

Report Number: F690501/RF-RTL008660-1

Page: 1

of

55

TEST REPORT

of

FCC Part 15 Subpart C §15.247

FCC ID: TQ8-AT240DPAN

Equipment Under Test

: DIGITAL CAR AVNT SYSTEM

Model Name

: AT240DPAN

Applicant

: Hyundai MOBIS Co., Ltd.

Manufacturer

: Hyundai MOBIS Co., Ltd.

Date of Test(s)

: 2015.03.28 ~ 2015.04.26

Date of Issue

: 2015.05.06

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	BAX	Date:	2015.05.06	
	Youngmin Park			
Approved By:	The	Date:	2015.05.06	
	Hyunchae You			

Report Number: F690501/RF-RTL008660-1 Page: 2 of 55

INDEX

Table of contents

1. General information	3
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	7
3. 6 dB Bandwidth	38
4. Maximum Peak Output Power	45
5. Power Spectral Density	48
6. Antenna Requirement	55

Report Number: F690501/RF-RTL008660-1 Page: 3 of 55

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

-Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 435-837 All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.

Telephone : + 82 31 688 0901 FAX : + 82 31 688 0921

1.2. Details of Applicant

Applicant : Hyundai MOBIS Co., Ltd.

Address : 203, Teheran-ro, Gangnam-gu, Seoul, 135-977, Korea

Contact Person : Choi, Seung-Hoon Phone No. : + 82 31 260 0098

1.3. Description of EUT

Kind of Product	DIGITAL CAR AVNT SYSTEM
Model Name	AT240DPAN
Power Supply	DC 14.4 V (Vehicle Battery)
Frequency Range	2 412 Mz ~ 2 462 Mz
Modulation Technique	DSSS, OFDM
Number of Channels	11 channels
Operation Temperature	-20 °C ~ 70 °C
Antenna Type	External type
Antenna Gain	2 412 Mb ~ 2 462 Mb : 2.73 dBi

1.4. Declaration by the manufacturer

- WLAN & BT do not transmit simultaneously.
- Duty Cycle ≥ 98 percent.

Report Number: F690501/RF-RTL008660-1 Page: 4 of 55

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal Date	Cal Interval	Cal Due.
Signal Generator	R&S	SMR40	100272	Jul. 18, 2014	Annual	Jul. 18, 2015
Signal Generator	R&S	SMBV100A	255834	Jun. 25, 2014	Annual	Jun. 25, 2015
Spectrum Analyzer	Agilent	N9030A	US51350132	Sep. 24, 2014	Annual	Sep. 24, 2015
Spectrum Analyzer	R&S	FSV30	101004	Jun. 25, 2014	Annual	Jun. 25, 2015
Attenuator	MCLI Inc.	FAS-23-20	23834	Jun. 20, 2014	Annual	Jun. 20, 2015
High Pass Filter	Wainwright Instrument GmbH	WHK3.0/18G-10SS	344	Jun. 10, 2014	Annual	Jun. 10, 2015
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	11	Jun. 10, 2014	Annual	Jun. 10, 2015
Low Pass Filter	Mini circuits	NLP-1200+	V 8979400903-2	Mar. 12, 2015	Annual	Mar. 12, 2016
Power Sensor	R&S	NRP-Z81	100669	Mar. 12. 2015	Annual	Mar. 12. 2016
DC Power Supply	Agilent	U8002A	MY50060028	Mar. 23, 2015	Annual	Mar. 23, 2016
Preamplifier	H.P.	8447F	2944A03909	Aug. 27, 2014	Annual	Aug. 27, 2015
Preamplifier	MITEQ Inc.	SCU_F0118_G35 _AFS42_CSS(F)	1391123	Aug. 26, 2014	Annual	Aug. 26, 2015
Preamplifier	TESTEK	TK-PA1840H	130016	Oct. 14, 2014	Annual	Oct. 14, 2015
Test Receiver	R&S	ESU26	100109	Mar. 03, 2015	Annual	Mar. 03, 2016
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	396	Jun. 07, 2013	Biennial	Jun. 07, 2015
Loop Antenna	R&S	HFH2-Z2	100118	Jul. 12, 2013	Biennial	Jul. 12, 2015
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA9120D(0600)	183	May 09, 2014	Biennial	May 09, 2015
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA9170	BBHA9170223	Sep. 01, 2014	Biennial	Sep. 01, 2016
Antenna Master	INNCO	MM4000	N/A	N.C.R.	N/A	N.C.R.
Turn Table	INNCO	DS 1200S	N/A	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.4 m)	N/A	N.C.R.	N/A	N.C.R.

Report Number: F690501/RF-RTL008660-1 Page: 5 of 55

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD							
Standard section	Test Item(s)	Result					
15.205 15.209 15.247(d)	Transmitter Radiated Spurious Emissions Conducted Spurious Emission	Complied					
15.247(a)(2)	6 dB Bandwidth	Complied					
15.247(b)(3)	Maximum Peak Output Power	Complied					
15.247(e)	Power Spectral Density	Complied					

1.7. Test Procedure(s)

The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2003) and the guidance provided in KDB 558074 D01 v03r02 were used in the measurement of the DUT.

1.8. Sample calculation

Where relevant, the following sample calculation is provided:

1.8.1. Conducted test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.8.2. Radiation test

Field strength level ($dB\mu V/m$) = Measured level ($dB\mu V$) + Antenna factor (dB) + Cable loss (dB) - amplifier gain(dB)

1.9. Test report revision

Revision	Report number	Date of Issue	Description
0	F690501/RF-RTL008660	2015.04.27	Initial
1	F690501/RF-RTL008660-1	2015.05.06	Added comments and modified test result table about Radiated Spurious Emissions

Report Number: F690501/RF-RTL008660-1 Page: 6 of 55

1.10. Duty Cycle of EUT

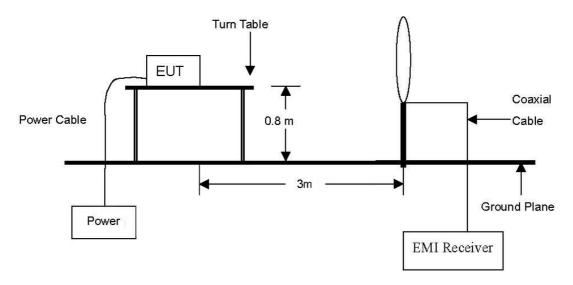
Regarding to KDB 558074 D01 v03r02, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below;

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

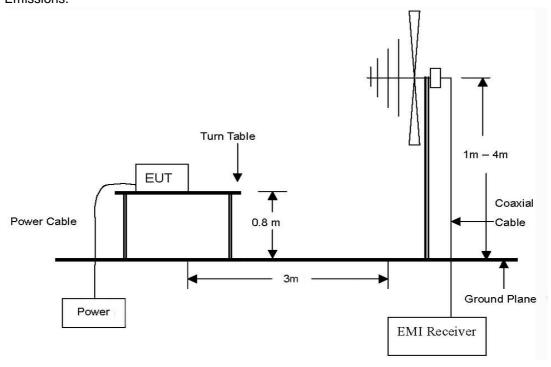
Mode		Data Rate							
11b	1	2	5.5	11					
Duty Cycle (%)	100	100	99	98	-	-	-	-	
Correction factor (dB)	0.00	0.02	0.05	0.09	-	-	-	-	
11g	6	9	12	18	24	36	48	54	
Duty Cycle (%)	99	98	97	95	94	93	89	90	
Correction factor (dB)	0.06	0.10	0.14	0.20	0.27	0.32	0.51	0.46	
11n_HT20	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Duty Cycle (%)	99	97	95	94	93	91	90	89	
Correction factor (dB)	0.06	0.15	0.21	0.28	0.33	0.42	0.47	0.51	

