

Company: Tehama Wireless

Test of: TW-222-DCAP R200
To: FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247
(FHSS)

Report No.: TEHA07-PCA1.1 Rev A

RADIATED, CONDUCTED TEST REPORT

Test of: Tehama Wireless TW-222
to

To: FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247(FHSS)

Test Report Serial No.: TEHA07-PCA1.1 Rev A

This report supersedes: NONE

Applicant: Tehama Wireless
2607 7th Street
Berkeley, California 94710
USA

Product Function: Wireless Reader

Issue Date: 22nd December 2016

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
575 Boulder Court
Pleasanton California 94566
USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	5
1.1. TESTING ACCREDITATION	5
1.2. RECOGNITION	6
1.3. PRODUCT CERTIFICATION	7
2. DOCUMENT HISTORY	8
3. TEST RESULT CERTIFICATE	9
4. REFERENCES AND MEASUREMENT UNCERTAINTY	10
4.1. Normative References	10
4.2. Test and Uncertainty Procedure	11
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	12
5.1. Technical Details	12
5.2. Scope Of Test Program	13
5.3. Equipment Model(s) and Serial Number(s)	14
5.4. Antenna Details	14
5.5. Cabling and I/O Ports	14
5.6. Test Configurations	14
5.7. Equipment Modifications	15
5.8. Deviations from the Test Standard	15
6. TEST SUMMARY	16
7. TEST EQUIPMENT CONFIGURATION(S)	17
7.1. Conducted	17
7.2. Radiated Emissions - 3m Chamber	19
7.3. AC Mains Power Input/Output Ports	22
8. MEASUREMENT AND PRESENTATION OF TEST DATA	23
9. TEST RESULTS	24
9.1. 20 dB & 99% Bandwidth	24
9.2. Frequency Hopping Tests	27
9.2.1. Number of Hopping Channels	28
9.2.2. Channel Separation	30
9.2.3. Dwell Time & Channel Occupancy	32
9.3. Output Power	34
9.4. Emissions	38
9.4.1. Conducted Emissions	38
9.4.1.1. Conducted Unwanted Spurious Emissions	39
9.4.1.2. Conducted Band-Edge Emissions	41
9.4.2. Radiated Emissions	49
9.4.2.3. TX Spurious & Restricted Band Emissions	52
9.4.3. Digital Emissions (0.03 - 1 GHz)	61
9.5. AC Mains Power Input/Output Ports	64

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A. APPENDIX - GRAPHICAL IMAGES	68
A.1. 20 dB & 99% Bandwidth	69
A.2. Frequency Hopping Tests	81
A.2.1. <i>Number of Hopping Channels</i>	81
A.2.2. <i>Channel Separation</i>	87
A.2.3. <i>Channel Occupancy</i>	89
A.2.4. <i>Dwell Time</i>	91
A.3. Emissions	93
A.3.1. <i>Conducted Emissions</i>	93
A.3.1.1. Conducted Unwanted Spurious Emissions.....	93
A.3.1.2. Conducted Band-Edge Emissions	99
A.3.2. <i>Radiated Emissions</i>	107
A.3.2.3. TX Spurious & Restricted Band Emissions.....	107
A.3.3. <i>Digital Emissions (0.03 - 1 GHz)</i>	116

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication) VCCI	CAB	APEC MRA 2	RCB 210
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-02.pdf>

United States of America – Telecommunication Certification Body (TCB)

Industry Canada – Certification Body, CAB Identifier – US0159

Europe – Notified Body (NB), NB Identifier - 2280

Japan – Recognized Certification Body (RCB), RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 8 of 117

2. DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft	12 December 2016	
Rev A	22 nd December 2016	Initial Release

In the above table the latest report revision will replace all earlier versions.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 9 of 117

3. TEST RESULT CERTIFICATE

Manufacturer: Tehama Wireless
2607 7th Street
Berkeley
California 94710 USA

Model: TW-222-DCAP R200

Type Of Equipment: Wireless Reader

S/N's: F3000011
F20014B2

Test Date(s): 8th – 9th December 2016

Tested By: MiCOM Labs, Inc.
575 Boulder Court
Pleasanton
California 94566 USA

Telephone: +1 925 462 0304
Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247 (FHSS)

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs, Inc.

Gordon Hurst
President & CEO MiCOM Labs, Inc.

TESTING CERT #2381.01

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status
II	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
III	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IV	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
V	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VI	FCC 47 CFR Part 15, Subpart B	2014	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES, SubPart B; Unintentional Radiators
VII	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
VIII	FCC Public Notice DA 00-705	March 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
IX	ICES-003	Issue 6 Jan 2016	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
X	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XIII	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

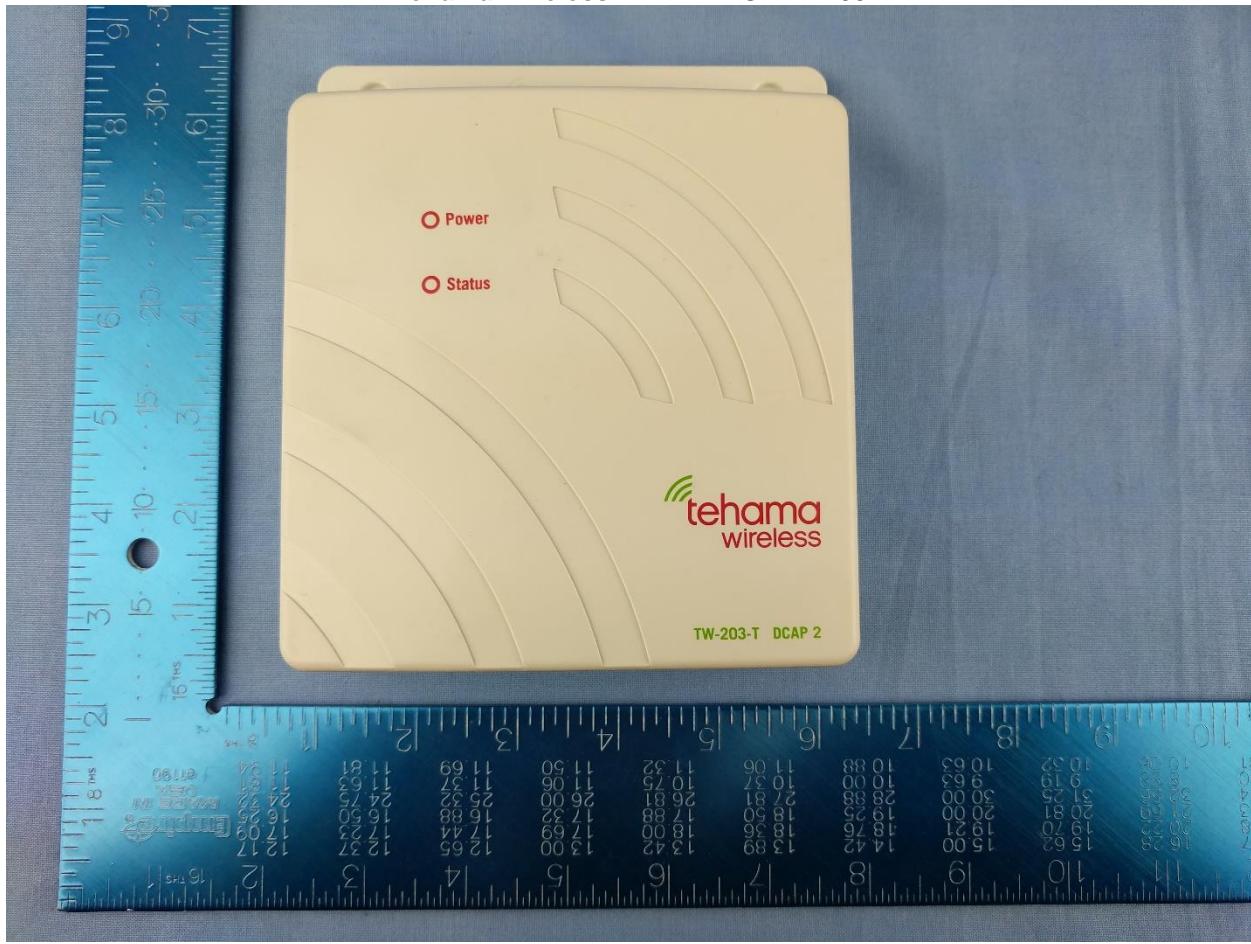
5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Tehama Wireless TW-222-DCAP R200 to FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247 (FHSS). Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	Tehama Wireless 2607 7th Street Berkeley California 94710 USA
Manufacturer:	Tehama Wireless Design Group
Laboratory performing the tests:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Test report reference number:	TEHA07-PCA1.1 Draft FHSS
Date EUT received:	8 th November 2016
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247
Dates of test (from - to):	08 - 12 December 2016
No of Units Tested:	2
Type of Equipment:	900 MHz Wireless reader
Product Family Name:	Diversity DCAP/Repeater (3rd Gen.)
Model(s):	TW-222-DCAP R200
Location for use:	Indoor
Declared Frequency Range(s):	902 - 928 MHz;
Primary function of equipment:	Wireless reader
Secondary function of equipment:	Tehama Wireless Design Group
Type of Modulation:	FSK and DTS
EUT Modes of Operation:	902 - 928 MHz: FHSS, SS FHSS
Transmit/Receive Operation:	Transceiver - Full Duplex
Rated Input Voltage and Current:	AC/ DC adaptor (adaptor sold with unit) 5Vdc
Operating Temperature Range:	Declared Range 0°C to 70°C
ITU Emission Designator:	Mode 1: FHSS FSK: 153KF1DBN Mode 2: SS FHSS Lora: 125KF1DFN
Equipment Dimensions:	130 mm Height: 35 mm Length: 150 mm
Weight:	0.25 kg
Hardware Rev:	Not Provided
Software Rev:	2.1

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.2. Scope Of Test Program


Tehama Wireless TW-222-DCAP R200

The scope of the test program was to test the Tehama Wireless TW-222-DCAP R200 wireless reader in FHSS configurations in the frequency ranges 902 - 928 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247(FHSS)

Radio Frequency Devices; Subpart C – Intentional Radiators

Tehama Wireless TW-222-DCAP R200

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.3. Equipment Model(s) and Serial Number(s)

Model / Description	Serial no.	Hardware ver.	Software ver.
TW-222-DCAP R200	F3000011	Rev 2	None Provided
TW-222-DCAP R200	F20014B2	Rev 2	None Provided
Sunny Computer Tech	G160605028762	N/A	N/A

5.4. Antenna Details

Type	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	NA	PCB trace antenna	PCB	1.5	-	360	-	902 - 928
BF Gain - Beamforming Gain								
Dir BW - Directional BeamWidth								
X-Pol - Cross Polarization								

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	7 ft	1	Y	RJ45	Packet Data
dc Jack	75 in	1	N		

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s) (802.11a/b/g/n/ac)	Data Rate with Highest Power MBit/s	Channel Frequency (MHz)		
		Low	Mid	High
902 - 928 MHz				
Mode 1	25	906	914.774	924.00
Mode 2	25	906	914.774	924.00

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

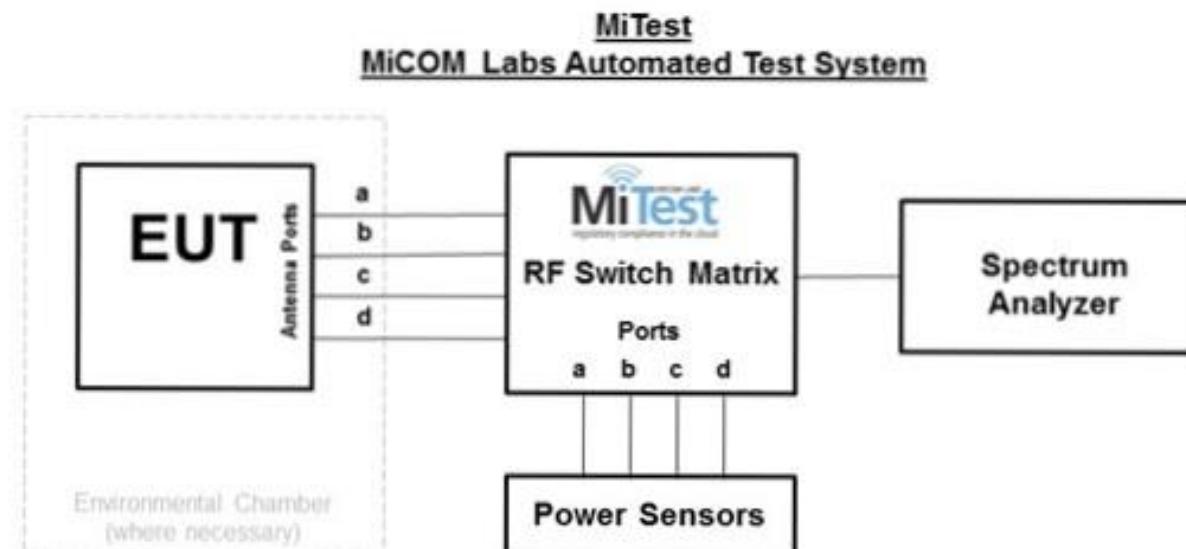
Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 16 of 117

6. TEST SUMMARY

List of Measurements

Test Header	Result	Data Link
20 dB & 99% Bandwidth	Complies	View Data
Frequency Hopping Tests	Complies	
Number of Hopping Channels	Complies	View Data
Channel Separation	Complies	View Data
Channel Occupancy	Complies	View Data
Dwell Time	Complies	View Data
Output Power	Complies	View Data
Emissions	Complies	
(1) Conducted Emissions	Complies	
(i) Conducted Unwanted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	
(i) TX Spurious, Restricted Band & Band Edge Emissions	Complies	View Data
(3) Digital Emissions (0.03 - 1 GHz) – Class A Only	Complies	View Data
AC Wireline Emissions	Complies	View Data

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted

Conducted RF Emission Test Set-up(s)

The following tests were performed using the conducted test set-up shown in the diagram below.

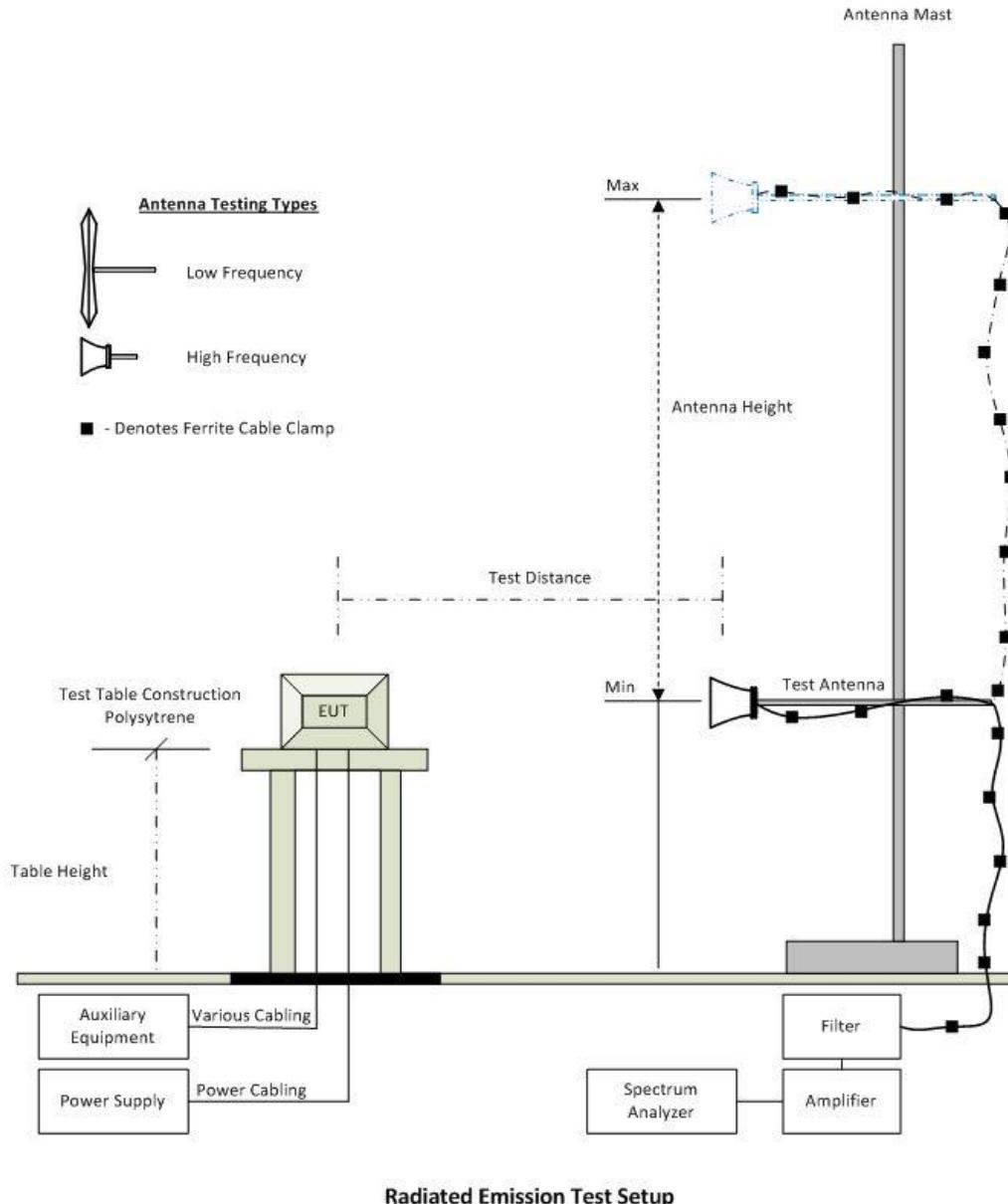
1. Average Output Power
2. 20 dB 99% Bandwidth
3. Unwanted Emissions Average
4. Dwell Time
5. Number of Hopping Channels
6. Channel Separation
7. Channel Occupancy
8. 20 dB 99% BANDWIDTH
9. Conducted Band-Edge Emissions (Hopping)
10. Conducted Low Band-Edge Emissions (Hopping) Average
11. Conducted Low Band-Edge Emissions (Static) Average
12. Conducted Upper Band-Edge Emissions (Hopping) Average
13. Conducted Upper Band-Edge Emissions (Static) Average
14. Unwanted Emissions Average

Conducted Test Measurement Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 18 of 117

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.


Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	23 Oct 2017
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2017
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
380	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC001	2 Jun 2017
390	USB Power Head 50MHz - 24GHz -60 to +20dBm	Agilent	U2002A	MY50000103	17 Oct 2017
398	Test Software	MiCOM	MiTest ATS	Version 4.1.0.76	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Jul 2017
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2017
441	USB Wideband Power Sensor	Boonton	55006	9179	25 Dec 2016
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	13 Aug 2017
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Nov 2017
RF#1 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#1 SMA SA #452	Precision SMA Male RG-402 cable	Fairview Microwave	Precision SMA Male RG 402 coax	None	2 Jun 2017
RF#1 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	2 Jun 2017
RF#1 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	2 Jun 2017
RF#1 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	2 Jun 2017
RF#1 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	2 Jun 2017
RF#1 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below.

Radiated emissions below 1GHz.
 Radiated Emissions above 1GHz.

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

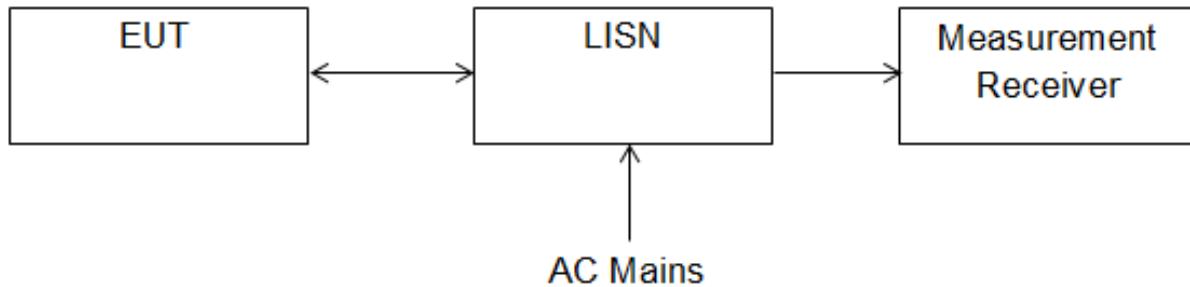
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 20 of 117

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2017
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	26 Sep 2017
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	15 Aug 2017
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	16 Aug 2017
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	16 Aug 2017
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	26 Oct 2017
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	16 Aug 2017
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	16 Aug 2017
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	9 Jun 2017
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Jan 2017
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	9 Jun 2017
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0.109	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	31 May 2017

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 21 of 117



463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	31 May 2017
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	31 May 2017
465	Low Pass Filter DC-1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	2 Jun 2017
466	Low Pass Filter DC-1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	2 Jun 2017
467	2495 to 2650 MHz notch filter	MicroTronics	BRM50709	011	16 Aug 2017
468	Low pass filter	Mini Circuits	SLP-550	None	16 Aug 2017
469	Low pass filter	Mini Circuit	SLP-1000	None	16 Aug 2017
470	High Pass filter	Mini Circuits	SHP-700	None	16 Aug 2017
480	Cable - Bulkhead to Amp	SRC Haverhill	157-157-3050360	480	2 Jun 2017
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151-3050787	481	2 Jun 2017
482	Cable - Amp to Antenna	SRC Haverhill	157-157-3051574	482	2 Jun 2017
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
CC05	Confidence Check	MiCOM	CC05	None	26 Apr 2017
VLF-1700	Low pass filter DC-1700 MHz	Mini Circuits	VLF-1700	None	31 May 2017

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

7.3. AC Mains Power Input/Output Ports

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	7 Apr 2017
190	LISN (two-line V-network)	Rhode & Schwarz	ESH3Z5	836679/006	29 Oct 2017
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2017
307	BNC-CABLE	Megaphase	1689 1GVT4	15F50B002	6 Apr 2017
316	Dell desktop computer workstation with Vasona	Dell	Desktop	WS04	Not Required
351	Data Impedance Stabilization Network	Teseq	ISN T800	24809	30 Nov 2017
372	AC Variable PS	California Instruments	1251P	L06951	Cal when used
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	4 Aug 2017
388	LISN (3 Phase) 9kHz - 30MHz	Rhode & Schwarz	ESH2-Z5	892107/022	30 Oct 2017
496	MiTest Conducted Emissions test software.	MiCOM	Conducted Emissions Test Software Version 1.0.87	496	Not Required
ADAPT SMA#1	SMA Cable	Megaphase	SMA Cable #1	None	6 Apr 2017
CCEMC01	Confidence Check.	MiCOM	CCEMC01	None	6 Apr 2017

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by [MiTest](#). [MiTest](#) is an automated test system developed by MiCOM Labs. [MiTest](#) is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "[MiTest](#)" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9. TEST RESULTS

9.1. 20 dB & 99% Bandwidth

Conducted Test Conditions for 20 dB and 99% Bandwidth			
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	20 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(1)(i)/(ii) & 5.1	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for 20 dB and 99% Bandwidth Measurement

The bandwidth at 20 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 20 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 25 of 117

Equipment Configuration for 20 dB 99% Bandwidth

Variant:	Mode 1	Duty Cycle (%):	99
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 20 dB Bandwidth (MHz)				20 dB Bandwidth (MHz)		Limit	Lowest Margin
	Port(s)				Highest	Lowest		
MHz	a	b	c	d			KHz	MHz
906.0	0.153				0.153	0.153	≥0.5	-0.15
914.8	0.153				0.153	0.153	≥0.5	-0.15
924.0	0.153				0.153	0.153	≥25.0	-0.13

Test Frequency	Measured 99% Bandwidth (MHz)				Maximum 99% Bandwidth (MHz)		
	Port(s)						
MHz	a	b	c	d			
906.0	0.153				0.153		
914.8	0.153				0.153		
924.0	0.153				0.153		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 26 of 117

Equipment Configuration for 20 dB 99% Bandwidth

Variant:	Mode 2	Duty Cycle (%):	99
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 20 dB Bandwidth (MHz)				20 dB Bandwidth (MHz)		Limit	Lowest Margin
	Port(s)				Highest	Lowest		
MHz	a	b	c	d			KHz	MHz
906.0	0.135				0.135	0.135	≥0.5	-0.13
914.8	0.135				0.135	0.135	≥0.5	-0.13
924.0	0.138				0.138	0.138	≥0.5	-0.14

Test Frequency	Measured 99% Bandwidth (MHz)				Maximum 99% Bandwidth (MHz)		
	Port(s)						
MHz	a	b	c	d			
906.0	0.126				0.126		
914.8	0.126				0.126		
924.0	0.126				0.126		

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9.2. Frequency Hopping Tests

Conducted Test Conditions for Frequency Hopping Measurements			
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Frequency Hopping Tests	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(1)(i)/(ii) & 5.1	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References, FCC Public Notice DA 00-705		

Test Procedure for Frequency Hopping Measurements

These tests cover the following measurements:

- i) channel separation
- ii) channel occupancy
- iii) dwell time
- iv) number of hopping frequencies

Frequency hopping testing was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency or hopping mode.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for Frequency Hopping Measurements

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 28 of 117

9.2.1. Number of Hopping Channels

Equipment Configuration for Number of Hopping Channels

Variant:	Mode 1	Antenna:	NA PCB trace antenna
Data Rate:	125 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Frequency Range (MHz)	Number of Hopping Channels	Limit	Pass / Fail
902.0-910.0	15	--	--
910.0-920.0	30	--	--
920.0-928.0	15	--	--
Total number of Hops	60	50	Pass

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 29 of 117

Equipment Configuration for Number of Hopping Channels

Variant:	Mode 2	Antenna:	NA PCB trace antenna
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	Lamor	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Frequency Range (MHz)	Number of Hopping Channels	Limit	Pass / Fail
902.0-910.0	<u>15</u>	--	--
910.0-920.0	<u>30</u>	--	--
920.0-928.0	<u>15</u>	--	--
Total number of Hops	60	50	Pass

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 30 of 117

9.2.2. Channel Separation

Equipment Configuration for Channel Separation

Variant:	Mode 1	Antenna:	NA PCB trace antenna
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Center Frequency (MHz)	Chan Separation (KHz)	Limit (MHz)	Pass / Fail
914.8	277.00	1.5330661	Pass

