

FCC PART 90Y IC RSS-111, ISSUE 4, JANUARY 2012 TEST AND MEASUREMENT REPORT

For

Exalt Communications, Inc.

580 Division Street,

Campbell, CA 95008, USA

FCC ID: TTM-105P25U IC: 6254A-105P25U

Report Type:

Product Type:

Original Report

802.11 WLAN Module

Prepared By: Wei Sun

Report Number: R1302222-90

Report Date: 2013-06-18

Quinn Jiang

Reviewed By: Test Engineer

Bay Area Compliance Laboratories Corp.

1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732-9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GEN	TERAL INFORMATION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT). MECHANICAL DESCRIPTION OF EUT. OBJECTIVE	5 5 5 5
2		TEM TEST CONFIGURATION	
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	JUSTIFICATION EUT EXERCISE SOFTWARE EQUIPMENT MODIFICATIONS SPECIAL EQUIPMENT LOCAL SUPPORT EQUIPMENT EUT INTERNAL CONFIGURATION DETAILS EXTERNAL I/O CABLING LIST AND DETAILS	7 7 7 7
3	SUM	IMARY OF TEST RESULTS	8
4	FCC	\$2.1046, \$90.1215 & IC RSS -111 \$5.3 – RF OUTPUT POWER	9
	4.1 4.2 4.3 4.4 4.5	APPLICABLE STANDARDS TEST SETUP BLOCK DIAGRAM AND PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	10 10 10
5		\$2.1049, \$90.210 & IC RSS-111 \$5.3 – OCCUPIED BANDWIDTH & EMISSION MASK	
	5.1 5.2 5.3 5.4 5.5	APPLICABLE STANDARDS TEST SETUP BLOCK DIAGRAM AND TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	13 14 14 15
6	FCC	\$2.1051, \$90.210 & IC RSS-111 \$4.3, \$5.4 – SPURIOUS EMISSIONS AT ANTENNA TERMINAI	
	6.1 6.2 6.3 6.4 6.5	APPLICABLE STANDARDS TEST SETUP BLOCK DIAGRAM AND TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	57 58 58 59
7	FCC	\$2.1053, \$90.210 & IC RSS-111 \$4.3, \$5.4 – FIELD STRENGTH OF SPURIOUS RADIATIONS	77
	7.1 7.2 7.3 7.4 7.5	APPLICABLE STANDARDS TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	78 79 79 79
8		\$90.1215 – PEAK EXCURSION RATIO	
	8.1 8.2 8.3 8.4 8.5	APPLICABLE STANDARDS TEST SETUP BLOCK DIAGRAM AND TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	81 81 81

9 F	CC §2.1055, §90.213 & IC §5.2 – FREQUENCY STABILITY	87
9.1	APPLICABLE STANDARDS	87
9.2	TEST SETUP BLOCK DIAGRAM AND TEST PROCEDURE	
9.3	TEST EQUIPMENT LIST AND DETAILS	
9.4	TEST ENVIRONMENTAL CONDITIONS	
9.5	TEST RESULTS	88
10 F	CC §2.1046, §90.1215 & IC RSS-111 §5.3 – POWER SPECTRAL DENSITY	96
10.1	APPLICABLE STANDARDS	
10.2	TEST SETUP BLOCK DIAGRAM AND TEST PROCEDURE	96
10.3		
10.4		
10.5		
	C RSS-111 §5.5 & RSS-GEN §6.1 – RECEIVER SPURIOUS RADIATED EMISSIONS	
11.1		
11.2	= 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	
11.3		
11.4		
11.5 11.6		
11.0		
11.8		
	CC \$90.1217, \$2.1091 & IC RSS-102 - RF EXPOSURE INFORMATION	
12.1		
12.1		
	CLUSION	
	XHIBIT A – FCC & IC EQUIPMENT LABELING REQUIREMENTS	
13.1		
13.1	· ·	
13.3	· ·	
14 E	XHIBIT B - TEST SETUP PHOTOGRAPHS	126
14.1	TX RADIATED EMISSIONS - FRONT VIEW	126
14.2		
14.3	TX RADIATED EMISSIONS - REAR VIEW (ABOVE 1 GHZ)	127
14.4		
14.5	/	
14.6	RX RADIATED EMISSIONS - REAR VIEW (ABOVE 1 GHz)	128
15 E	XHIBIT C - EUT PHOTOGRAPHS	129
15.1	EUT – MAIN BOARD WITH SHIELDING TOP VIEW	
15.2		
15.3		
15.4		
15.5		
15.6 15.7		
15.7		
10.0	LOI 10L10K10 11L11	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1302222-90	Original Report	2013-06-18

1 General Information

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Exalt Communications, Inc.*, and their product, FCC: TTM-105P25U and IC: 6254A-105P25U, model: eMIMO, which will henceforth be referred to as the EUT "Equipment Under Test." The EUT is an 802.11 WLAN module and operates on 4940-4990 MHz, 5250-5350 MHz, 5470-5725 MHz, 5725-5825 MHz UNII bands, and 5725-5850 MHz ISM band. 5 and 10 MHz mode of 4940-4990 MHz cannot transmit both chains simultaneously and will not operate on 5725-5825 MHz UNII band.

1.2 Mechanical Description of EUT

The EUT measures approximately 12.7 cm (L) x 11.4 cm (W) x 1.6 cm (H) and weighs 102g.

The test data gathered are from a production sample provided by the manufacturer, Serial Number: PE15139027, assigned by BACL.

1.3 Objective

This type approval report is prepared on behalf of *Exalt Communication*, *Inc.*, accordance with Part 90 and IC RSS-210 Issue 4, January 2012.

1.4 Related Submittal(s)/Grant(s)

FCC Part 15.407 NII with FCC ID: TTM-105P25U; IC: 6254A-105P25U FCC Part 15.247 DTS with FCC ID: TTM-105P25U; IC: 6254A-105P25U

1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, as well as the following individual parts:

Part 90Y – Regulations Governing Licensing and Use of Frequencies in the 4940-4990 MHz Band.

Applicable Standards: TIA-603-C

And IC RSS-210 Issue 4 – Broadband Public Safety Equipment Operating in the Band 4940 -4990 MHz.

All emissions measurement was performed by Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2003, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2003, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The EUT was tested in the normal (native) operating mode to represent *worst*-case results during the final qualification test.

2.2 EUT Exercise Software

The test utility used was cart.exe was provided by Exalt Communications, Inc., and was verified Jeffrey Wu to comply with the standard requirements being tested against.

2.3 Equipment Modifications

No modification was made to the EUT

2.4 Special Equipment

No special equipment was used during testing

2.5 Local Support Equipment

Manufacturer Description		Model	Serial Number
DELL	Laptop	Latitude E5420	-

2.6 EUT Internal Configuration Details

N/A, EUT is a module. Please refer to Section 1.2 for the serial number.

2.7 External I/O Cabling List and Details

Cable Descriptions	Length (m)	From	То
RF Cable	<1.0	Spectrum Analyzer	EUT
RJ 45 Cable	<1.0	LAPTOP	POE
RJ 45 Cable	<1.0	POE	EUT

3 Summary of Test Results

FCC Rules	Description of Tests	Results
§90.1217, §2.1091 IC RSS-102	RF Exposure	Compliant
\$2.1046, \$90.1215 IC RSS-111 \$4.3	RF Output Power	Compliant
\$2.1046, \$90.1215 IC RSS-111 \$4.3	Power Spectral Density	Compliant
\$2.1049, \$90.210 IC RSS-111 \$5.3, \$5.4	Occupied Bandwidth and Emission Mask	Compliant
\$2.1051, \$90.210 IC RSS-111 \$4.3, \$5.4	Spurious Emissions at Antenna Terminals	Compliant
§90.1215	Peak Excursion Ratio	Compliant
§2.1055, §90.213 IC RSS-111 §5.2	Frequency Stability	Compliant
§2.1053, §90.210 IC RSS-111 §4.3, §5.4	Field Strength of Spurious Radiation	Compliant
§2.1053, §90.210 IC RSS-111 §5.1	Modulation Characteristics	Note ¹
§ 90.214	Transient Frequency Behavior	N/A ¹

 N/A^{I} – Not Applicable to EUT Note I : EUT uses digital modulation

4 FCC §2.1046, §90.1215 & IC RSS -111 §5.3 – RF Output Power

4.1 Applicable Standards

Per FCC §2.1046, §90.1215

The transmitting power of stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this section.

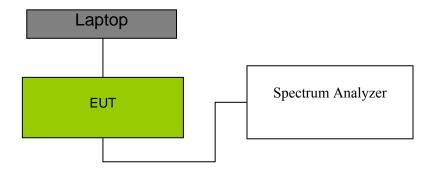
(a)(1) The maximum conducted output power should not exceed:

Channel bandwidth (MHz)	Low power maximum conducted output power (dBm)	High power maximum conducted output power (dBm)
1	7	20
5	14	27
10	17	30
15	18.8	31.8
20	20	33

(b) Low power devices are also limited to a peak power spectral density of 8 dBm per one MHz. Low power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 8 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi.

Per IC RSS-111 §5.3

Table 1 - Channel Bandwidth and Power Limits


Channel	Transmitter Power, P (dBm)			
Bandwidth (MHz)	Low-power Device	High-power Device		
1	$P \leq 7$	7 < P ≤ 20		
5	P ≤ 14	$14 < P \le 27$		
10	P ≤ 17	17 < P ≤ 30		
15	P ≤ 18.8	$18.8 < P \le 31.8$		
20	P ≤ 20	$20 < P \le 33$		

High- and low-power devices are also limited to a maximum power spectral density of 21 dBm/MHz and 8 dBm/MHz respectively. Devices using channel bandwidths other than those listed in Table 1 are permitted; however, the channel bandwidth shall not exceed 20 MHz and the devices shall comply with the maximum power spectral density limits of 21 dBm/MHz for high-power transmitters and 8 dBm/MHz for low-power transmitters. See SP 4940 MHz for antenna gain limits and operational restrictions for the device.

4.2 Test Setup Block Diagram and Procedure

Conducted:

The RF output of the transmitter was connected to the signal generator and the spectrum analyzer through sufficient attenuation.

4.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates	Calibration Cycle
Agilent	Spectrum Analyzer	E4446A	US44300386	2012-09-29	1 year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

4.4 Test Environmental Conditions

Temperature:	22-24°C
Relative Humidity:	50-55 %
ATM Pressure:	101-102kPa

The testing was performed by Wei Sun on 2013-05-30 on RF Site.

4.5 Test Results

5 MHz ModeLow Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Highest Power (dBm)	Limit (dBm)	Margin (dB)
Low	4947.5	-8.19	-6.28	-6.28	-5*	-1.28
Middle	4967.5	-8.31	-6.17	-6.17	-5*	-1.17
High	4982.5	-7.66	-6.03	-6.03	-5*	-1.03

^{*}Limit: -5 dBm = 14(the limit)–[28(the gain of the low power mode)-9(the limit of the highest gain)]

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Highest Power (dBm)	Limit (dBm)	Margin (dB)
Low	4947.5	10.65	12.48	12.48	14	-1.52
Middle	4967.5	9.87	12.24	12.24	14	-1.76
High	4982.5	8.94	12.14	12.14	14	-1.86

10 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Highest Power (dBm)	Limit (dBm)	Margin (dB)
Low	4950	-5.09	-3.04	-3.04	-2*	-1.04
Middle	4965	-4.87	-3.05	-3.05	-2*	-1.05
High	4980	-4.69	-3.02	-3.02	-2*	-1.02

^{*}Limit: -2 dBm=17(the limit)–[28(the gain of the low power mode)-9(the limit of the highest gain)]

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Highest Power (dBm)	Limit (dBm)	Margin (dB)
Low	4950	13.45	15.49	15.49	17	-1.51
Middle	4965	12.91	15.41	15.41	17	-1.59
High	4980	13.14	15.13	15.13	17	-1.87

802.11a Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Total Power (dBm)	Limit (dBm)	Margin (dB)
Low	4955	-3.30	-1.19	0.89	1	-0.11
High	4975	-3.55	-1.57	0.56	1	-0.44

^{*}Limit 1 dBm=20(the limit)-[28(the gain of the low power mode)-9(the limit of the highest gain)]

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Total Power (dBm)	Limit (dBm)	Margin (dB)
Low	4955	15.53	15.29	18.42	20	-1.58
High	4975	15.85	15.64	18.76	20	-1.24

802.11n HT20 Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Total Power (dBm)	Limit (dBm)	Margin (dB)
Low	4955	-3.05	-1.77	0.65	1	-0.35
High	4975	-2.99	-2.04	0.52	1	-0.48

^{*}Limit 1 dBm=20(the limit)-[28(the gain of the low power mode)-9(the limit of the highest gain)]

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Total Power (dBm)	Limit (dBm)	Margin (dB)
Low	4955	15.45	15.73	18.60	20	-1.40
High	4975	14.93	15.04	18.00	20	-2.00

Note: The manufacturer declared that the maximum output power of the radio shall never exceed 20 dBm. So the low-power device limits specified in FCC Part 90Y and IC RSS-111 shall be applied to the device for 5, 10 and 20 MHz channel bandwidth

5 FCC §2.1049, §90.210 & IC RSS-111 §5.3 – Occupied Bandwidth & Emission Mask

5.1 Applicable Standards

As per FCC §90.210 (I) Emission Mask L. For low power transmitters (20 dBm or less) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

- (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.
- (2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 219 log (% of (BW)/45) dB.
- (3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth: $10 + 242 \log (\% \text{ of (BW)/50) dB}$.
- (4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: $20 + 31 \log (\% \text{ of (BW)/55}) dB$ attenuation.
- (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: $28 + 68 \log (\% \text{ of (BW)/100}) \text{ dB}$ attenuation.
- (6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

As per IC RSS-111 §5.4, Transmitter Unwanted Emissions,

Table 2 – Emission Mask for Low- and High-power Transmitters

Offset Frequency f _d (% of the	Minimum At	tenuation (dB)
Equipment's Channel Bandwidth)	Low-power Transmitter	High-power Transmitter
$0 < f_d \le 45$	0	0
$45 < f_d \le 50$	219 log (f _d /45)	568 log (f _d /45)
$50 < f_d \le 55$	$10 + 242 \log (f_d/50)$	$26 + 145 \log (f_d/50)$
$55 < f_d \le 100$	$20 + 31 \log (f_d/55)$	$32 + 31 \log (f_d/55)$
$100 < f_d \le 150$	$28 + 68 \log (f_d/100)$	$40 + 57 \log (f_d/100)$
		whichever is less stringent 50 or
f _d > 150	40	55 + 10 log p

Where: fd (%) = ((f-fc)/channel bandwidth)x100

p: transmitter's output power (in watts), measured as per Section 4.1 of IC RSS-111.

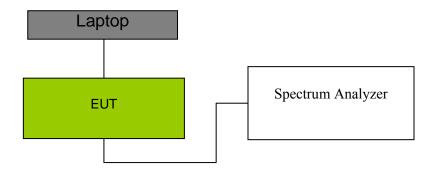



Figure 1: Unwanted Emission Mask for Low- and High-power Transmitters

5.2 Test Setup Block Diagram and Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

5.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates	Calibration Cycle
Agilent	Spectrum Analyzer	E4446A	US44300386	2012-09-29	1 year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

5.4 Test Environmental Conditions

Temperature:	22-24°C	
Relative Humidity:	50-55 %	
ATM Pressure:	101-102kPa	

The testing was performed by Wei Sun on 2013-05-31 on RF Site.

5.5 Test Results

5 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency	Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
Middle	4967.5	4.1219	4.1137	

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency	Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Middle	4967.5	4.1177	4.1191

10 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency	Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
Middle	4965	8.1664	8.1730	

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency	Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Middle	4965	8.1756	8.1760

802.11a Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency	Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	4955	16.6442	16.5300

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency	Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	4955	16.6371	16.5570

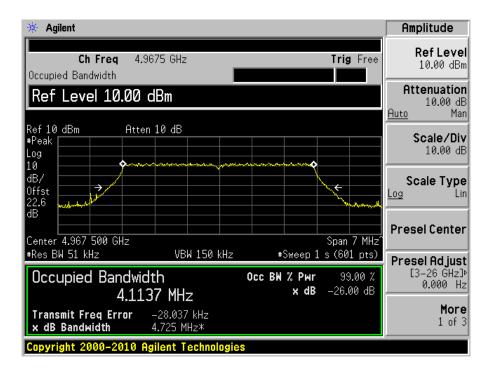
802.11 HT20 Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency	Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	4955	17.7568	17.7196

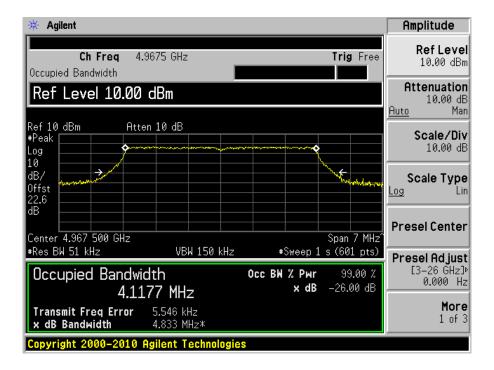
High Power Setting, Low Gain Antenna (9 dBi)

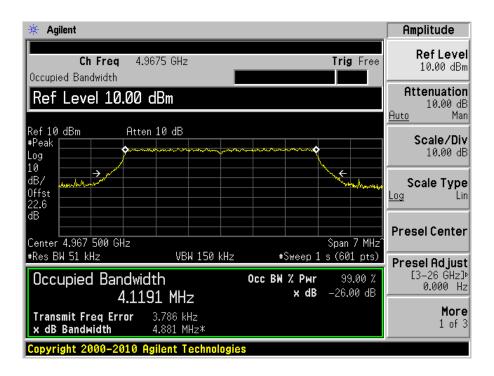

Channel	Frequency	Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	4955	17.7840	17.7003


Please refer to the following plots.