Remark:

- 1. As measured duty cycles of EUT, all of mode and data rate keep constant period and are converted to log scale (voltage averaging) to compensate correction factor to result of average test items.
- 2. Duty cycle (%) = $(Tx \text{ on time } / Tx \text{ on + off time}) \times 100$
- 3. Correction factor (dB) = $10 \log (1 / \text{duty cycle})$

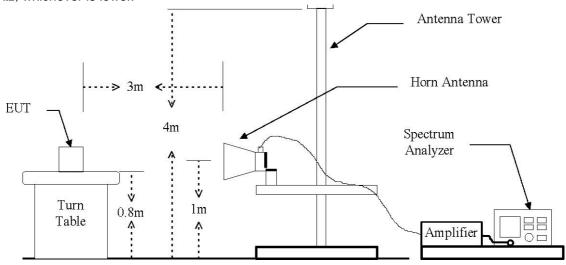

Report Number: F690501/RF-RTL008660-1 Page: 7 of 55

2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission


2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission below 30 Mb Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\text{Mb}$ to 1 $\,\text{GHz}$ Emissions.

Report Number: F690501/RF-RTL008660-1 Page: 8 of 55

The diagram below shows the test setup that is utilized to make the measurements for emission .The spurious emissions were investigated form 1 to the 10th harmonic of the highest fundamental frequency or 40 km, whichever is lower.

2.1.1.1. Definition of DUT Axis.

Definition of the test orthogonal plan for EUT was described in the test setup photo. The test orthogonal plan of EUT is **X-axis** during radiation test.

Report Number: F690501/RF-RTL008660-1 Page: 9 of 55

2.1.2. Conducted Spurious Emission

EUT	Attenuator	Spectrum Analyzer
EUI	(FAS-23-20)	(FSV30)

2.2. Limit

According to §15.247(d), in any 100 $\,\mathrm{klz}$ bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 $\,\mathrm{dB}$ below that in the 100 $\,\mathrm{klz}$ bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 $\,\mathrm{dB}$ instead of 20 $\,\mathrm{dB}$. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (脈)	Distance (Meters)	Field Strength (dBµN/m)	Field Strength (
0.009 – 0.490	300	20 log (2 400/F(kl/z))	2 400/F(kHz)
0.490 – 1.705	30 20 log (24 000/F(地))		24 000/F(kliz)
1.705 – 30.0	30	29.54	30
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

Report Number: F690501/RF-RTL008660-1 Page: 10 of 55

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates in section 11.0 & 12.0 of KDB 558074 D01 v03r02 and ANSI C63.4-2003.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 % the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 % the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report Number: F690501/RF-RTL008660-1 Page: 11 of 55

NOTE;

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

- 1. Unwanted Emissions into Non-Restricted Frequency Bands
- The Reference Level Measurement refer to section 11.2 Set analyzer center frequency to DTS channel center frequency, SPAN ≥ 1.5 times the DTS bandwidth, the RBW = 100 kllz and VBW ≥ 3 × RBW. Detector = Peak. Sweep time = Auto couple. Trace = Max hold.
- Unwanted Emissions Level Measurement refer to section 11.3 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 klb and $VBW \ge 3 \times RBW$, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.
- 2. Unwanted Emissions into Restricted Frequency Bands
- Peak Power measurement procedure refer to section 12.2.4 Set RBW = as specified in Table 1, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = auto, Trace = Max hold.

Table 1- RBW as a function of frequency

Frequency	RBW
9 – 150 kHz	200 – 300 Hz
0.15 − 30 MHz	9 – 10 kHz
30 − 1 000 MHz	100 – 120 kHz
>1 000 MHz	1 MHz

-Average Power measurements procedure refer to section 12.2.5.2

The EUT shall be configured to operate at the maximum achievable duty cycle.

Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.

Set RBW = 1 Mt, VBW ≥ 3 x RBW, Detector = RMS, if span / (# of points in sweep) ≤ (RBW/2).

Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied then the detector mode shall be set to peak,

Averaging type = power (i.e., RMS).

As an alternative the detector and averaging type may be set for linear voltage averaging.

Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used. Sweep time = auto, Perform a trace average of at least 100 traces.

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

- 1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is 10 log (1/x), where x is the duty cycle.
- 3. Definition of DUT three orthogonal planes were described in the test setup photo. Test orthogonal plan of EUT is X-axis during radiation test.

Report Number: F690501/RF-RTL008660-1 Page: 12 of 55

2.3.3. Test Procedures for Conducted Spurious Emissions

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

Per the guidance of KDB 558074 D01 v03r02, section 11.1 & 11.2 & 11.3, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 $\,\mathrm{kHz}$. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 2.4.3. The limit for out of band spurious emission at the band edge is 20 $\,\mathrm{dB}$ below the fundamental emission level measured in a 100 $\,\mathrm{kHz}$ bandwidth.

1. Conducted Emissions at Band Edge

- The Measurement refer to section 11.2

Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 ຟ and VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, Ensure that the number of measurement points ≥ span/RBW, The trace was allowed to stabilize.

2. Conducted Spurious Emissions

- The Measurement refer to section 11.3

Start frequency was set to 30 № and stop frequency was set to 24.62 ⓓ (separated into two plots per channel), RBW = 100 ៧ NBW, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, The trace was allowed to stabilize.

3. Correction function

- For plots showing conducted spurious emissions from 30 № to 24.62 औz, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as Correction function. So, the reading values shown in plots were final result.

Report Number: F690501/RF-RTL008660-1 Page: 13 of 55

2.4. Test Results

Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

2.4.1. Radiated Spurious Emission

The frequency spectrum from 26 Mb to 1 000 Mb was investigated. All reading values are peak values.

Radia	Radiated Emissions		Ant	Correctio	n Factors	Total	FCC L	imit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
40.19	35.09	Peak	Н	15.05	-27.14	23.00	40.00	17.00
40.67	47.26	Peak	V	12.87	-27.13	33.00	40.00	7.00
67.79	48.31	Peak	V	8.06	-26.77	29.60	40.00	10.40
108.45	37.98	Peak	Н	14.16	-26.34	25.80	43.50	17.70
122.03	39.25	Peak	V	12.95	-26.20	26.00	43.50	17.50
162.73	47.64	Peak	Н	11.70	-25.64	33.70	43.50	9.80
Above 200.00	Not detected	-	-	-	-	-	-	-

Remark:

- 1. Spurious emissions for all channels and modes were investigated and almost the same below 1 બીટ.
- 2. Reported spurious emissions are in <u>11b / 1 Mbps / Middle channel</u> as worst case among other modes.
- 3. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
- 4. Radiated spurious emission measurement as below (Actual = Reading + Antenna Factor + Amp + CL)
- 5. The device has a reference clock operating 26 Mz.