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 31 of 117

Equipment Configuration for Channel Separation

Variant:	Mode 2	Antenna:	NA PCB trace antenna
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	Lamor	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Center Frequency (MHz)	Chan Separation (KHz)	Limit (MHz)	Pass / Fail
914.8	275.00	1.3527054	Pass

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 32 of 117

9.2.3. Dwell Time & Channel Occupancy

Equipment Configuration for Channel Occupancy

Variant:	Mode 1	Antenna:	NA PCB trace antenna
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results	
914.80	0.014

Channel Frequency(MHz)	Dwell Time (Single Channel) (mS)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
914.80	0.014	13.660	10.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 33 of 117

Equipment Configuration for Channel Occupancy

Variant:	Mode 2	Antenna:	NA PCB trace antenna
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results	
Channel Frequency(MHz)	Dwell Time (Single Channel) (mS)

Channel Frequency(MHz)	Dwell Time (Single Channel) (mS)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
914.80	0.200	200.400	10.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9.3. Output Power

Conducted Test Conditions for Fundamental Emission Output Power			
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(1), (b)(1)/(2)/(3) & 5.4 (1)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions, nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.
Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x)$ dBm

A = Total Power $[10^{\log_{10} (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})}]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for frequency hopping systems:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 35 of 117

antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 36 of 117

Equipment Configuration for Output Power Average

Variant:	Mode 1	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm)				Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
	Port(s)							
MHz	a	b	c	d	dBm	dBm	dB	
906.0	29.34				29.34	30.00	-0.66	14.00
914.8	29.28				29.28	30.00	-0.72	14.00
924.0	29.35				29.35	30.00	-0.65	14.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 37 of 117

Equipment Configuration for Output Power Average

Variant:	Mode 2	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	Lamor	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm)				Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
	Port(s)							
MHz	a	b	c	d	dBm	dBm	dB	
906.0	27.77				27.77	30.00	-2.23	10.00
914.8	27.51				27.51	30.00	-2.49	10.00
924.0	27.33				27.33	30.00	-2.67	10.00

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9.4. Emissions

9.4.1. Conducted Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions			
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Transmitter Conducted Spurious and Band-Edge Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (d) & 5.5	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 39 of 117

9.4.1.1. Conducted Unwanted Spurious Emissions

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	Mode 1	Duty Cycle (%):	99
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Frequency Range	Transmitter Conducted Spurious Emissions (dBm)							
		Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
906.0	30.0 - 10000.0	-46.58	-41.00						
914.8	30.0 - 10000.0	-48.52	-41.00						
924.0	30.0 - 10000.0	-48.52	-41.00						

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 40 of 117

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	Mode 2	Duty Cycle (%):	99
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	Lamor	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Frequency Range	Transmitter Conducted Spurious Emissions (dBm)							
		Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
906.0	30.0 - 10000.0	-46.58	-44.00						
914.8	30.0 - 10000.0	-48.52	-43.00						
924.0	30.0 - 10000.0	-46.52	-40.00						

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 41 of 117

9.4.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Upper Band-Edge Emissions (Static) Average

Variant:	Mode 1	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	924.0 MHz				
Band-Edge Frequency:	928.0 MHz				
Test Frequency Range:	923.0 - 950.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-51.02	7.95	924.20		-3.800

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB		

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 42 of 117

Equipment Configuration for Conducted Upper Band-Edge Emissions (Static) Average

Variant:	Mode 2	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	Lamor	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	924.0 MHz				
Band-Edge Frequency:	928.0 MHz				
Test Frequency Range:	923.0 - 950.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-51.02	8.48	924.20		-3.800

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 43 of 117

Equipment Configuration for Conducted Low Band-Edge Emissions (Static) Average

Variant:	Mode 1	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	906.0 MHz				
Band-Edge Frequency:	902.0 MHz				
Test Frequency Range:	875.0 - 907.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-54.55	7.53	905.80		-3.800

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 44 of 117

Equipment Configuration for Conducted Low Band-Edge Emissions (Static) Average

Variant:	Mode 2	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	Lamor	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	906.0 MHz				
Band-Edge Frequency:	902.0 MHz				
Test Frequency Range:	875.0 - 907.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-54.55	8.04	905.90		-3.900

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 45 of 117

Equipment Configuration for Conducted Low Band-Edge Emissions (Hopping) Average

Variant:	Mode 1	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	906.0 MHz				
Band-Edge Frequency:	902.0 MHz				
Test Frequency Range:	875.0 - 907.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-51.02	-1.00	905.70		-3.700

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 46 of 117

Equipment Configuration for Conducted Upper Band-Edge Emissions (Hopping) Average

Variant:	Mode 1	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	924.0 MHz				
Band-Edge Frequency:	928.0 MHz				
Test Frequency Range:	922.0 - 950.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-46.59	-0.23	924.20		-3.800

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 47 of 117

Equipment Configuration for Conducted Low Band-Edge Emissions (Hopping) Average

Variant:	Mode 2	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	Lamor	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	906.0 MHz				
Band-Edge Frequency:	902.0 MHz				
Test Frequency Range:	875.0 - 907.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	<u>-51.02</u>	-1.00	905.70		-3.700

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 48 of 117

Equipment Configuration for Conducted Upper Band-Edge Emissions (Hopping) Average

Variant:	Mode 2	Duty Cycle (%):	99.0
Data Rate:	25 Kbit/s	Antenna Gain (dBi):	1.5
Modulation:	Lamor	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	924.0 MHz				
Band-Edge Frequency:	928.0 MHz				
Test Frequency Range:	923.0 - 950.0 MHz				
Port(s)	Band-Edge Markers and Limit			Revised Limit	Margin
	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)
a	-46.59	-1.00	924.20		-3.800

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9.4.2. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)			
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	20.0 - 24.5
Test Heading:	Radiated Spurious and Band-Edge Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.205, 15.209	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands

Peak emission: 74 dBuV/m

Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Example:

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dBmV/m}$$

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows:

$$\text{Level (dBmV/m)} = 20 * \log (\text{level (mV/m)})$$

$$40 \text{ dBmV/m} = 100 \text{ mV/m}$$

$$48 \text{ dBmV/m} = 250 \text{ mV/m}$$

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 50 of 117

Frequency Band			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 51 of 117

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 52 of 117

9.4.2.3. TX Spurious & Restricted Band Emissions

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	NA PCB trace antenna	Variant:	Mode 1
Antenna Gain (dBi):	1.50	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	906.00	Data Rate:	25 Kbit/s
Power Setting:	14	Tested By:	JMH

Test Measurement Results

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	1811.98	94.26	2.43	-13.60	83.09	Peak (NRB)		101	0	--	--	Pass	
#2	2718.12	61.01	2.81	-11.36	52.46	Max Peak	Horizontal	104	196	74.0	-21.5	Pass	
#3	2718.12	57.58	2.81	-11.36	49.03	Max Avg	Horizontal	104	196	54.0	-5.0	Pass	
#4	3623.82	67.63	3.15	-11.12	59.66	Max Peak	Vertical	158	69	74.0	-14.3	Pass	
#5	3623.82	68.75	3.15	-11.12	60.80	Max Avg	Vertical	158	69	54.0	-1.2	Pass	
#6	5436.14	57.42	3.73	-11.21	49.94	Max Peak	Vertical	133	125	74.0	-24.1	Pass	
#7	5436.14	50.96	3.73	-11.21	43.48	Max Avg	Vertical	133	125	54.0	-10.5	Pass	

Test Notes: EUT on 150cm table, powered by ac/dc PS. pass after DCCF of -7.16

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 53 of 117

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	NA PCB trace antenna	Variant:	Mode 1
Antenna Gain (dBi):	1.50	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	914.774	Data Rate:	25 Kbit/s
Power Setting:	14	Tested By:	JMH

Test Measurement Results

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	1829.46	93.60	2.45	-13.54	82.51	Peak (NRB)	Vertical	101	1	--	--	Pass	
#2	2744.18	58.66	2.85	-11.35	50.16	Max Peak	Vertical	101	232	74.0	-23.8	Pass	
#3	2744.18	54.77	2.85	-11.35	46.27	Max Avg	Vertical	101	232	54.0	-7.7	Pass	
#4	3659.27	63.56	3.17	-11.04	55.69	Max Peak	Vertical	197	100	74.0	-18.3	Pass	
#5	3659.27	60.20	3.17	-11.04	52.33	Max Avg	Vertical	197	100	54.0	-1.7	Pass	

Test Notes: EUT on 150cm table, powered by ac/dc PS.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 54 of 117

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	NA PCB trace antenna	Variant:	Mode 1
Antenna Gain (dBi):	1.50	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	924.00	Data Rate:	25 Kbit/s
Power Setting:	14	Tested By:	JMH

Test Measurement Results

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	1847.82	92.43	2.46	-13.46	81.43	Peak (NRB)	Vertical	101	1	--	--	Pass	
#2	2772.10	59.08	2.83	-11.33	50.58	Max Peak	Horizontal	113	199	74.0	-23.4	Pass	
#3	2772.10	54.99	2.83	-11.33	46.49	Max Avg	Horizontal	113	199	54.0	-7.5	Pass	
#4	3695.85	60.21	3.17	-10.96	52.42	Max Peak	Vertical	152	83	74.0	-21.6	Pass	
#5	3695.85	56.13	3.17	-10.96	48.34	Max Avg	Vertical	152	83	54.0	-5.7	Pass	
#6	9239.42	49.03	5.16	-7.10	47.09	Peak (NRB)	Vertical	170	116	--	--	Pass	

Test Notes: EUT on 150cm table, powered by ac/dc PS.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 55 of 117

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	NA PCB trace antenna	Variant:	Mode 2
Antenna Gain (dBi):	1.50	Modulation:	Lamor
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	906.00	Data Rate:	25 Kbit/s
Power Setting:	10	Tested By:	JMH

Test Measurement Results

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	1812.06	94.20	2.43	-13.60	83.03	Peak (NRB)	Vertical	200	1	--	--	Pass	
#2	2718.15	58.70	2.81	-11.36	50.15	Max Peak	Vertical	176	213	74.0	-23.9	Pass	
#3	2718.15	54.50	2.81	-11.36	45.95	Max Avg	Vertical	176	213	54.0	-8.1	Pass	
#4	3624.04	63.30	3.15	-11.12	55.33	Max Peak	Vertical	160	115	74.0	-18.7	Pass	
#5	3624.04	61.03	3.15	-11.12	53.06	Max Avg	Vertical	160	115	54.0	-0.9	Pass	

Test Notes: EUT on 150cm table, powered by ac/dc PS.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 56 of 117

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	NA PCB trace antenna	Variant:	Mode 2
Antenna Gain (dBi):	1.50	Modulation:	Lamor
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	915.00	Data Rate:	25 Kbit/s
Power Setting:	10	Tested By:	JMH

Test Measurement Results

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	1829.46	92.56	2.45	-13.54	81.47	Peak (NRB)	Vertical	200	1	--	--	Pass	
#2	2744.32	57.25	2.85	-11.35	48.75	Max Peak	Vertical	120	174	74.0	-25.3	Pass	
#3	2744.32	53.24	2.85	-11.35	44.74	Max Avg	Vertical	120	174	54.0	-9.3	Pass	
#4	8233.07	51.88	4.54	-7.23	49.19	Max Peak	Vertical	172	197	74.0	-24.8	Pass	
#5	8233.07	42.38	4.54	-7.23	39.69	Max Avg	Vertical	172	197	54.0	-14.3	Pass	

Test Notes: EUT on 150cm table, powered by ac/dc PS.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 57 of 117

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	NA PCB trace antenna	Variant:	Mode 2
Antenna Gain (dBi):	1.50	Modulation:	Lamor
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	924.00	Data Rate:	25 Kbit/s
Power Setting:	10	Tested By:	JMH

Test Measurement Results

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	1848.06	91.38	2.46	-13.46	80.38	Peak (NRB)	Vertical	151	0	--	--	Pass	
#2	2772.09	58.56	2.83	-11.33	50.06	Max Peak	Horizontal	131	200	74.0	-23.9	Pass	
#3	2772.09	55.03	2.83	-11.33	46.53	Max Avg	Horizontal	131	200	54.0	-7.5	Pass	

Test Notes: EUT on 150cm table, powered by ac/dc PS.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 58 of 117

Equipment Configuration for Digital Emissions (0.03 - 1 GHz)

Antenna:	NA PCB trace antenna	Variant:	Mode 1
Antenna Gain (dBi):	1.50	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	906.00	Data Rate:	25 KBit/s
Power Setting:	14	Tested By:	JMH

Test Measurement Results

30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	49.86	51.56	3.57	-23.14	31.99	MaxQP	Vertical	100	141	40.0	-8.0	Pass	
#2	81.49	45.02	3.78	-23.66	25.14	MaxQP	Vertical	100	141	40.0	-14.9	Pass	
#3	98.04	48.75	3.87	-21.84	30.78	MaxQP	Vertical	100	300	43.0	-12.2	Pass	
#4	396.00	50.01	5.01	-14.93	40.09	MaxQP	Horizontal	100	225	46.0	-5.9	Pass	
#5	624.03	49.28	5.66	-11.03	43.91	MaxQP	Vertical	221	26	46.0	-2.1	Pass	
#6	816.00	46.07	6.13	-8.60	43.60	MaxQP	Horizontal	184	209	46.0	-2.4	Pass	
#7	906.01	58.35	6.34	-7.65	57.04	Fundamental	Horizontal	100	1	--	--		

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 59 of 117

Equipment Configuration for Digital Emissions (0.03 - 1 GHz)

Antenna:	NA PCB trace antenna	Variant:	Mode 1
Antenna Gain (dBi):	1.50	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	915.00	Data Rate:	25 KBit/s
Power Setting:	14	Tested By:	JMH

Test Measurement Results

30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	49.86	51.55	3.57	-23.14	31.98	MaxQP	Vertical	102	139	40.0	-8.0	Pass	
#2	81.49	47.51	3.78	-23.66	27.63	MaxQP	Vertical	100	0	40.0	-12.4	Pass	
#3	371.99	47.22	4.94	-15.30	36.86	MaxQP	Horizontal	100	314	46.0	-9.1	Pass	
#4	396.00	49.93	5.01	-14.93	40.01	MaxQP	Horizontal	100	207	46.0	-6.0	Pass	
#5	719.96	39.47	5.91	-9.84	35.54	MaxQP	Horizontal	132	257	46.0	-10.5	Pass	
#6	818.02	39.32	6.18	-8.30	37.20	MaxQP	Vertical	100	290	46.0	-8.8	Pass	
#7	915.00	56.98	6.39	-7.75	55.62	Fundamental	Horizontal	100	1	--	--		

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 60 of 117

Equipment Configuration for Digital Emissions (0.03 - 1 GHz)

Antenna:	NA PCB trace antenna	Variant:	Mode 1
Antenna Gain (dBi):	1.50	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	924.00	Data Rate:	25 KBit/s
Power Setting:	14	Tested By:	JMH

Test Measurement Results

30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	49.89	51.23	3.57	-23.14	31.66	MaxQP	Vertical	100	134	40.0	-8.3	Pass	
#2	81.49	46.22	3.78	-23.66	26.34	MaxQP	Vertical	100	141	40.0	-13.7	Pass	
#3	98.04	48.85	3.87	-21.84	31.88	MaxQP	Vertical	100	300	43.0	-11.1	Pass	
#4	371.99	47.78	4.94	-15.30	37.42	MaxQP	Horizontal	100	316	46.0	-8.6	Pass	
#5	396.01	50.87	5.01	-14.93	40.95	MaxQP	Horizontal	100	194	46.0	-5.1	Pass	
#6	816.03	46.30	6.13	-8.60	43.83	MaxQP	Vertical	100	312	46.0	-2.2	Pass	
#7	923.91	45.77	6.45	-7.66	44.56	Fundamental	Horizontal	100	0	--	--		

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9.4.3. Digital Emissions (0.03 - 1 GHz)

Radiated Test Conditions for Radiated Digital Emissions (0.03 – 1 GHz)			
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	20.0 - 24.5
Test Heading:	Digital Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.209	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Radiated Digital Emissions (0.03 – 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBmV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dBmV/m}$$

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

$$\text{Level (dBmV/m)} = 20 * \text{Log (level (mV/m))}$$

$$40 \text{ dBmV/m} = 100\text{mV/m}$$

$$48 \text{ dBmV/m} = 250\text{mV/m}$$

Limits for Radiated Digital Emissions (0.03 – 1 GHz)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength	Measurement Distance (m)
-----------------	----------------	--------------------------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 62 of 117

	$\mu\text{V/m}$ (microvolts/meter)	$\text{dB}\mu\text{V/m}$ (dB microvolts/meter)	
0.009-0.490	2400/F(kHz)	--	300
0.490-1.705	24000/F(kHz)	--	30
1.705-30.0	30	29.5	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46.0	3
Above 960	500	54.0	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. (b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 63 of 117

Equipment Configuration for Digital Emissions (0.03 - 1 GHz)

Antenna:	NA PCB trace antenna	Variant:	Mode 1
Antenna Gain (dBi):	1.50	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	906.00	Data Rate:	25 KBit/s
Power Setting:	10	Tested By:	JMH

Test Measurement Results

30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	37.36	49.65	3.48	-15.17	37.96	MaxQP	Vertical	100	133	49.5	-11.5	Pass	
#2	47.78	59.86	3.56	-22.34	41.08	MaxQP	Vertical	107	158	49.5	-7.9	Pass	
#3	55.99	58.80	3.61	-24.13	38.28	MaxQP	Vertical	126	30	49.5	-11.2	Pass	
#4	74.54	58.09	3.74	-23.18	38.65	MaxQP	Vertical	180	31	49.5	-10.9	Pass	
#5	77.19	60.19	3.76	-23.26	40.69	MaxQP	Vertical	100	32	49.5	-8.8	Pass	
#6	249.98	57.18	4.53	-19.05	42.66	MaxQP	Horizontal	100	165	57.0	-14.3	Pass	
#7	720.01	47.19	5.91	-9.84	43.26	MaxQP	Vertical	184	180	57.0	-13.7	Pass	
#8	909.94	48.77	6.35	-7.65	47.47	Fundamental	Horizontal	100	1	--	--		

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET connected to hub outside chamber

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9.5. AC Mains Power Input/Output Ports

Scope

This test assesses the ability of the EUT to limit its internal noise from being present on the AC mains power input/output ports.

Test Method

The test method shall be in accordance with PART 15.207 and the Artificial Mains Networks (AMNs) shall be connected to the AC mains power source.

The measurement frequency range extends from 150 kHz to 30 MHz. When the EUT is a transmitter operating at frequencies below 30 MHz, then the exclusion band for transmitters applies for measurements in the transmit mode of operation.

Test Procedure

The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Limits

The equipment shall meet the class B limits given in PART 15.207. Alternatively, for equipment intended to be used in telecommunication centres only, the class A limits given in PART 15.207 may be used.

Class B Emissions

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Class A Emissions

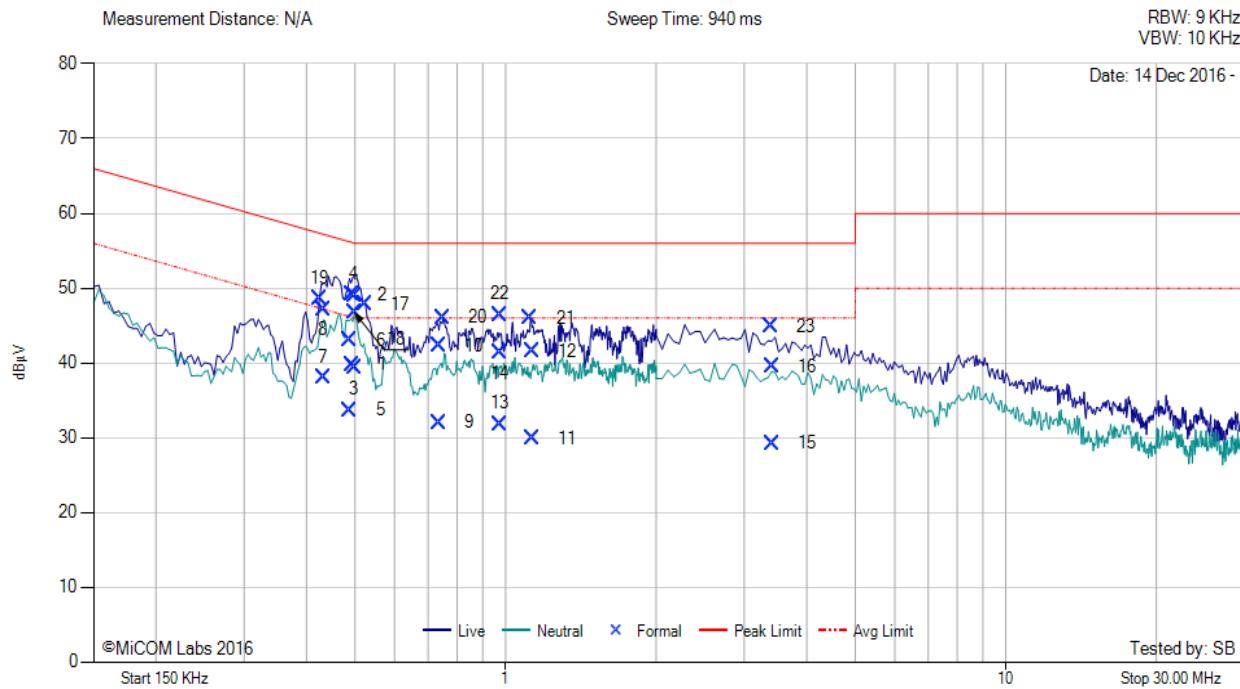
Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	79	66
0.5-30	73	60

Traceability

All conducted emission measurements are traceable to national standards. The uncertainty of measurement at a confidence level of not less than 95 %, with a coverage factor of k=2, in the range 9 kHz – 30 MHz (Average & Quasi-peak) is ± 2.64 dB.

Laboratory Measurement Uncertainty	
Measurement uncertainty	± 2.64 dB

Method	
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	


Measurement Results

AC/DC PS Powered 110V 60 Hz

Model Number	TW-222	Engineer	SB
Variant	AC Wireline 110VAC, 60Hz	Temp (°C)	17
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	45
Power Setting	15	Press. (mBars)	1007
Antenna	Integral		
Test Notes 1	AC/DC powered: Sunny Computer Tech		
Test Notes 2	Class B Limits FCC 110VAC, 60Hz		

Variant: , Test Freq: 0.00 MHz

Num	Frequency MHz	Raw dB μ V	Cable Loss dB	Factor dB	Total Correction dB μ V	Corrected Value dB μ V	Measurement Type	Line	Limit dB μ V/m	Margin dB	Pass /Fail
1	0.494	29.79	0.08	9.93	10.01	39.80	Max Avg	Live	46.2	-6.4	Pass
2	0.494	39.16	0.08	9.93	10.01	49.17	Max Qp	Live	56.2	-7.0	Pass
3	0.498	29.29	0.09	9.92	10.01	39.30	Max Avg	Live	46.1	-6.8	Pass
4	0.498	39.07	0.09	9.92	10.01	49.08	Max Qp	Live	56.1	-7.0	Pass
5	0.489	23.71	0.08	9.93	10.01	33.72	Max Avg	Neutral	46.3	-12.6	Pass
6	0.489	33.01	0.08	9.93	10.01	43.02	Max Qp	Neutral	56.3	-13.3	Pass
7	0.432	28.03	0.05	9.93	9.98	38.01	Max Avg	Live	47.9	-9.9	Pass
8	0.432	37.23	0.05	9.93	9.98	47.21	Max Qp	Live	57.9	-10.7	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

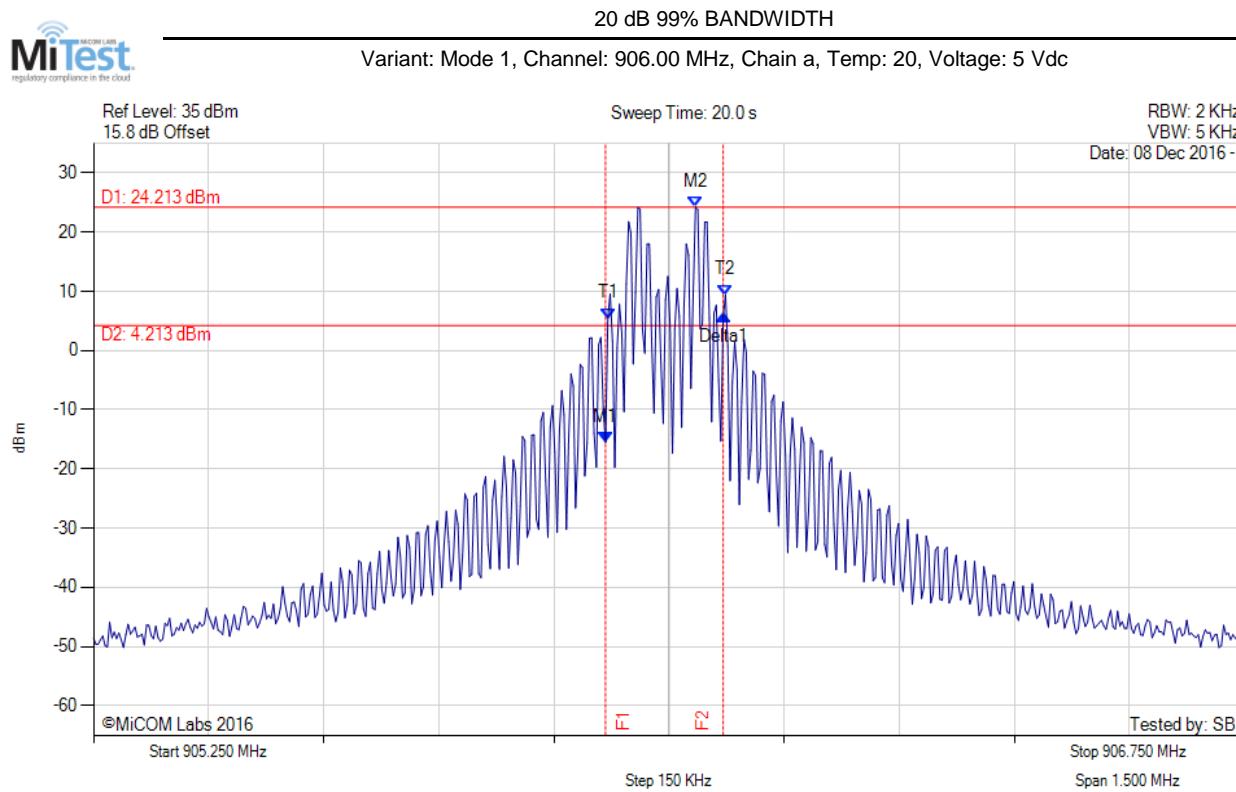
Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 67 of 117