5 MHz Mode

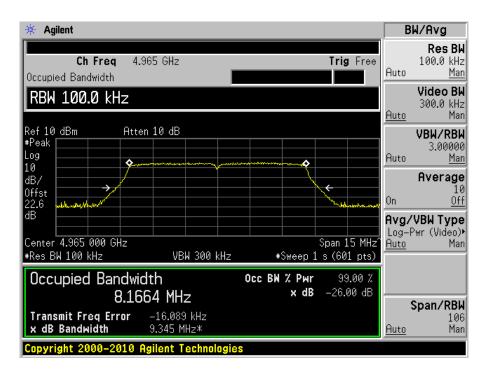
Low Power Setting, High Gain Antenna (28 dBi)

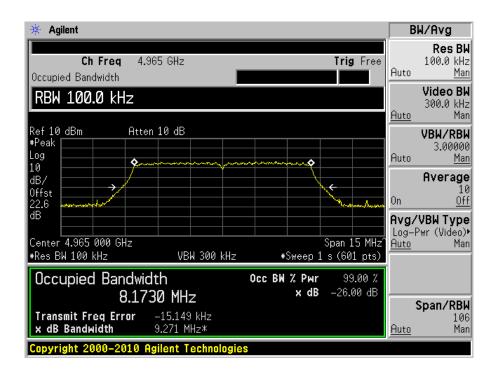

Middle Channel Chain 0



High power, High Gain Antenna (9 dBi)

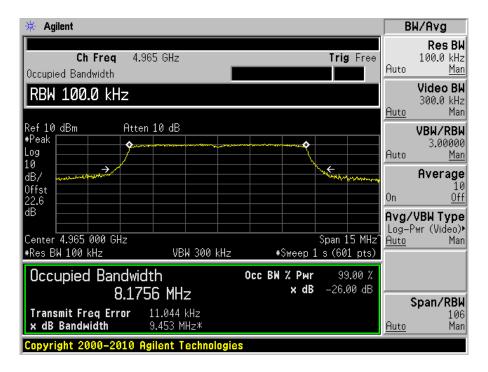
Middle Channel Chain 0

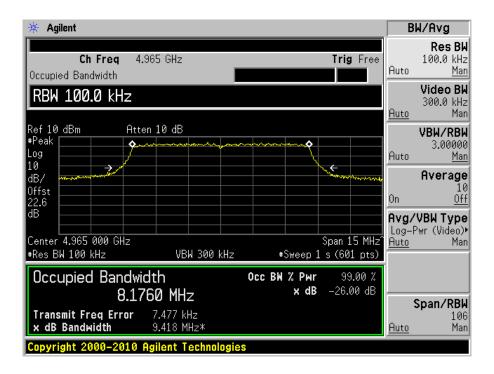




10 MHz Mode

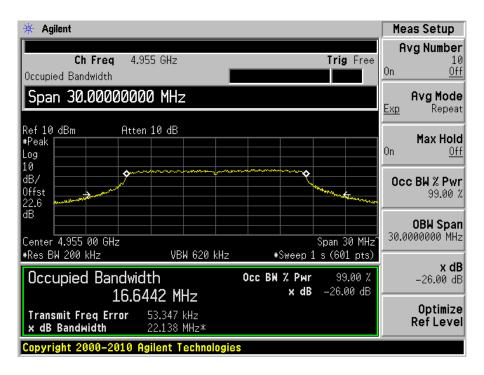
Low Power Setting, High Gain Antenna (28 dBi)

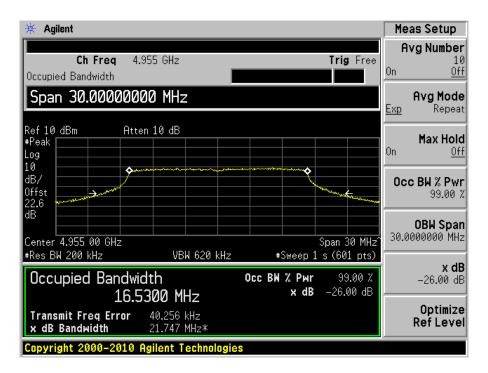

Middle Channel Chain 0



High Power Setting, Low Gain Antenna (9 dBi)

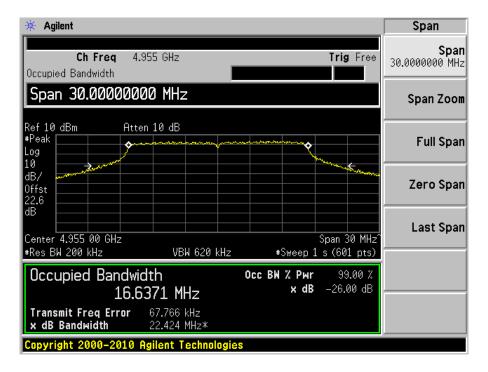
Middle Channel Chain 0

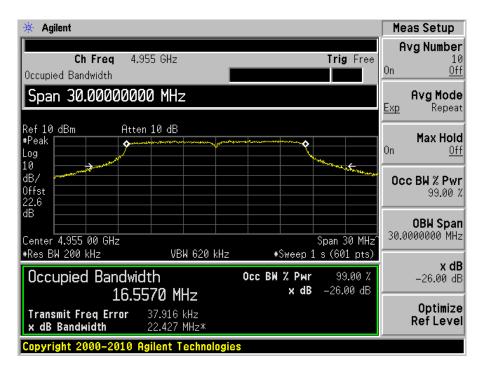




802.11a mode

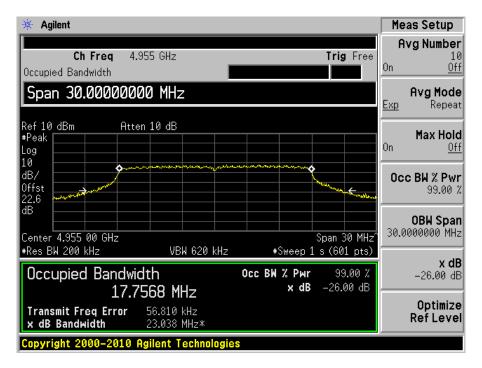
Low Power Setting, High Gain Antenna (28 dBi)

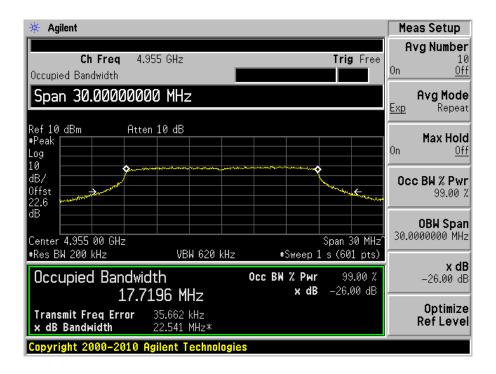

Low Channel Chain 0



High Power Setting, Low Gain Antenna (9 dBi)

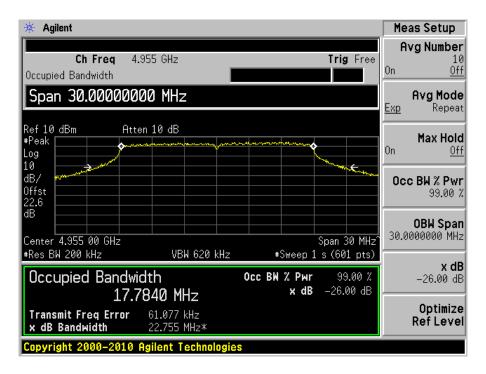
Low Channel Chain 0

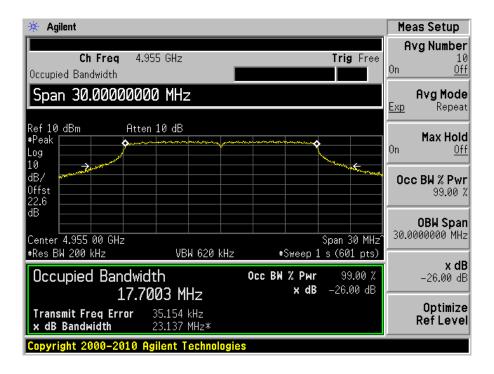




802.11n HT20 mode

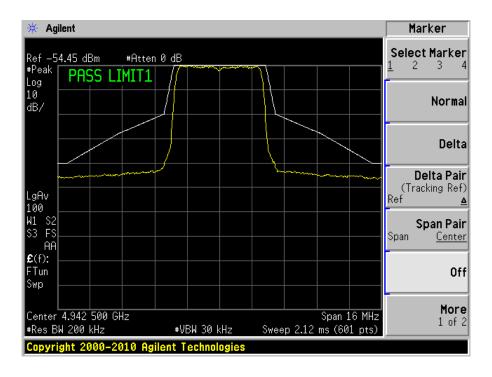
Low Power Setting, High Gain Antenna (28 dBi)

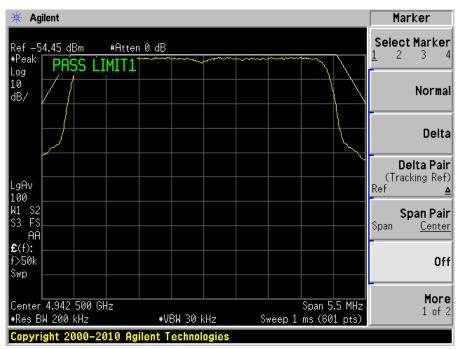

Low Channel Chain 0

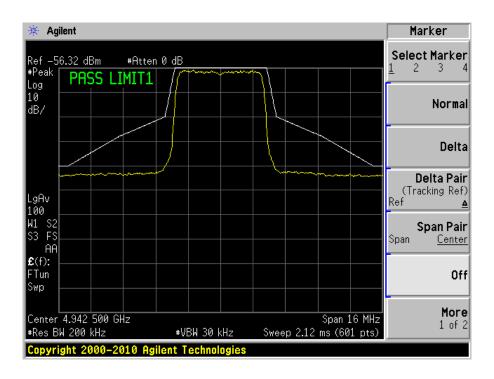


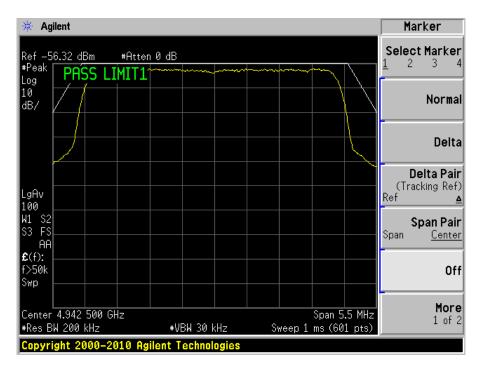
High Power Setting, Low Gain Antenna (9 dBi)

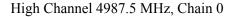
Low Channel Chain 0

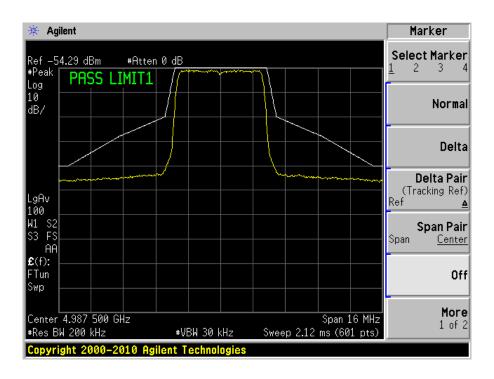


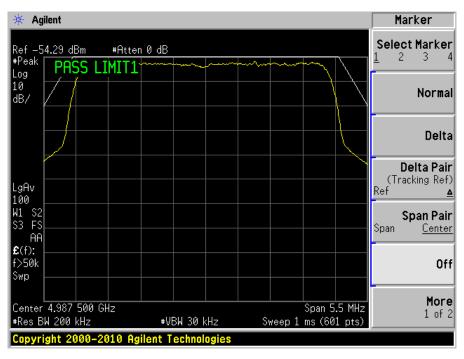


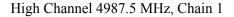

Emission Mask

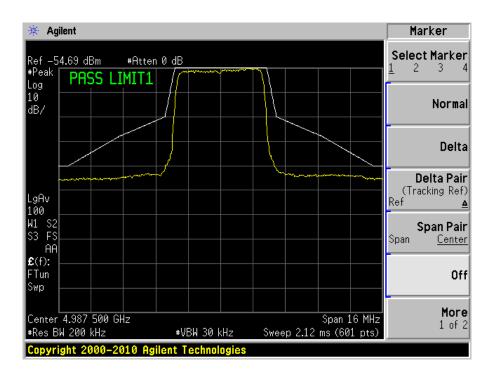

5 MHz Mode

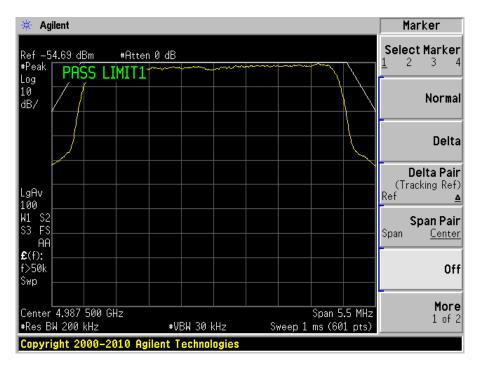

Low Power Setting, High Gain Antenna (28 dBi)

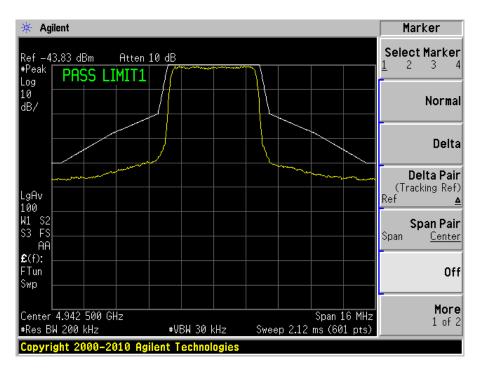


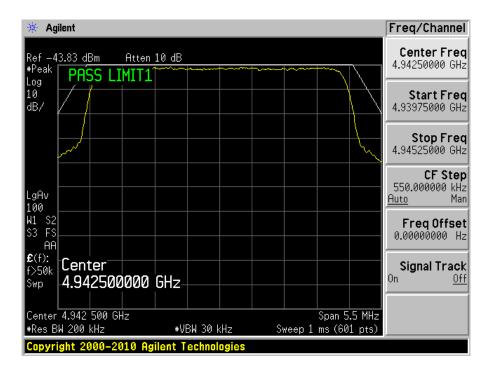


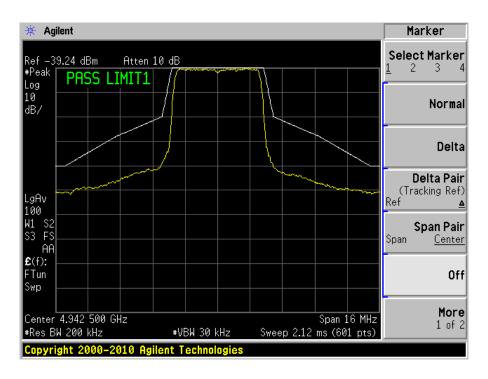


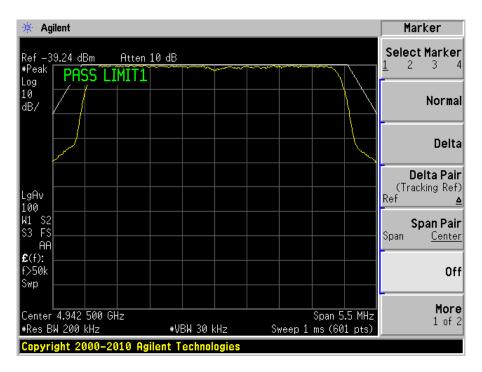


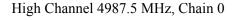


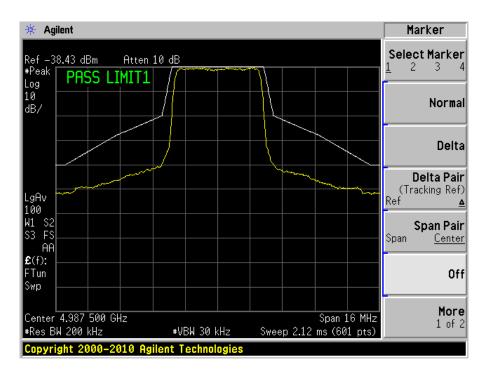


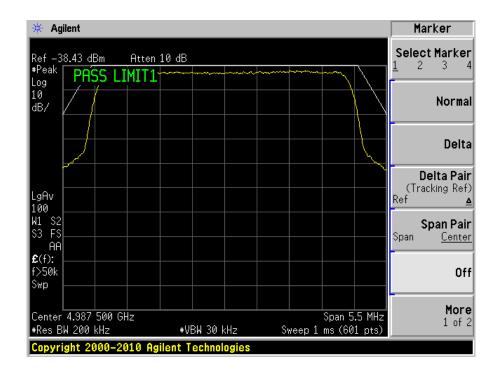




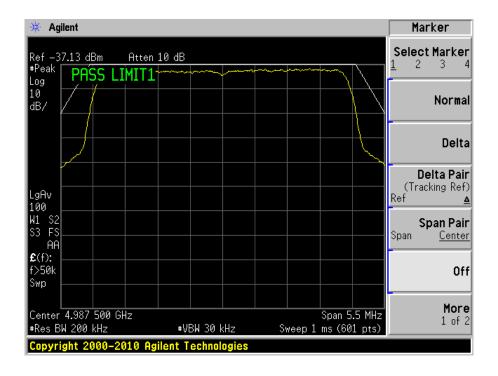


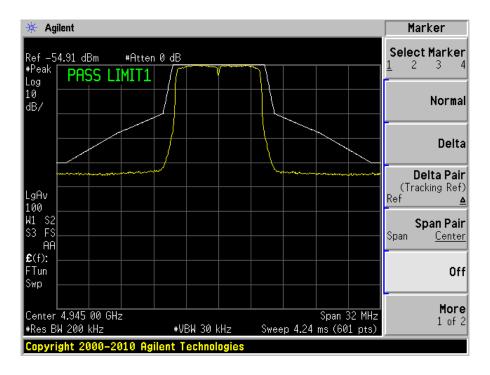

High Power Setting, Low Gain Antenna (9 dBi)