Report Number: F690501/RF-RTL008660-1 Page: 14 of 55

2.4.2. Spurious Radiated Emission

The frequency spectrum from above 1 000 Mb was investigated.

DSSS: 802.11b(1 Mbps)

Low Channel (2 412 Mb)

Radiated Emissions		Ant.	t. Correction Factors		Total	FCC Limit		
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	26.17	Peak	Н	27.77	6.48	60.42	74.00	13.58
*2 310.00	16.13	Average	Н	27.77	6.48	50.38	54.00	3.62
*2 389.48	30.67	Peak	Н	28.08	6.47	65.22	74.00	8.78
*2 389.48	16.45	Average	Н	28.08	6.47	51.00	54.00	3.00
*2 390.00	27.80	Peak	Н	28.08	6.47	62.35	74.00	11.65
*2 390.00	16.41	Average	Н	28.08	6.47	50.96	54.00	3.04

Radia	ated Emissio	ns	Ant	Correctio	n Factors	Total	FCC L	mit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 眦)

Radi	ated Emissio	ns	Ant	Correctio	n Factors	Total	FCC L	imit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL008660-1 Page: 15 of 55

High Channel (2 462 账)

Radi	ated Emissio	ons	Ant.	Correctio	n Factors	Total	FCC Li	mit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	28.13	Peak	Н	28.17	6.65	62.95	74.00	11.05
*2 483.50	16.72	Average	Н	28.17	6.65	51.54	54.00	2.46
*2 487.26	34.49	Peak	Н	28.21	6.70	69.40	74.00	4.60
*2 487.26	16.87	Average	Н	28.21	6.70	51.78	54.00	2.22
*2 500.00	28.33	Peak	Н	28.31	6.88	63.52	74.00	10.48
*2 500.00	16.64	Average	Н	28.31	6.88	51.83	54.00	2.17

Radi	ated Emissio	ns	Ant	Correctio	n Factors	Total	FCC Li	mit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL008660-1 Page: 16 of 55

OFDM: 802.11g (6 Mbps)

Low Channel (2 412 Mb)

Radi	ated Emissio	ns	Ant.	Correctio	n Factors	Total	FCC Limit	
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	26.62	Peak	Н	27.77	6.48	60.87	74.00	13.13
*2 310.00	16.15	Average	Н	27.77	6.48	50.40	54.00	3.60
*2 376.40	29.68	Peak	Н	28.16	6.54	64.38	74.00	9.62
*2 376.40	16.71	Average	Н	28.16	6.54	51.41	54.00	2.59
*2 390.00	28.00	Peak	Н	28.08	6.47	62.55	74.00	11.45
*2 390.00	16.66	Average	Н	28.08	6.47	51.21	54.00	2.79

Radi	ated Emissio	ns	Ant	Correctio	n Factors	Total	FCC L	imit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 Mb)

Radi	ated Emissio	ns	Ant	Correctio	n Factors	Total	FCC L	imit
Frequency (畑)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dB <i>µ</i> V/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL008660-1 Page: 17 of 55

High Channel (2 462 Mb)

Radi	ated Emissio	ons	Ant.	Correctio	n Factors	Total	FCC Li	mit
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	28.95	Peak	Н	28.17	6.65	63.77	74.00	10.23
*2 483.50	16.90	Average	Н	28.17	6.65	51.72	54.00	2.28
*2 488.41	30.44	Peak	Н	28.22	6.72	65.38	74.00	8.62
*2 488.41	17.02	Average	Н	28.22	6.72	51.96	54.00	2.04
*2 500.00	27.82	Peak	Н	28.31	6.88	63.01	74.00	10.99
*2 500.00	16.86	Average	Н	28.31	6.88	52.05	54.00	1.95

Radi	ated Emissio	ns	Ant	Correctio	n Factors	Total	FCC Li	mit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL008660-1 Page: 18 of 55

OFDM: 802.11n_HT20 (MCS0)

Low Channel (2 412 Mb)

Radi	ated Emissio	ns	Ant.	Correctio	n Factors	Total	FCC Li	mit
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	26.39	Peak	Н	27.77	6.48	60.64	74.00	13.36
*2 310.00	17.00	Average	Н	27.77	6.48	51.25	54.00	2.75
*2 371.07	29.40	Peak	Н	28.18	6.55	64.13	74.00	9.87
*2 371.07	17.62	Average	Н	28.18	6.55	52.35	54.00	1.65
*2 390.00	27.81	Peak	Н	28.08	6.47	62.36	74.00	11.64
*2 390.00	17.34	Average	Н	28.08	6.47	51.89	54.00	2.11

Radi	ated Emissio	ns	Ant	Correctio	n Factors	Total	FCC L	imit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 Mb)

Radi	ated Emissio	ns	Ant	Correctio	n Factors	Total	FCC Li	imit
Frequency (畑)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL008660-1 Page: 19 of 55

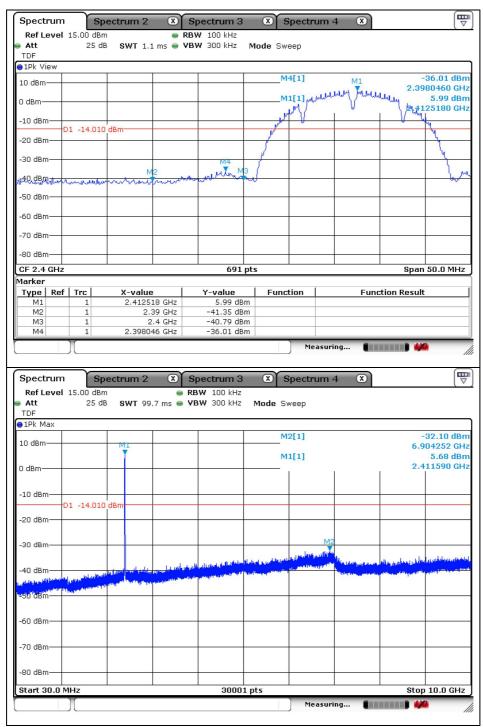
High Channel (2 462 账)

Radi	Ant.	Correction Factors		Total	FCC Limit			
Frequency (M版)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	27.80	Peak	Н	28.17	6.65	62.62	74.00	11.38
*2 483.50	17.89	Average	Н	28.17	6.65	52.71	54.00	1.29
*2 486.35	30.33	Peak	Н	28.20	6.69	65.22	74.00	8.78
*2 486.35	17.96	Average	Н	28.20	6.69	52.85	54.00	1.15
*2 500.00	27.87	Peak	Н	28.31	6.88	63.06	74.00	10.94
*2 500.00	17.46	Average	Н	28.31	6.88	52.65	54.00	1.35