9	0.736	21.96	0.12	9.93	10.05	32.01	Max Avg	Live	46.0	-14.0	Pass
10	0.736	32.22	0.12	9.93	10.05	42.27	Max Qp	Live	56.0	-13.7	Pass
11	1.133	19.85	0.09	9.94	10.03	29.88	Max Avg	Live	46.0	-16.1	Pass
12	1.133	31.56	0.09	9.94	10.03	41.59	Max Qp	Live	56.0	-14.4	Pass
13	0.973	21.86	0.08	9.93	10.01	31.87	Max Avg	Live	46.0	-14.1	Pass
14	0.973	31.35	0.08	9.93	10.01	41.36	Max Qp	Live	56.0	-14.6	Pass
15	3.408	19.01	0.24	10.02	10.26	29.27	Max Avg	Live	46.0	-16.7	Pass
16	3.408	29.29	0.24	10.02	10.26	39.55	Max Qp	Live	56.0	-16.5	Pass
17	0.524	37.87	0.09	9.92	10.01	47.88	Peak (scan)	Live	--	--	
18	0.498	36.75	0.09	9.92	10.01	46.76	Peak (scan)	Neutral	--	--	
19	0.424	38.67	0.05	9.93	9.98	48.65	Peak (scan)	Live	--	--	
20	0.751	36.01	0.12	9.93	10.05	46.06	Peak (scan)	Live	--	--	
21	1.121	35.95	0.09	9.94	10.03	45.98	Peak (scan)	Live	--	--	
22	0.977	36.46	0.07	9.93	10.00	46.46	Peak (scan)		--	--	
23	3.397	34.61	0.24	10.02	10.26	44.87	Peak (scan)		--	--	

Test Notes: EUT powered by Sunny Computer Tech G160605028762 at 110V 60 Hz

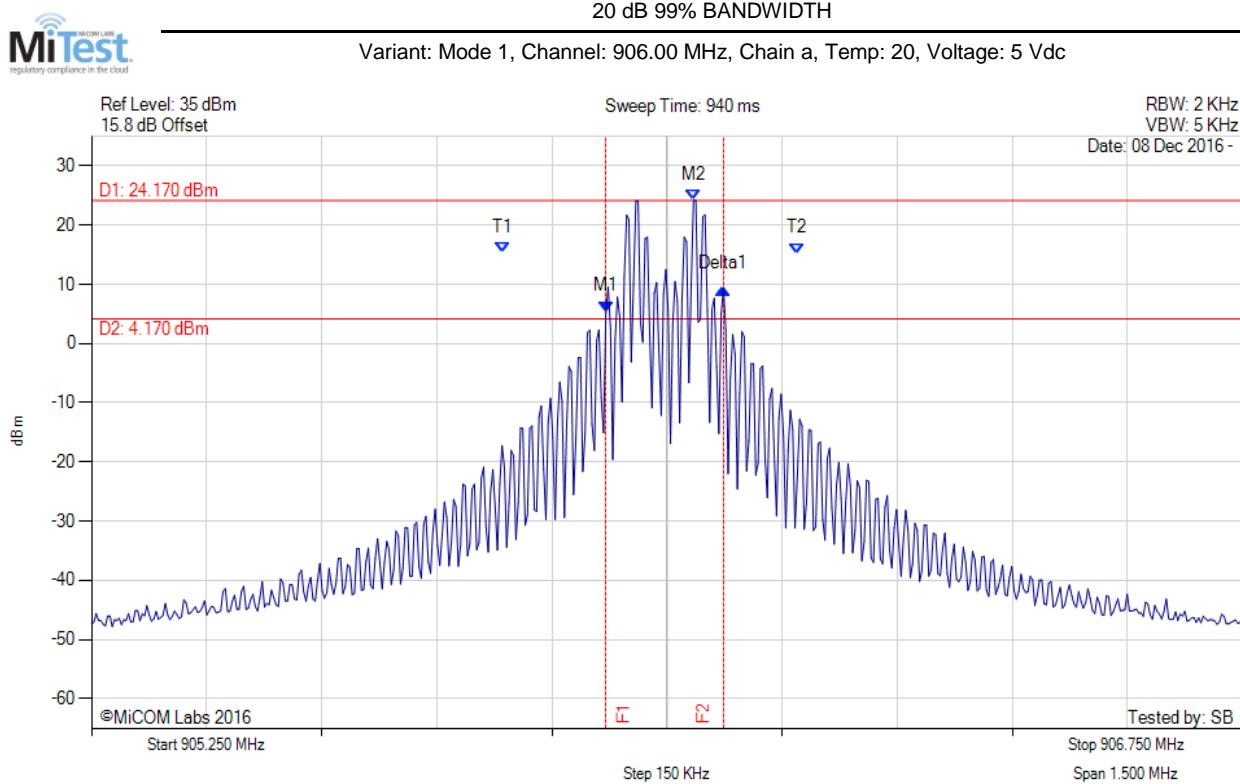
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Tehama Wireless TW-222 DCAP R200
To: FCC CFR 47 Part 15.247 & IC RSS-247(FHSS)
Serial #: TEHA07-PCA1.1 Rev A
Issue Date: 22nd December 2016
Page: 68 of 117



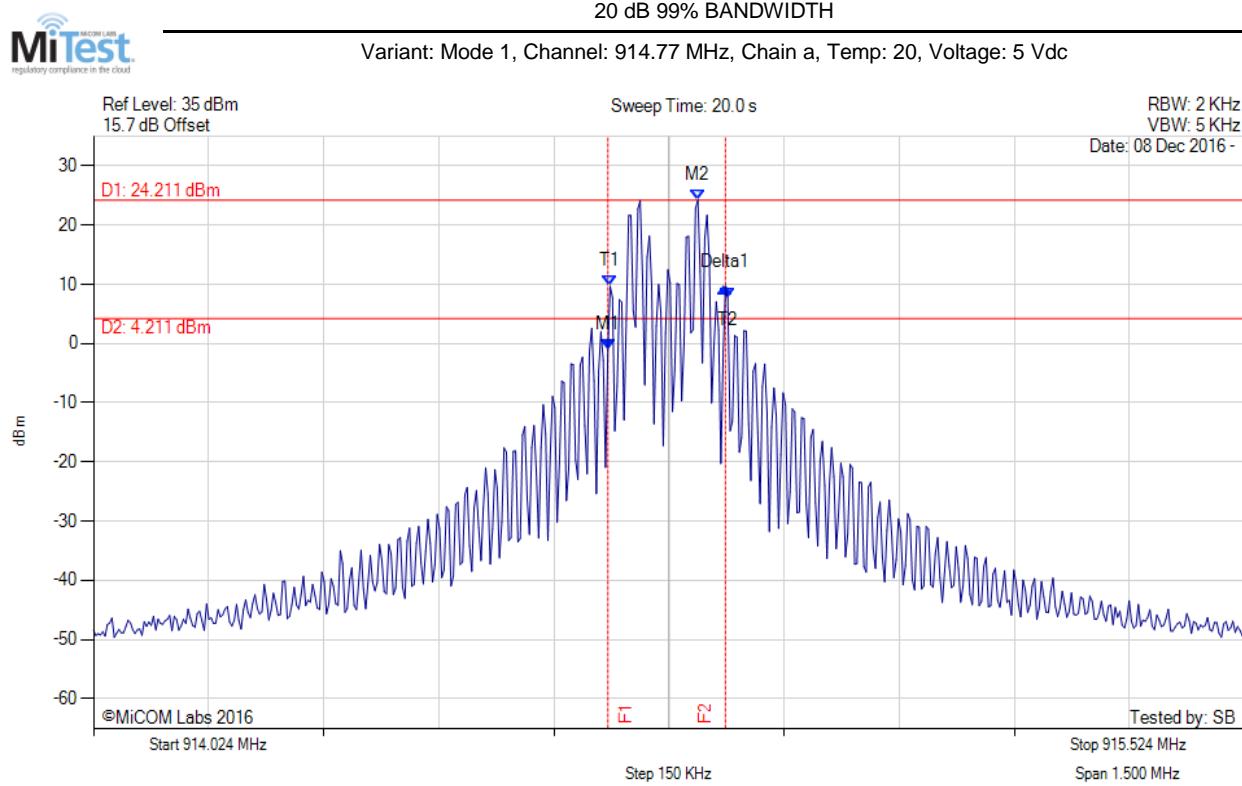
A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


A.1. 20 dB & 99% Bandwidth

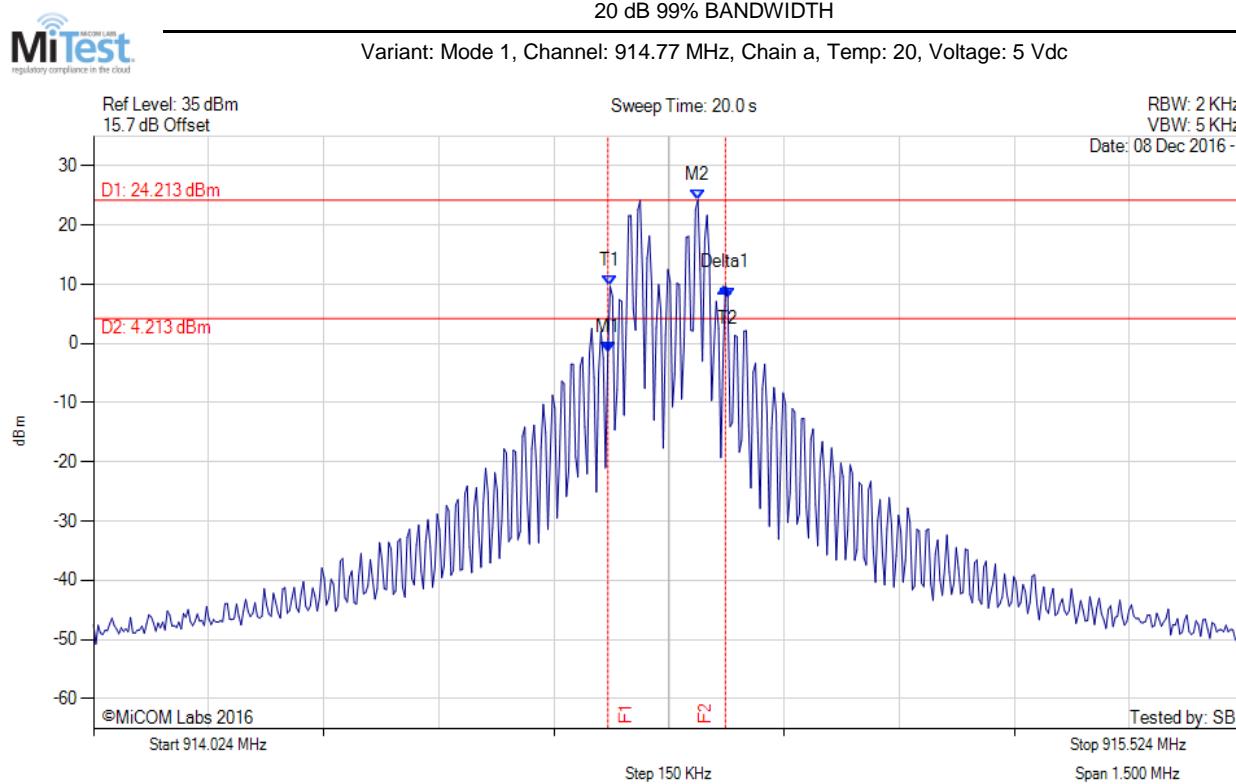
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 905.917 MHz : -15.524 dBm M2 : 906.035 MHz : 24.211 dBm Delta1 : 153 KHz : 21.432 dB T1 : 905.920 MHz : 5.411 dBm T2 : 906.074 MHz : 9.393 dBm OBW : 153 KHz	Channel Frequency: 906.00 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

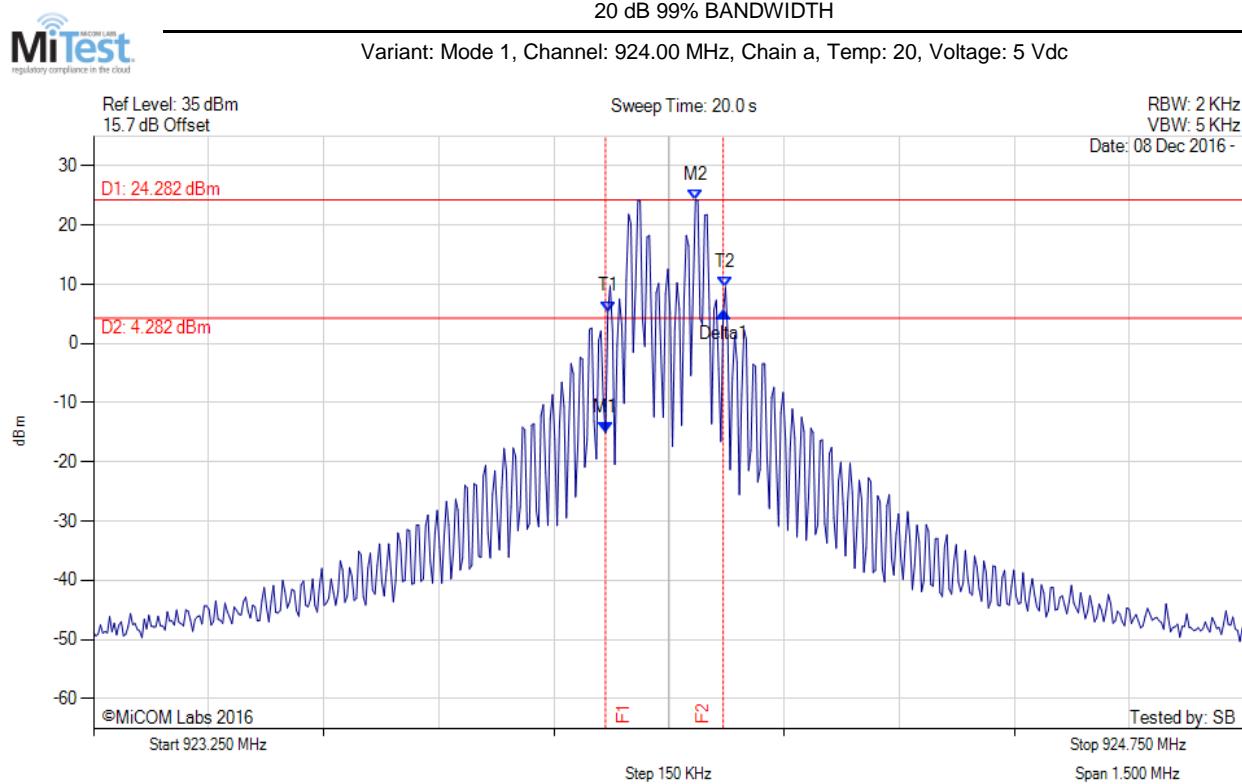
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 905.920 MHz : 5.397 dBm M2 : 906.035 MHz : 24.166 dBm Delta1 : 153 KHz : 3.968 dB T1 : 905.785 MHz : 15.336 dBm T2 : 906.170 MHz : 15.216 dBm OBW : 153 KHz	Channel Frequency: 906.00 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

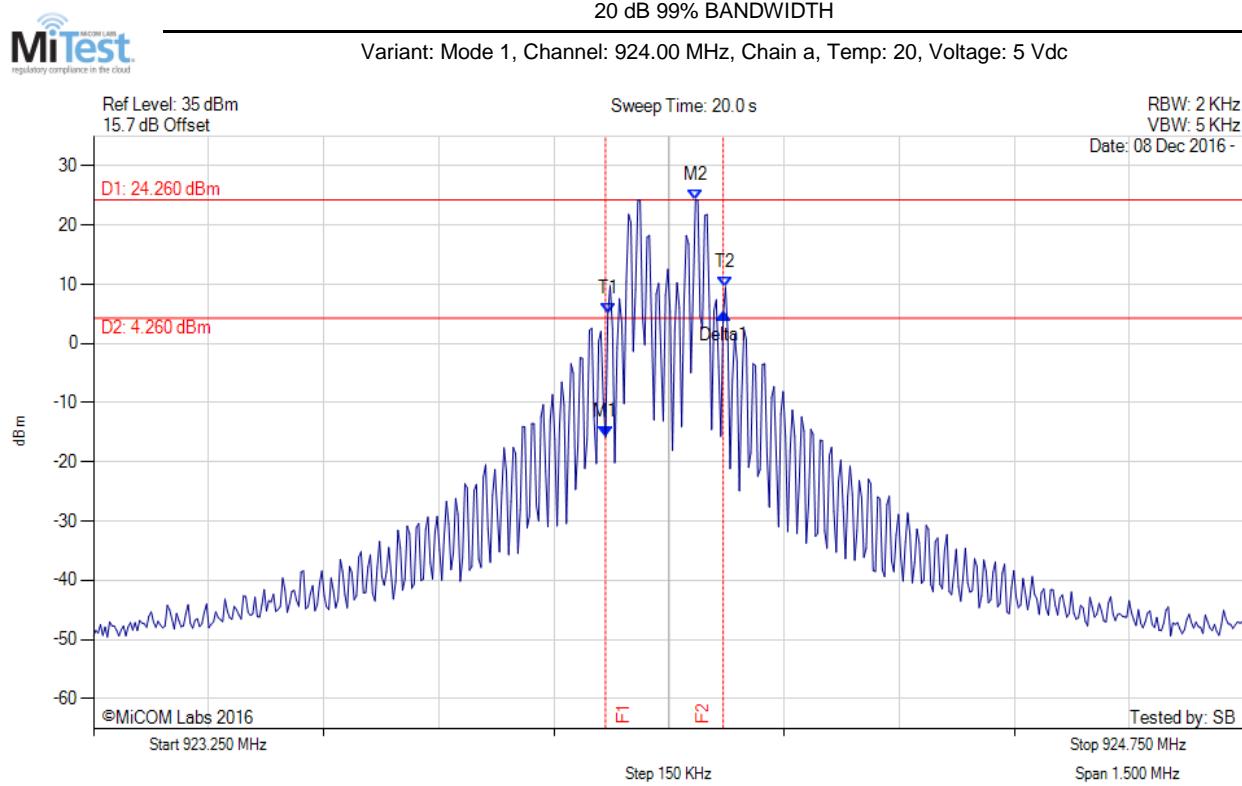
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 914.694 MHz : -1.075 dBm M2 : 914.812 MHz : 24.211 dBm Delta1 : 153 KHz : 10.557 dB T1 : 914.697 MHz : 9.674 dBm T2 : 914.851 MHz : 7.597 dBm OBW : 153 KHz	Channel Frequency: 914.77 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

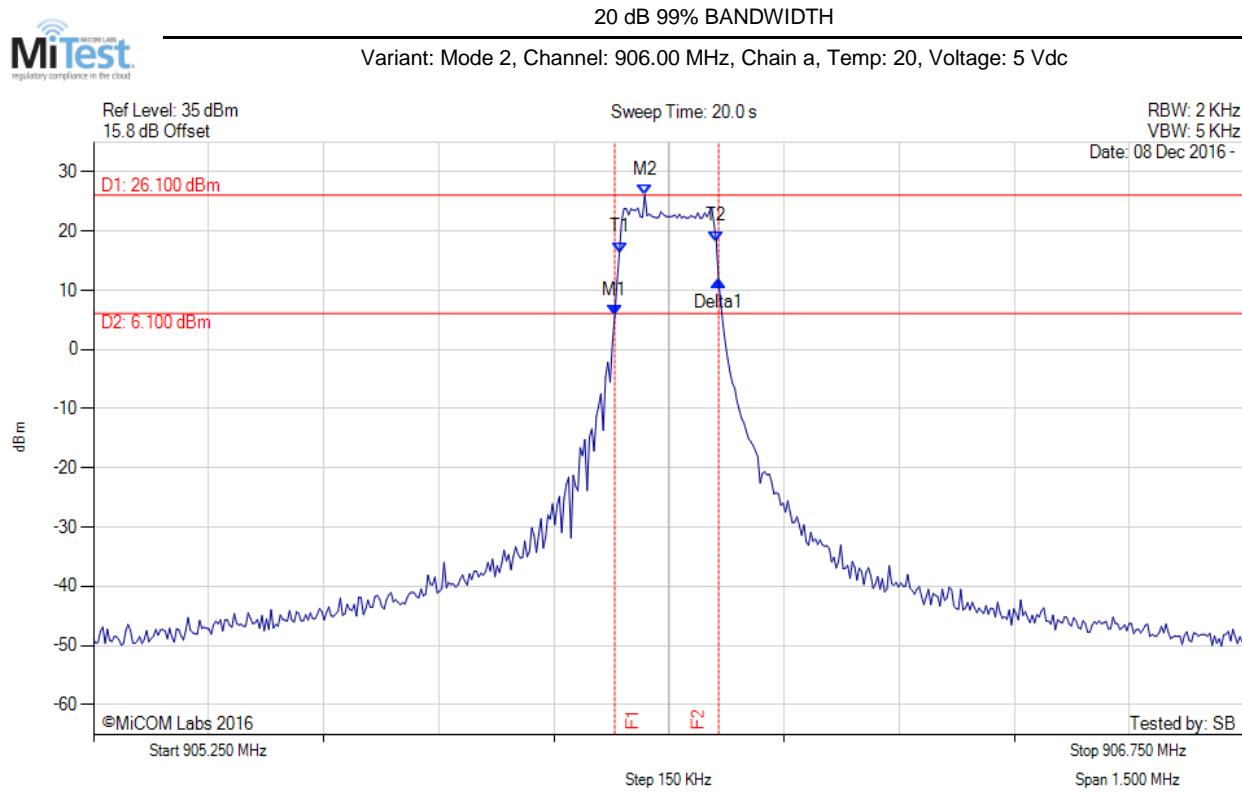
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 914.694 MHz : -1.406 dBm M2 : 914.812 MHz : 24.211 dBm Delta1 : 153 KHz : 10.891 dB T1 : 914.697 MHz : 9.688 dBm T2 : 914.851 MHz : 7.668 dBm OBW : 153 KHz	Measured 20 dB Bandwidth: 0.153 MHz Limit: ≥ 0.5 kHz Margin: -0.15 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

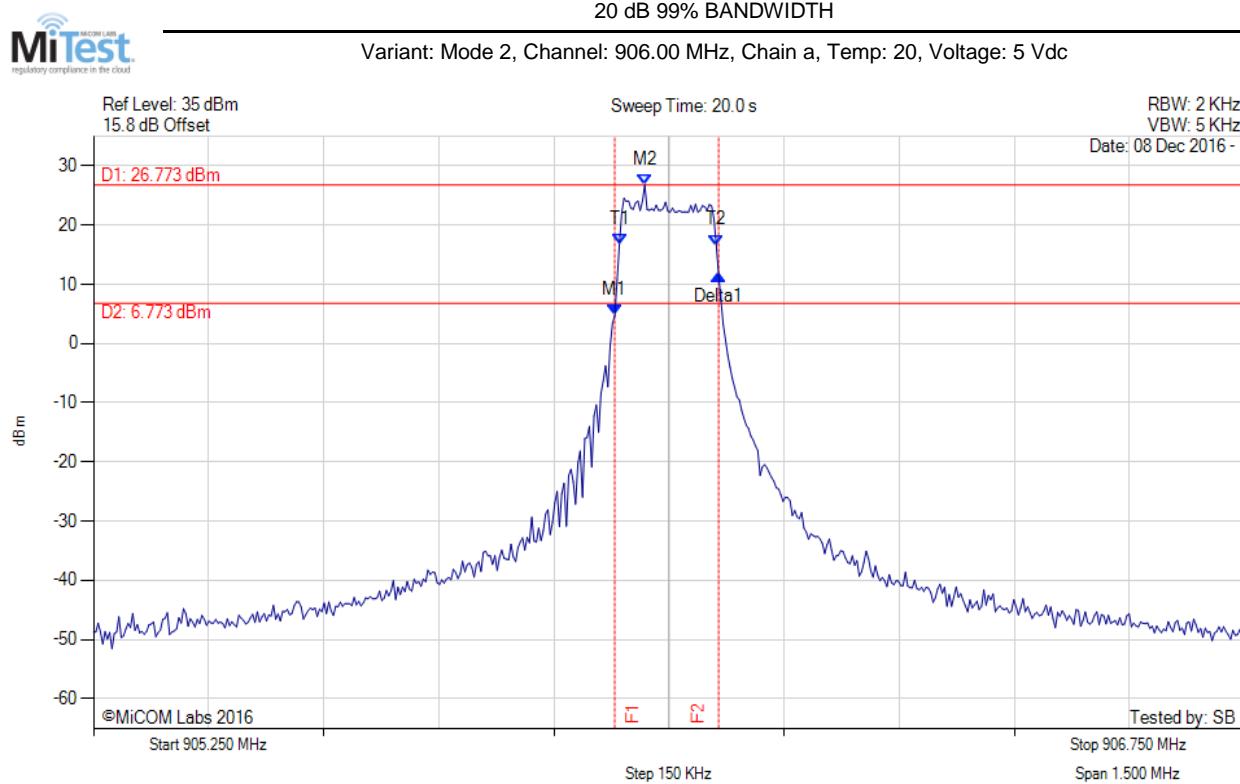
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 923.917 MHz : -15.073 dBm M2 : 924.035 MHz : 24.282 dBm Delta1 : 153 KHz : 20.344 dB T1 : 923.920 MHz : 5.411 dBm T2 : 924.074 MHz : 9.493 dBm OBW : 153 KHz	Measured 20 dB Bandwidth: 0.153 MHz Limit: ≥ 25.0 kHz Margin: -0.13 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