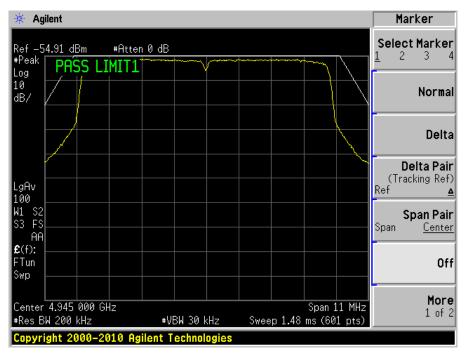


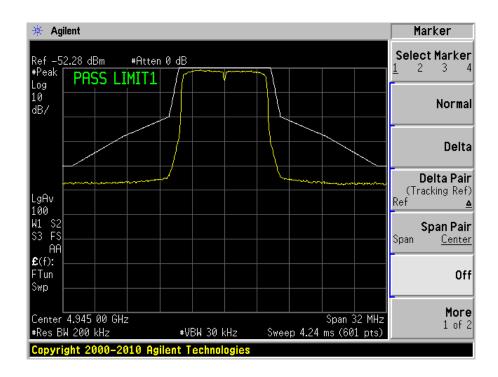


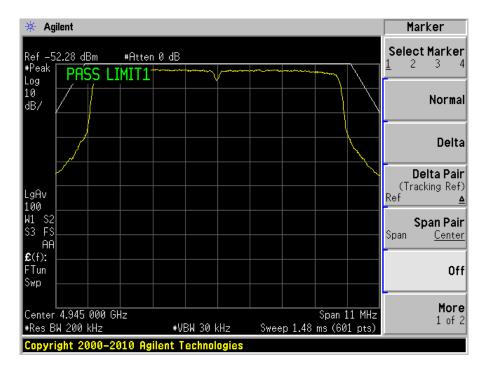




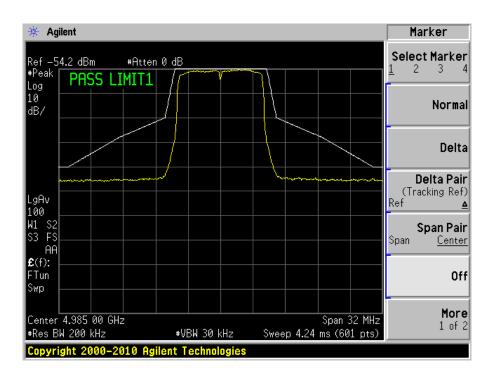

High Channel 4987.5 MHz, Chain 1

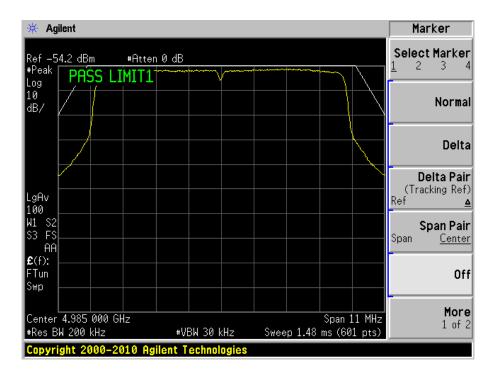


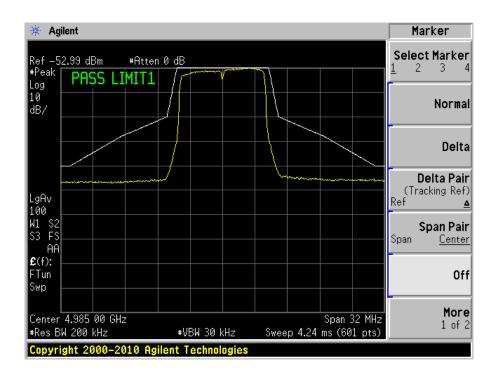


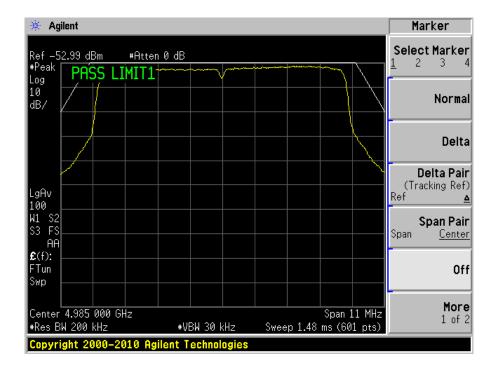

10 MHz Mode

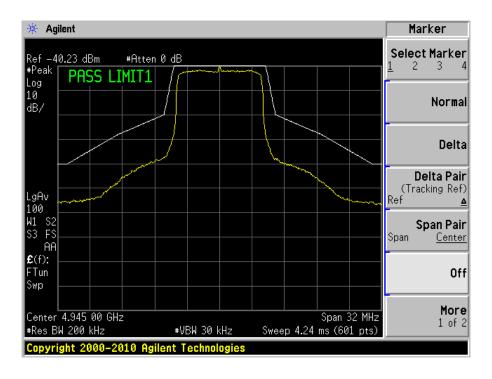
Low Power Setting, High Gain Antenna (28 dBi)

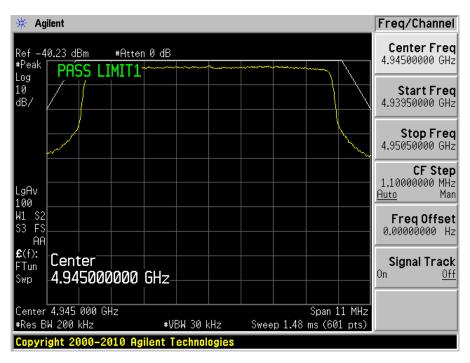


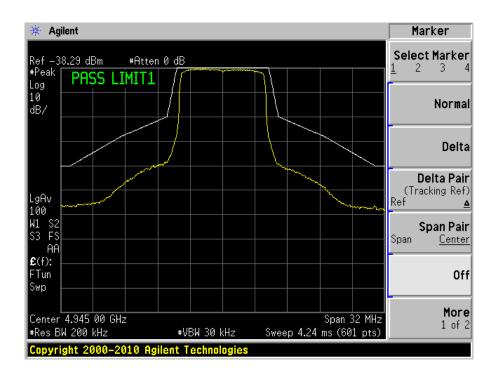


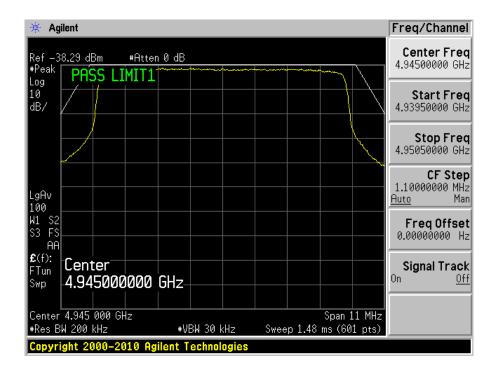


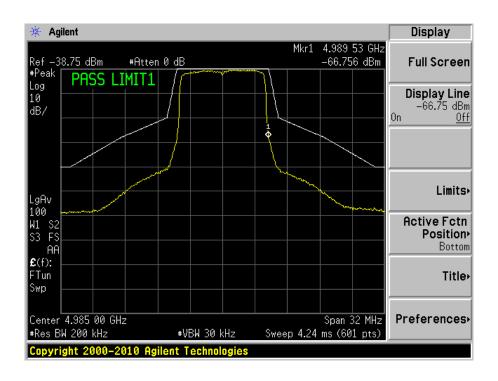

High Channel 4985 MHz, Chain 0

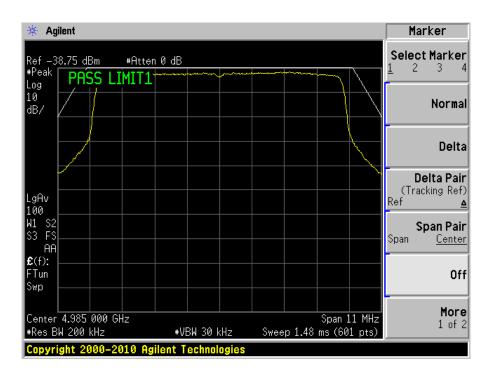


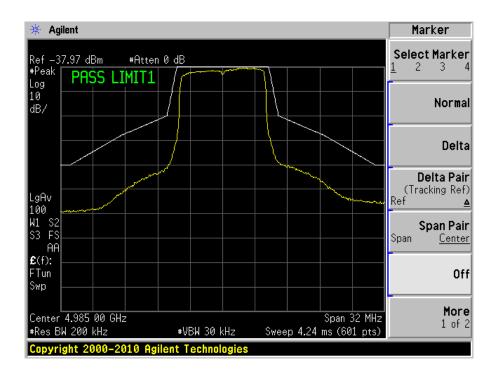


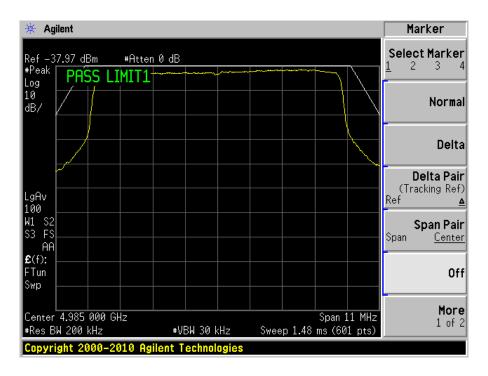

High Channel 4985 MHz, Chain 1



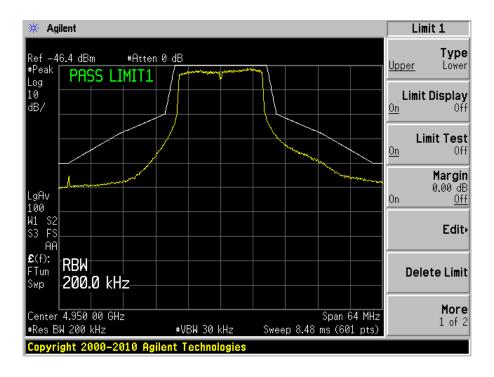


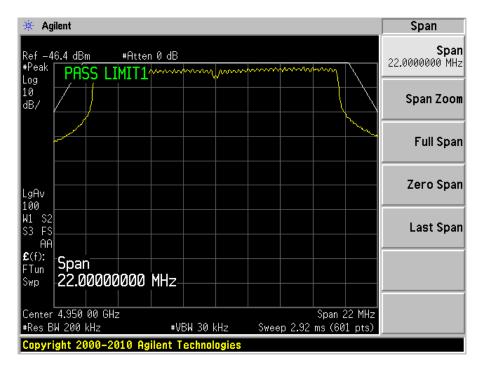


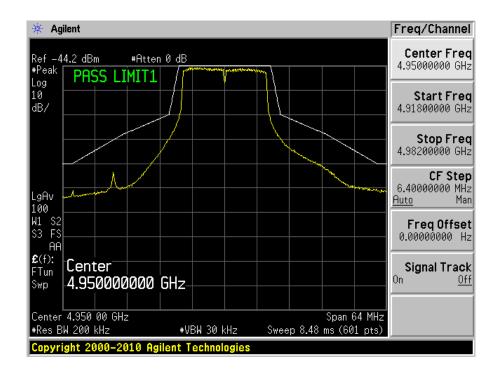


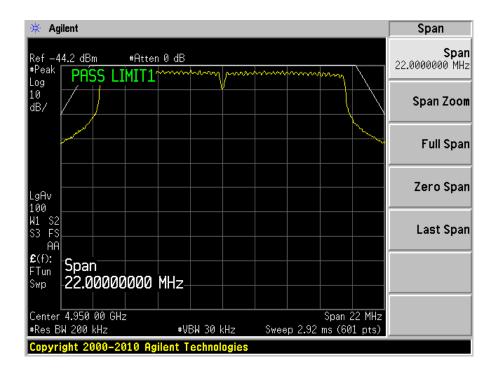

High Channel 4985MHz, Chain 0

High Channel 4985 MHz, Chain 1

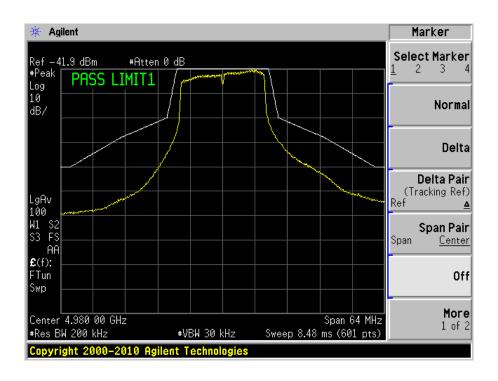


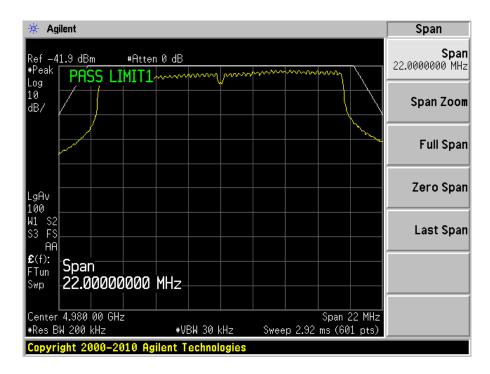


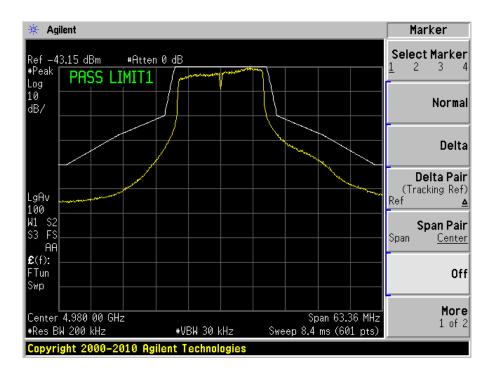

802.11a Mode

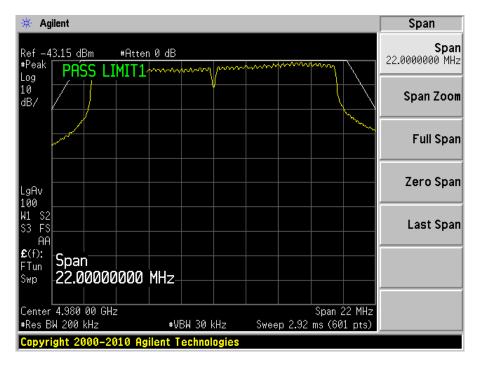

Low Power Setting, High Gain Antenna (28 dBi)