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-

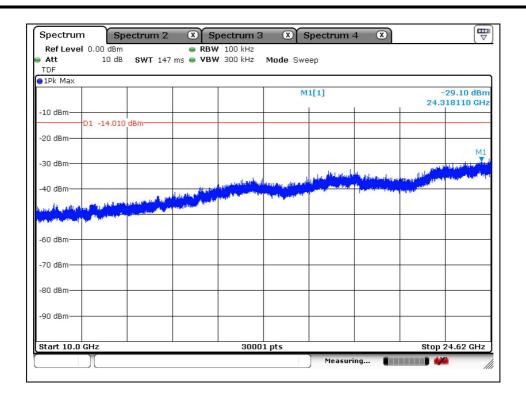
Remarks:

- 1. "*" means the restricted band.
- 3. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
- 4. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 5. Actual = Reading + AF + AMP + CL

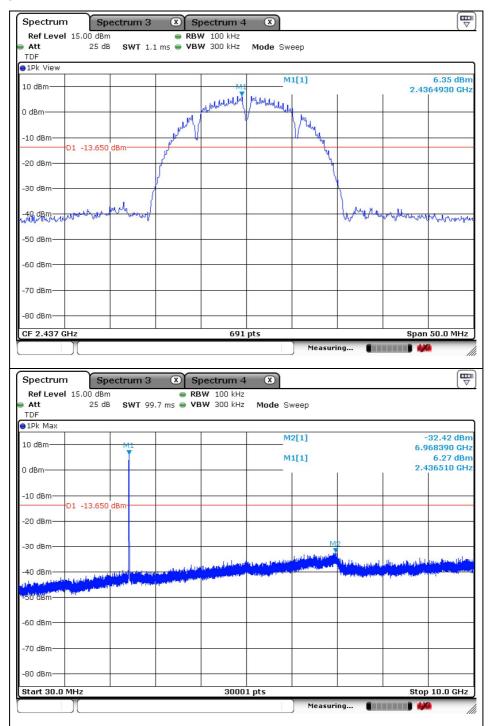


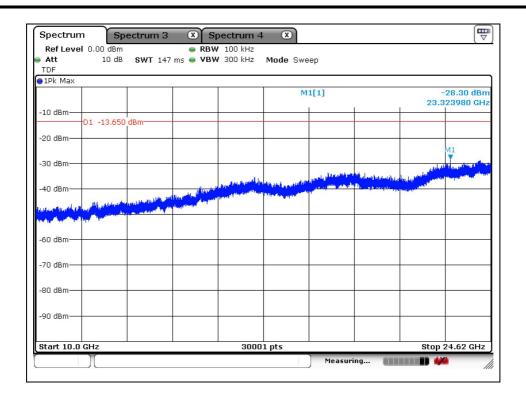
Report Number: F690501/RF-RTL008660-1 Page: 20 of 55

2.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission

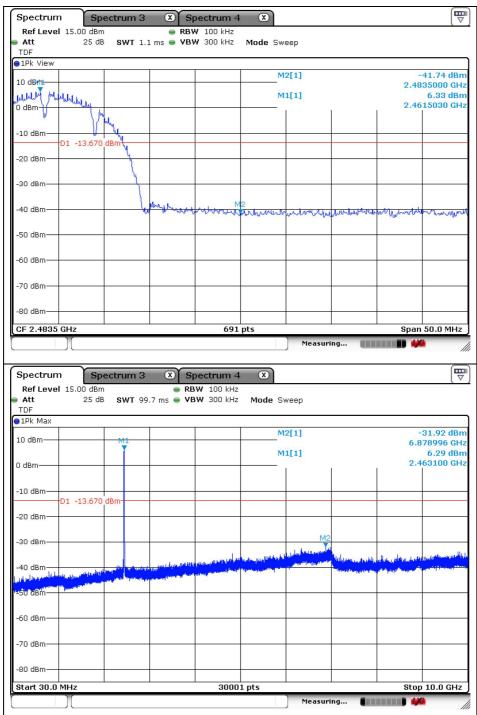

DSSS: 802.11b (1 Mbps)

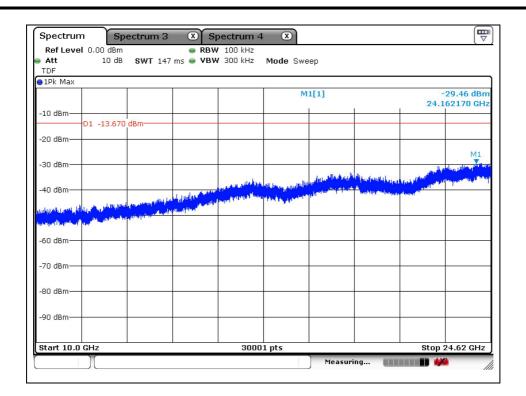
Low Channel


Report Number: F690501/RF-RTL008660-1 Page: 21 of 55


Report Number: F690501/RF-RTL008660-1 Page: 22 of 55

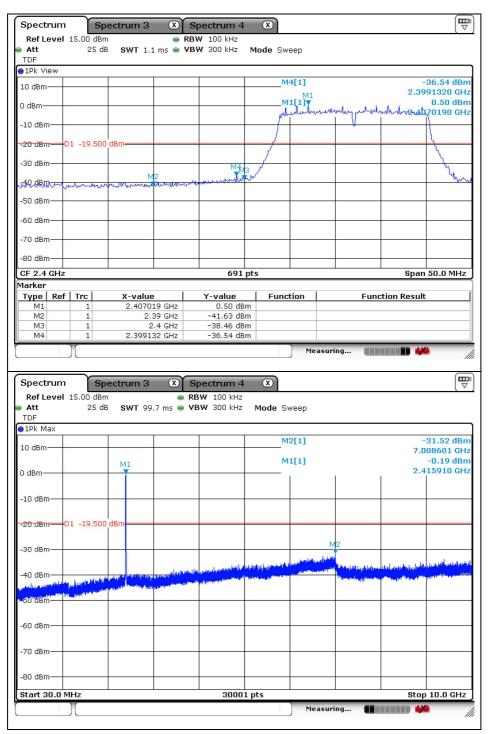
Middle Channel


Report Number: F690501/RF-RTL008660-1 Page: 23 of 55

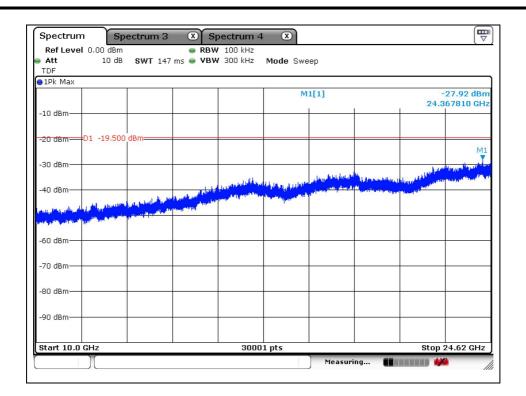

Report Number: F690501/RF-RTL008660-1 Page: 24 of 55

High Channel

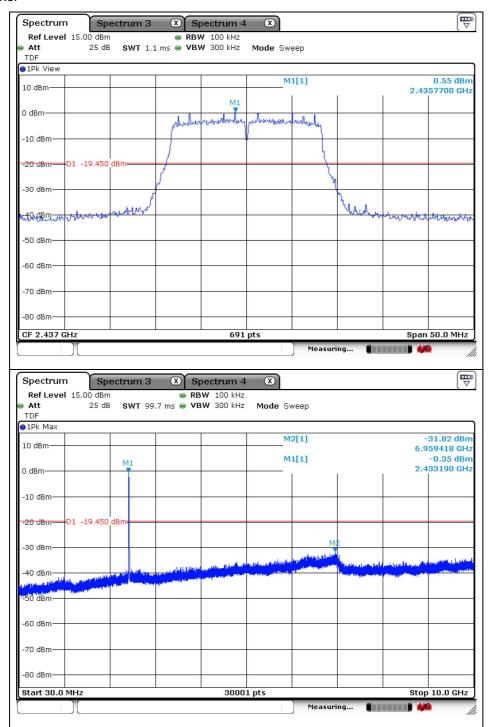
Report Number: F690501/RF-RTL008660-1 Page: 25 of 55