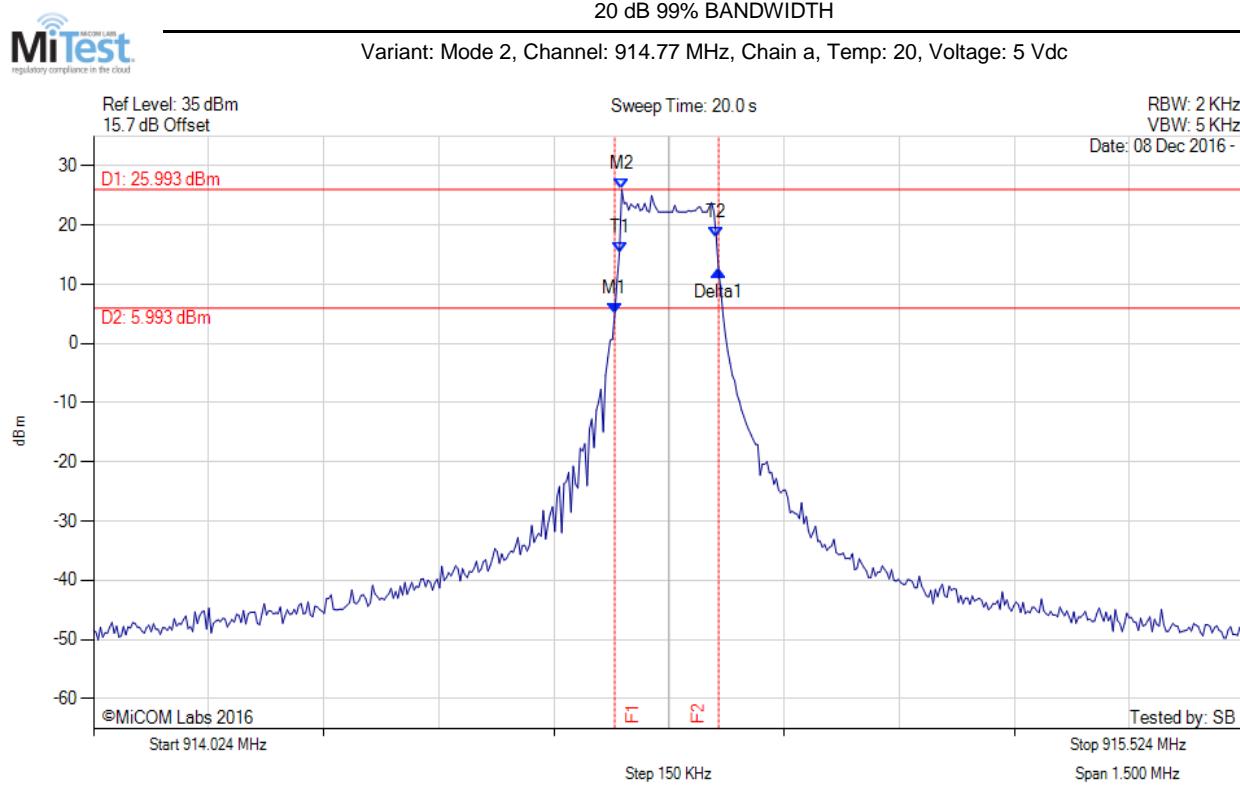
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 923.917 MHz : -15.795 dBm M2 : 924.035 MHz : 24.260 dBm Delta1 : 153 KHz : 20.860 dB T1 : 923.920 MHz : 5.069 dBm T2 : 924.074 MHz : 9.485 dBm OBW : 153 KHz	Channel Frequency: 924.00 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

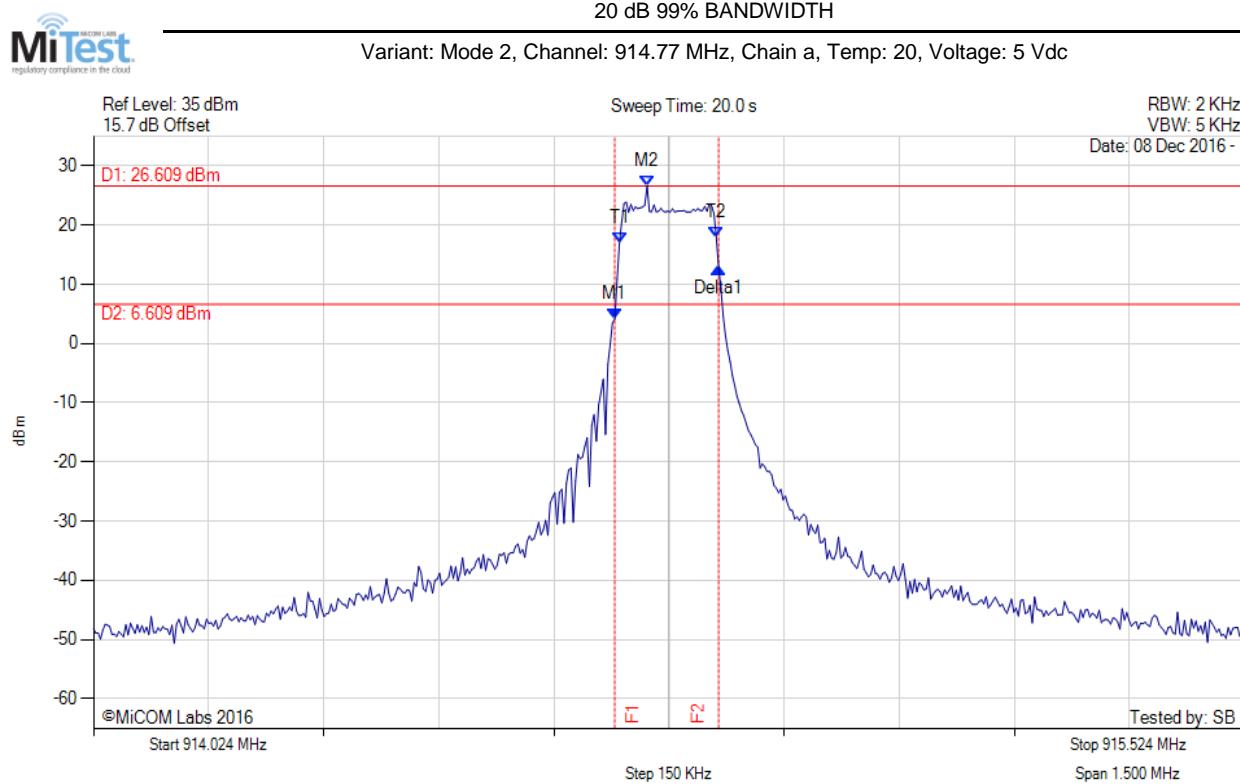
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 905.929 MHz : 5.795 dBm M2 : 905.968 MHz : 26.100 dBm Delta1 : 135 KHz : 5.711 dB T1 : 905.935 MHz : 16.401 dBm T2 : 906.062 MHz : 18.264 dBm OBW : 126 KHz	Channel Frequency: 906.00 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

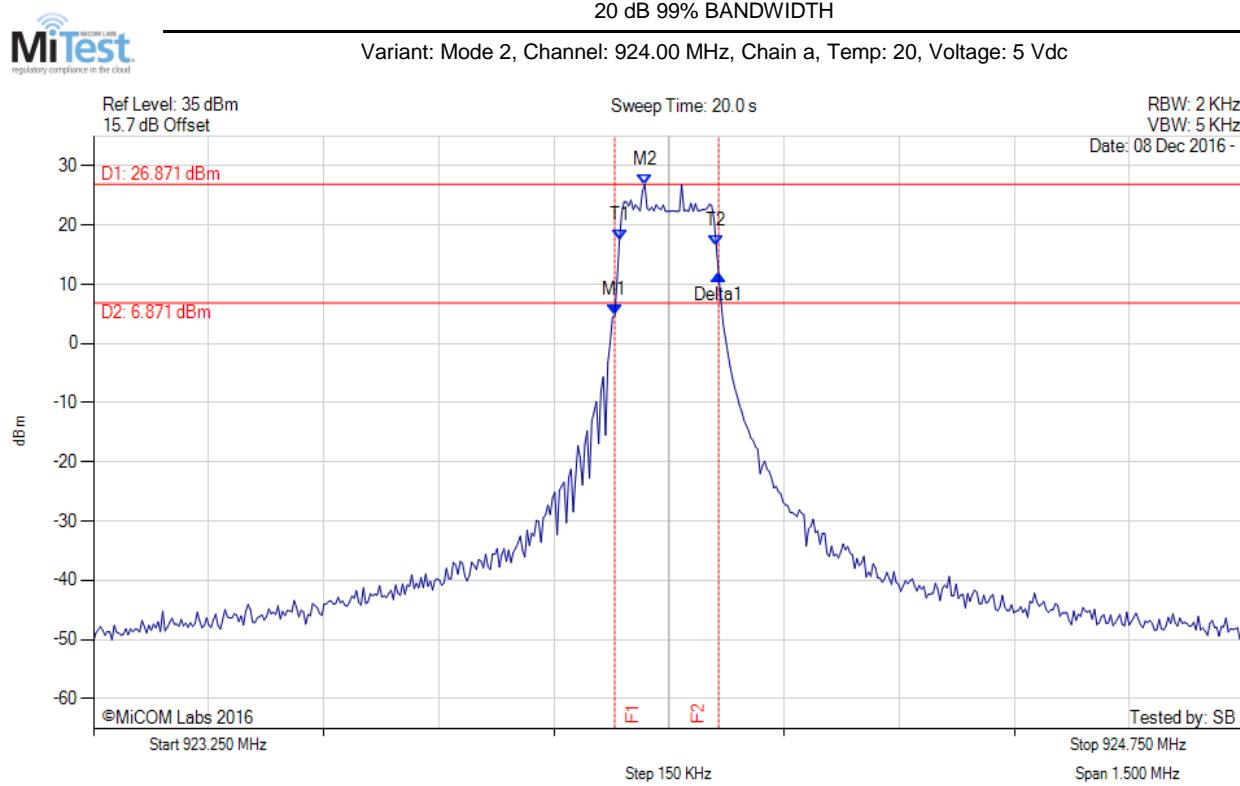
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 905.929 MHz : 4.738 dBm M2 : 905.968 MHz : 26.773 dBm Delta1 : 135 KHz : 6.868 dB T1 : 905.935 MHz : 16.833 dBm T2 : 906.062 MHz : 16.629 dBm OBW : 126 KHz	Channel Frequency: 906.00 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

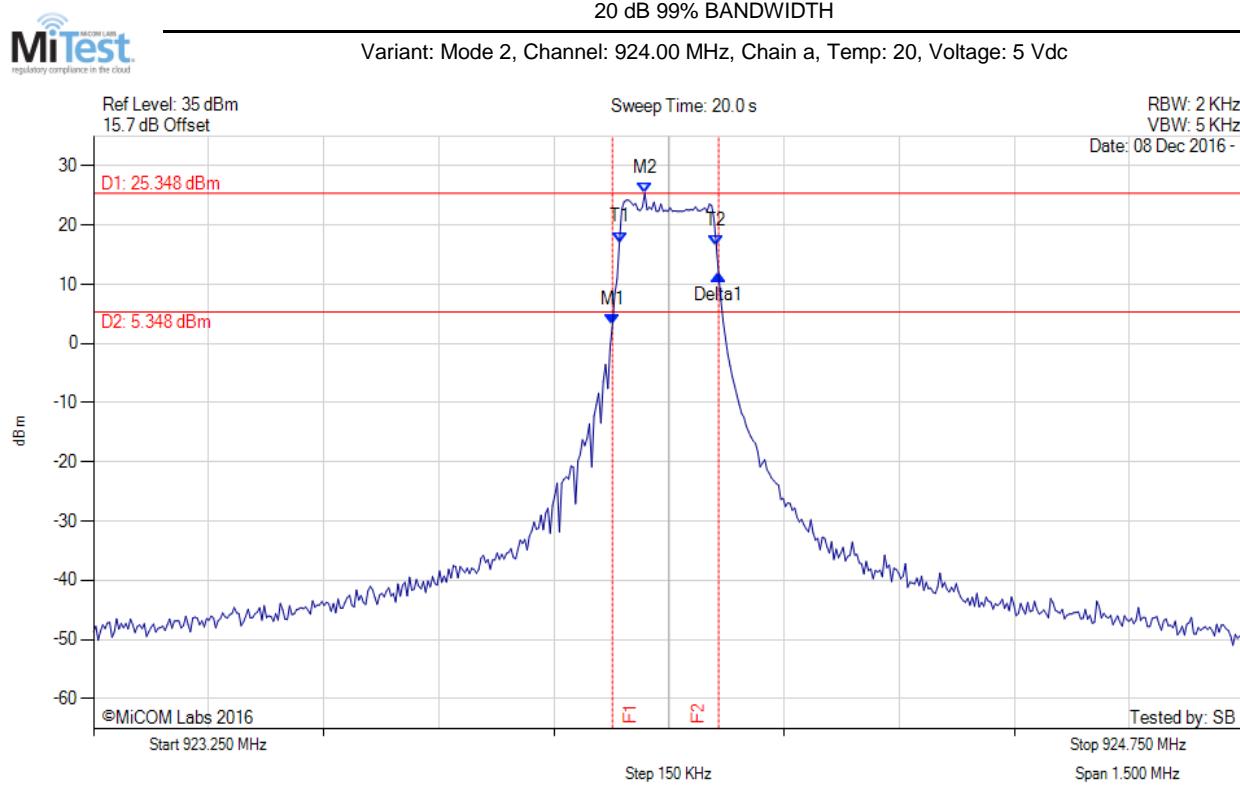
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 914.703 MHz : 5.136 dBm M2 : 914.712 MHz : 25.993 dBm Delta1 : 135 KHz : 7.145 dB T1 : 914.709 MHz : 15.277 dBm T2 : 914.836 MHz : 17.890 dBm OBW : 126 KHz	Channel Frequency: 914.77 MHz

[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 914.703 MHz : 4.122 dBm M2 : 914.745 MHz : 26.609 dBm Delta1 : 135 KHz : 8.770 dB T1 : 914.709 MHz : 16.904 dBm T2 : 914.836 MHz : 17.945 dBm OBW : 126 KHz	Measured 20 dB Bandwidth: 0.135 MHz Limit: ≥ 0.5 kHz Margin: -0.13 MHz

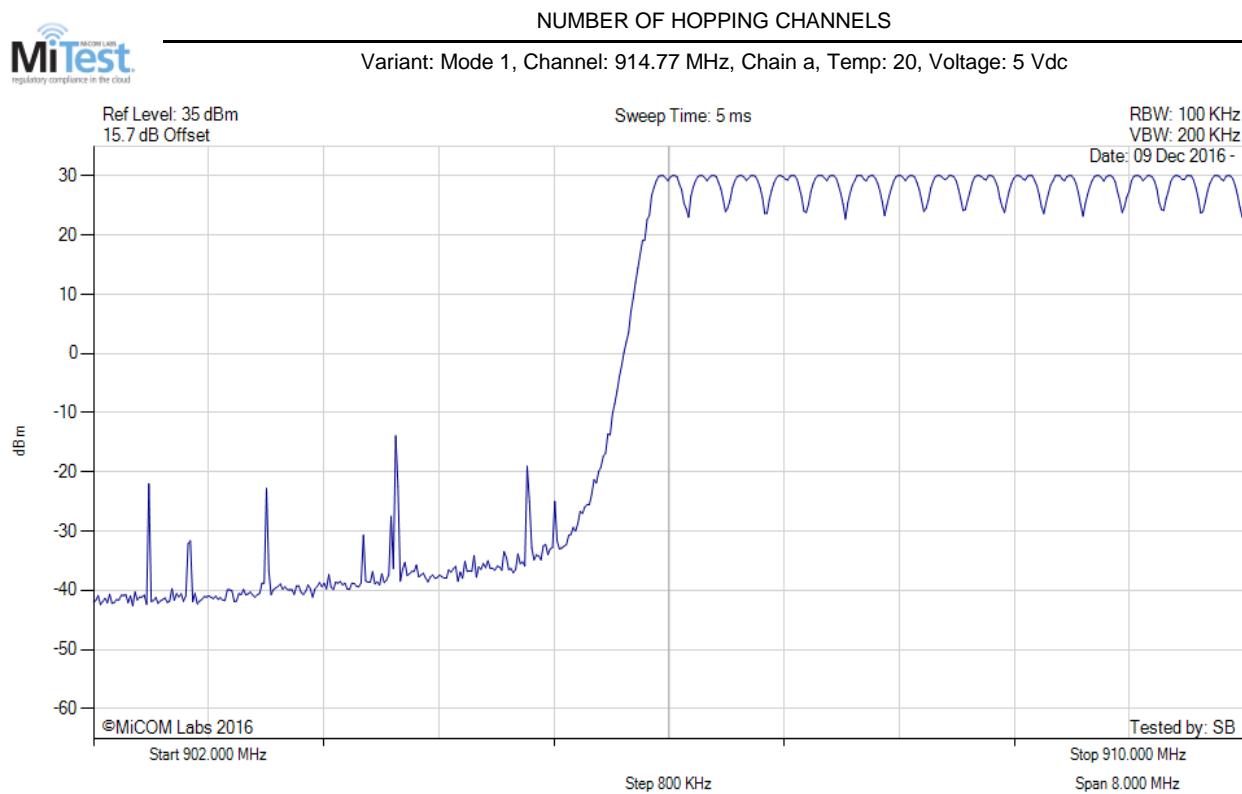
[back to matrix](#)


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 923.929 MHz : 4.748 dBm M2 : 923.968 MHz : 26.871 dBm Delta1 : 135 KHz : 6.923 dB T1 : 923.935 MHz : 17.439 dBm T2 : 924.062 MHz : 16.576 dBm OBW : 126 KHz	Channel Frequency: 924.00 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 923.926 MHz : 3.208 dBm M2 : 923.968 MHz : 25.348 dBm Delta1 : 138 KHz : 8.454 dB T1 : 923.935 MHz : 17.085 dBm T2 : 924.062 MHz : 16.593 dBm OBW : 126 KHz	Channel Frequency: 924.00 MHz

[back to matrix](#)

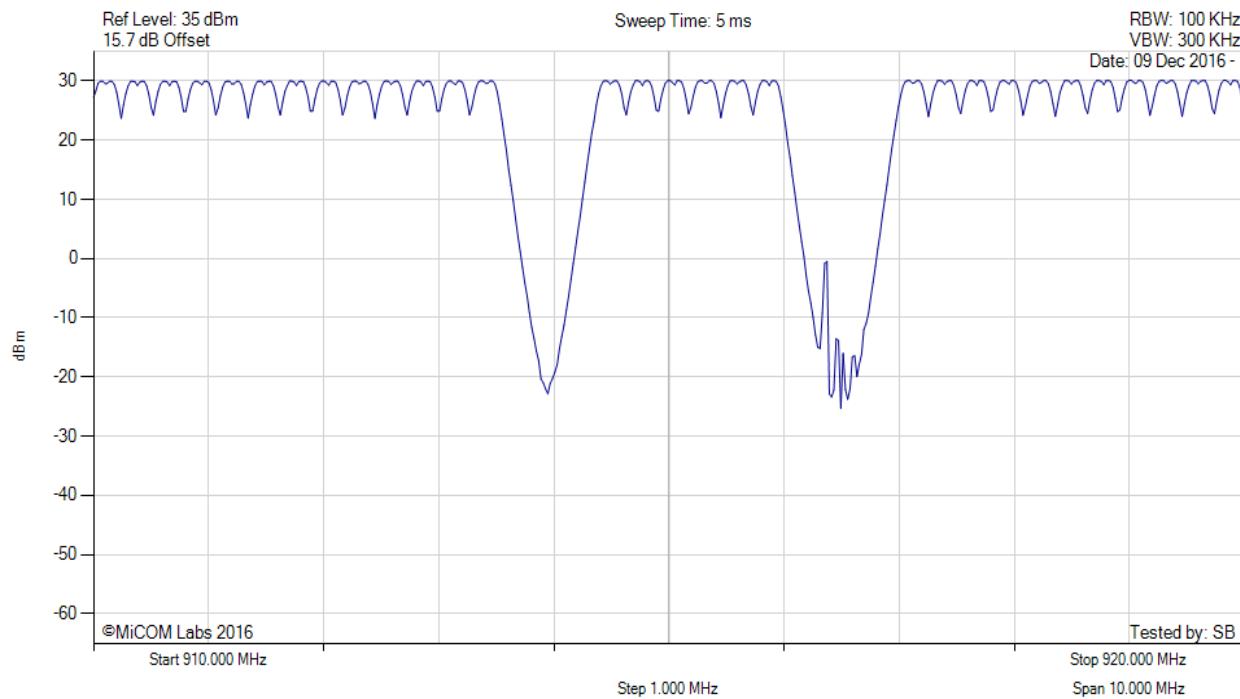
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.2. Frequency Hopping Tests

A.2.1. Number of Hopping Channels

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: 914.77 MHz

[back to matrix](#)



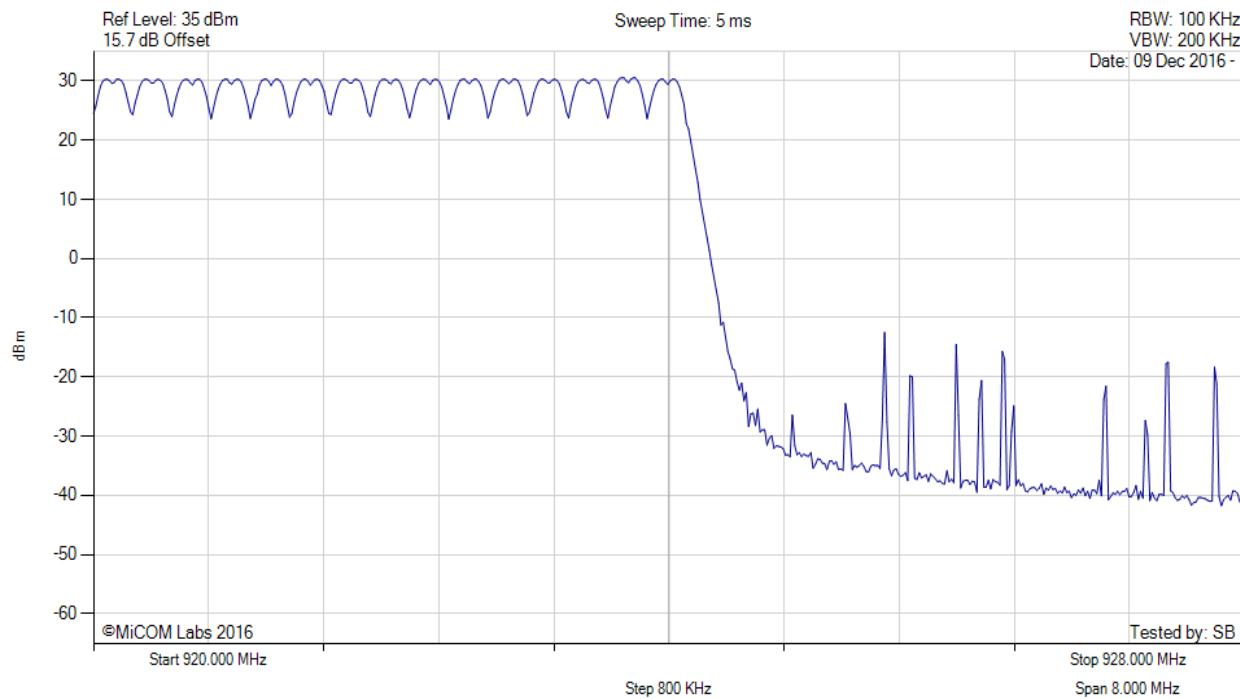
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

NUMBER OF HOPPING CHANNELS

Variant: Mode 1, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: 914.77 MHz

[back to matrix](#)



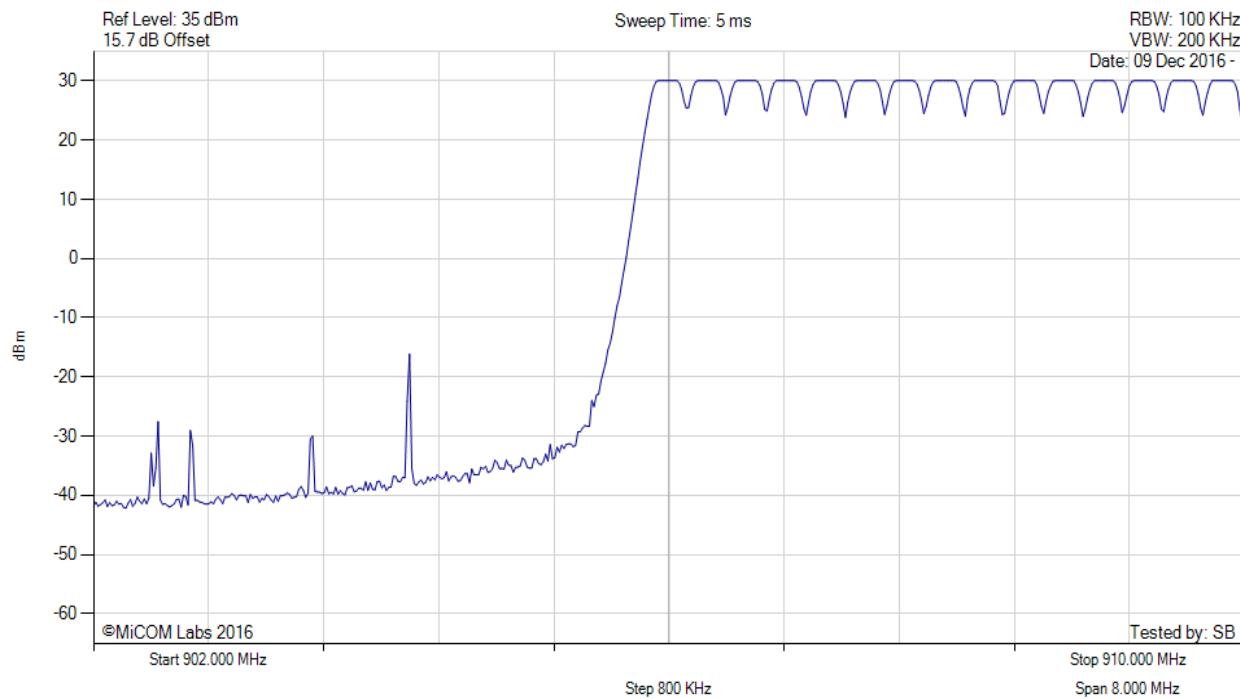
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