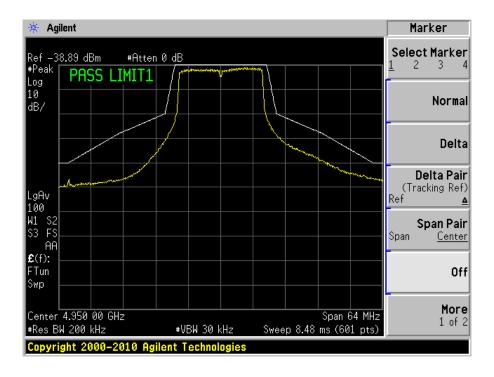
Low Channel 4950 MHz, Chain 0

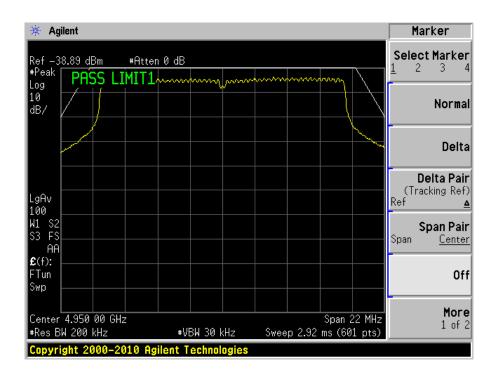


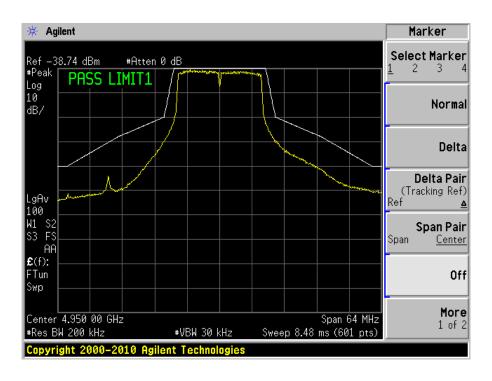


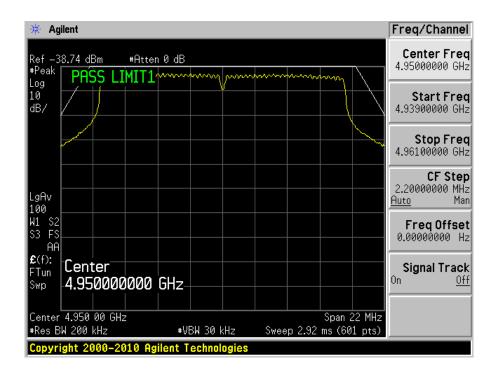


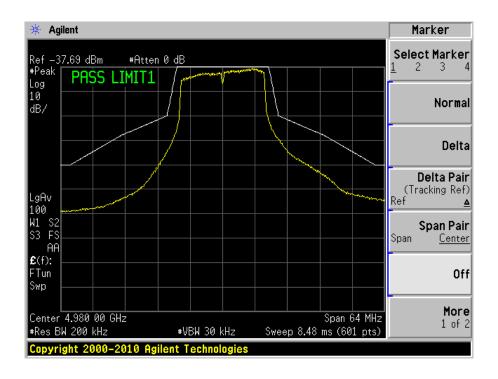

High Channel 4980 MHz, Chain 0

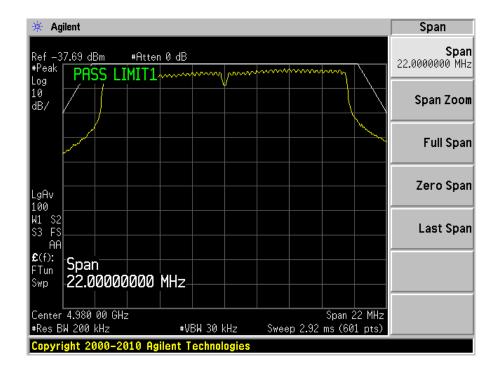


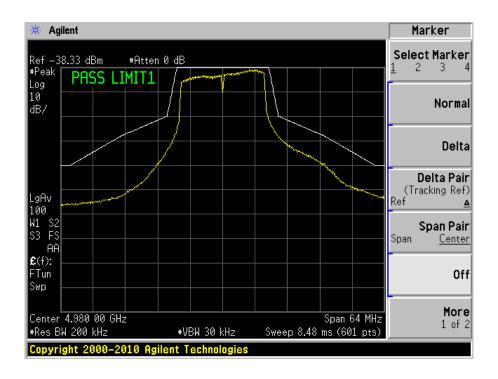


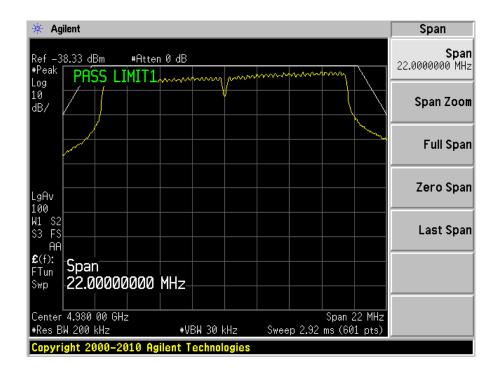

High Channel 4980 MHz, Chain 1

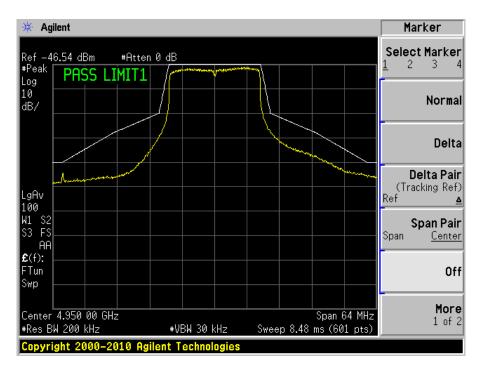


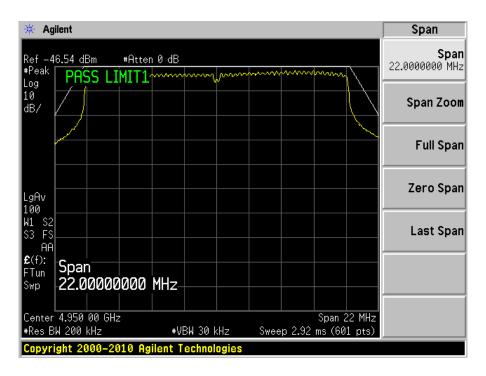


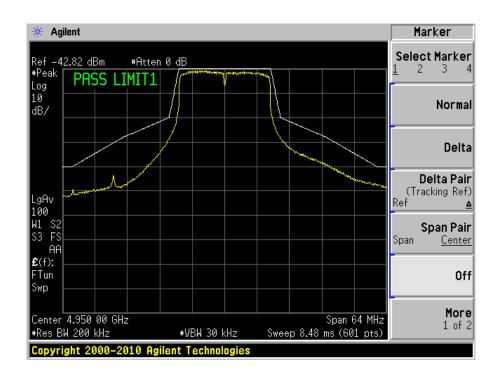


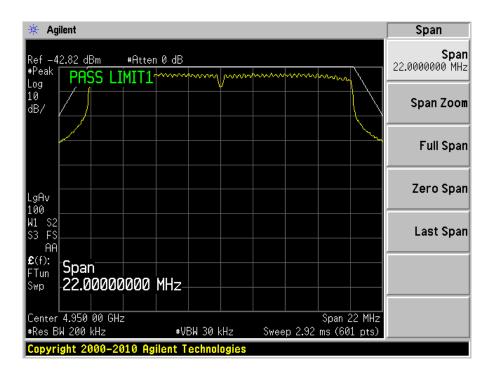



High Channel 4980 MHz, Chain 0

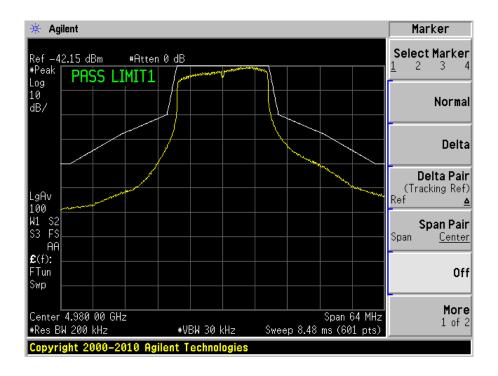

High Channel 4980 MHz, Chain 1

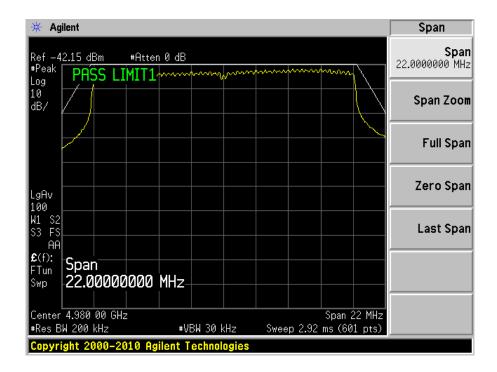


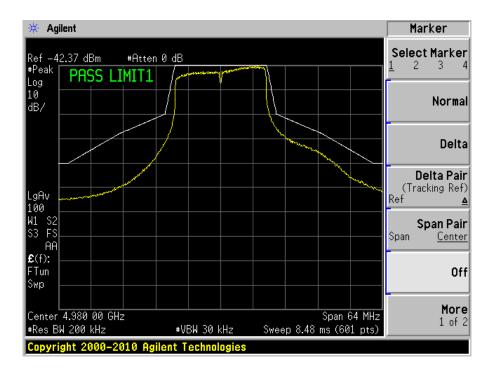


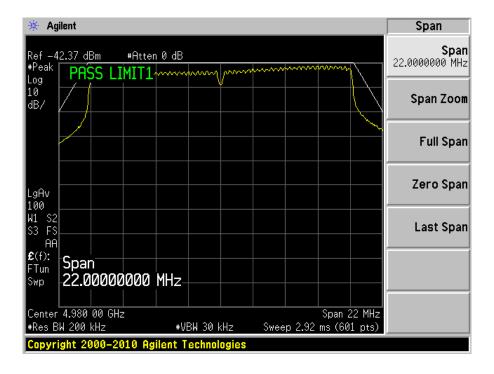

802.11n HT20 Mode

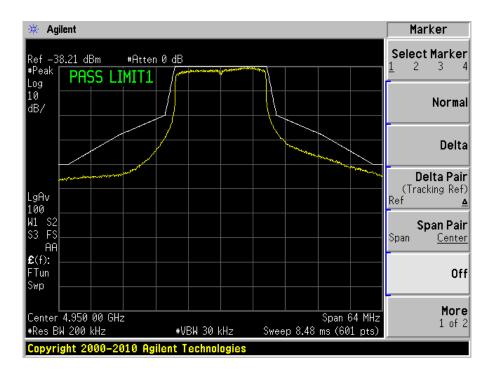
Low Power Setting, High Gain Antenna (28 dBi)

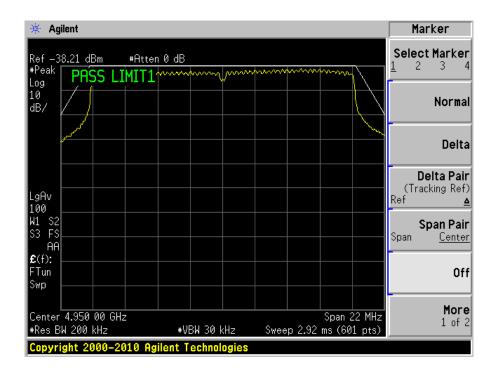


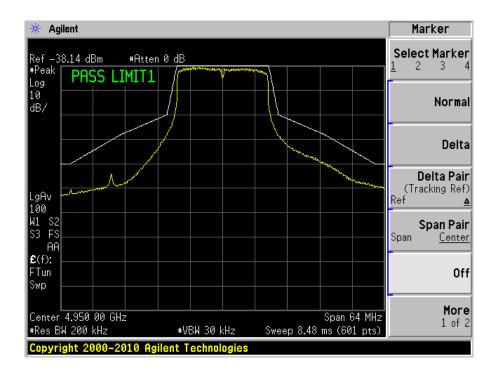


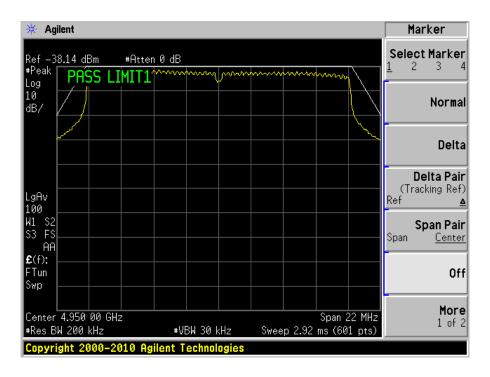


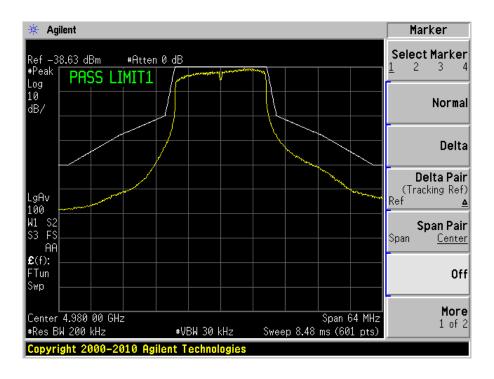

High Channel 4980 MHz, Chain 0

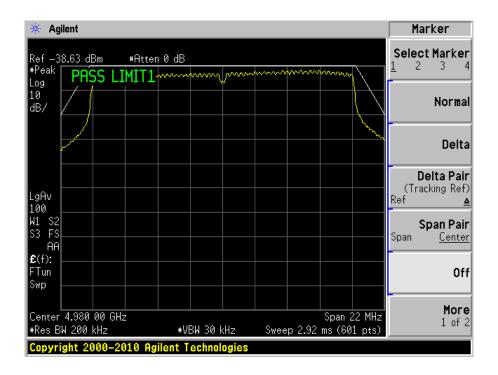


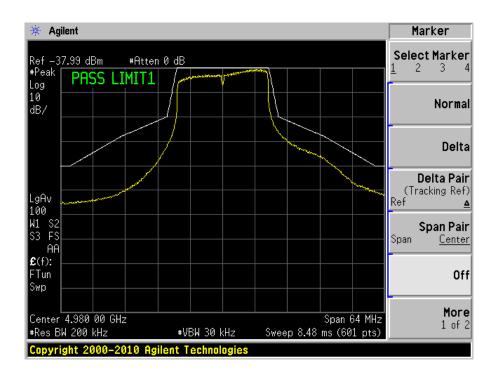


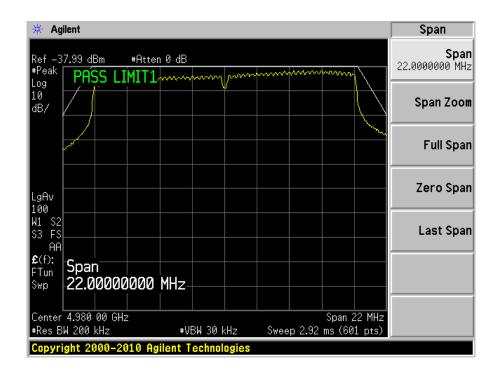

High Channel 4980 MHz, Chain 1










High Channel 4980 MHz, Chain 0

High Channel 4980 MHz, Chain 1

6 FCC §2.1051, §90.210 & IC RSS-111 §4.3, §5.4 – Spurious Emissions at Antenna Terminals

6.1 Applicable Standards

As per FCC §90.210 (I) Emission Mask L. For low power transmitters (20 dBm or less) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

- (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.
- (2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 219 log (% of (BW)/45) dB.
- (3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth: $10 + 242 \log (\% \text{ of (BW)/50) dB}$.
- (4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: $20 + 31 \log (\% \text{ of (BW)/55}) \text{ dB}$ attenuation.
- (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: $28 + 68 \log (\% \text{ of (BW)/100}) \text{ dB}$ attenuation.
- (6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

As per IC RSS-111 §5.4, Transmitter Unwanted Emissions,

Table 2 – Emission Mask for Low- and High-power Transmitters

Offset Frequency f _d (% of the	Minimum Attenuation (dB)				
Equipment's Channel Bandwidth)	Low-power Transmitter	High-power Transmitter			
$0 < f_d \le 45$	0	0			
$45 < f_d \le 50$	219 log (f _d /45)	568 log (f _d /45)			
$50 < f_d \le 55$	$10 + 242 \log (f_d/50)$	$26 + 145 \log (f_d/50)$			
$55 < f_d \le 100$	$20 + 31 \log (f_d/55)$	$32 + 31 \log (f_d/55)$			
$100 < f_d \le 150$	$28 + 68 \log (f_d/100)$	$40 + 57 \log (f_d/100)$			
		whichever is less stringent 50 or			
f _d > 150	40	55 + 10 log p			

Where: fd (%) = ((f-fc)/channel bandwidth)x100

p: transmitter's output power (in watts), measured as per Section 4.1 of IC RSS-111.

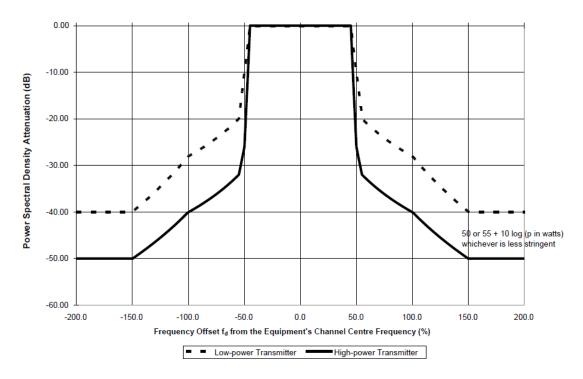
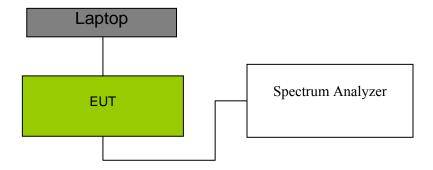



Figure 1: Unwanted Emission Mask for Low- and High-power Transmitters

6.2 Test Setup Block Diagram and Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz and 1 MHz. Sufficient scans were taken to show any out of band emissions up to 10^{th} harmonic.

6.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates	Calibration Cycle
Agilent	Spectrum Analyzer	E4446A	US44300386	2012-09-29	1 year

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

6.4 Test Environmental Conditions

Temperature:	22-24°C	
Relative Humidity:	50-55 %	
ATM Pressure:	101-102kPa	

The testing was performed by Wei Sun on 2013-06-04 on RF Site.

6.5 Test Results

5 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi) Worst Case: High Channel

Channel	Chain	Spur. Emission Reading (dBm)	Output power (dBm)	Limit (dBm)	Margin (dB)
High	Chain 0	-51.57	-7.66	-47.66	-3.91
High	Chain 1	-50.97	-6.03	-46.03	-4.56

High Power Setting, Low Gain Antenna (9 dBi) Worst Case: Low Channel

Channel	Chain	Spur. Emission Reading (dBm)	Output power (dBm)	Limit (dBm)	Margin (dB)
Low	Chain 0	-32.30	10.65	-29.35	-2.95
Low	Chain 1	-32.34	12.48	-27.52	-4.82

10 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi) Worst Case: High Channel

Channel	Chain	Spur. Emission Reading (dBm)	Output power (dBm)	Limit (dBm)	Margin (dB)
High	Chain 0	-50.58	-4.69	-44.69	-5.89
High	Chain 1	-47.78	-3.02	-43.02	-4.76

High Power Setting, Low Gain Antenna (9 dBi) Worst Case: Low Channel

Channel	Chain	Spur. Emission Reading (dBm)	Output power (dBm)	Limit (dBm)	Margin (dB)
Low	Chain 0	-32.80	13.45	-26.55	-6.25
Low	Chain 1	-31.64	15.49	-24.51	-7.13

802.11a Mode

Low Power Setting, High Gain Antenna (28 dBi) Worst Case: Low Channel

Channel	Chain	Spur. Emission Reading (dBm)	Total Output power (dBm)	Limit (dBm)	Margin (dB)
Low	Chain 0	-50.83	0.89	-39.11	11.72
Low	Chain 1	-50.54	0.89	-39.11	11.43

High Power Setting, Low Gain Antenna (9 dBi) Worst Case: High Channel

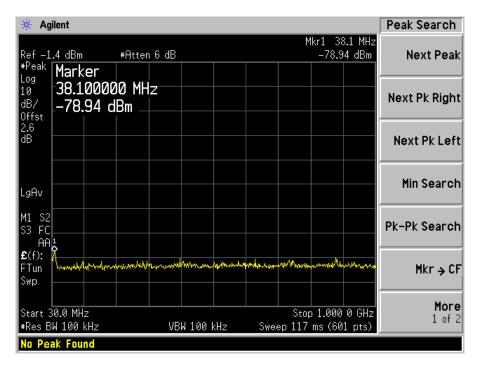
Channel	Chain	Spur. Emission Reading (dBm)	Total Output power (dBm)	Limit (dBm)	Margin (dB)
High	Chain 0	-28.12	18.76	-21.24	6.88
High	Chain 1	-29.15	18.76	-21.24	7.91

802.11n HT 20 mode

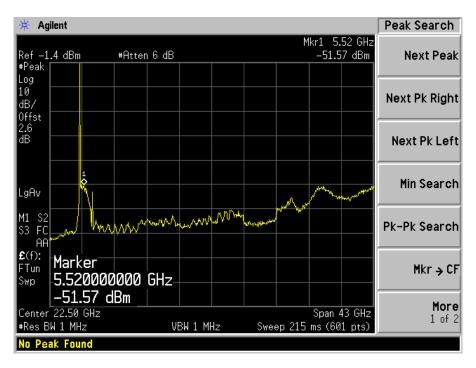
Low Power Setting, High Gain Antenna (28 dBi) Worst Case: Low Channel Chain 0

Channel	Chain	Spur. Emission Reading (dBm)	Total Output power (dBm)	Limit (dBm)	Margin (dB)
Low	Chain 0	-52.24	0.65	-40.65	11.59
Low	Chain 1	-51.67	0.65	-40.65	11.02

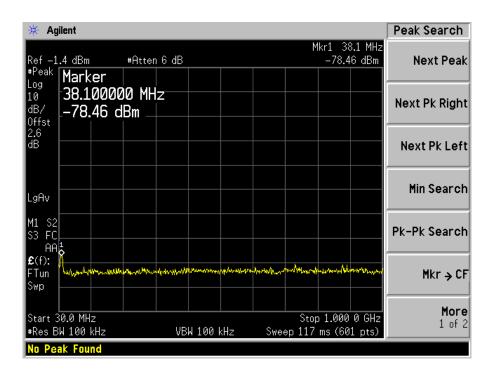
High Power Setting, Low Gain Antenna (9 dBi) Worst Case: Low Channel

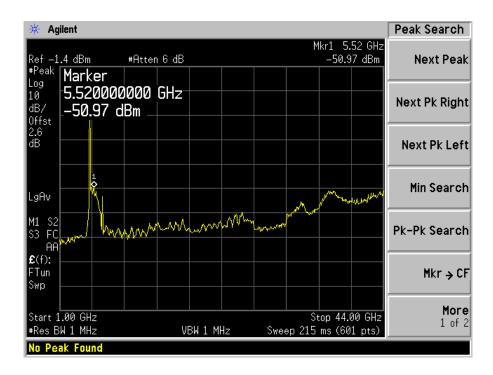

Channel	Chain	Spur. Emission Reading (dBm)	Output power (dBm)	Limit (dBm)	Margin (dB)
Low	Chain 0	-30.71	18.60	-21.4	9.31
Low	Chain 1	-30.01	18.60	-21.4	8.61

Please refer to the flowing plots.