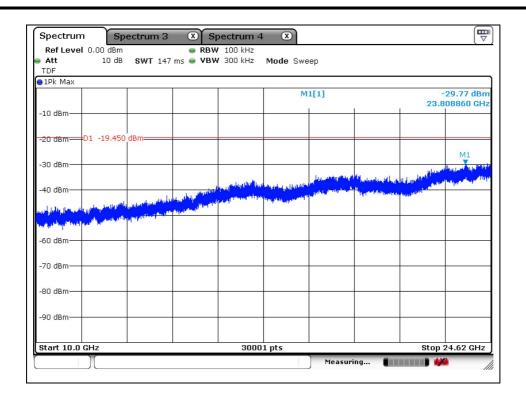


Report Number: F690501/RF-RTL008660-1 Page: 26 of 55

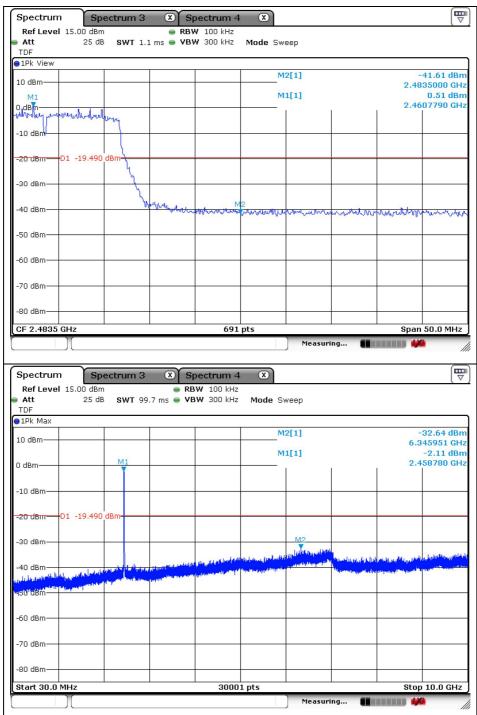

OFDM: 802.11g (6 Mbps)

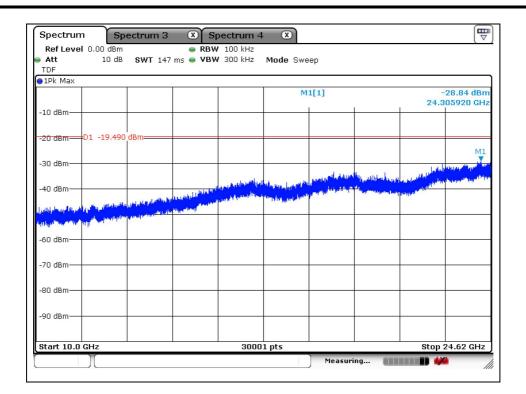
Low Channel


Report Number: F690501/RF-RTL008660-1 Page: 27 of 55


Report Number: F690501/RF-RTL008660-1 Page: 28 of 55

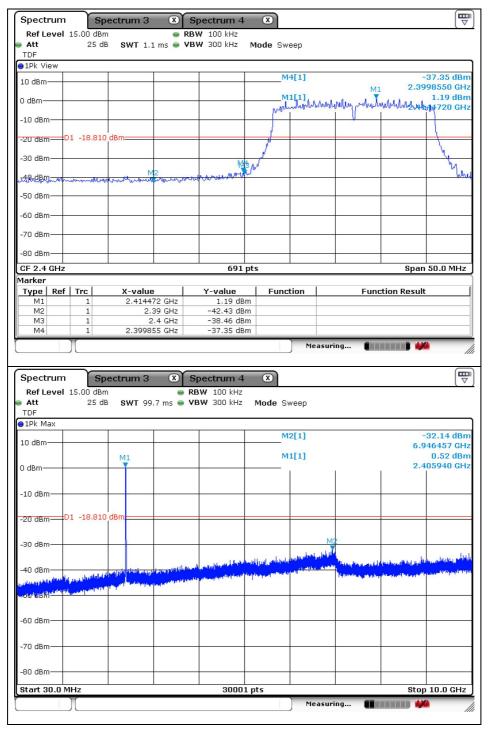
Middle Channel


Report Number: F690501/RF-RTL008660-1 Page: 29 of 55

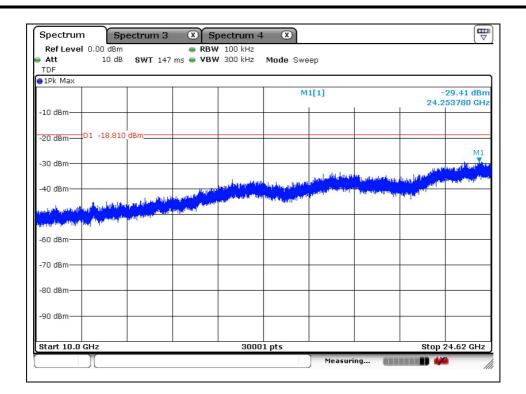

Report Number: F690501/RF-RTL008660-1 Page: 30 of 55

High Channel

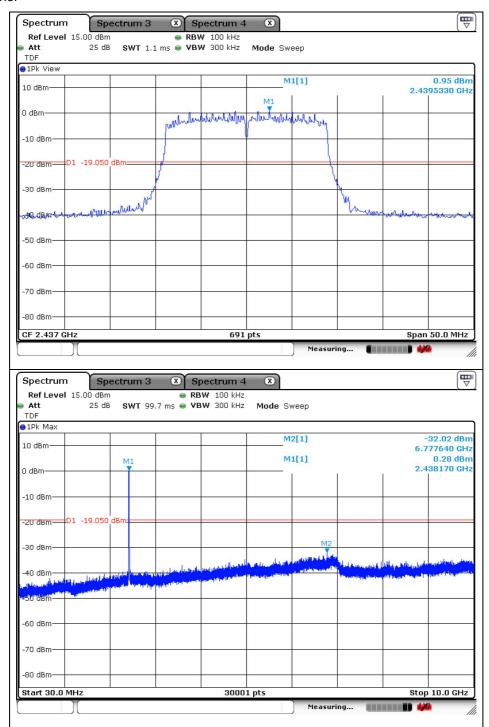
Report Number: F690501/RF-RTL008660-1 Page: 31 of 55