NUMBER OF HOPPING CHANNELS

Variant: Mode 1, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: 914.77 MHz

[back to matrix](#)



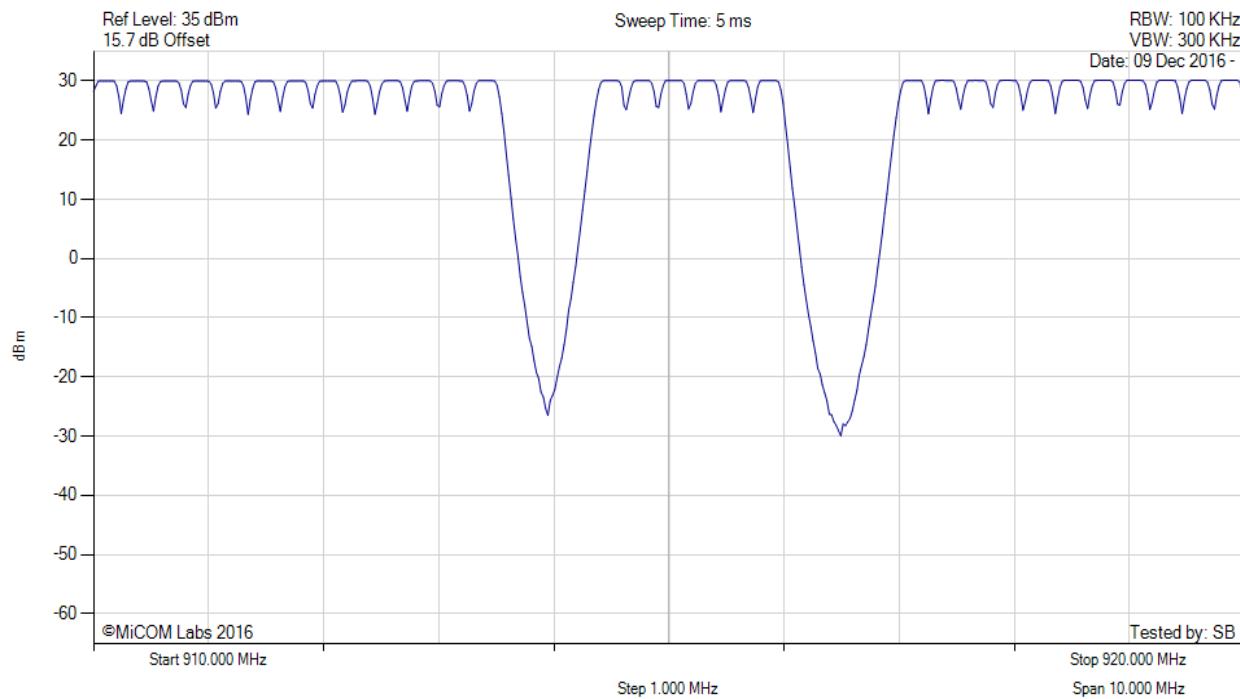
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

NUMBER OF HOPPING CHANNELS

Variant: Mode 2, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: 914.77 MHz

[back to matrix](#)



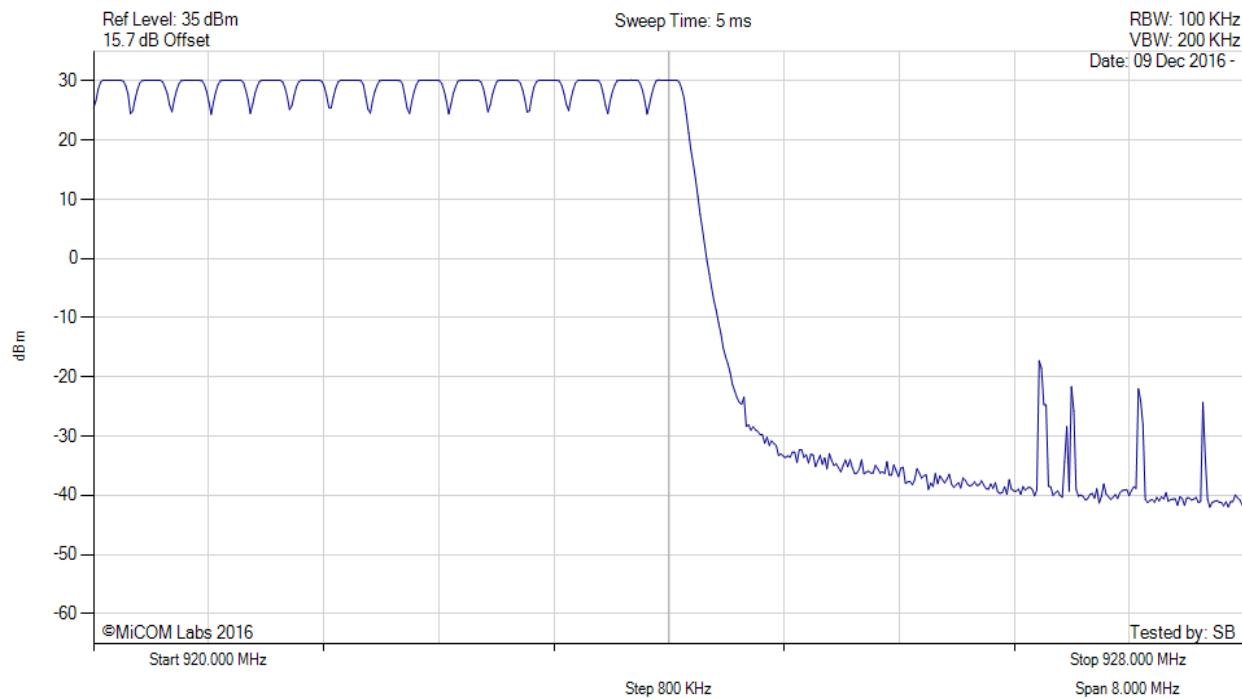
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

NUMBER OF HOPPING CHANNELS

Variant: Mode 2, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: 914.77 MHz

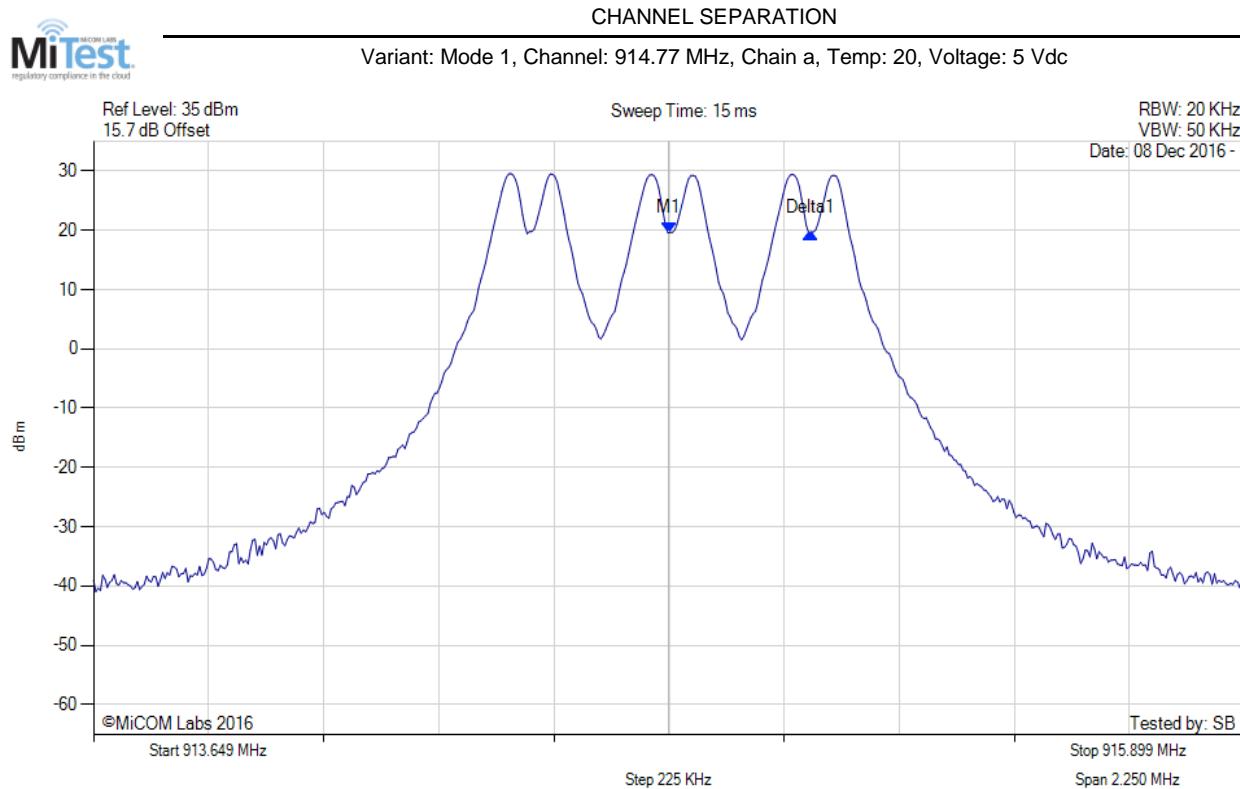
[back to matrix](#)



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

NUMBER OF HOPPING CHANNELS

Variant: Mode 2, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

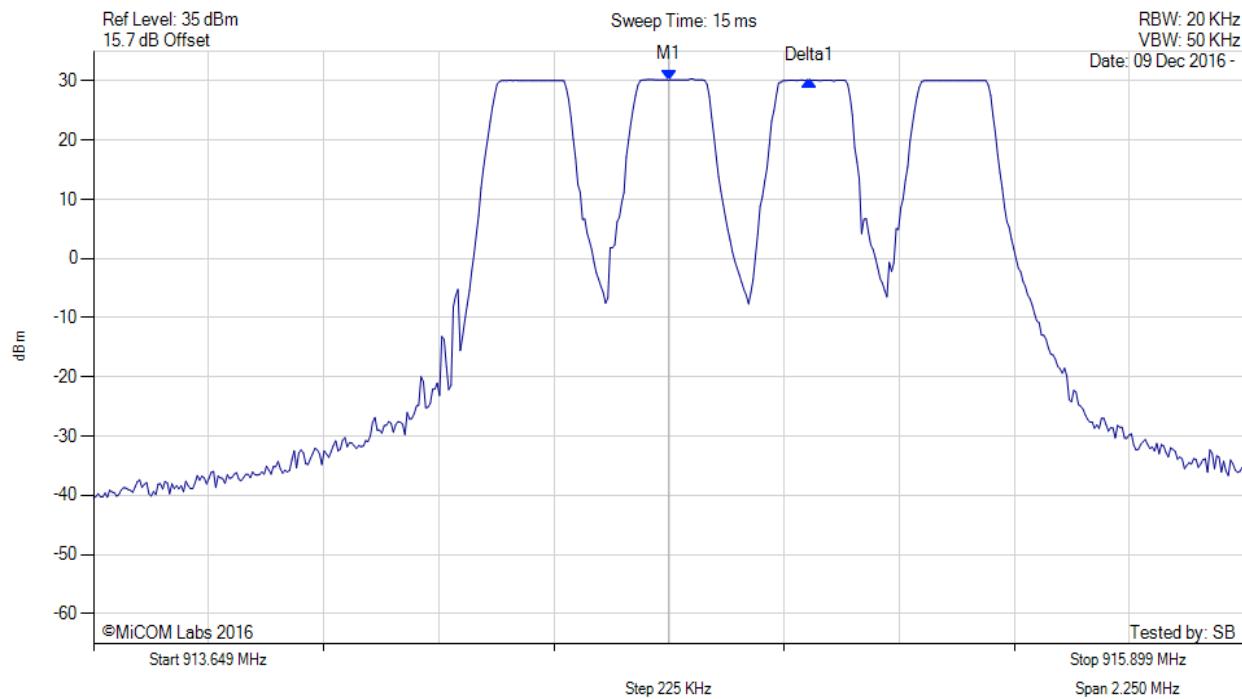

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW		Channel Frequency: 914.77 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.2.2. Channel Separation

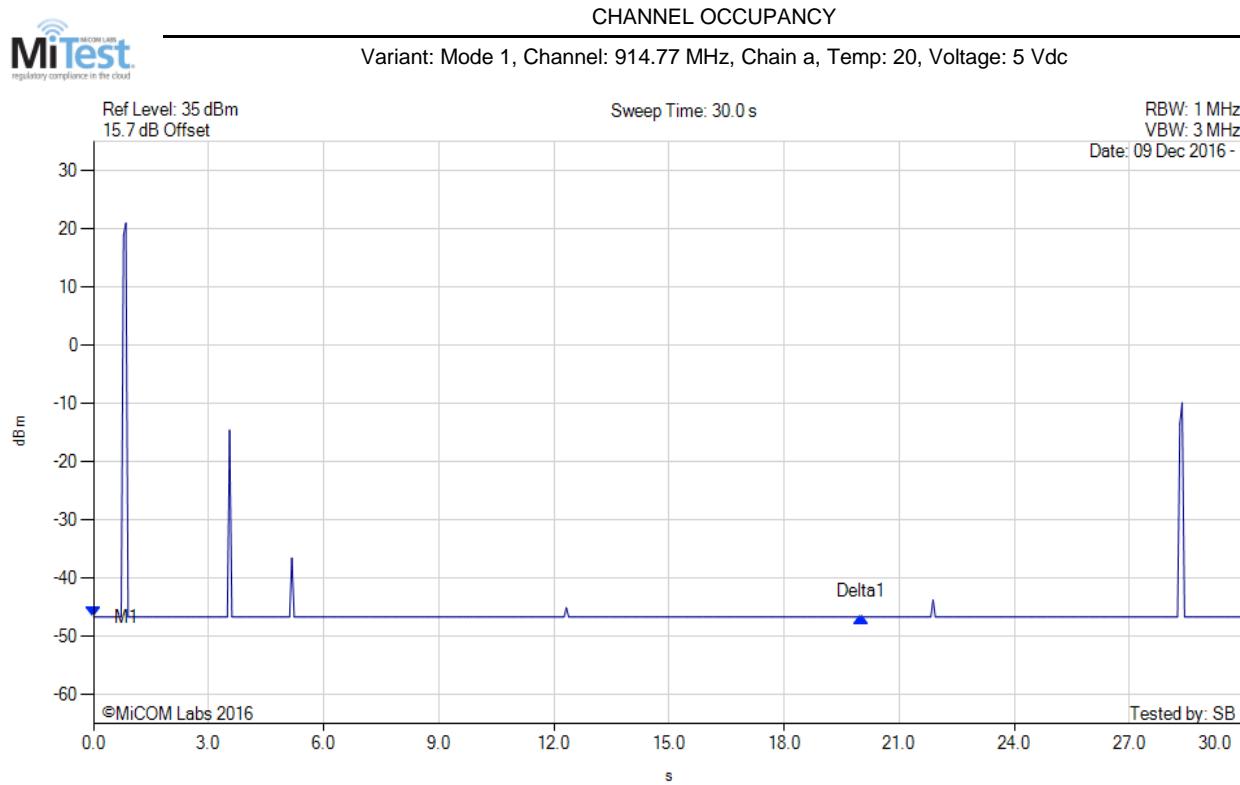
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 914.774 MHz : 19.647 dBm Delta1 : 277 KHz : -0.022 dB	Channel Frequency: 914.77 MHz


[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CHANNEL SEPARATION

Variant: Mode 2, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 914.774 MHz : 30.166 dBm Delta1 : 275 KHz : -0.067 dB	Channel Frequency: 914.77 MHz

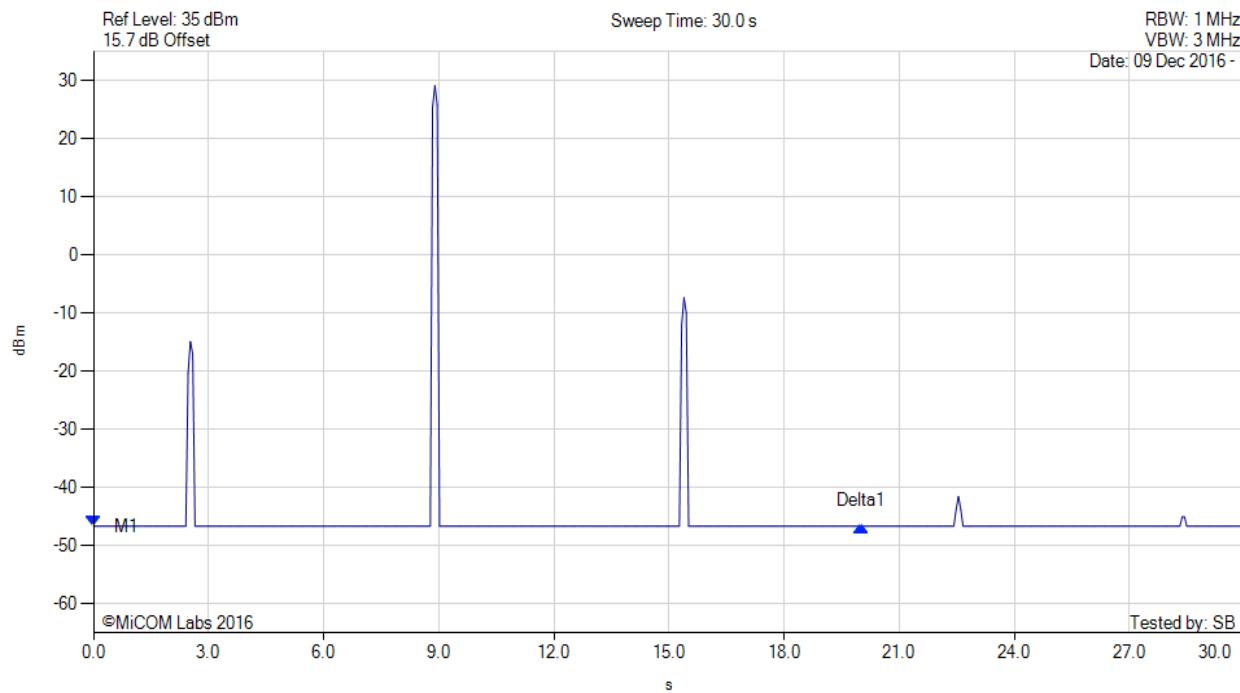
[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.2.3. Channel Occupancy

Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = RMS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(914.77 MHz) : 0.000 s : -46.586 dBm Delta1(914.77 MHz) : 20.000 s : 0.000 dB	Channel Frequency: 914.77 MHz

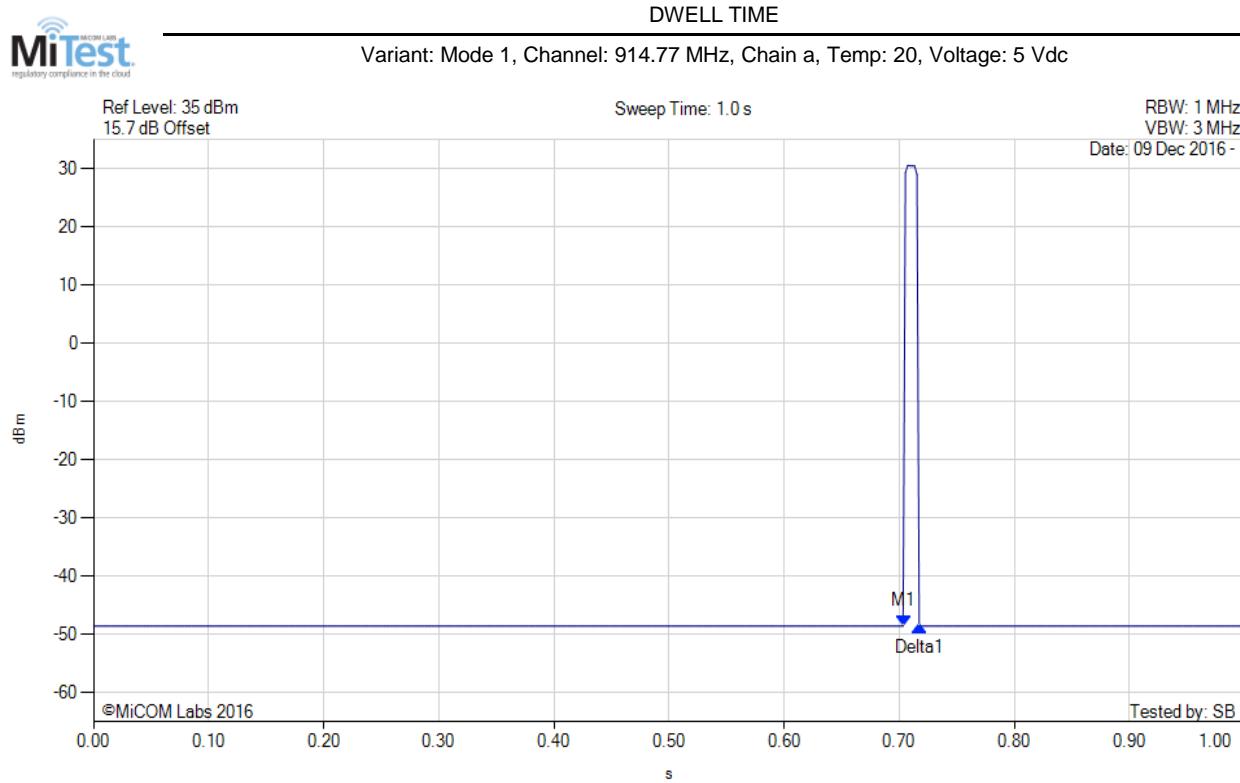
[back to matrix](#)



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CHANNEL OCCUPANCY

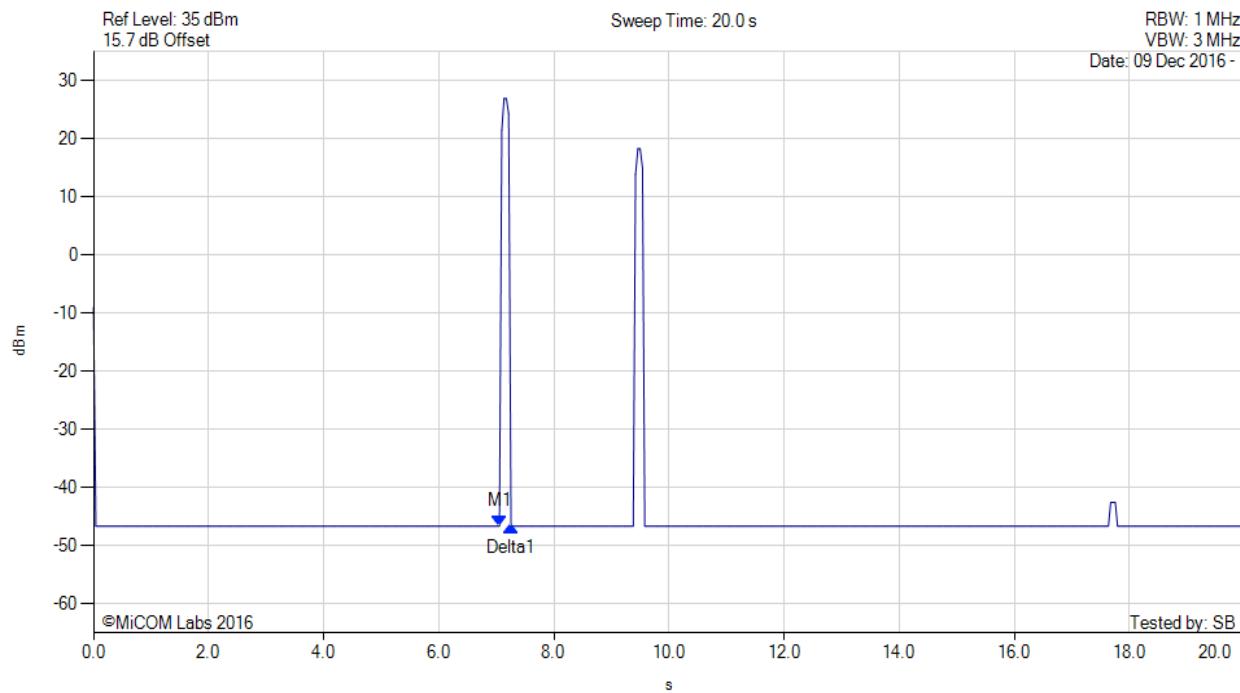
Variant: Mode 2, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc


Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = RMS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(914.77 MHz) : 0.000 s : -46.586 dBm Delta1(914.77 MHz) : 20.000 s : 0.000 dB	Channel Frequency: 914.77 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.2.4. Dwell Time


Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = RMS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(914.77 MHz) : 0.704 s : -48.524 dBm Delta1(914.77 MHz) : 0.014 s : 0.000 dB	Channel Frequency: 914.77 MHz

