	3348.00	46.85	74.00	-27.15	47.44	-0.59	Peak	---																																																										
3	8222.00	39.82	54.00	-14.18	29.23	10.59	Average	---																																																										
4	8222.00	52.88	74.00	-21.12	42.29	10.59	Peak	---																																																										

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou
District, New Taipei City, Taiwan,
R.O.C.

Kwei Shan

Tel: 886-3-271-8666

No. 3-1, Lane 6, Wen San 3rd
St., Kwei Shan District, Tao Yuan
City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd
St., Kwei Shan District, Tao Yuan
City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==