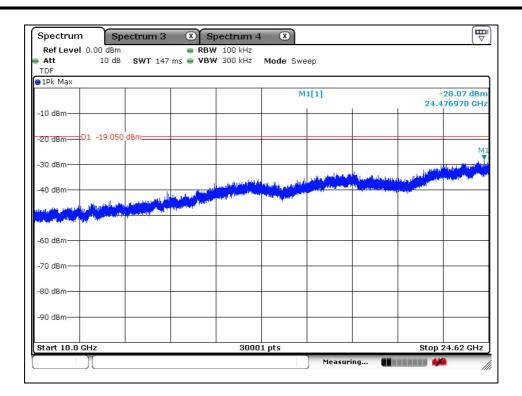


Report Number: F690501/RF-RTL008660-1 Page: 32 of 55

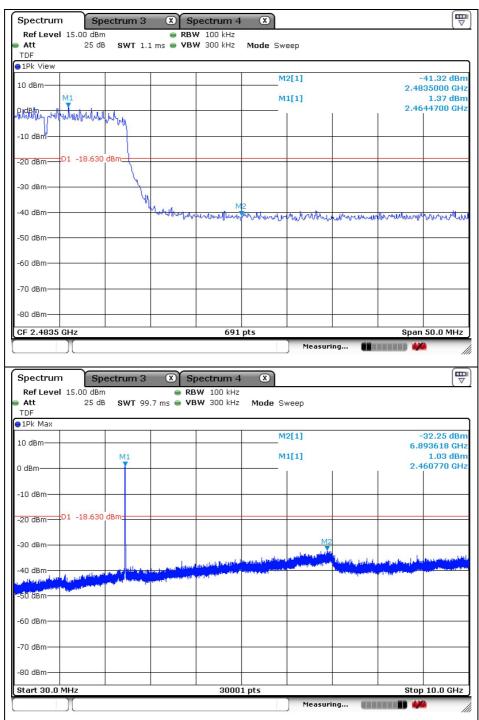

OFDM: 802.11n_HT20 (MCS0)

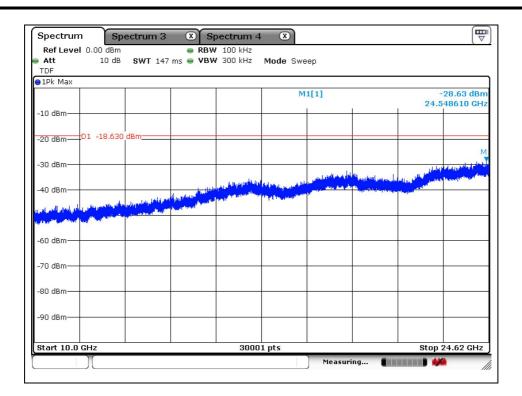
Low Channel


Report Number: F690501/RF-RTL008660-1 Page: 33 of 55


Report Number: F690501/RF-RTL008660-1 Page: 34 of 55

Middle Channel


Report Number: F690501/RF-RTL008660-1 Page: 35 of 55


Report Number: F690501/RF-RTL008660-1 Page: 36 of 55

High Channel

Report Number: F690501/RF-RTL008660-1 Page: 37 of 55

Report Number: F690501/RF-RTL008660-1 Page: 38 of 55

3. 6 dB Bandwidth

3.1. Test Setup

EUT	Attenuator	Spectrum Analyzer
EUI	(FAS-23-20)	(FSV30)

3.2. Limit

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 \sim 928 Mb, 2 400 \sim 2 483.5 Mb and 5 725 \sim 5 825 Mb bands. The minimum of 6 dB Bandwidth shall be at least 500 kb.

3.3. Test Procedure

3.3.1. 6 dB Bandwidth

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

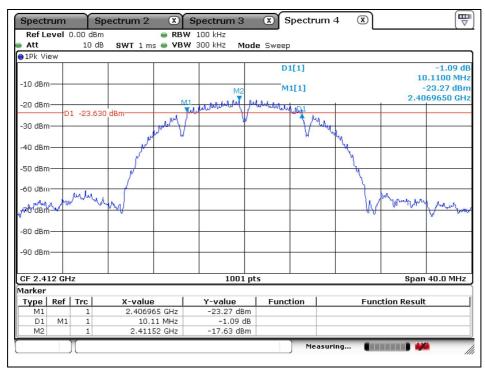
The test follows section 8.0 of FCC KDB Publication 558074 D01 v03r02. Tests performed using section 8.1 Option 1.

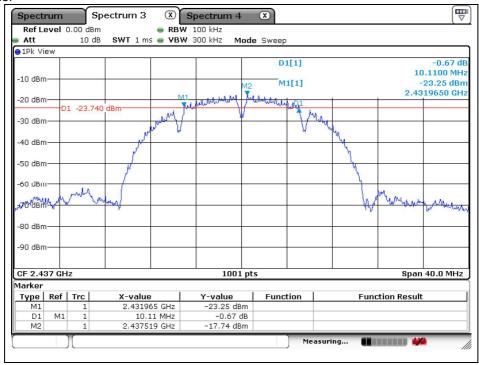
- Option 1:
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude point (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Report Number: F690501/RF-RTL008660-1 Page: 39 of 55

3.4. Test Results

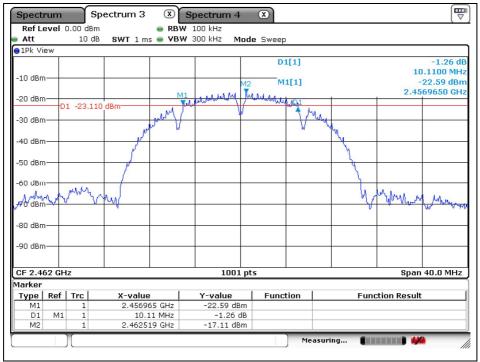
Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

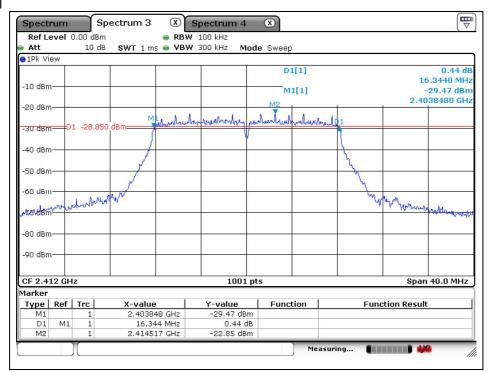

Mode	Frequency (쌘)	Channel	Data Rate	6 dB Bandwidth (地)
	2 412	1	1	10.11
11b	2 437	6	1	10.11
	2 462	11	1	10.11
11g	2 412	1	6	16.34
	2 437	6	6	16.34
	2 462	11	6	16.34
11n_HT20	2 412	1	MCS0	17.62
	2 437	6	MCS0	17.62
	2 462	11	MCS0	17.62