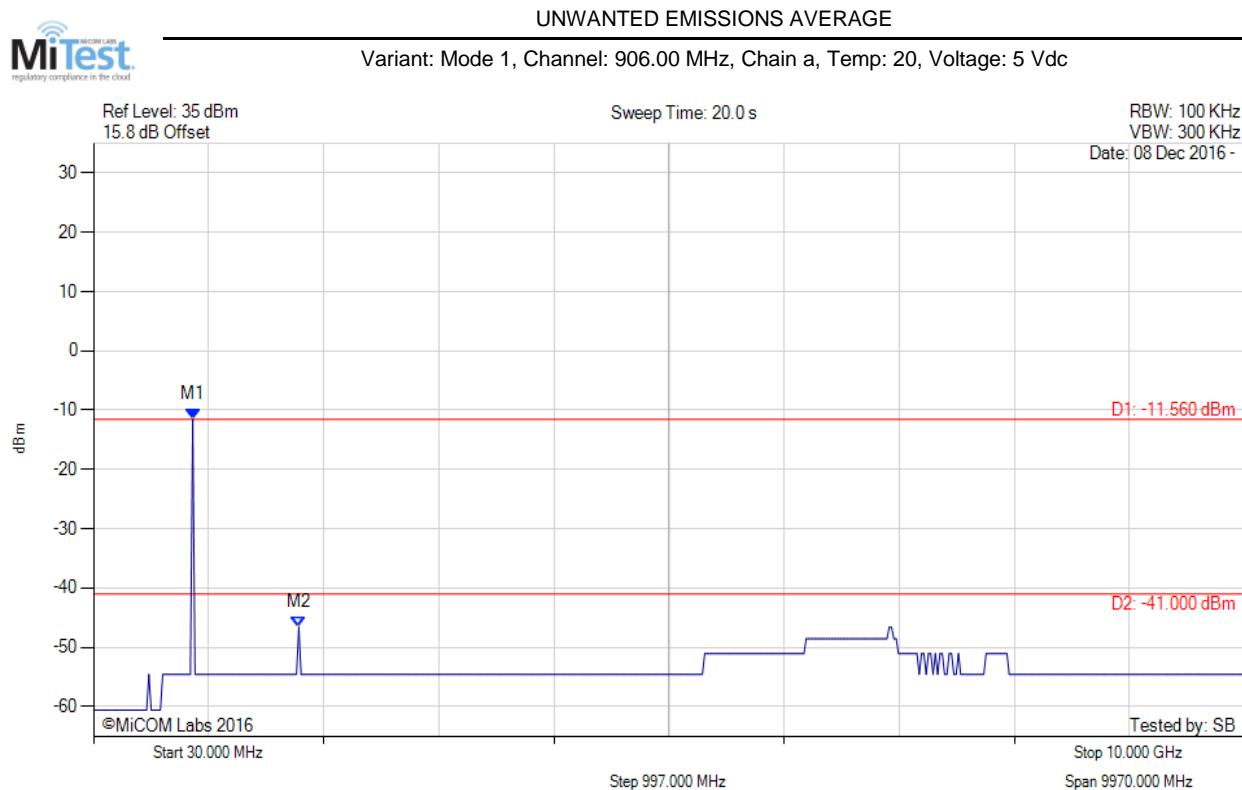
[back to matrix](#)

DWELL TIME

Variant: Mode 2, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = RMS Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(914.77 MHz) : 7.054 s : -46.586 dBm Delta1(914.77 MHz) : 9.200 s : 0.000 dB	Channel Frequency: 914.77 MHz

[back to matrix](#)



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

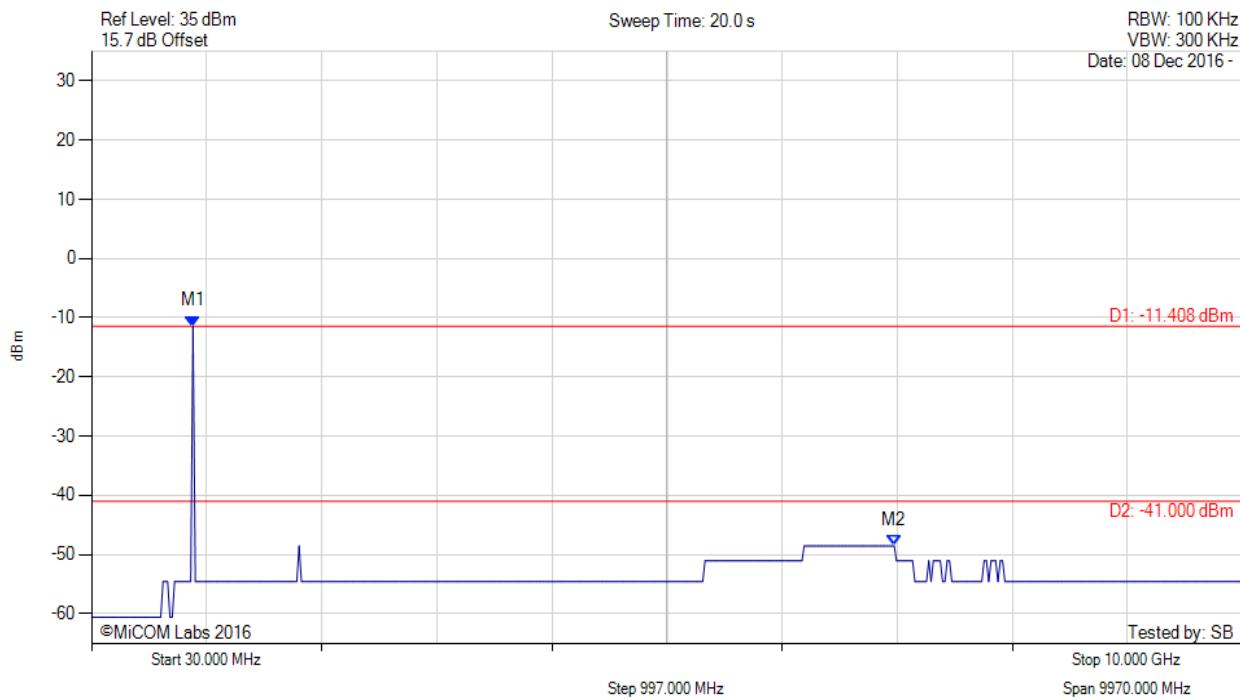
A.3. Emissions

A.3.1. Conducted Emissions

A.3.1.1. Conducted Unwanted Spurious Emissions

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 889.138 MHz : -11.560 dBm M2 : 1808.216 MHz : -46.586 dBm	Channel Frequency: 906.00 MHz

[back to matrix](#)



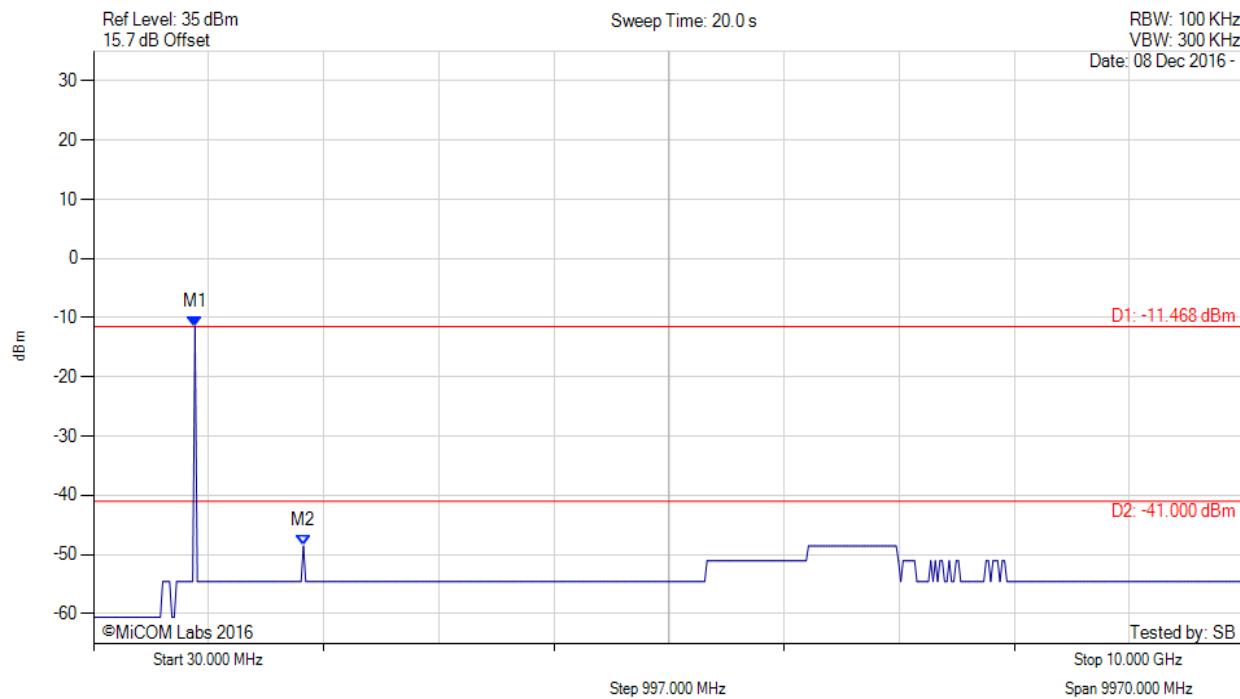
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

UNWANTED EMISSIONS AVERAGE

Variant: Mode 1, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 909.118 MHz : -11.408 dBm M2 : 6983.026 MHz : -48.524 dBm	Channel Frequency: 914.77 MHz

[back to matrix](#)



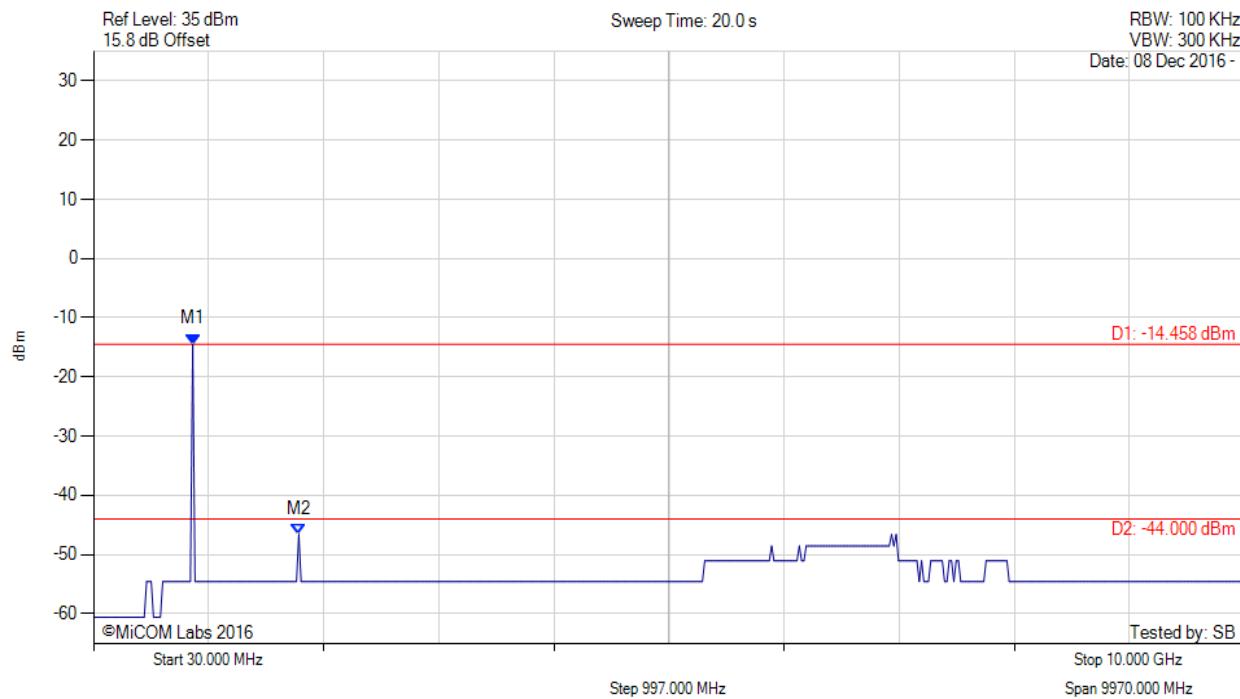
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

UNWANTED EMISSIONS AVERAGE

Variant: Mode 1, Channel: 924.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 909.118 MHz : -11.468 dBm M2 : 1848.176 MHz : -48.524 dBm	Channel Frequency: 924.00 MHz

[back to matrix](#)



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

UNWANTED EMISSIONS AVERAGE

Variant: Mode 2, Channel: 906.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 889.138 MHz : -14.458 dBm M2 : 1808.216 MHz : -46.586 dBm	Channel Frequency: 906.00 MHz

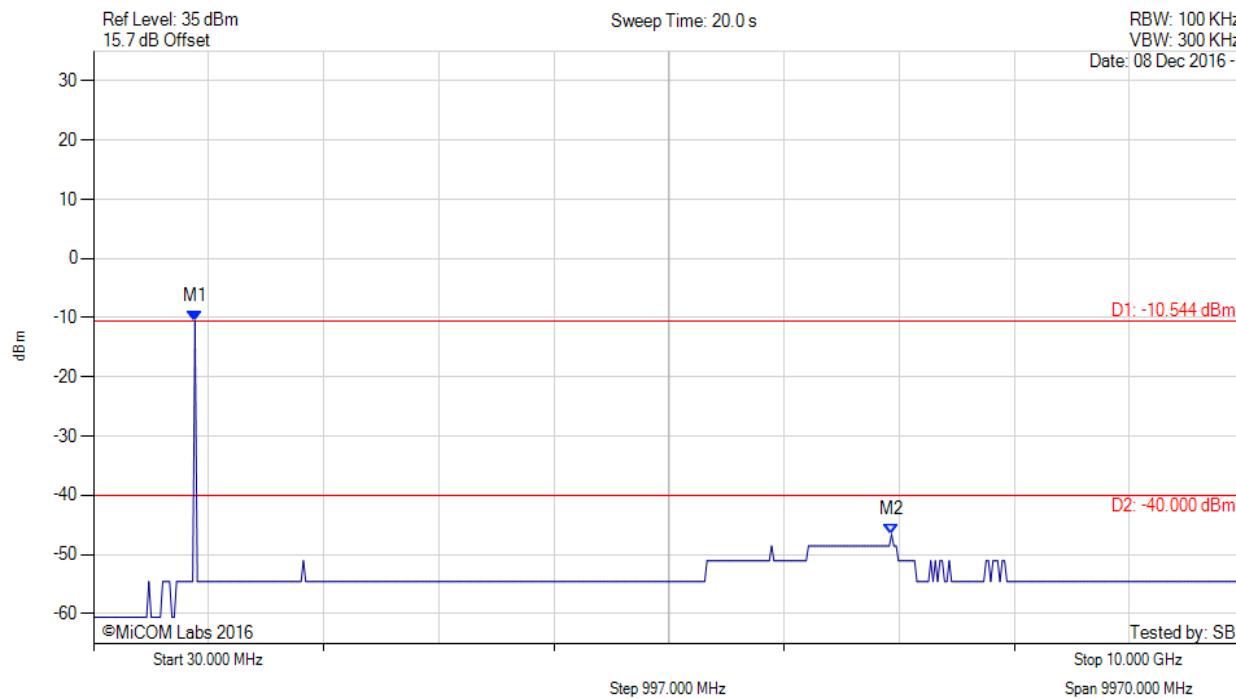
[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

UNWANTED EMISSIONS AVERAGE

Variant: Mode 2, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

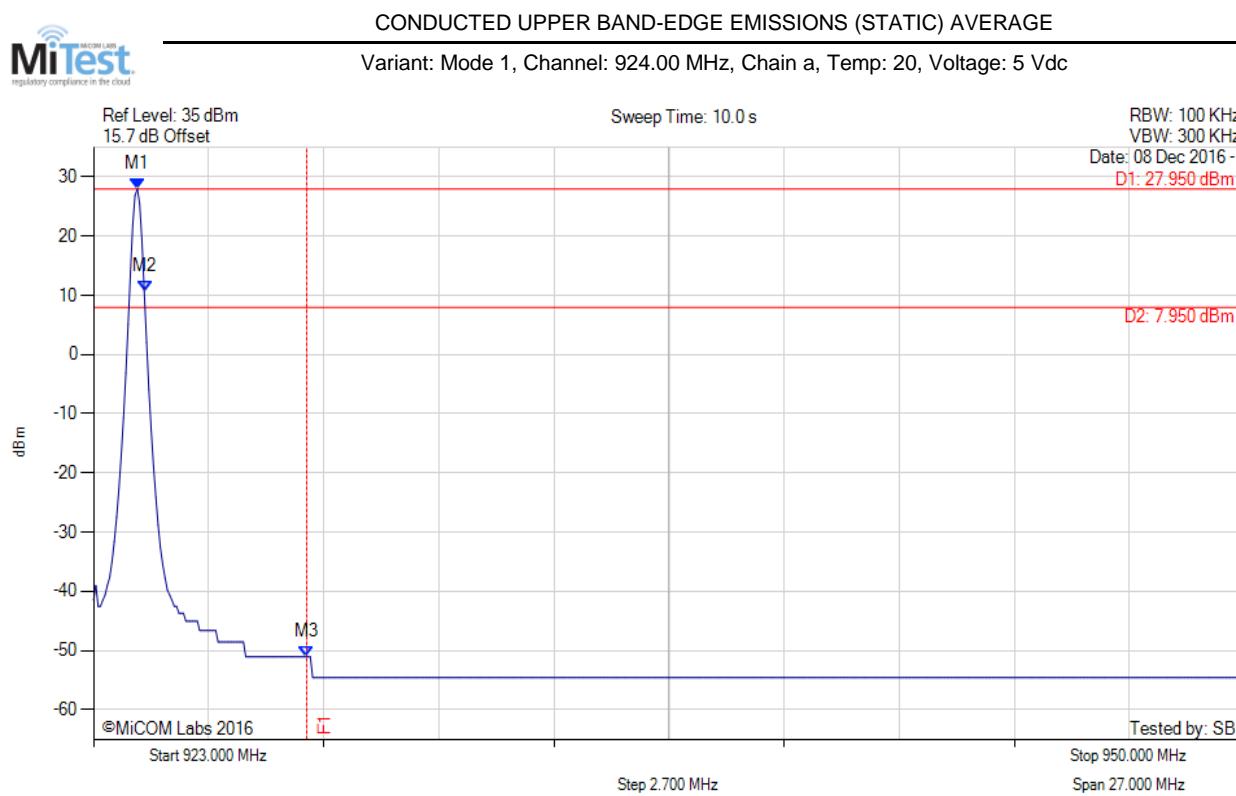
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 909.118 MHz : -13.756 dBm M2 : 6983.026 MHz : -48.524 dBm	Channel Frequency: 914.77 MHz


[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

UNWANTED EMISSIONS AVERAGE

Variant: Mode 2, Channel: 924.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

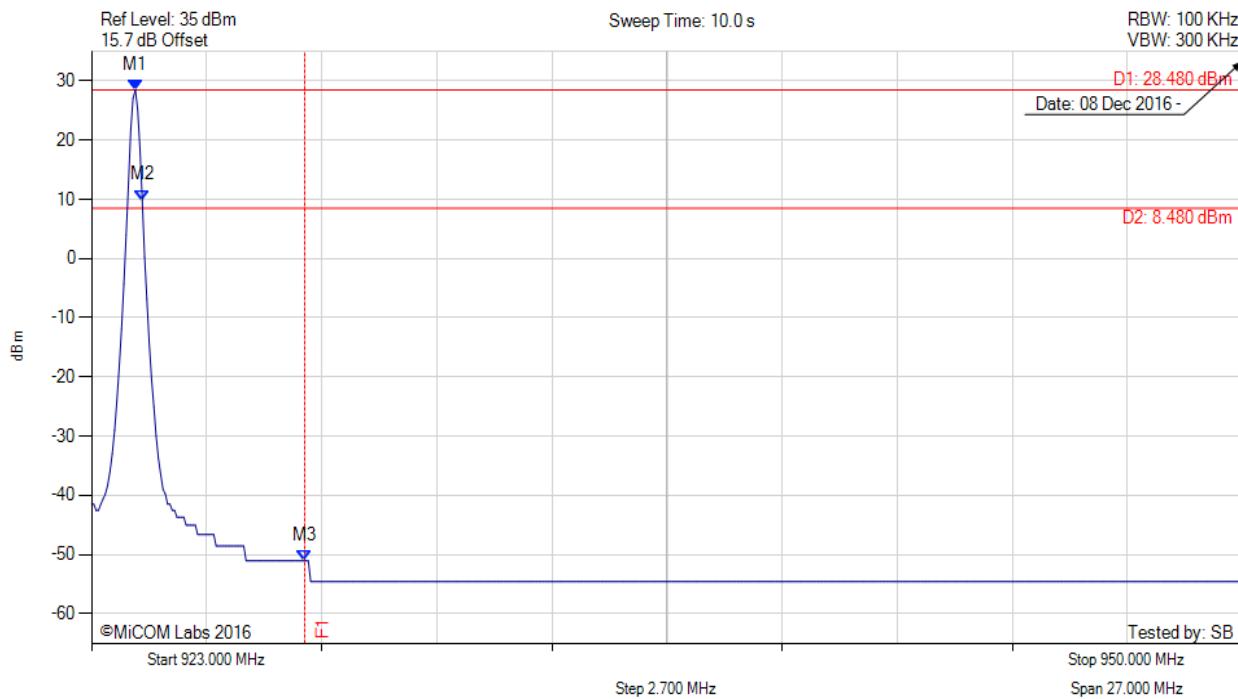

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 909.118 MHz : -10.544 dBm M2 : 6943.066 MHz : -46.580 dBm	Channel Frequency: 924.00 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.3.1.2. Conducted Band-Edge Emissions

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = CLR/WRITE	M1 : 924.028 MHz : 27.946 dBm M2 : 924.216 MHz : 10.635 dBm M3 : 928.000 MHz : -51.023 dBm	Channel Frequency: 924.00 MHz

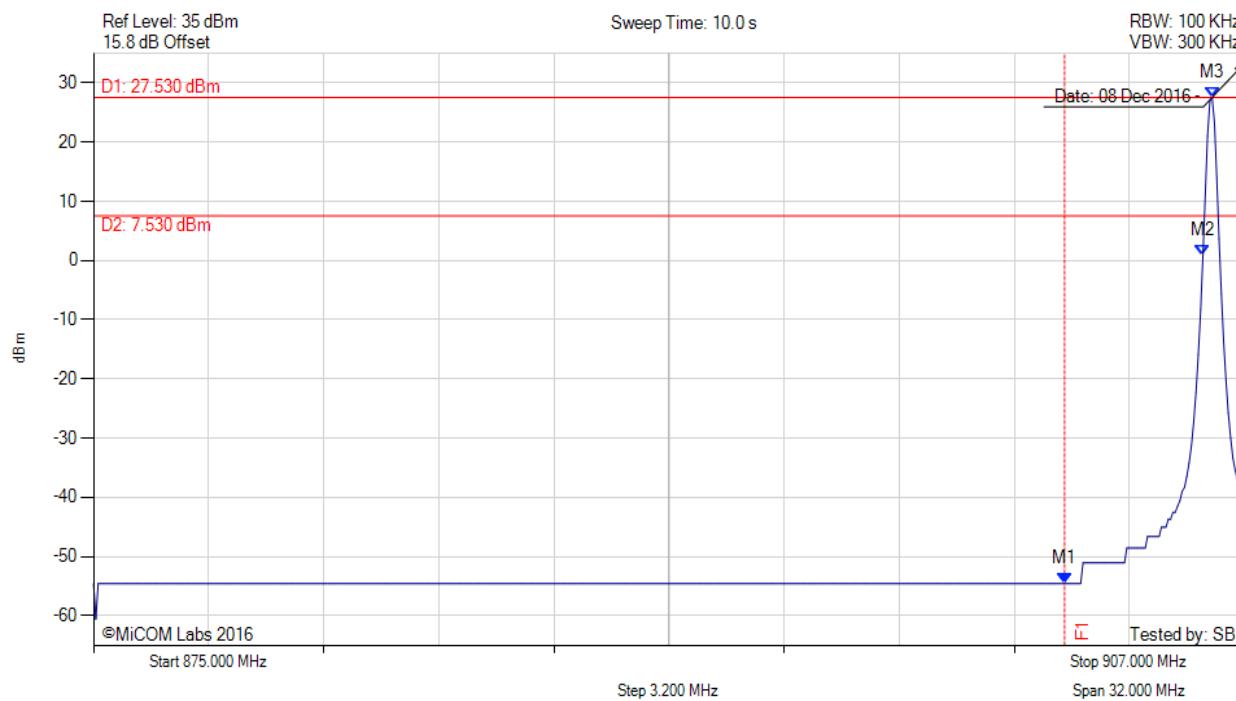

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED UPPER BAND-EDGE EMISSIONS (STATIC) AVERAGE

Variant: Mode 2, Channel: 924.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 924.028 MHz : 28.484 dBm M2 : 924.190 MHz : 9.857 dBm M3 : 928.000 MHz : -51.023 dBm	Channel Frequency: 924.00 MHz

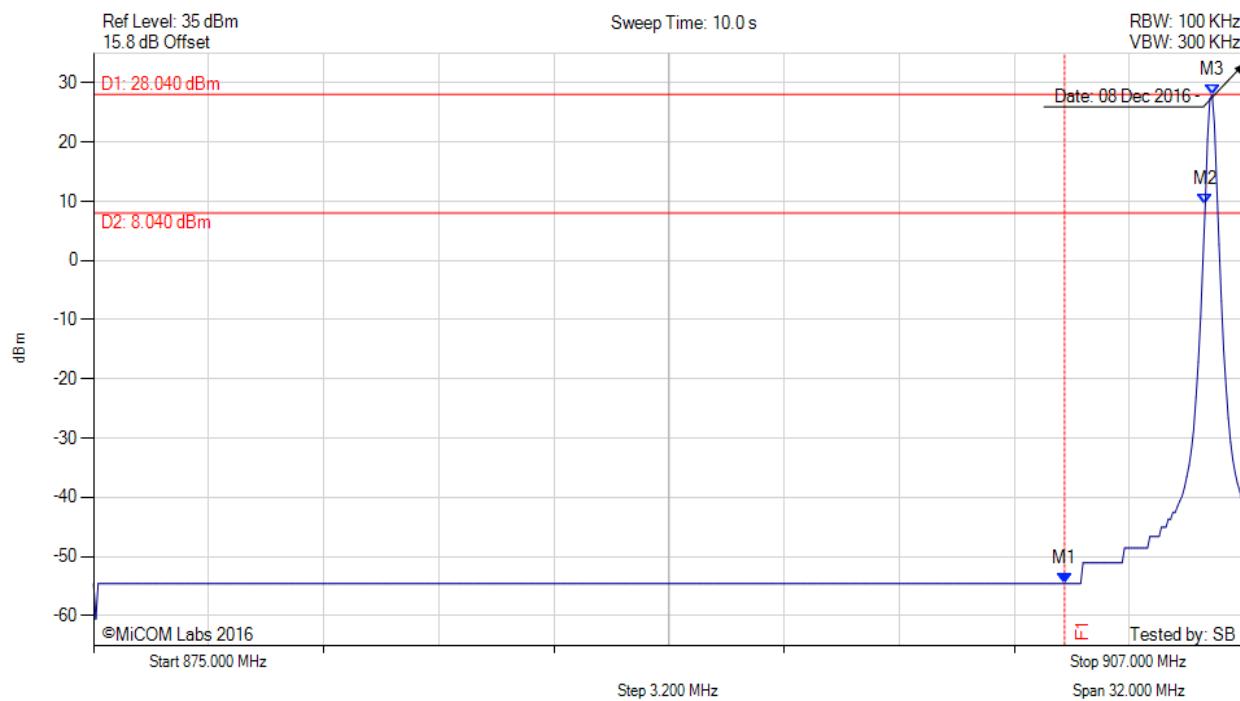

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED LOW BAND-EDGE EMISSIONS (STATIC) AVERAGE