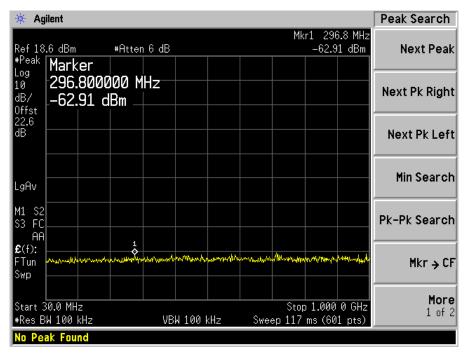

5 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi)


Below 1 GHz


Above 1 GHz

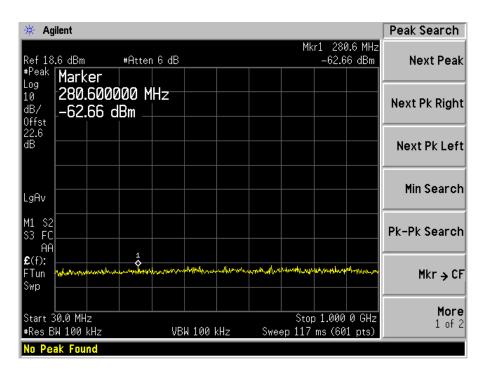
Worst Case: High Channel Chain 1
Below 1 GHz

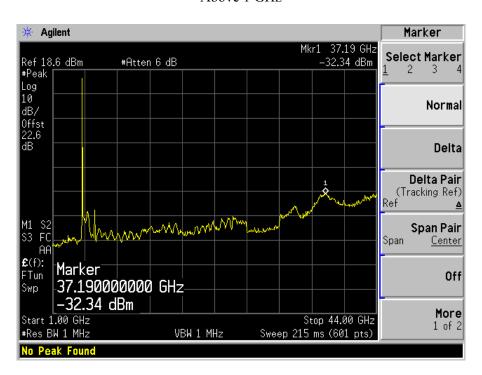


Above 1 GHz

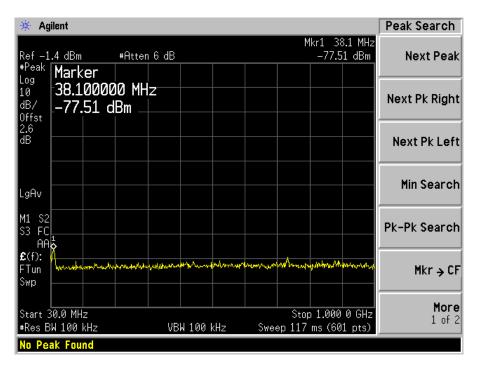


Worst Case: Low Channel Chain 0


Below 1 GHz

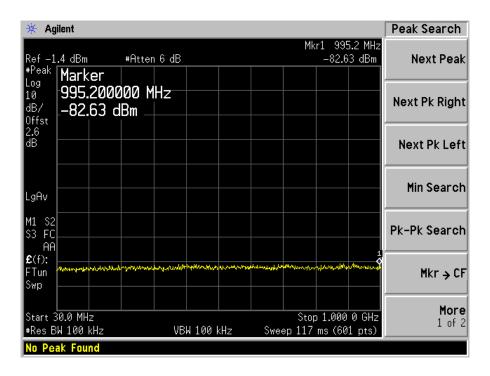

Above 1 GHz

Worst Case: Low Channel Chain 1 Below 1 GHz


Above 1 GHz

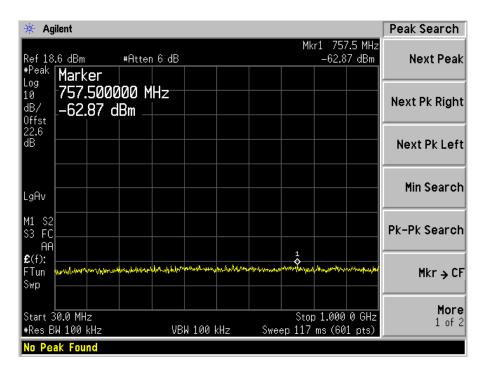
10 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi)

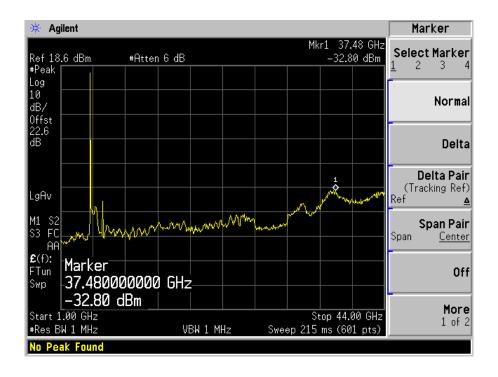

Below 1 GHz

Above 1 GHz

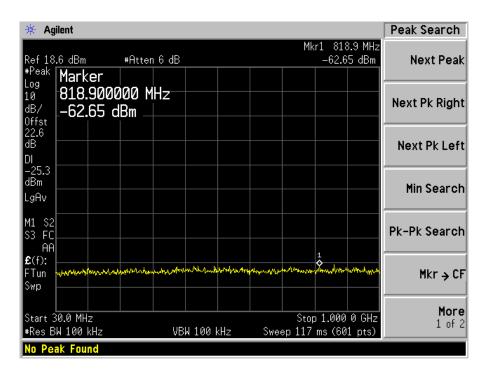
Below 1 GHz

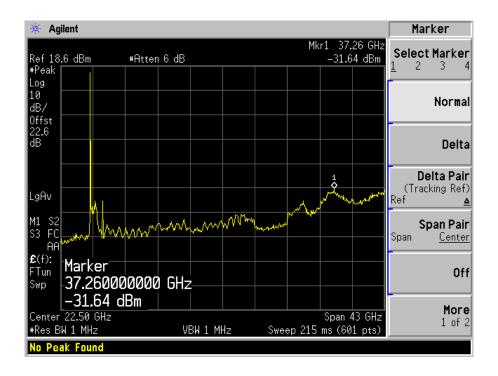


Above 1 GHz



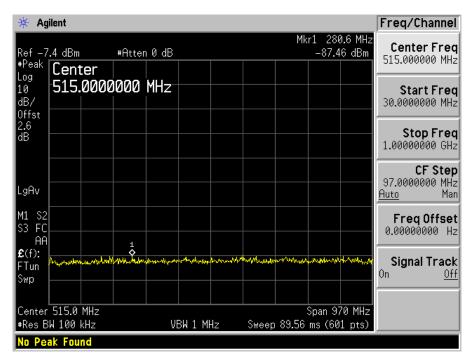
Worst Case: Low Channel Chain 0


Below 1 GHz

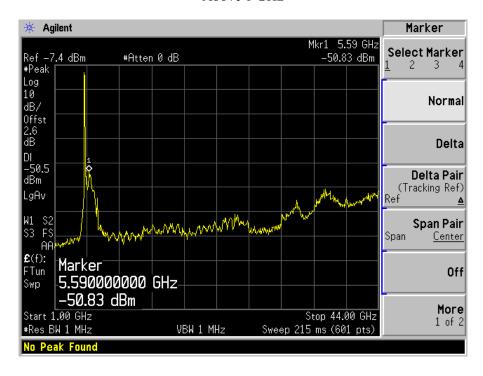

Above 1 GHz

Worst Case: Low Channel Chain 1
Below 1 GHz

Above 1 GHz

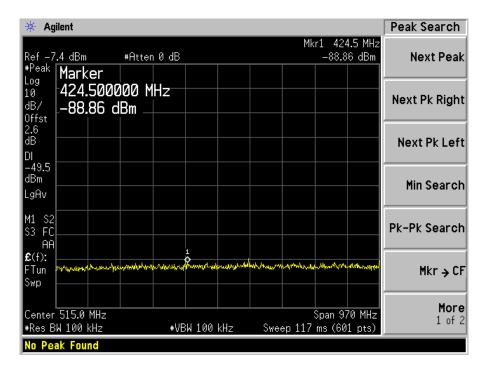


802.11a Mode


Low Power Setting, High Gain Antenna (28 dBi)

Worst Case: Low Channel Chain 0

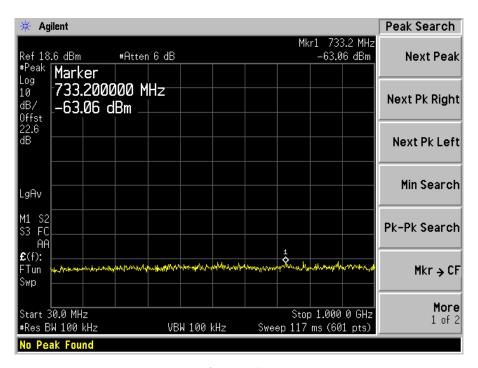
Below 1 GHz



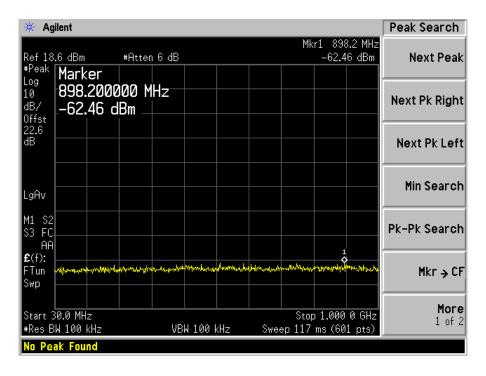
Above 1 GHz

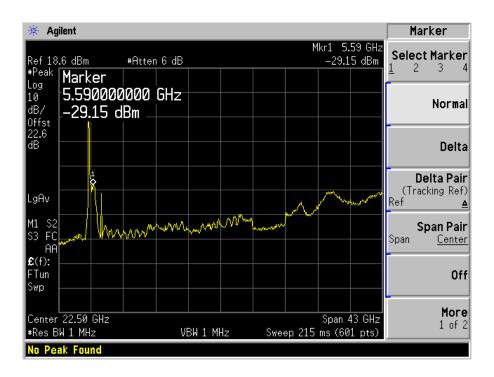


Worst Case: Low Channel Chain 1


Below 1 GHz

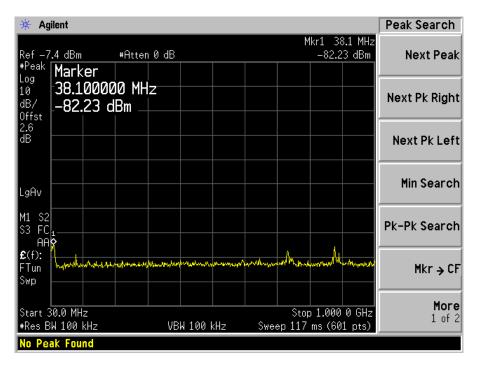
Above 1 GHz


Below 1 GHz


Above 1 GHz

Below 1 GHz

Above 1 GHz

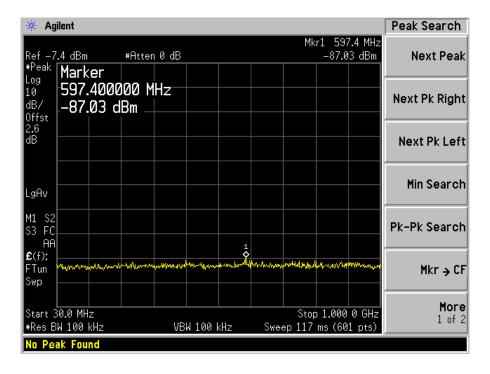


802.11n HT 20 mode

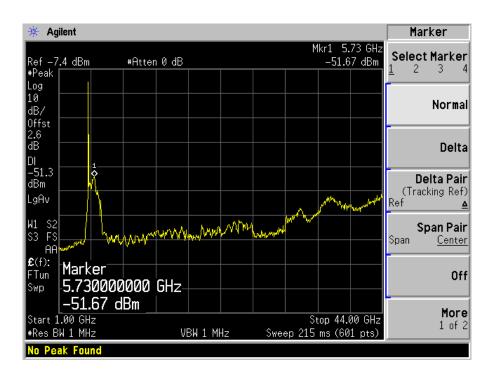
Low Power Setting, High Gain Antenna (28 dBi)

Worst Case: Low Channel Chain 0

Below 1 GHz

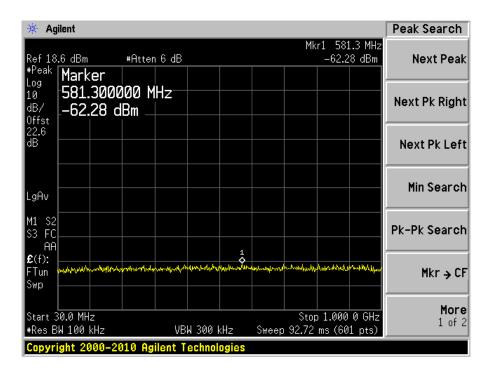


Above 1 GHz



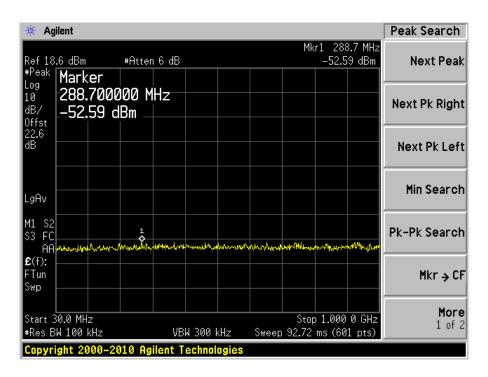
Worst Case: Low Channel Chain 1

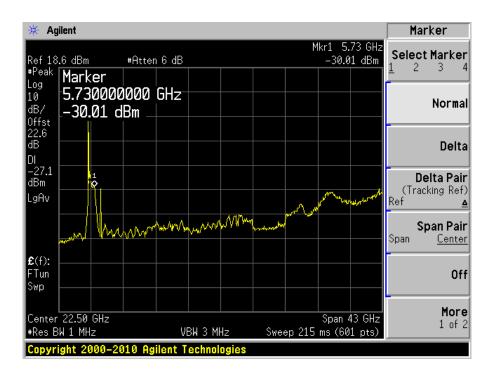
Below 1 GHz


Above 1 GHz


High Power Setting, Low Gain Antenna (9 dBi)

Worst Case: Low Channel Chain 0


Below 1 GHz


Above 1 GHz

Worst Case: Low Channel Chain 1 Below 1 GHz

Above 1 GHz

7 FCC §2.1053, §90.210 & IC RSS-111 §4.3, §5.4 – Field Strength of Spurious Radiations

7.1 Applicable Standards

As per FCC §2.1053 (a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. And §90.210(b),(d): Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (m) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating in the frequency bands governed under this part.

As per FCC §90.210 (l) Emission Mask L. For low power transmitters (20 dBm or less) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

- (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.
- (2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 219 log (% of (BW)/45) dB.
- (3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth: $10 + 242 \log (\% \text{ of (BW)/50}) \text{ dB}$.
- (4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: 20 + 31 log (% of (BW)/55) dB attenuation.
- (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: $28 + 68 \log (\% \text{ of (BW)/100}) \text{ dB}$ attenuation.
- (6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

As per IC RSS-111 §5.4, Transmitter Unwanted Emissions,

Table 2 – Emission Mask for Low- and High-power Transmitters

Offset Frequency f _d (% of the	Minimum Attenuation (dB)				
Equipment's Channel Bandwidth)	Low-power Transmitter	High-power Transmitter			
$0 < f_d \le 45$	0	0			
$45 < f_d \le 50$	219 log (f _d /45)	568 log (f _d /45)			
$50 < f_d \le 55$	$10 + 242 \log (f_d/50)$	$26 + 145 \log (f_d/50)$			
$55 < f_d \le 100$	$20 + 31 \log (f_d/55)$	$32 + 31 \log (f_d/55)$			
$100 < f_d \le 150$	$28 + 68 \log (f_d/100)$	$40 + 57 \log (f_d/100)$			
		whichever is less stringent			
		50 or			
$f_d > 150$	40	$55 + 10 \log p$			

Where: fd (%) = ((f-fc)/channel bandwidth)x100

p: transmitter's output power (in watts), measured as per Section 4.1 of IC RSS-111.

7.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

7.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Cycle
Agilent	Spectrum Analyzer	E4446A	US44300386	2012-09-29	1 year
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	N/R
Sunol Science Corp	Combination Antenna	JB3	A020106-3	2012-06-18	1 Year
Hewlett Packard	Pre-amplifier	8447D	2944A10187	2013-03-08	1 Year
EMCO	Horn antenna	3115	9511-4627	2012-10-17	1 Year
Eaton	Horn antenna	96001	3/1/1907	2012-10-17	1 Year
Mini-Circuits	Pre-amplifier	ZVA-183-S	570400946	2013-05-09	1 Year
Com-Power	Dipole Antenna	AD-100	2226	2012-06-18	1 Year

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

7.4 Test Environmental Conditions

Temperature:	22-24°C
Relative Humidity:	50-55 %
ATM Pressure:	101-102kPa

The testing was performed by Wei Sun on 2013-06-04 in 5 Meter Chamber #2.

7.5 Test Results

5 MHz Mode

Worst Case: High Power Setting, Low Gain Antenna (9 dBi), Low Channel

Indic	ated	Turntable	Test A	Antenna		Substituted					
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Cord. (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
7000	30	0	155	V	7000	-61.28	11.11	1.41	-51.58	-27.52	-24.06
7000	30	0	155	Н	7000	-61.28	11.11	1.41	-51.58	-27.52	-24.06
43.85	58.67	201	157	V	43.85	-57.53	0	0.1	-57.63	-27.52	-30.11
43.85	38.33	317	163	Н	43.85	-77.87	0	0.1	-77.97	-27.52	-50.45

10 MHz Mode

Worst Case: High Power Setting, Low Gain Antenna (9 dBi), Low Channel

Indic	ated	Turntable	Test Antenna Substituted								
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Cord. (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
7000	30	0	155	V	7000	-61.28	11.11	1.41	-51.58	-24.51	-27.07
7000	30	0	155	Н	7000	-61.28	11.11	1.41	-51.58	-24.51	-27.07
43.85	57.91	211	155	V	43.85	-58.29	0	0.1	-58.39	-24.51	-33.88
43.85	38.01	313	169	Н	43.85	-78.19	0	0.1	-78.29	-24.51	-53.78

802.11a Mode

Worst Case: High Power Setting, Low Gain Antenna (9 dBi), High Channel

Indic	ated	Turntable	Test A	Antenna Substituted							
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Cord. (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
7000	30	0	155	V	7000	-61.28	11.11	1.41	-51.58	-21.24	-30.34
7000	30	0	155	Н	7000	-61.28	11.11	1.41	-51.58	-21.24	-30.34
43.85	58.55	207	161	V	43.85	-57.65	0	0.1	-57.75	-21.24	-36.51
43.85	38.61	305	167	Н	43.85	-77.59	0	0.1	-77.69	-21.24	-56.45

802.11n HT20 Mode

Worst Case: High Power Setting, Low Gain Antenna (9 dBi), Low Channel

Indic	ated	Turntable	Test A	Antenna	na Substituted						
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Cord. (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
7000	30	0	155	V	7000	-61.28	11.11	1.41	-51.58	-21.4	-30.18
7000	30	0	155	Н	7000	-61.28	11.11	1.41	-51.58	-21.4	-30.18
43.85	58.60	215	154	V	43.85	-57.6	0	0.1	-57.7	-21.4	-36.30
43.85	38.17	309	164	Н	43.85	-78.03	0	0.1	-78.13	-21.4	-56.73

Note: On any frequency removed from the assigned frequency above 150% of the authorized bandwidth must be attenuated 40 dB from the fundamental.