Report Number: F690501/RF-RTL008660-1 Page: 40 of 55

6 dB Bandwidth

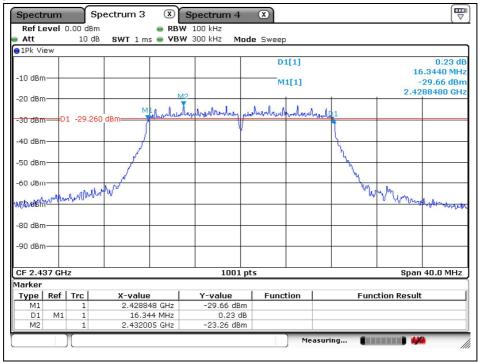
DSSS: 802.11b Low Channel

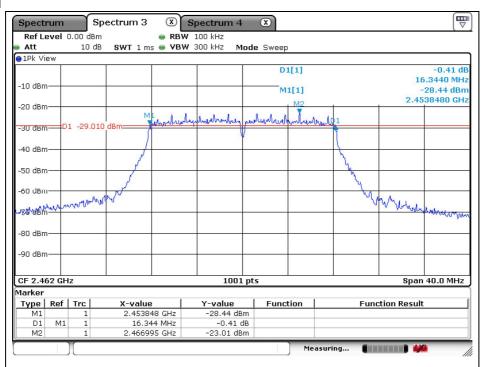

Middle Channel



Report Number: F690501/RF-RTL008660-1 Page: 41 of 55

High Channel

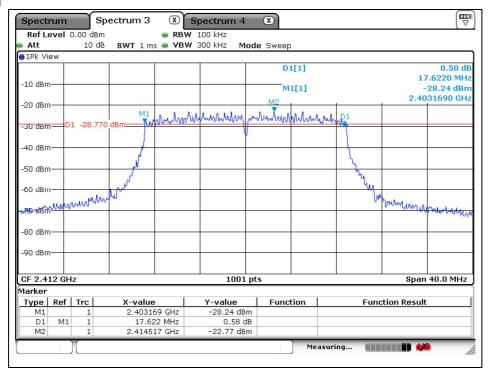

OFDM: 802.11g Low Channel

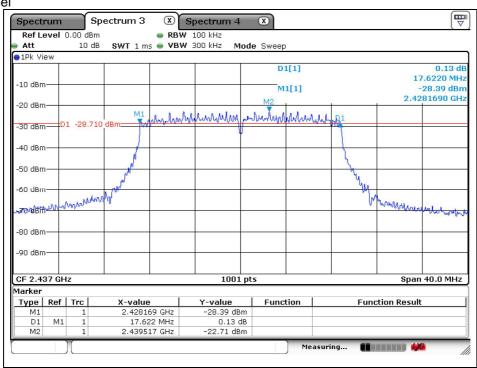


Report Number: F690501/RF-RTL008660-1 Page: 42 of 55

Middle Channel

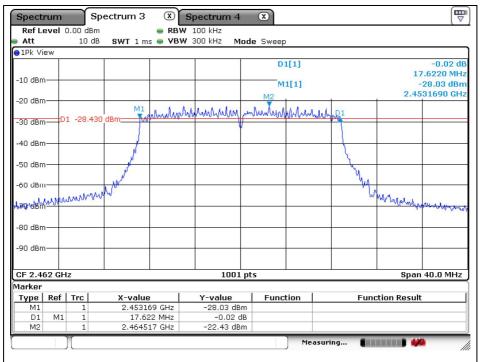
High Channel




Page: 43 55 Report Number: F690501/RF-RTL008660-1 of

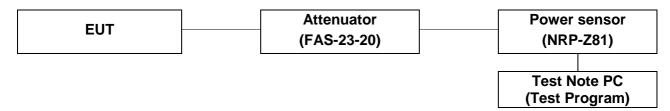
OFDM: 802.11n_HT20

Low Channel


Middle Channel

Report Number: F690501/RF-RTL008660-1 Page: 44 of 55

High Channel



Report Number: F690501/RF-RTL008660-1 Page: 45 of 55

4. Maximum Peak Output Power

4.1. Test Setup

4.2. Limit

According to §15.247(b)(3), for systems using digital modulation in the 902 ~ 928 Mz, 2 400 ~2 483.5 Mz, and 5 725 ~ 5 850 Mz band: 1 Watt. As an alternative to a peak power measurement, compliance with the one watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antenna elements. The average must not include any intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), the conducted output power limit specified in paragraph(b) of this section is based on the use of antenna with directional gains that do not exceed 6 dBi. Except as shown in paragraph(c) of this section, if transmitting antenna of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3. Test Procedure

All data rates and modes were investigated for this test.

The test follows section 9.1.2 of FCC KDB Publication 558074 D01 v03r02.

- Peak power meter method

-The maximum peak conducted output power can be measured using a broad band peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector

Report Number: F690501/RF-RTL008660-1 Page: 46 of 55

4.4. Test Results

Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Mode	Channel	Channel Frequency (쌘)	Data Rate (Mbps)	Attenuator + Cable offset (dB)	Peak Power Result (dB m)
Low		, ,	1		16.72
	Low	2 412	2	20.92	16.75
	2412	5.5	20.92	16.89	
			11		<u>16.96</u>
			1		17.06
DSSS	Middle	2 437	2	21.06	17.08
(802.11b)	Middle	2 437	5.5	21.00	17.17
			11		<u>17.24</u>
			1		16.92
	∐iah	2 462	2	21.09	17.24
	High	2 402	5.5	21.09	17.29
			11		<u>17.40</u>
			6		20.48
			9		20.38
			12		20.26
	Low	2 412	18	20.92	20.19
	Low	2 412	24	20.92	20.59
			36		20.36
			48		20.59
			54		<u>20.70</u>
		2 437	6		20.93
			9		20.00
			12		20.27
OFDM	Middle		18	21.06	20.42
(802.11g)	Middle		24	21.00	20.77
			36		20.17
			48		20.70
			54		<u>20.72</u>
			6		21.03
		High 2 462	9		20.66
			12		20.38
	High		18	21.09	20.48
	nign		24	21.09	20.63
			36		20.41
			48	_	20.83
			54		<u>20.99</u>

Report Number: F690501/RF-RTL008660-1 Page: 47 of 55

Mode	Channel	Channel Frequency (Mb)	Data rate (Mbps)	Attenuator + Cable offset (dB)	Peak Power Result (dB m)
			MCS0		20.71
		2 412	MCS1		20.90
			MCS2		21.17
	Low		MCS3	20.92	20.64
	LOW		MCS4	20.92	20.44
			MCS5		20.88
			MCS6		<u>21.88</u>
			MCS7		21.45
	Middle	2 437	MCS0		20.98
			MCS1		20.86
			MCS2	21.06	21.07
OFDM			MCS3		20.81
(802.11n_HT20)			MCS4		20.21
			MCS5		21.15
			MCS6		<u>21.88</u>
			MCS7		21.24
	High	2 462	MCS0	21.09	20.98
			MCS1		20.96
			MCS2		21.08
			MCS3		20.93
			MCS4		20.40
			MCS5		21.36
			MCS6		<u>22.24</u>
			MCS7		21.37

Report Number: F690501/RF-RTL008660-1 Page: 48 of 55

5. Power Spectral Density

5.1. Test Setup

EUT	Attenuator]	Spectrum Analyzer
EUI	(FAS-23-20)		(FSV30)

5.2. Limit

§15.247(e) For digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dB m in any 3 kB band any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3. Test Procedure

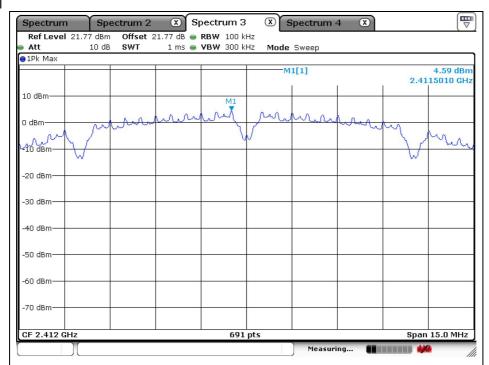
All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

The measurements are recorded using the PKPSD measurement procedure in section 10.2 of KDB 558074 D01 v03r02.