Variant: Mode 1, Channel: 906.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 902.000 MHz : -54.545 dBm M2 : 905.846 MHz : 0.776 dBm M3 : 906.102 MHz : 27.535 dBm	Channel Frequency: 906.00 MHz

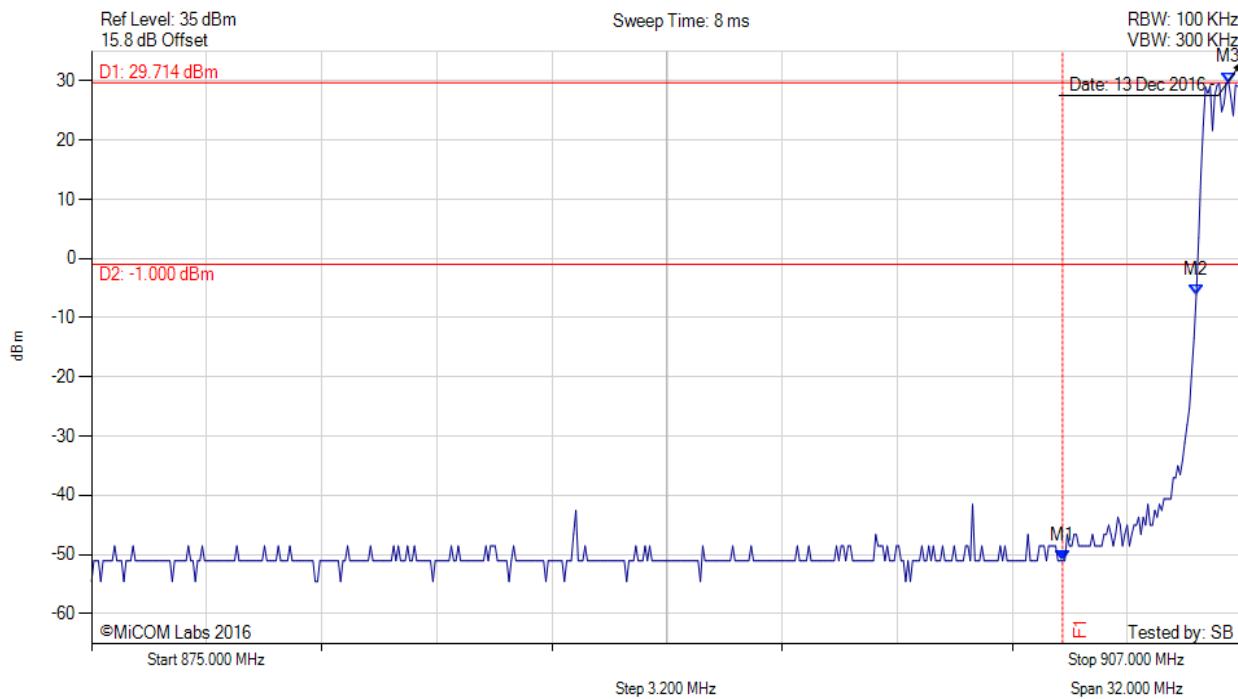

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED LOW BAND-EDGE EMISSIONS (STATIC) AVERAGE

Variant: Mode 2, Channel: 906.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 902.000 MHz : -54.545 dBm M2 : 905.914 MHz : 9.470 dBm M3 : 906.102 MHz : 28.037 dBm	Channel Frequency: 906.00 MHz

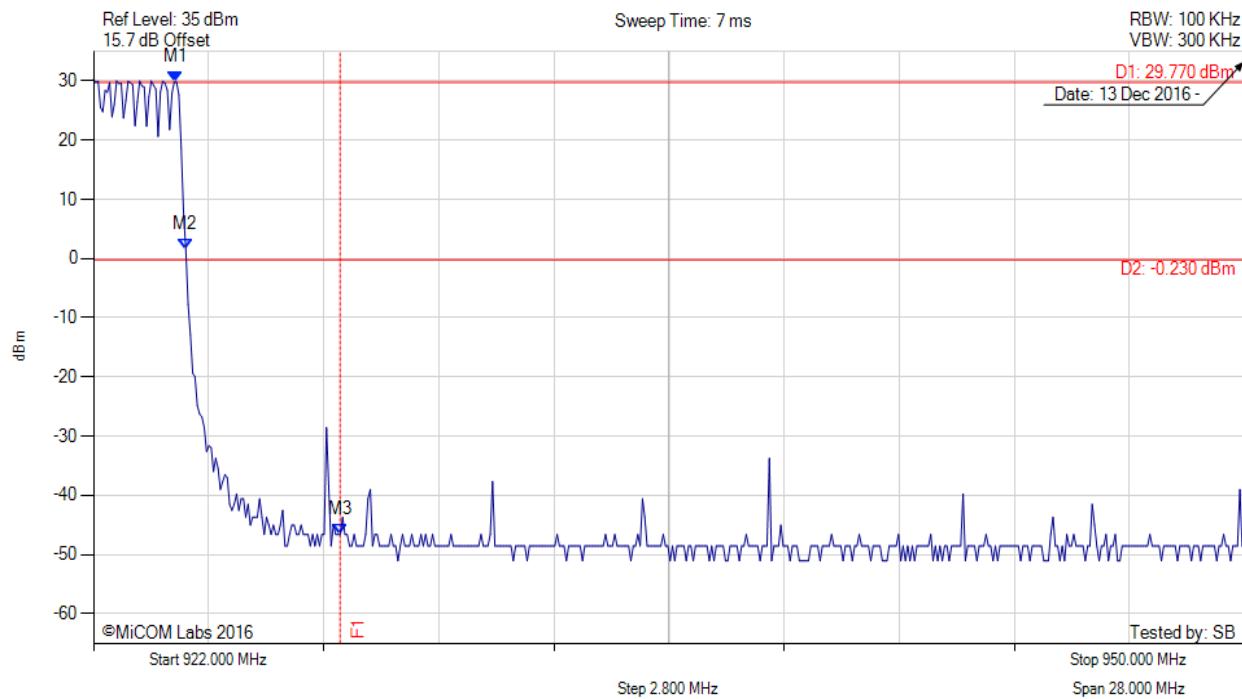

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED LOW BAND-EDGE EMISSIONS (HOPPING) AVERAGE

Variant: Mode 1, Channel: 906.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

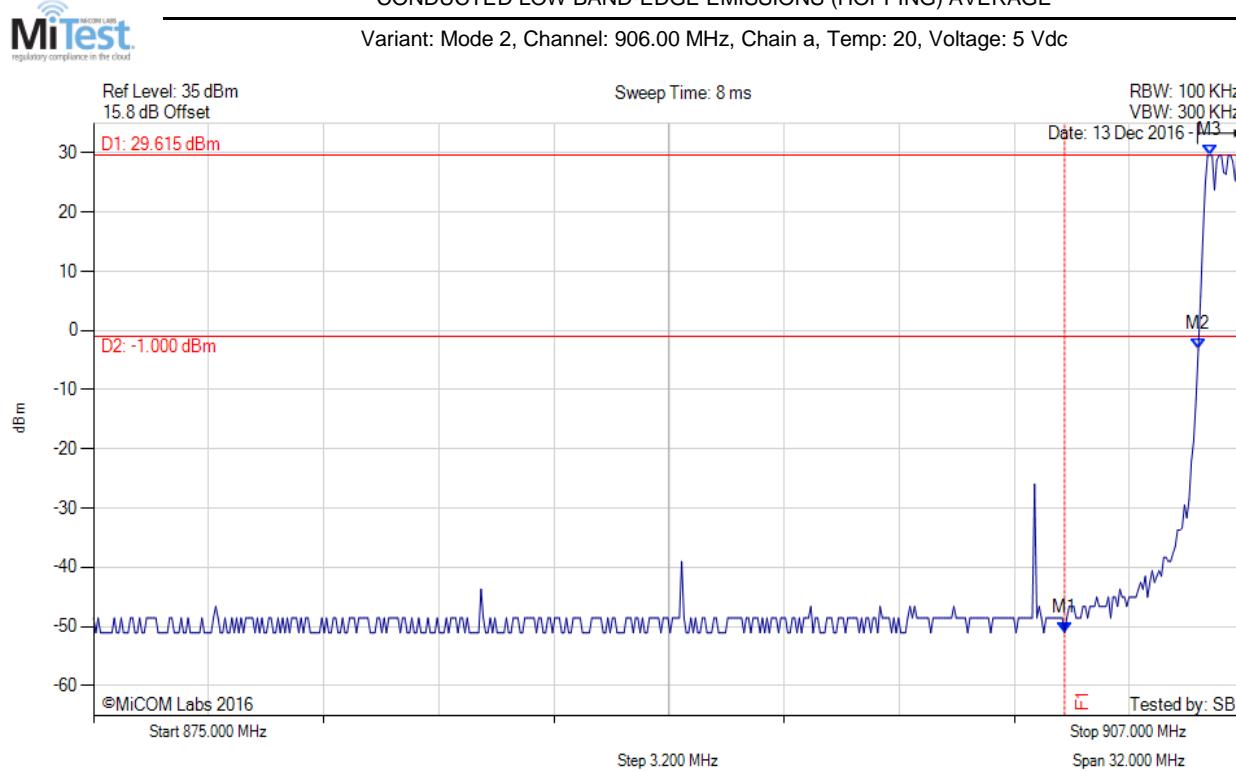
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 902.000 MHz : -51.023 dBm M2 : 905.717 MHz : -6.096 dBm M3 : 906.615 MHz : 29.714 dBm	Channel Frequency: 906.00 MHz


[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED UPPER BAND-EDGE EMISSIONS (HOPPING) AVERAGE

Variant: Mode 1, Channel: 924.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc



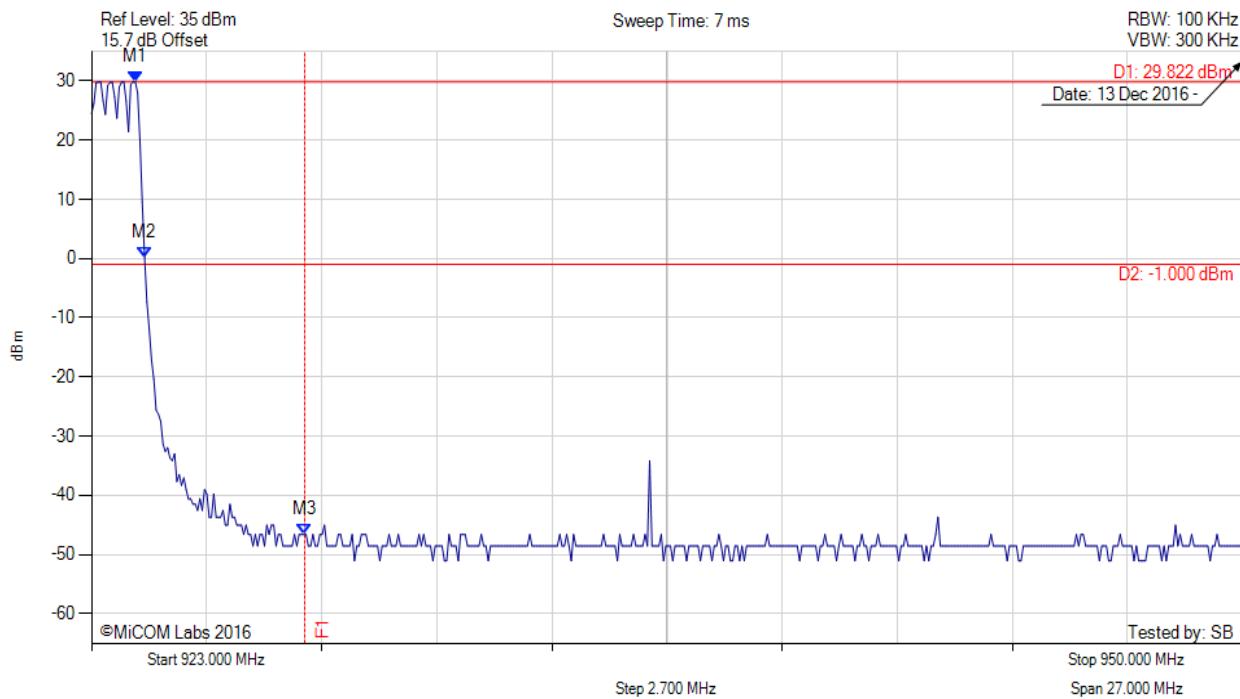
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 924.000 MHz : 29.783 dBm M2 : 924.224 MHz : 1.463 dBm M3 : 928.000 MHz : -46.586 dBm	Channel Frequency: 924.00 MHz

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED LOW BAND-EDGE EMISSIONS (HOPPING) AVERAGE

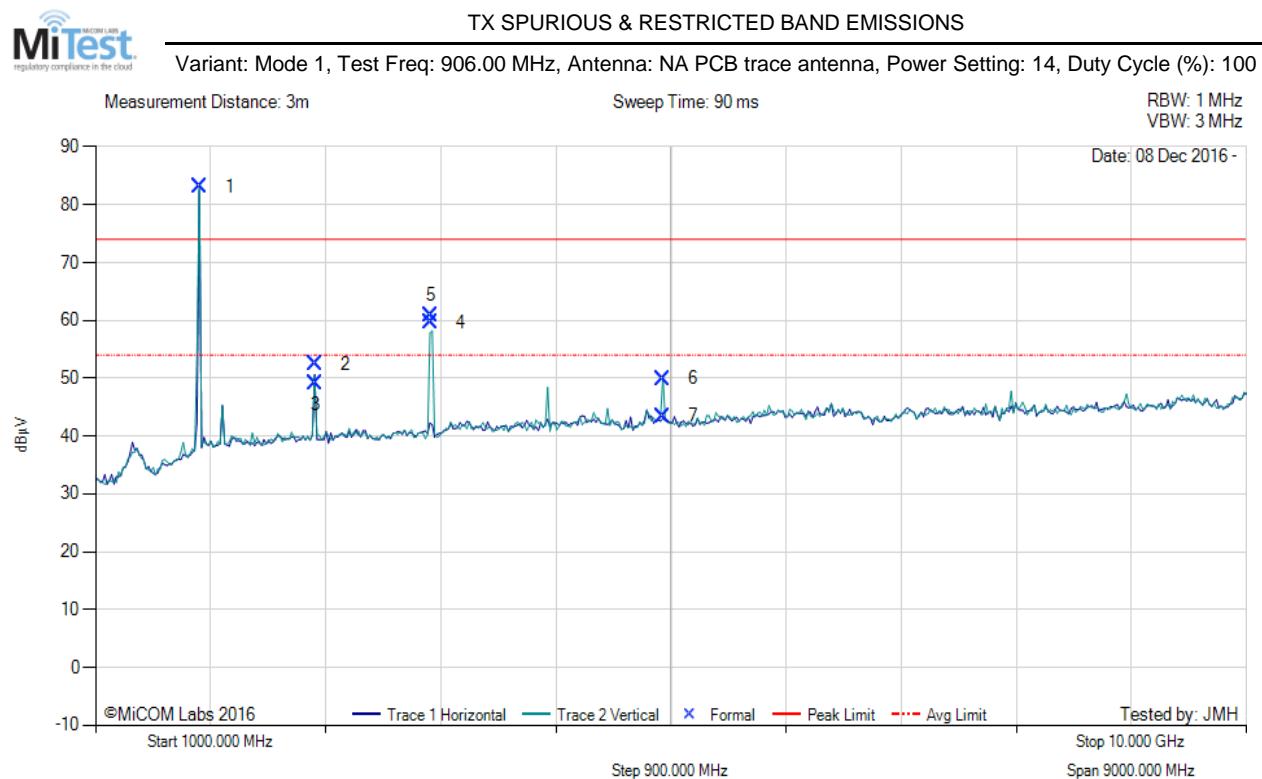
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 902.000 MHz : -51.023 dBm M2 : 905.717 MHz : -3.216 dBm M3 : 906.038 MHz : 29.615 dBm	Channel Frequency: 906.00 MHz


[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

CONDUCTED UPPER BAND-EDGE EMISSIONS (HOPPING) AVERAGE

Variant: Mode 2, Channel: 924.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 924.028 MHz : 29.822 dBm M2 : 924.244 MHz : 0.151 dBm M3 : 928.000 MHz : -46.586 dBm	Channel Frequency: 924.00 MHz

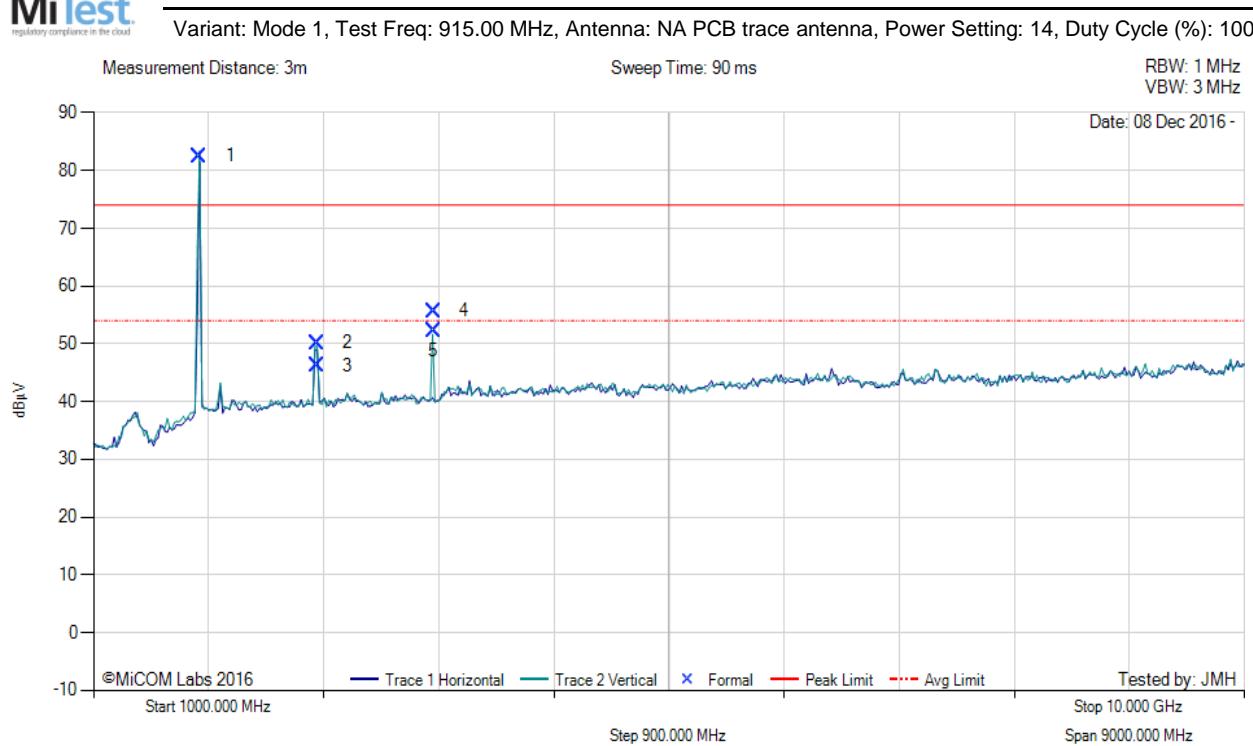
[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.3.2. Radiated Emissions

A.3.2.3. TX Spurious & Restricted Band Emissions

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	1811.98	94.26	2.43	-13.60	83.09	Peak (NRB)		101	0	--	--	Pass	
2	2718.12	61.01	2.81	-11.36	52.46	Max Peak	Horizontal	104	196	74.0	-21.5	Pass	
3	2718.12	57.58	2.81	-11.36	49.03	Max Avg	Horizontal	104	196	54.0	-5.0	Pass	
4	3623.82	67.63	3.15	-11.12	59.66	Max Peak	Vertical	158	69	74.0	-14.3	Pass	
5	3623.82	68.75	3.15	-11.12	60.80	Max Avg	Vertical	158	69	54.0	-1.2	Pass	
6	5436.14	57.42	3.73	-11.21	49.94	Max Peak	Vertical	133	125	74.0	-24.1	Pass	
7	5436.14	50.96	3.73	-11.21	43.48	Max Avg	Vertical	133	125	54.0	-10.5	Pass	


Test Notes: EUT on 150cm table, powered by ac/dc PS. pass after DCCF of -7.16

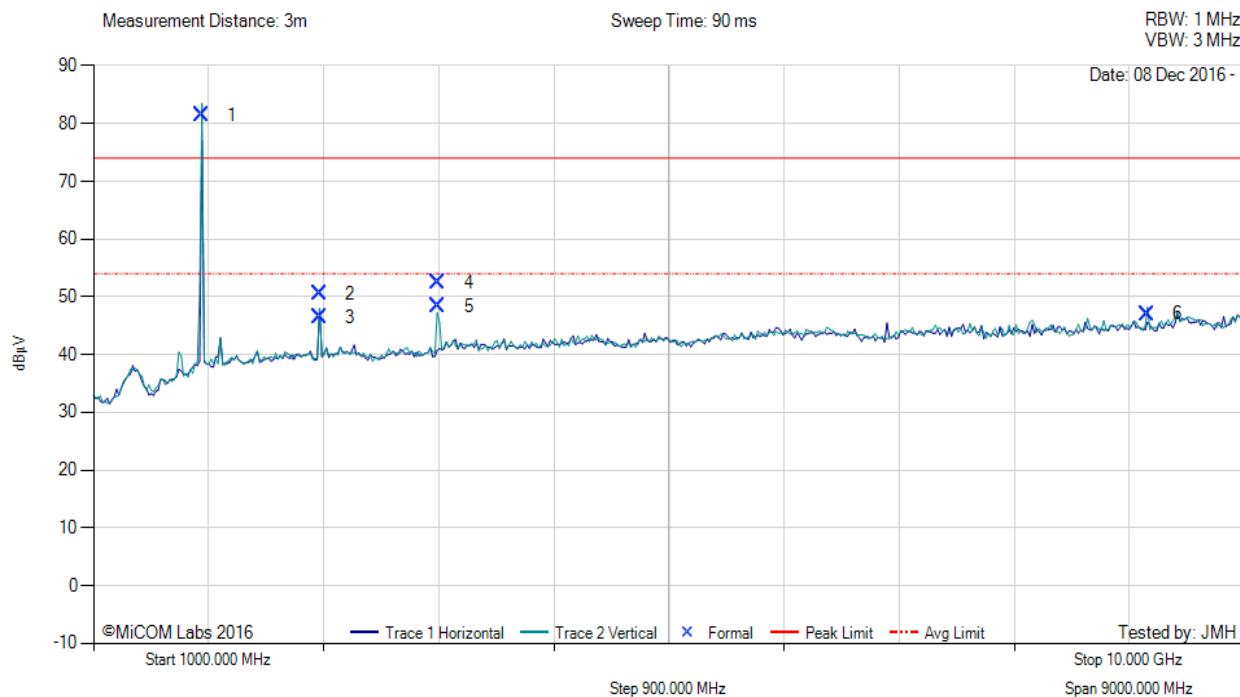
[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

TX SPURIOUS & RESTRICTED BAND EMISSIONS

1000.00 - 10000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	1829.46	93.60	2.45	-13.54	82.51	Peak (NRB)	Vertical	101	1	--	--	Pass		
2	2744.18	58.66	2.85	-11.35	50.16	Max Peak	Vertical	101	232	74.0	-23.8	Pass		
3	2744.18	54.77	2.85	-11.35	46.27	Max Avg	Vertical	101	232	54.0	-7.7	Pass		
4	3659.27	63.56	3.17	-11.04	55.69	Max Peak	Vertical	197	100	74.0	-18.3	Pass		
5	3659.27	60.20	3.17	-11.04	52.33	Max Avg	Vertical	197	100	54.0	-1.7	Pass		

Test Notes: EUT on 150cm table, powered by ac/dc PS.