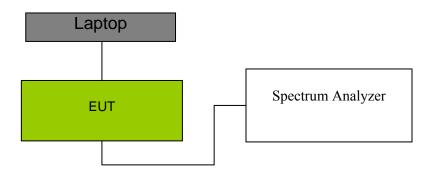
8 FCC §90.1215 – Peak Excursion Ratio

8.1 Applicable Standards

As per FCC §90.1215(e), the ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

8.2 Test Setup Block Diagram and Test Procedure

Set the spectrum analyzer span to view the entire emission bandwidth.


The largest difference between the following two traces must be \leq 13 dB for all frequencies across the emission bandwidth. Submit a plot.

1st Trace:

• Set RBW = 1 MHz, VBW \geq 3 MHz with peak detector and max-hold settings.

2nd Trace:

• Set RBW = 1 MHz, $VBW \ge 3$ MHz with Average detector, 100 average traces and max-hold settings.

8.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates	Calibration Cycle
Agilent	Spectrum Analyzer	E4446A	US44300386	2012-09-29	1 year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

8.4 Test Environmental Conditions

Report Number: R1302222-90

Temperature:	22-24 °C
Relative Humidity:	50-55 %
ATM Pressure:	101-102 kPa

The testing was performed by Wei Sun on 2013-06-03 on RF Site.

8.5 Test Results

5 MHz Mode

Worst Case: High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency (MHz)	Chain 0 (dB)	Chain 1 (dB)	Limit (dBm)
Low	4947.5	12.723	11.881	13

10 MHz Mode

Worst Case: High Power Setting, Low Gain Antenna (9 dBi) Mode

Channel	Frequency	Chain 0	Chain 1	Limit
	(MHz)	(dB)	(dB)	(dBm)
Low	4950	10.541	10.642	13

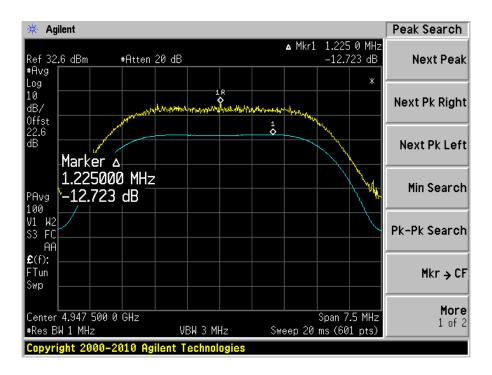
802.11a Mode

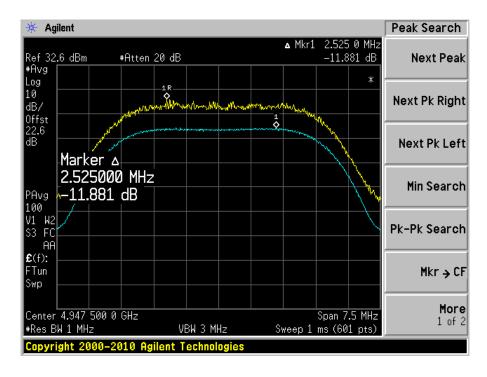
Worst Case: High Power Setting, Low Gain Antenna (9 dBi) Mode

Channel	Frequency (MHz)	Chain 0 (dB)	Chain 1 (dB)	Limit (dBm)
High	4975	9.605	9.179	13

802.11n HT20 mode

Worst Case: High Power Setting, Low Gain Antenna (9 dBi) Mode

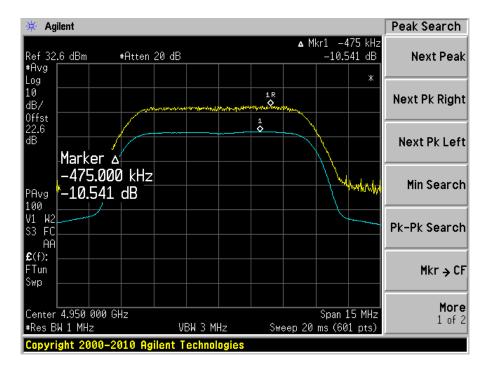

Channel	Frequency (MHz)	Chain 0 (dB)	Chain 1 (dB)	Limit (dBm)
Low	4955	8.697	9.141	13

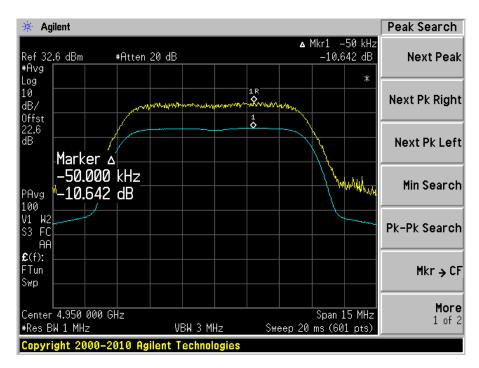

Please refer to the following plots.

5 MHz Mode

High Power Setting, Low Gain Antenna (9 dBi)

Low Channel Chain 0

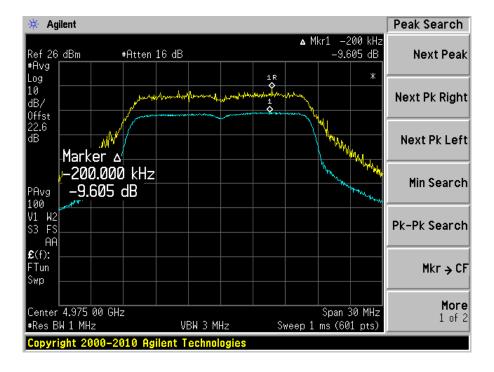


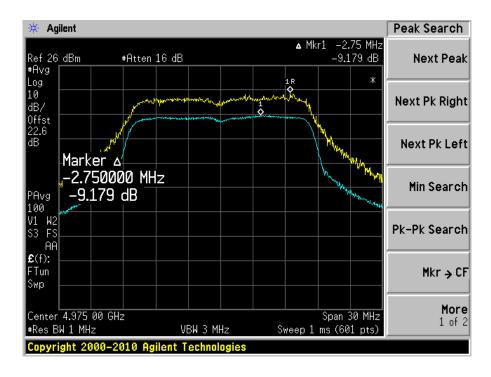


10 MHz Mode

High Power Setting, Low Gain Antenna (9 dBi)

Low Channel Chain 0

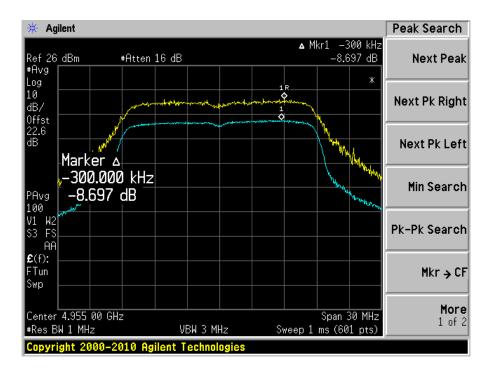


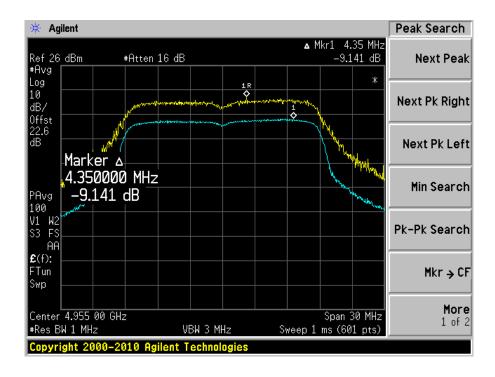


802.11a Mode

High Power Setting, Low Gain Antenna (9 dBi)

High Channel Chain 0





802.11n HT20 Mode

High Power Setting, Low Gain Antenna (9 dBi)

Low Channel Chain 0

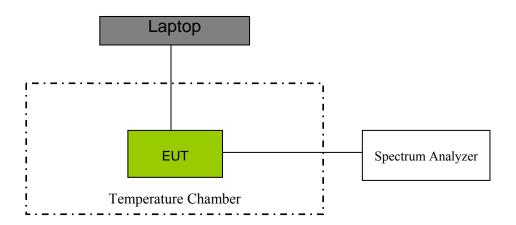
9 FCC §2.1055, §90.213 & IC §5.2 – Frequency Stability

9.1 Applicable Standards

FCC §90.213

For frequency range above 2450 MHz: Except for DSRCS equipment in the 5850-5925 MHz band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5850-5925 MHz band is specified in subpart M of this part

IC RSS-111§5.2


The applicant shall ensure frequency stability by showing that the occupied bandwidth is maintained within the band of operation when tested at the temperature and supply voltage variations specified for the frequency stability measurement in RSS-Gen.

9.2 Test Setup Block Diagram and Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to the Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 115% and 85% of the nominal value. The output frequency was recorded for each voltage

9.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates	Calibration Cycle
Agilent	Spectrum Analyzer	E4446A	US44300386	2012-09-29	1 year
Espec	Temperature Chamber	ESL-4CA	18010	2013-02-07	1 Year

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	22-24 °C	
Relative Humidity:	50-55 %	
ATM Pressure:	101-102 kPa	

The testing was performed by Wei Sun on 2013-06-03 on RF Site.

9.5 Test Results

5 MHz Mode

Low Channel, 4942.5 MHz Chain 0

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4940.127000	Pass
120 Vac20 °C	4940.137200	Pass
120 Vac10 °C	4940.127216	Pass
120 Vac. 0 °C	4940.129720	Pass
120 Vac. 10 °C	4940.122900	Pass
120 Vac. 20 °C	4940.122100	Pass
120 Vac. 30 °C	4940.121000	Pass
120 Vac. 40 °C	4940.123910	Pass
120 Vac. 50 °C	4940.126700	Pass
102 Vac. 25 °C	4940.121040	Pass
138 Vac. 25 °C	4940.121240	Pass

Low Channel, 4942.5 MHz Chain 1

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4940.127100	Pass
120 Vac20 °C	4940.123120	Pass
120 Vac10 °C	4940.121250	Pass
120 Vac. 0 °C	4940.127210	Pass
120 Vac. 10 °C	4940.121088	Pass
120 Vac. 20 °C	4940.123720	Pass
120 Vac. 30 °C	4940.126700	Pass
120 Vac. 40 °C	4940.137200	Pass
120 Vac. 50 °C	4940.118800	Pass
102 Vac. 25 °C	4940.116200	Pass
138 Vac. 25 °C	4940.119600	Pass

High Channel, 4987.5 MHz Chain 0

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4989.820000	Pass
120 Vac20 °C	4989.832000	Pass
120 Vac10 °C	4989.806200	Pass
120 Vac. 0 °C	4989.885000	Pass
120 Vac. 10 °C	4989.802330	Pass
120 Vac. 20 °C	4989.804710	Pass
120 Vac. 30 °C	4989.887100	Pass
120 Vac. 40 °C	4989.801080	Pass
120 Vac. 50 °C	4989.909200	Pass
102 Vac. 25 °C	4989.902620	Pass
138 Vac. 25 °C	4989.900500	Pass

High Channel, 4987.5 MHz Chain 1

Environment Condition	Measured Frequency (MHz)	Limit (<4990 MHz)
120 Vac30 °C	4989.803880	Pass
120 Vac20 °C	4989.807100	Pass
120 Vac10 °C	4989.894600	Pass
120 Vac. 0 °C	4989.802900	Pass
120 Vac. 10 °C	4989.835400	Pass
120 Vac. 20 °C	4989.805250	Pass
120 Vac. 30 °C	4989.801540	Pass
120 Vac. 40 °C	4989.806750	Pass
120 Vac. 50 °C	4989.888000	Pass
102 Vac. 25 °C	4989.801420	Pass
138 Vac. 25 °C	4989.879200	Pass

10 MHz Mode

Low Channel, 4945 MHz Chain 0

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4940.470000	Pass
120 Vac20 °C	4940.596700	Pass
120 Vac10 °C	4940.404270	Pass
120 Vac. 0 °C	4940.499600	Pass
120 Vac. 10 °C	4940.488700	Pass
120 Vac. 20 °C	4940.472010	Pass
120 Vac. 30 °C	4940.421600	Pass
120 Vac. 40 °C	4940.481840	Pass
120 Vac. 50 °C	4940.491830	Pass
102 Vac. 25 °C	4940.478000	Pass
138 Vac. 25 °C	4940.482160	Pass

Low Channel, 4945 MHz Chain 1

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4940.498800	Pass
120 Vac20 °C	4940.425600	Pass
120 Vac10 °C	4940.433800	Pass
120 Vac. 0 °C	4940.444900	Pass
120 Vac. 10 °C	4940.413000	Pass
120 Vac. 20 °C	4940.484500	Pass
120 Vac. 30 °C	4940.496070	Pass
120 Vac. 40 °C	4940.489800	Pass
120 Vac. 50 °C	4940.497310	Pass
102 Vac. 25 °C	4940.436100	Pass
138 Vac. 25 °C	4940.441510	Pass

High Channel, 4985 MHz Chain 0

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4989.530000	Pass
120 Vac20 °C	4989.544500	Pass
120 Vac10 °C	4989.544700	Pass
120 Vac. 0 °C	4989.470700	Pass
120 Vac. 10 °C	4989.500040	Pass
120 Vac. 20 °C	4989.488900	Pass
120 Vac. 30 °C	4989.504100	Pass
120 Vac. 40 °C	4989.499350	Pass
120 Vac. 50 °C	4989.481700	Pass
102 Vac. 25 °C	4989.433210	Pass
138 Vac. 25 °C	4989.485700	Pass

High Channel, 4985 MHz Chain 1

Environment Condition	Measured Frequency (MHz)	Limit (<4990 MHz)
120 Vac30 °C	4989.524100	Pass
120 Vac20 °C	4989.498860	Pass
120 Vac10 °C	4989.499470	Pass
120 Vac. 0 °C	4989.490700	Pass
120 Vac. 10 °C	4989.500400	Pass
120 Vac. 20 °C	4989.488900	Pass
120 Vac. 30 °C	4989.500140	Pass
120 Vac. 40 °C	4989.499350	Pass
120 Vac. 50 °C	4989.481700	Pass
102 Vac. 25 °C	4989.492810	Pass
138 Vac. 25 °C	4989.487720	Pass

802.11a Mode

Low Channel, 4950 MHz Chain 0

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4940.761000	Pass
120 Vac20 °C	4940.700370	Pass
120 Vac10 °C	4940.756500	Pass
120 Vac. 0 °C	4940.699470	Pass
120 Vac. 10 °C	4940.701180	Pass
120 Vac. 20 °C	4940.700280	Pass
120 Vac. 30 °C	4940.702070	Pass
120 Vac. 40 °C	4940.699670	Pass
120 Vac. 50 °C	4940.702470	Pass
102 Vac. 25 °C	4940.700890	Pass
138 Vac. 25 °C	4940.703500	Pass

Low Channel, 4950 MHz Chain 1

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4940.704600	Pass
120 Vac20 °C	4940.709800	Pass
120 Vac10 °C	4940.695500	Pass
120 Vac. 0 °C	4940.722000	Pass
120 Vac. 10 °C	4940.704030	Pass
120 Vac. 20 °C	4940.708500	Pass
120 Vac. 30 °C	4940.699800	Pass
120 Vac. 40 °C	4940.696260	Pass
120 Vac. 50 °C	4940.701630	Pass
102 Vac. 25 °C	4940.702200	Pass
138 Vac. 25 °C	4940.703290	Pass

High Channel, 4980 MHz Chain 0

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4989.910900	Pass
120 Vac20 °C	4989.901124	Pass
120 Vac10 °C	4989.901210	Pass
120 Vac. 0 °C	4989.906700	Pass
120 Vac. 10 °C	4989.902290	Pass
120 Vac. 20 °C	4989.902790	Pass
120 Vac. 30 °C	4989.919732	Pass
120 Vac. 40 °C	4989.901120	Pass
120 Vac. 50 °C	4989.901250	Pass
102 Vac. 25 °C	4989.901040	Pass
138 Vac. 25 °C	4989.901420	Pass

High Channel, 4980 MHz Chain 1

Environment Condition	Measured Frequency (MHz)	Limit (<4990 MHz)
120 Vac30 °C	4989.902710	Pass
120 Vac20 °C	4989.901960	Pass
120 Vac10 °C	4989.902670	Pass
120 Vac. 0 °C	4989.900880	Pass
120 Vac. 10 °C	4989.901080	Pass
120 Vac. 20 °C	4989.901670	Pass
120 Vac. 30 °C	4989.903120	Pass
120 Vac. 40 °C	4989.901620	Pass
120 Vac. 50 °C	4989.902380	Pass
102 Vac. 25 °C	4989.900420	Pass
138 Vac. 25 °C	4989.903920	Pass

802.11n HT20 Mode

Low Channel 4950 MHz Chain 0

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4940.121000	Pass
120 Vac20 °C	4940.120321	Pass
120 Vac10 °C	4940.122330	Pass
120 Vac. 0 °C	4940.119871	Pass
120 Vac. 10 °C	4940.191200	Pass
120 Vac. 20 °C	4940.190050	Pass
120 Vac. 30 °C	4940.119850	Pass
120 Vac. 40 °C	4940.120620	Pass
120 Vac. 50 °C	4940.124710	Pass
102 Vac. 25 °C	4940.120108	Pass
138 Vac. 25 °C	4940.120262	Pass

Low Channel 4950 MHz Chain 1

Environment Condition	Measured Frequency (MHz)	Limit (> 4940 MHz)
120 Vac30 °C	4940.120388	Pass
120 Vac20 °C	4940.120710	Pass
120 Vac10 °C	4940.119460	Pass
120 Vac. 0 °C	4940.129600	Pass
120 Vac. 10 °C	4940.120354	Pass
120 Vac. 20 °C	4940.125250	Pass
120 Vac. 30 °C	4940.120154	Pass
120 Vac. 40 °C	4940.123750	Pass
120 Vac. 50 °C	4940.198800	Pass
102 Vac. 25 °C	4940.120142	Pass
138 Vac. 25 °C	4940.197920	Pass

High Channel 4980 MHz Chain 0

Environment Condition	Measured Frequency (MHz)	Limit (<4990 MHz)
120 Vac30 °C	4989.109010	Pass
120 Vac20 °C	4989.104200	Pass
120 Vac10 °C	4989.109670	Pass
120 Vac. 0 °C	4989.099960	Pass
120 Vac. 10 °C	4989.108870	Pass
120 Vac. 20 °C	4989.101020	Pass
120 Vac. 30 °C	4989.102160	Pass
120 Vac. 40 °C	4989.101830	Pass
120 Vac. 50 °C	4989.102430	Pass
102 Vac. 25 °C	4989.098780	Pass
138 Vac. 25 °C	4989.103100	Pass

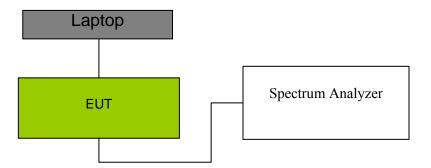
High Channel 4980 MHz Chain 1

Environment Condition	Measured Frequency (MHz)	Limit (<4990 MHz)
120 Vac30 °C	4989.099880	Pass
120 Vac20 °C	4989.102560	Pass
120 Vac10 °C	4989.103320	Pass
120 Vac. 0 °C	4989.100490	Pass
120 Vac. 10 °C	4989.101300	Pass
120 Vac. 20 °C	4989.098450	Pass
120 Vac. 30 °C	4989.099607	Pass
120 Vac. 40 °C	4989.108980	Pass
120 Vac. 50 °C	4989.099710	Pass
102 Vac. 25 °C	4989.103610	Pass
138 Vac. 25 °C	4989.104151	Pass

10 FCC §2.1046, §90.1215 & IC RSS-111 §5.3 – Power Spectral Density

10.1 Applicable Standards

FCC §90.1215


(b) Low power devices are also limited to a peak power spectral density of 8 dBm per one MHz. Low power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 8 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi.