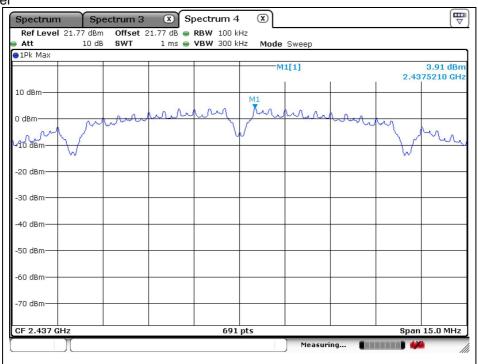
- This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to at least 1.5 times the DTS bandwidth.
- 3. Set the RBW to : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = Peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 klb) and repeat.

Report Number: F690501/RF-RTL008660-1 Page: 49 of 55

5.4. Test Results

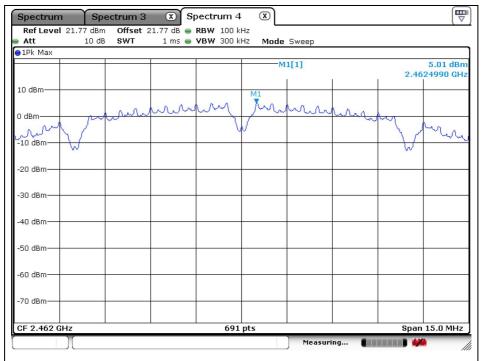

Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

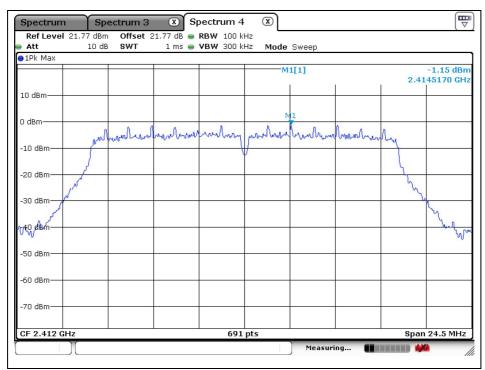
Operation Mode	Data Rate (Mbps)	Channel	Frequency	Measured PSD (dB m)	Maximum Limit (dB m)
DSSS (802.11b)	1	Low	2 412 Mb	4.59	8
		Middle	2 437 Mb	3.91	8
		High	2 462 Mb	5.01	8
	6	Low	2 412 Mb	-1.15	8
OFDM (802.11g)		Middle	2 437 Mb	-1.62	8
		High	2 462 Mb	-0.80	8
OFDM (802.11n_HT20)	MCS0	Low	2 412 Mb	-1.06	8
		Middle	2 437 Mb	-1.14	8
		High	2 462 Mb	-0.78	8



Report Number: F690501/RF-RTL008660-1 Page: 50 of 55

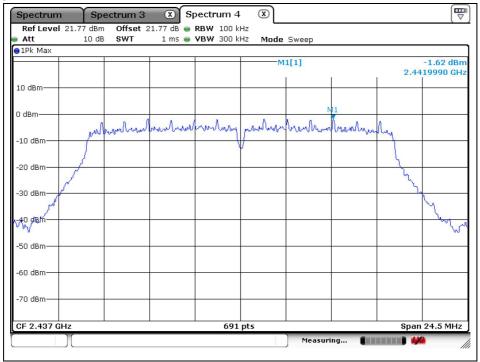
DSSS: 802.11b Low Channel

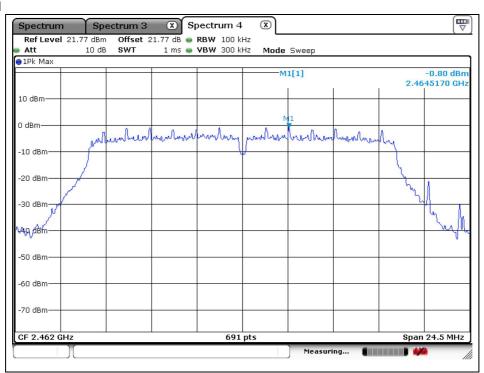

Middle Channel



Report Number: F690501/RF-RTL008660-1 Page: 51 of 55

High Channel

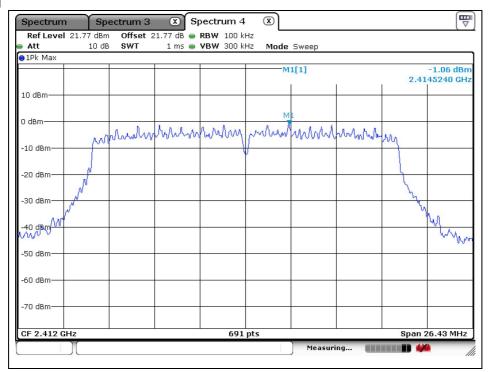

OFDM: 802.11g Low Channel

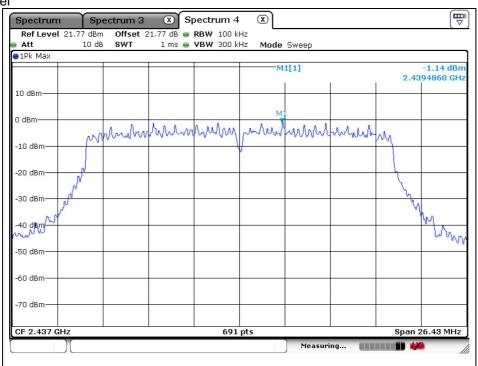


Report Number: F690501/RF-RTL008660-1 Page: 52 of 55

Middle Channel

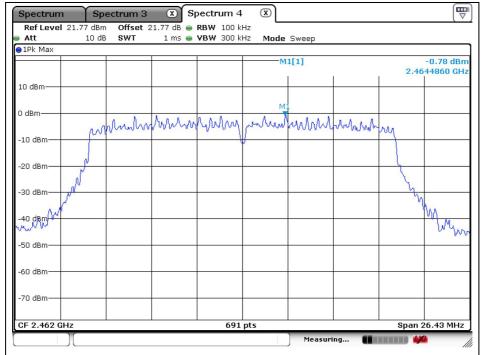
High Channel




Report Number: F690501/RF-RTL008660-1 Page: 53 of 55

OFDM: 802.11n_HT20

Low Channel


Middle Channel

Report Number: F690501/RF-RTL008660-1 Page: 54 of 55

High Channel

Report Number: F690501/RF-RTL008660-1 Page: 55 of 55

6. Antenna Requirement

6.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

6.2. Antenna Connected Construction

Antenna used in this product is external type with gain of 2.73 dB i.