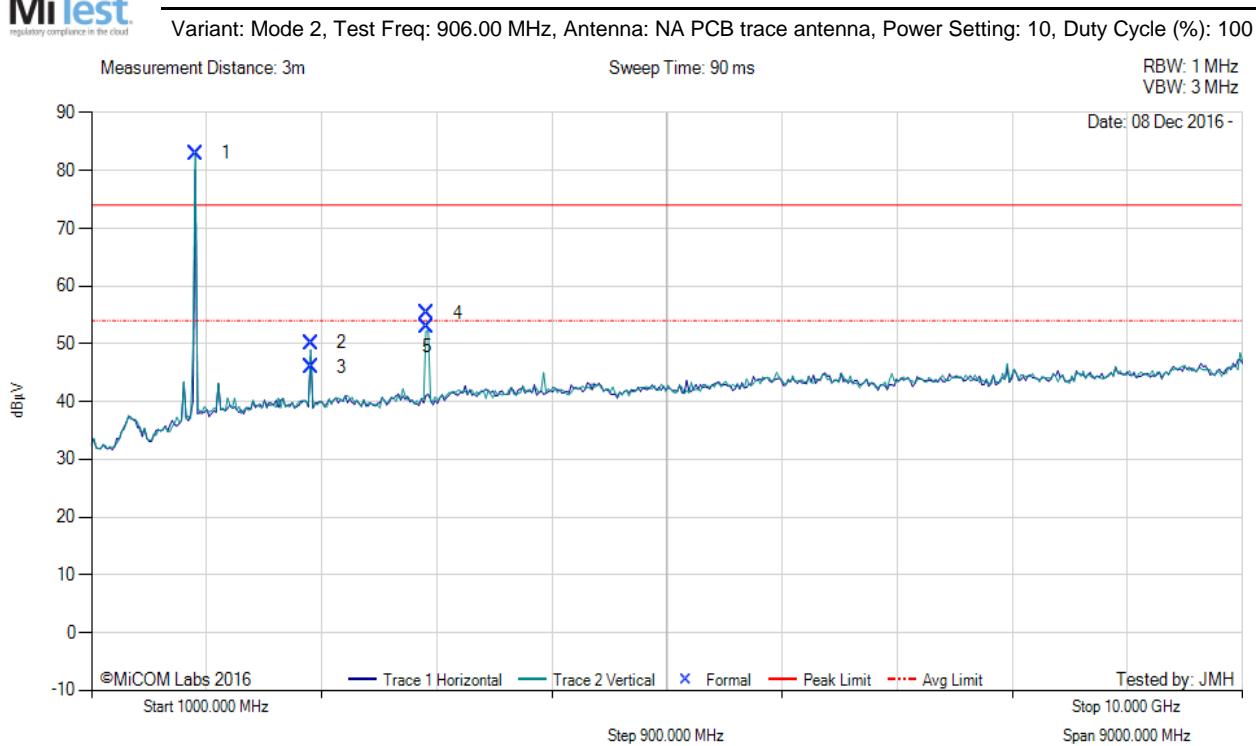

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Variant: Mode 1, Test Freq: 924.00 MHz, Antenna: NA PCB trace antenna, Power Setting: 14, Duty Cycle (%): 100

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	1847.82	92.43	2.46	-13.46	81.43	Peak (NRB)	Vertical	101	1	--	--	Pass	
2	2772.10	59.08	2.83	-11.33	50.58	Max Peak	Horizontal	113	199	74.0	-23.4	Pass	
3	2772.10	54.99	2.83	-11.33	46.49	Max Avg	Horizontal	113	199	54.0	-7.5	Pass	
4	3695.85	60.21	3.17	-10.96	52.42	Max Peak	Vertical	152	83	74.0	-21.6	Pass	
5	3695.85	56.13	3.17	-10.96	48.34	Max Avg	Vertical	152	83	54.0	-5.7	Pass	
6	9239.42	49.03	5.16	-7.10	47.09	Peak (NRB)	Vertical	170	116	--	--	Pass	


Test Notes: EUT on 150cm table, powered by ac/dc PS.

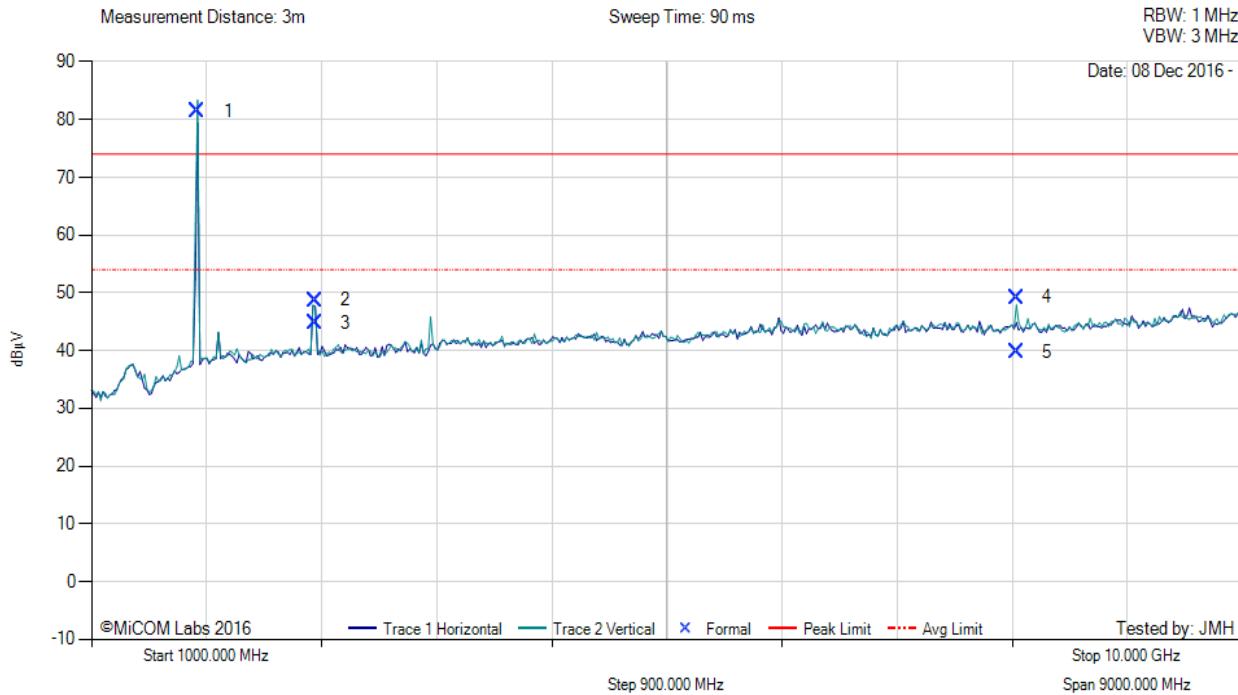
[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

TX SPURIOUS & RESTRICTED BAND EMISSIONS

1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	1812.06	94.20	2.43	-13.60	83.03	Peak (NRB)	Vertical	200	1	--	--	Pass	
2	2718.15	58.70	2.81	-11.36	50.15	Max Peak	Vertical	176	213	74.0	-23.9	Pass	
3	2718.15	54.50	2.81	-11.36	45.95	Max Avg	Vertical	176	213	54.0	-8.1	Pass	
4	3624.04	63.30	3.15	-11.12	55.33	Max Peak	Vertical	160	115	74.0	-18.7	Pass	
5	3624.04	61.03	3.15	-11.12	53.06	Max Avg	Vertical	160	115	54.0	-0.9	Pass	

Test Notes: EUT on 150cm table, powered by ac/dc PS.

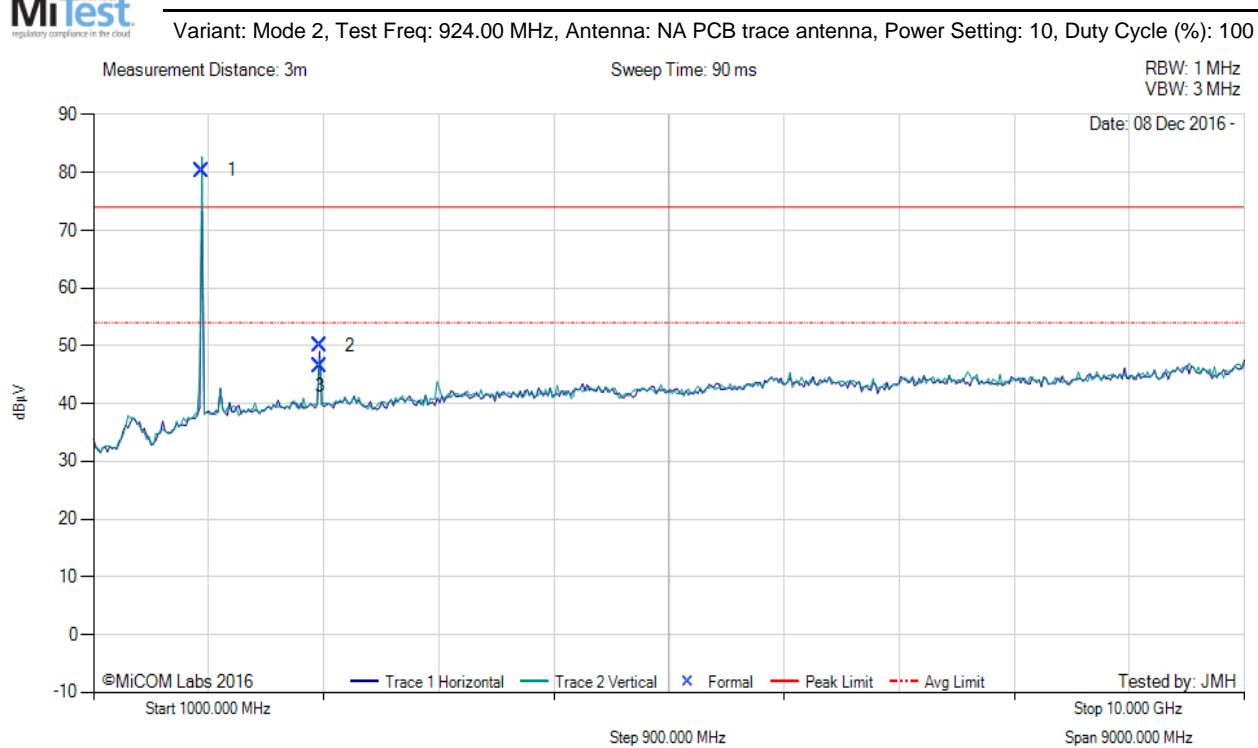

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Variant: Mode 2, Test Freq: 915.00 MHz, Antenna: NA PCB trace antenna, Power Setting: 10, Duty Cycle (%): 100

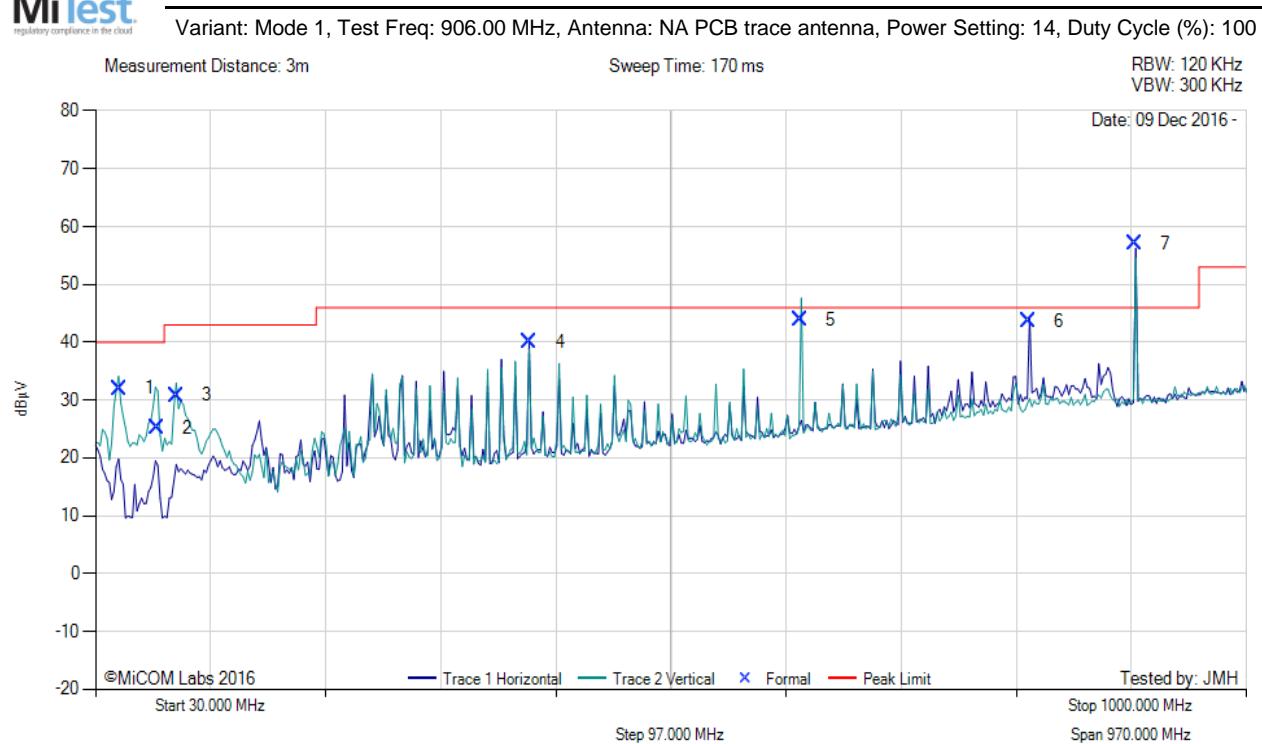
1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	1829.46	92.56	2.45	-13.54	81.47	Peak (NRB)	Vertical	200	1	--	--	Pass	
2	2744.32	57.25	2.85	-11.35	48.75	Max Peak	Vertical	120	174	74.0	-25.3	Pass	
3	2744.32	53.24	2.85	-11.35	44.74	Max Avg	Vertical	120	174	54.0	-9.3	Pass	
4	8233.07	51.88	4.54	-7.23	49.19	Max Peak	Vertical	172	197	74.0	-24.8	Pass	
5	8233.07	42.38	4.54	-7.23	39.69	Max Avg	Vertical	172	197	54.0	-14.3	Pass	


Test Notes: EUT on 150cm table, powered by ac/dc PS.

[back to matrix](#)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

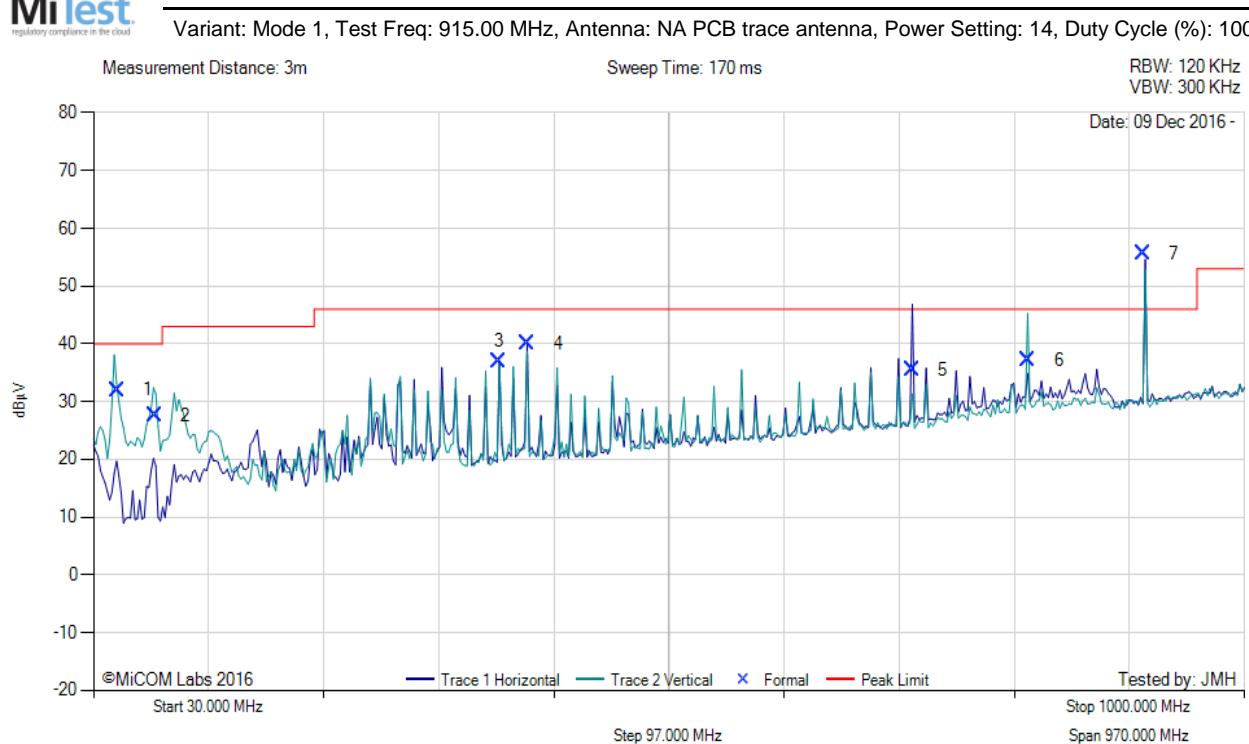
TX SPURIOUS & RESTRICTED BAND EMISSIONS


1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1848.06	91.38	2.46	-13.46	80.38	Peak (NRB)	Vertical	151	0	--	--	Pass	
2	2772.09	58.56	2.83	-11.33	50.06	Max Peak	Horizontal	131	200	74.0	-23.9	Pass	
3	2772.09	55.03	2.83	-11.33	46.53	Max Avg	Horizontal	131	200	54.0	-7.5	Pass	

Test Notes: EUT on 150cm table, powered by ac/dc PS.

[back to matrix](#)

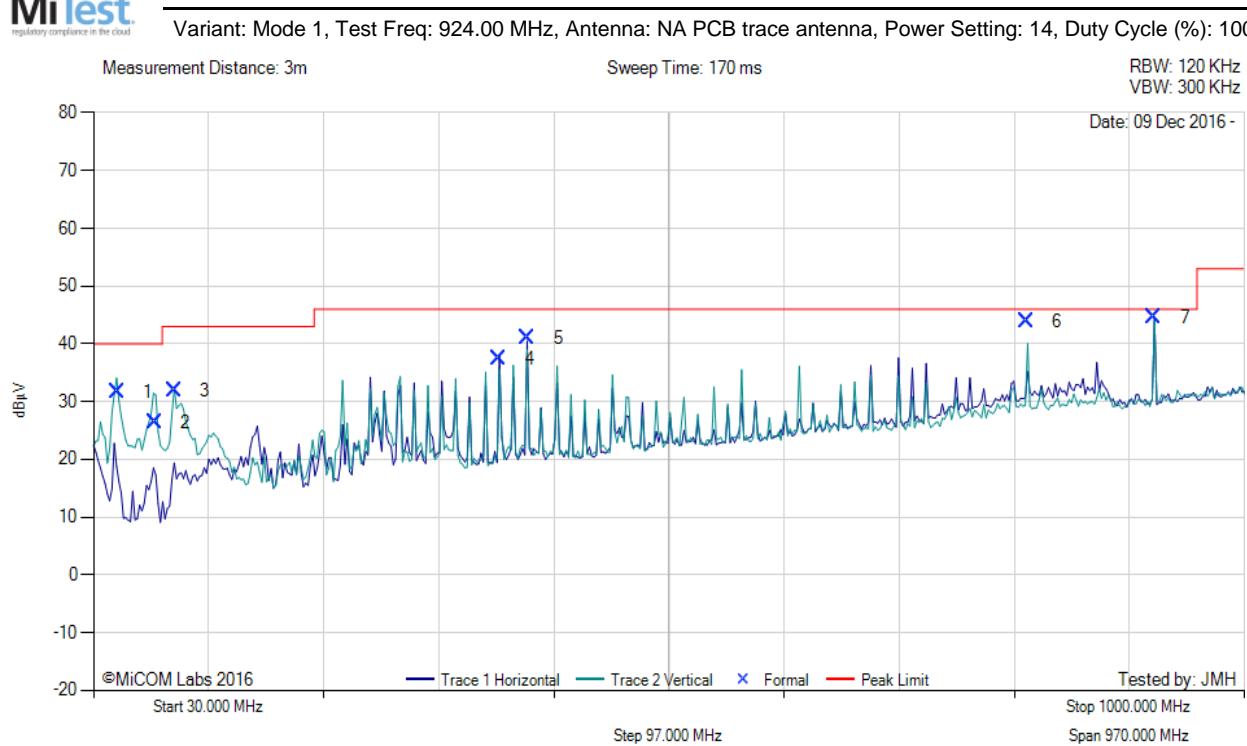
DIGITAL EMISSIONS (0.03 - 1 GHz)


30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	49.86	51.56	3.57	-23.14	31.99	MaxQP	Vertical	100	141	40.0	-8.0	Pass	
2	81.49	45.02	3.78	-23.66	25.14	MaxQP	Vertical	100	141	40.0	-14.9	Pass	
3	98.04	48.75	3.87	-21.84	30.78	MaxQP	Vertical	100	300	43.0	-12.2	Pass	
4	396.00	50.01	5.01	-14.93	40.09	MaxQP	Horizontal	100	225	46.0	-5.9	Pass	
5	624.03	49.28	5.66	-11.03	43.91	MaxQP	Vertical	221	26	46.0	-2.1	Pass	
6	816.00	46.07	6.13	-8.60	43.60	MaxQP	Horizontal	184	209	46.0	-2.4	Pass	
7	906.01	58.35	6.34	-7.65	57.04	Fundamental	Horizontal	100	1	--	--		

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

[back to matrix](#)

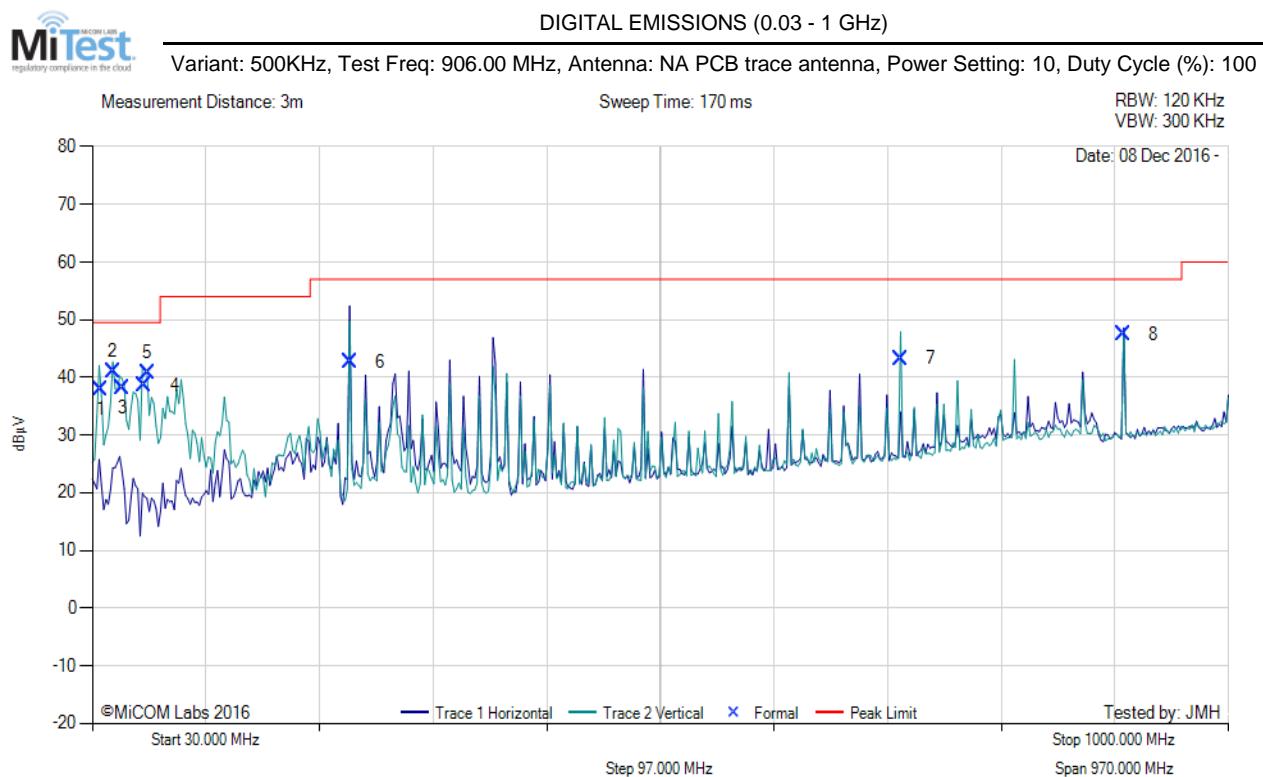
DIGITAL EMISSIONS (0.03 - 1 GHz)


30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	49.86	51.55	3.57	-23.14	31.98	MaxQP	Vertical	102	139	40.0	-8.0	Pass	
2	81.49	47.51	3.78	-23.66	27.63	MaxQP	Vertical	100	0	40.0	-12.4	Pass	
3	371.99	47.22	4.94	-15.30	36.86	MaxQP	Horizontal	100	314	46.0	-9.1	Pass	
4	396.00	49.93	5.01	-14.93	40.01	MaxQP	Horizontal	100	207	46.0	-6.0	Pass	
5	719.96	39.47	5.91	-9.84	35.54	MaxQP	Horizontal	132	257	46.0	-10.5	Pass	
6	818.02	39.32	6.18	-8.30	37.20	MaxQP	Vertical	100	290	46.0	-8.8	Pass	
7	915.00	56.98	6.39	-7.75	55.62	Fundamental	Horizontal	100	1	--	--		

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

[back to matrix](#)

DIGITAL EMISSIONS (0.03 - 1 GHz)



30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	49.89	51.23	3.57	-23.14	31.66	MaxQP	Vertical	100	134	40.0	-8.3	Pass	
2	81.49	46.22	3.78	-23.66	26.34	MaxQP	Vertical	100	141	40.0	-13.7	Pass	
3	98.04	48.85	3.87	-21.84	31.88	MaxQP	Vertical	100	300	43.0	-11.1	Pass	
4	371.99	47.78	4.94	-15.30	37.42	MaxQP	Horizontal	100	316	46.0	-8.6	Pass	
5	396.01	50.87	5.01	-14.93	40.95	MaxQP	Horizontal	100	194	46.0	-5.1	Pass	
6	816.03	46.30	6.13	-8.60	43.83	MaxQP	Vertical	100	312	46.0	-2.2	Pass	
7	923.91	45.77	6.45	-7.66	44.56	Fundamental	Horizontal	100	0	--	--		

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

[back to matrix](#)

A.3.3. Digital Emissions (0.03 - 1 GHz)

30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	37.36	49.65	3.48	-15.17	37.96	MaxQP	Vertical	100	133	49.5	-11.5	Pass	
2	47.78	59.86	3.56	-22.34	41.08	MaxQP	Vertical	107	158	49.5	-7.9	Pass	
3	55.99	58.80	3.61	-24.13	38.28	MaxQP	Vertical	126	30	49.5	-11.2	Pass	
4	74.54	58.09	3.74	-23.18	38.65	MaxQP	Vertical	180	31	49.5	-10.9	Pass	
5	77.19	60.19	3.76	-23.26	40.69	MaxQP	Vertical	100	32	49.5	-8.8	Pass	
6	249.98	57.18	4.53	-19.05	42.66	MaxQP	Horizontal	100	165	57.0	-14.3	Pass	
7	720.01	47.19	5.91	-9.84	43.26	MaxQP	Vertical	184	180	57.0	-13.7	Pass	
8	909.94	48.77	6.35	-7.65	47.47	Fundamental	Horizontal	100	1	--	--		

Test Notes: EUT on 150cm table, powered by ac/dc PS. Shielded. ENET is connected

[back to matrix](#)

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com