IC RSS-111§5.3

High-and low-power devices are also limited to a maximum power spectral density of 21 dBm/MHz and 8 dBm/MHz respectively. Devices using channel bandwidths other than those listed in Table 1 are permitted; however, the channel bandwidth shall not exceed 20 MHz and the devices shall comply with the maximum power spectral density limits of 21 dBm/MHz for high-power transmitters and 8 dBm/MHz for low-power transmitters. See SP 4940 MHz for antenna gain limits and operational restrictions for the device.

10.2 Test Setup Block Diagram and Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

10.3 Test Equipment List and Details

Manufacturers	Descriptions	Models Serial Numbers		Calibration Dates	Calibration Cycle
Agilent	Spectrum Analyzer	E4446A	US44300386	2012-09-29	1 year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	50-55 %
ATM Pressure:	101-102 kPa

The testing was performed by Wei Sun on 2013-06-03 on RF Site.

10.5 Test Results

5 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency (MHz)	Chain 0 PDS (dBm)	Chain 1 PDS (dBm)	Highest PSD (dBm)	Limit (dBm)	Margin (dB)
Low	4947.5	-13.86	-12.02	-12.02	-11*	-1.02
Middle	4967.5	-14.37	-12.12	-12.12	-11*	-1.12
High	4982.5	-13.17	-11.90	-11.90	-11*	-0.90

^{*} Limit: -11 dBm=8 dBm(the limit)–[28(the gain of the low power mode)-9(the limit of the highest gain)]

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency (MHz)	Chain 0 PDS (dBm)	Chain 1 PDS (dBm)	Highest PSD (dBm)	Limit (dBm)	Margin (dB)
Low	4947.5	4.86	7.09	7.09	8	-0.91
Middle	4967.5	4.96	6.46	6.46	8	-1.54
High	4982.5	4.08	6.57	6.57	8	-1.43

10 MHz Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency (MHz)	Chain 0 PDS (dBm)	Chain 1 PDS (dBm)	Highest PSD (dBm)	Limit (dBm)	Margin (dB)
Low	4950	-14.81	-12.46	-12.46	-11*	-1.46
Middle	4965	-14.10	-12.17	-12.17	-11*	-1.17
High	4980	-13.57	-12.10	-12.10	-11*	-1.10

^{*}Limit -11 dBm=8 dBm(the limit)–[28(the gain of the low power mode)-9(the limit of the highest gain)]

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency (MHz)	Chain 0 PDS (dBm)	Chain 1 PDS (dBm)	Highest PSD (dBm)	Limit (dBm)	Margin (dB)
Low	4950	4.76	6.55	6.55	8	-1.45
Middle	4965	4.22	6.52	6.52	8	-1.48
High	4980	4.41	6.39	6.39	8	-1.61

802.11a Mode

Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency (MHz)	Chain 0 PDS (dBm)	Chain 1 PDS (dBm)	Total PSD (dBm)	Limit (dBm)	Margin (dB)
Low	4955	-20.49	-19.48	-16.95	-11	-5.95
High	4975	-20.36	-18.91	-16.56	-11	-5.56

^{*} Limit: -11 dBm=8 dBm(the limit)–[28(the gain of the low power mode)-9(the limit of the highest gain)]

High Power Setting, Low Gain Antenna (9 dBi)

Channel	Frequency (MHz)	Chain 0 PDS (dBm)	Chain 1 PDS (dBm)	Total PSD (dBm)	Limit (dBm)	Margin (dB)
Low	4955	4.82	4.98	7.91	8	-0.09
High	4975	4.95	4.94	7.96	8	-0.04

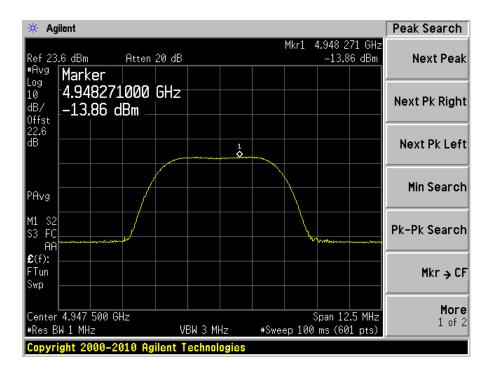
802.11n HT20 Mode

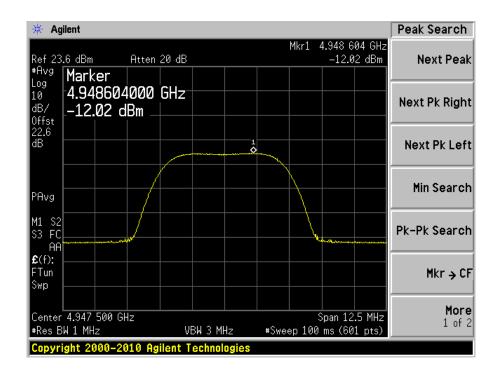
Low Power Setting, High Gain Antenna (28 dBi)

Channel	Frequency (MHz)	Chain 0 PDS (dBm)	Chain 1 PDS (dBm)	Total PSD (dBm)	Limit (dBm)	Margin (dB)
Low	4955	-21.31	-19.32	-17.19	-11	-6.19
High	4975	-19.79	-18.97	-16.35	-11	-5.35

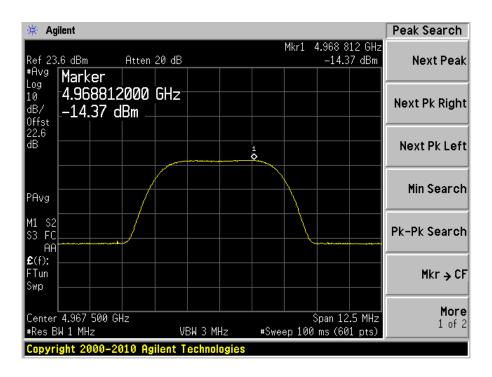
^{*} Limit: -11 dBm=8 dBm(the limit)–[28(the gain of the low power mode)-9(the limit of the highest gain)]

High Power Setting, Low Gain Antenna (9 dBi)

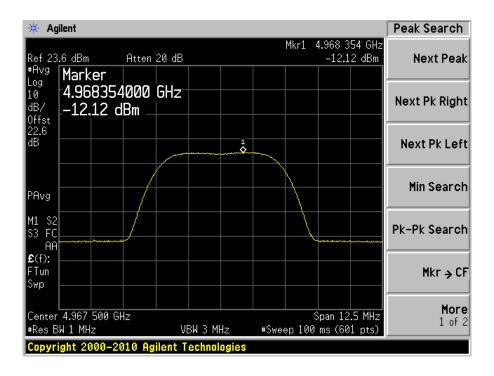

Channel	Frequency (MHz)	Chain 0 PDS (dBm)	Chain 1 PDS (dBm)	Total PSD (dBm)	Limit (dBm)	Margin (dB)
Low	4955	4.74	4.83	7.80	8	-0.20
High	4975	4.85	4.47	7.67	8	-0.33

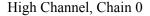

Please refer to the following plots.

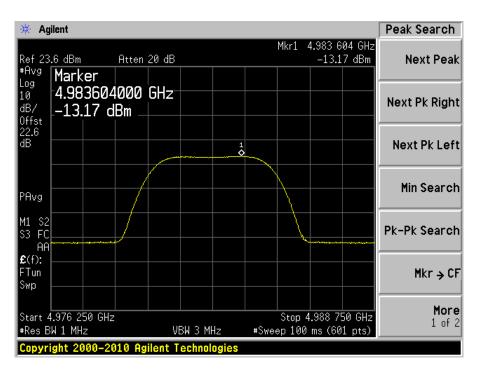
5 MHz Mode

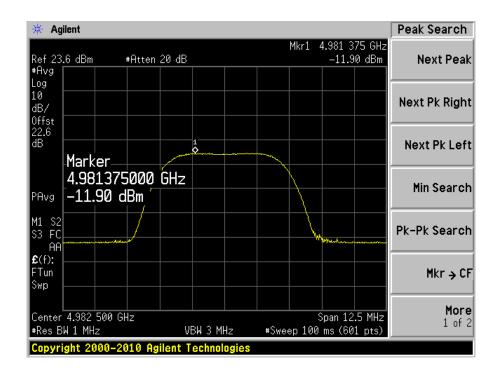

Low Power Setting, High Gain Antenna (28 dBi)

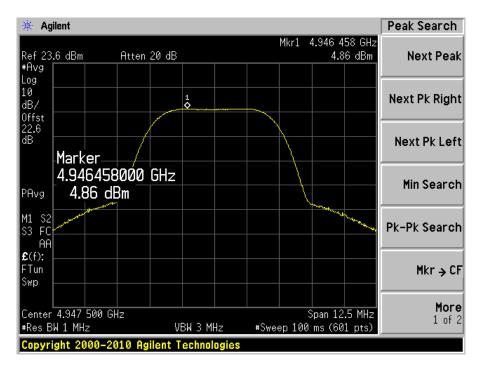
Low Channel, Chain 0

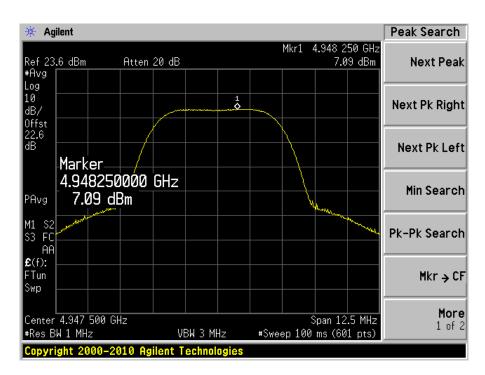


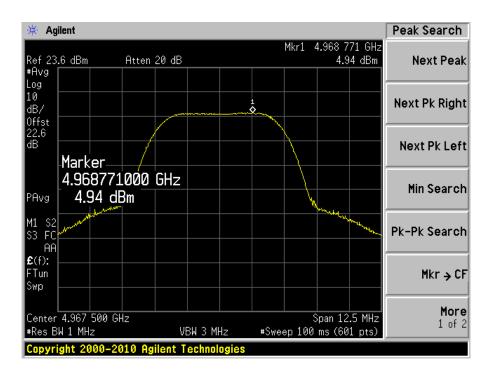



Middle Channel, Chain 0

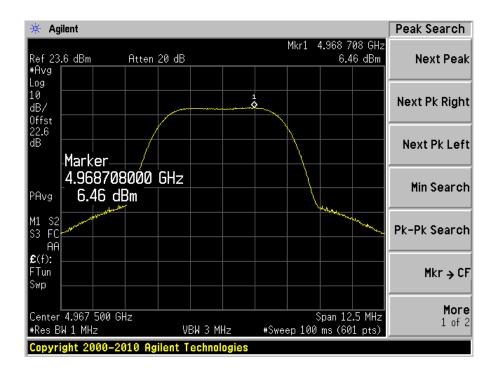

Middle Channel, Chain 1

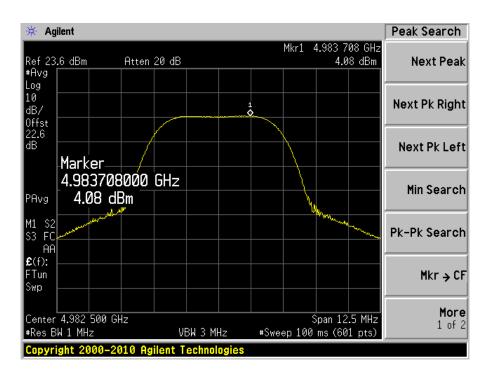


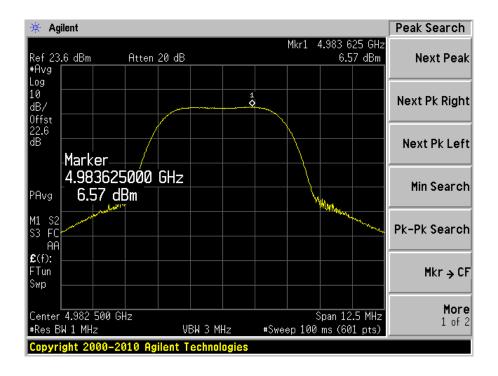

High Channel, Chain 1


High Power Setting, High Gain Antenna (9 dBi)

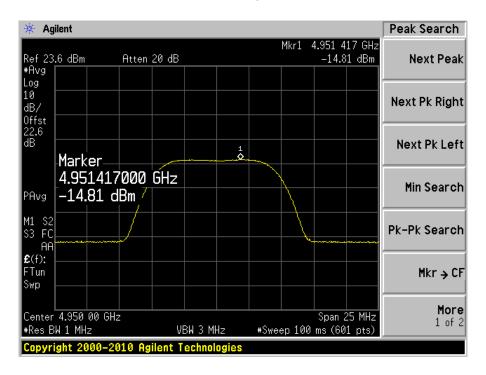
Low Channel, Chain 0

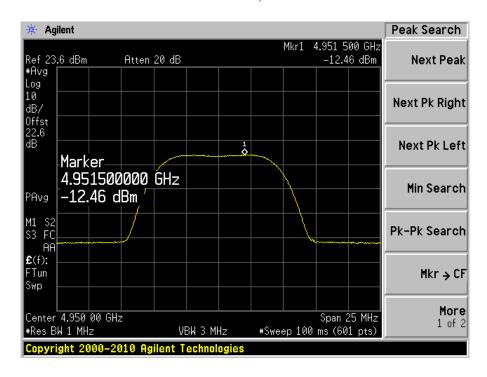



Middle Channel, Chain 0

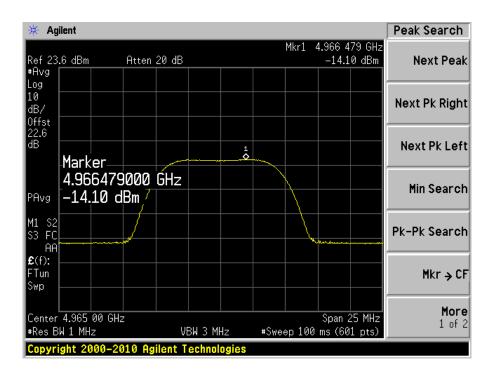

Middle Channel, Chain 1

High Channel, Chain 0

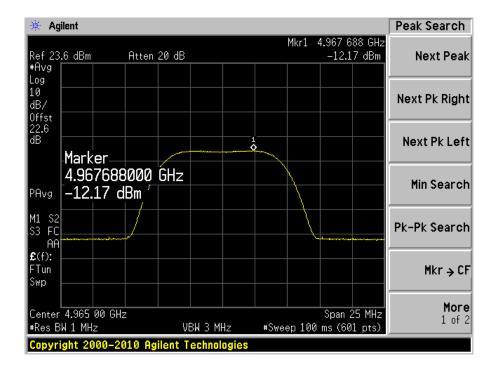

High Channel, Chain 1

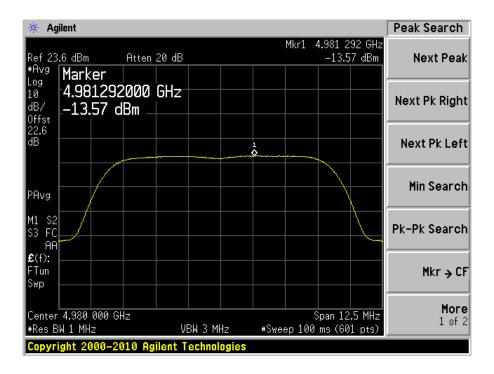


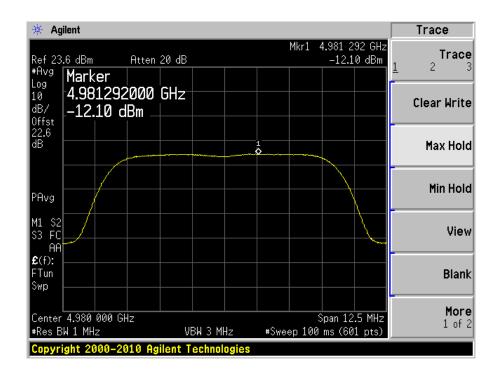
10 MHz Mode


Low Power Setting, High Gain Antenna (28 dBi)

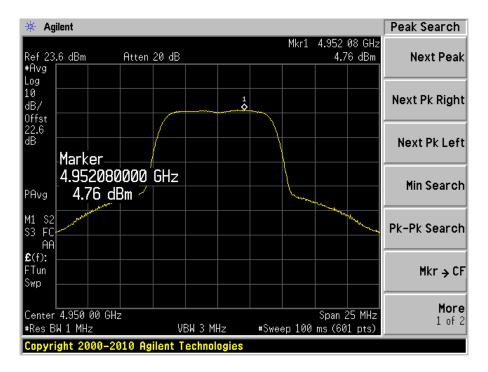
Low Channel, Chain 0

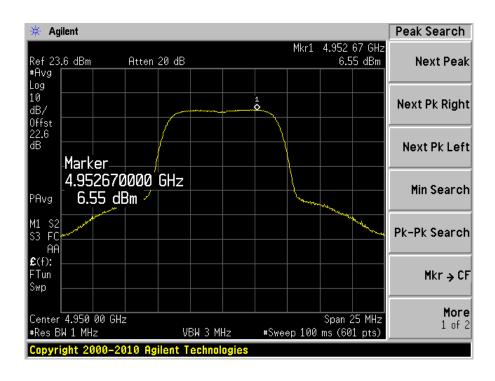


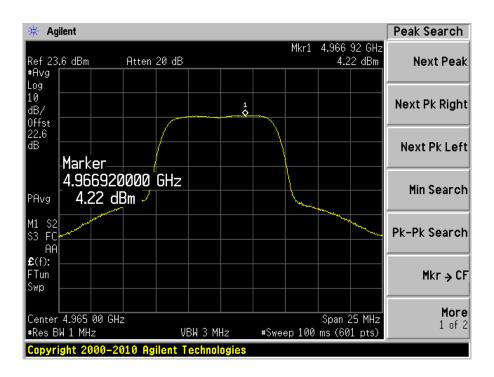

Middle Channel, Chain 0


Middle Channel, Chain 1

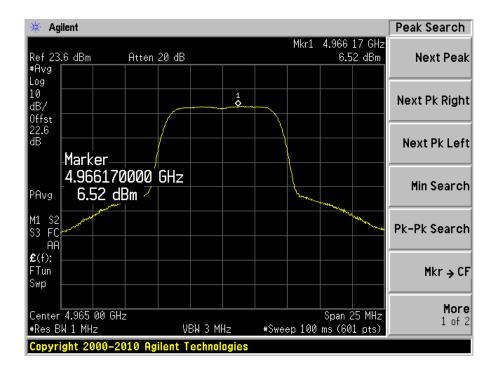
High Channel, Chain 0

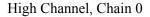


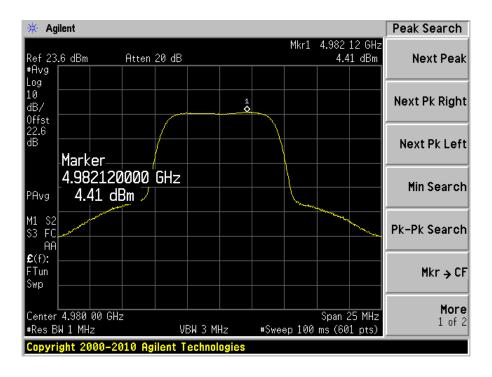

High Channel, Chain 1

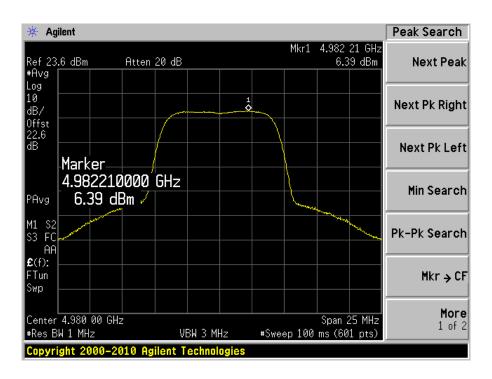

High Power Setting, High Gain Antenna (9 dBi)

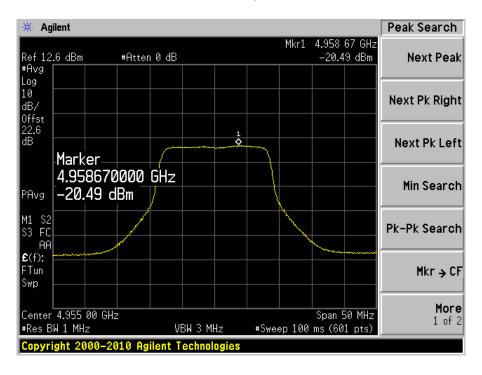
Low Channel, Chain 0

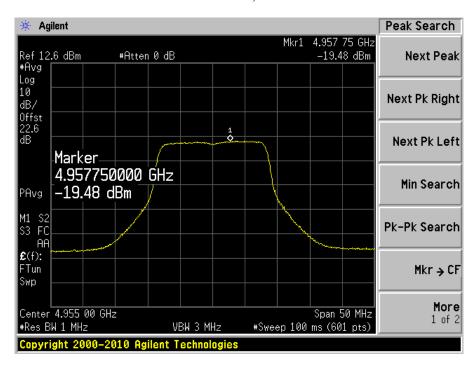


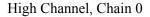


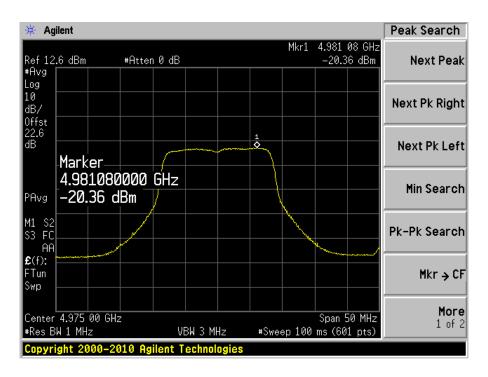

Middle Channel, Chain 0


Middle Channel, Chain 1

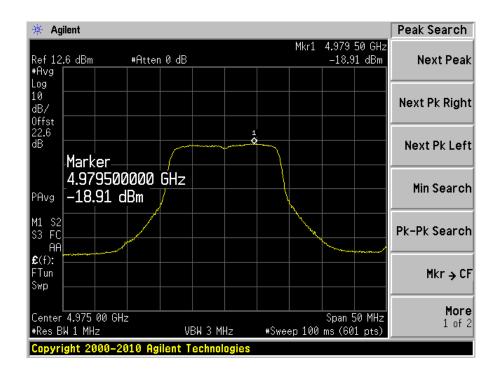

High Channel, Chain 1

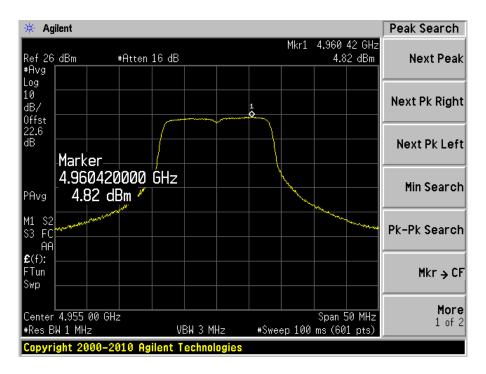


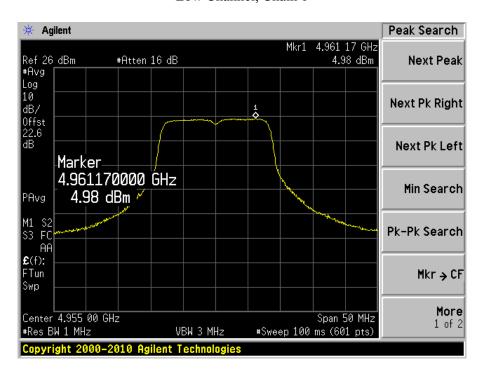

802.11a Mode

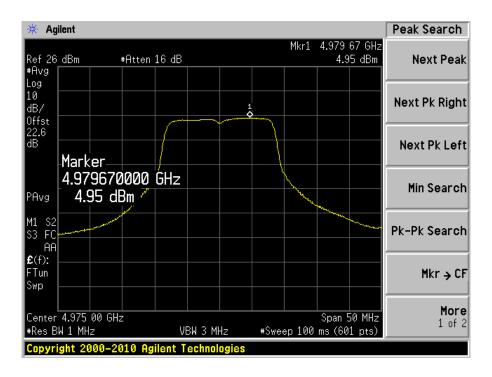

Low Power Setting, High Gain Antenna (28 dBi)

Low Channel, Chain 0

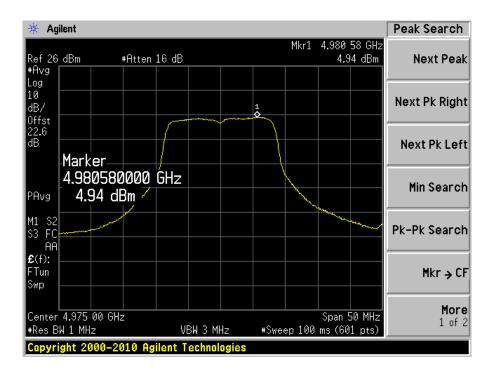




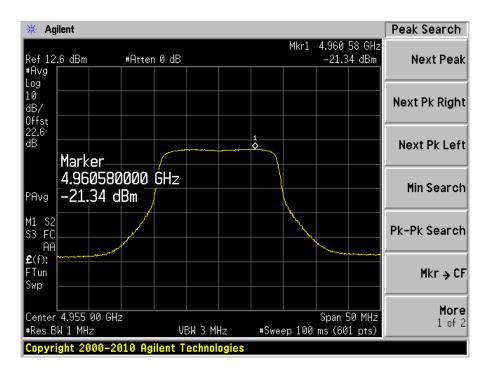

High Channel, Chain 1


High Power Setting, High Gain Antenna (9 dBi)

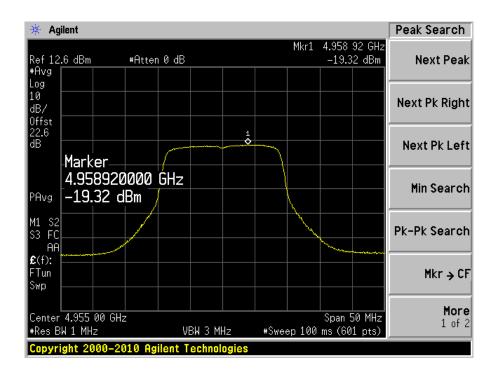
Low Channel, Chain 0



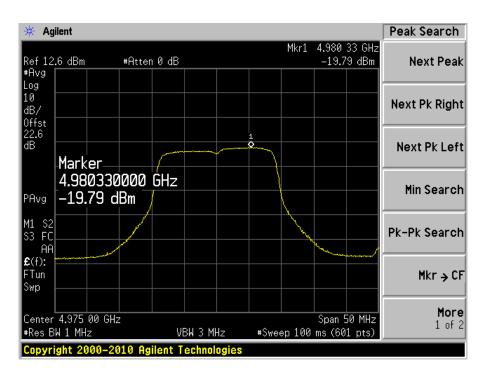
High Channel, Chain 0

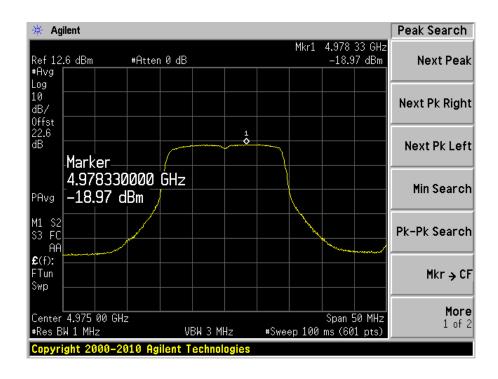


High Channel, Chain 1

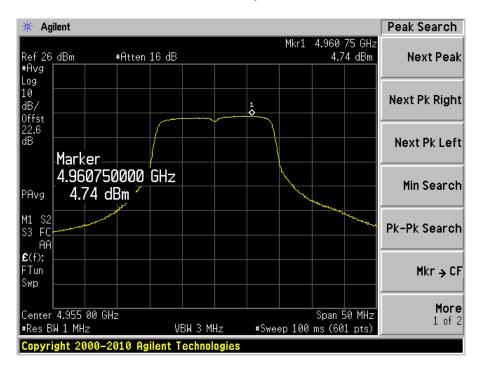


802.11n HT20 Mode

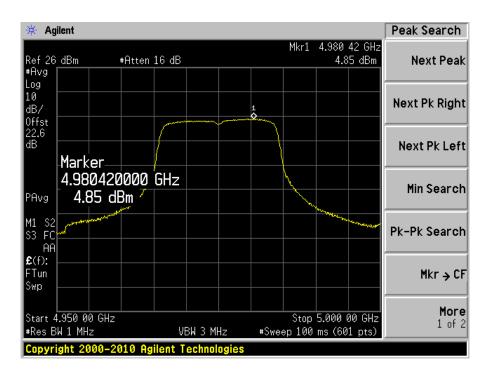

Low Power Setting, High Gain Antenna (28 dBi)


Low Channel, Chain 1

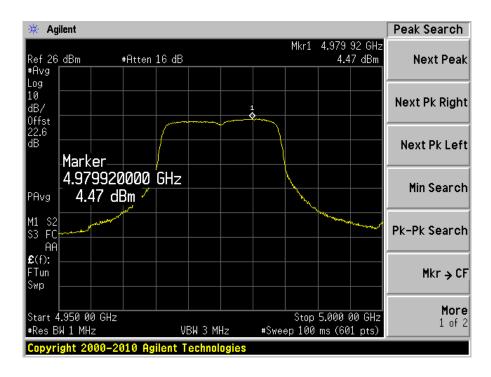
High Channel, Chain 0




High Channel, Chain 1


High Power Setting, High Gain Antenna (9 dBi)

Low Channel, Chain 0



High Channel, Chain 0

High Channel, Chain 1

11 IC RSS-111 §5.5 & RSS-Gen §6.1 – Receiver Spurious Radiated Emissions

11.1 Applicable Standards

According to IC RSS-Gen §6.1, spurious emissions from receivers shall not exceed the radiated limits shown in the table below.

Table 2: General Field Strength Limits for Transmitters and Receivers at Frequencies above 30 MHz

Frequency (MHz)	Field Strength Microvolts/m at 3 meters
30-88	100
88-216	150
216-960	200
Above 960	500

11.2 EUT Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2009.

11.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**QP**" in the data table.

11.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

11.5 Test Equipment Lists and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	N/R
Sunol Science Corp	Combination Antenna	JB3	A020106-2	2012-08-15	1 year
Hewlett Packard	Pre-amplifier	8447D	2944A06639	2012-06-09	1 year
Mini-Circuits	Pre-amplifier	ZVA-183-S	570400946	2013-05-09	1 year
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-10-16	1 year
EMCO	Horn Antenna	3115	9511-4627	2012-10-17	1 year
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100338	2012-09-19	1 year

Statement of Traceability: BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

11.6 Test Environmental Conditions

Temperature:	18-22 °C
Relative Humidity:	45-48 %
ATM Pressure:	101-102 kPa

The testing was performed by Wei Sun on 2013-05-03 at 5 meters 3.

11.7 Summary of Test Results

According to the test data, the EUT <u>complied with the RSS-210</u>, with the closest margins from the limit listed below:

Mode: Receiving			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz), Antenna
-3.26	30.628	Vertical	30-18000

11.8 Test Results

1) 30-1000 MHz, Measured at 3 meters

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Detector (QP/Ave.)
30.628	36.74	100	V	111	40	-3.26	QP
43.8055	34.09	150	V	124	40	-5.91	QP
45.27825	28.94	109	V	112	40	-11.06	QP
50.4445	29.64	121	V	156	40	-10.36	QP
66.27875	24.72	147	V	302	40	-15.28	QP
81.169	24.61	100	V	268	40	-15.39	QP

2) Above 1 GHz Measured at 3 meters

Е	S.A.	Turntable	Т	est Anteni	na	Cable	Pre-	Cord.		IC	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
7440	30	0	100	V	36.57	5.62	27.51	44.68	74	-29.32	Peak
7440	30	0	100	Н	36.57	5.62	27.51	44.68	74	-29.32	Peak
7440	20	0	100	V	36.57	5.62	27.51	34.68	54	-19.32	Ave
7440	20	0	100	Н	36.57	5.62	27.51	34.68	54	-19.32	Ave

12 FCC §90.1217, §2.1091 & IC RSS-102 - RF Exposure Information

12.1 Applicable Standards

According to FCC §90.1217 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m) Power Density (mW/cm²)		Averaging Time (minutes)
	Limits for Ge	eneral Population/Uncor	ntrolled Exposure	
0.3-1.34	614	1.63	* (100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

According to IC RSS-102 Issue 2 section 4.1, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Time Averaging (min)
0.003 - 1	280	2.19	-	6
1 - 10	280 / f	2.19 / f	-	6
10 - 30	28	2.19 / f	-	6
30 – 300	28	0.073	2*	6
300 – 1 500	1.585 f ^{0.5}	0.0042 f ^{0.5}	f / 150	6
1 500 – 15 000	61.4	0.163	10	6
15 000 – 150 000	61.4	0.163	10	616000 / f ^{1.2}
150 000- 300 000	0.158 f ^{0.5}	4.21 x 10 -4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000 / f ^{1.2}

Note: *f* is frequency in MHz

^{* =} Plane-wave equivalent power density

^{* =} Power density limit is applicable at frequencies greater than 100 MHz

12.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

For 9 dBi gain antenna (worst case: 20 MHz bandwidth, 802.11 a mode High channel=4975 MHz)

Maximum peak output power at antenna input terminal (dBm): 18.76 Maximum peak output power at antenna input terminal (mW): 75.16 Prediction distance (cm): 20 Prediction frequency (MHz): 4975 Maximum Antenna Gain (dB): 9 Maximum Antenna Gain (numeric): 7.94 Power density of prediction frequency at 20 cm (mW/cm²): 0.12 Power density of prediction frequency at 20 cm (W/m²): 1.2 MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0 MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 10

For 28 dBi gain antenna (worst case: 20 MHz bandwidth, 802.11 a mode low channel=4955 MHz)

Maximum peak output power at antenna input terminal (dBm): 0.89 Maximum peak output power at antenna input terminal (mW): 1.23 Prediction distance (cm): 20 Prediction frequency (MHz): 4955 Maximum Antenna Gain (dB): 28 Maximum Antenna Gain (numeric): 630.96 Power density of prediction frequency at 20 cm (mW/cm²): 0.15 Power density of prediction frequency at 20 cm (W/m^2) : 1.5 MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0 MPE limit for uncontrolled exposure at prediction frequency (mW/cm²):

Conclusion

The device complies with the MPE requirements by providing a safe separation distance of at least 20 cm between the antenna with 28 and 9 dBi effective gains, including any radiating structure, and any persons when normally operated.