

TEST REPORT

Product Name:	Tablets RFID Reader
FCC ID:	TQ4-XC-RT739-B
Trademark:	Invengo
Model Number:	XC-RT739-B
Prepared For:	Invengo Information Technology Co., Ltd.
Address:	27th and 28th Floor, Hi-Tech Zone Union Tower, NO.63, Gaoxin South 10th Road, Yuehai Sub-district, Nanshan District, Shenzhen, China
Manufacturer:	Invengo Information Technology Co., Ltd.
Address:	27th and 28th Floor, Hi-Tech Zone Union Tower, NO.63, Gaoxin South 10th Road, Yuehai Sub-district, Nanshan District, Shenzhen, China
Prepared By:	Shenzhen CTB Testing Technology Co., Ltd.
Address:	1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	Jan. 06, 2025
Sample tested Date:	Jan. 06, 2025 to Apr. 15, 2025
Issue Date:	Apr. 15, 2025
Report No.:	CTB25010606409RF01
Test Standards	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013
Test Results	PASS
Remark:	RFID function test report.

Compiled by:

Zhou kui

Zhou Kui

Reviewed by:

Arron Liu

Arron Liu

Approved by:

Bin Mei

Bin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. “*” indicates the testing items were fulfilled by subcontracted lab. “#” indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

Test Report Declaration	Page
1. VERSION	4
2. TEST SUMMARY	5
3. MEASUREMENT UNCERTAINTY	6
4. PRODUCT INFORMATION AND TEST SETUP	7
4.1 Product Information	7
4.2 Test Setup Configuration	7
4.3 Support Equipment	7
4.4 Channel List	8
4.5 Test Mode	8
4.6 Test Environment	8
5. TEST FACILITY AND TEST INSTRUMENT USED	9
5.1 Test Facility	9
5.2 Test Instrument Used	9
6. AC POWER LINE CONDUCTED EMISSION	12
6.1 Block Diagram Of Test Setup	12
6.2 Limit	12
6.3 Test procedure	12
6.4 Test Result	13
7. RADIATED SPURIOUS EMISSION	15
7.1 Block Diagram Of Test Setup	15
7.2 Limit	15
7.3 Test procedure	16
7.4 Test Result	17
8. BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS	22
8.1 Block Diagram Of Test Setup	22
8.2 Limit	22
8.3 Test procedure	22
8.4 Test Result	23
9. COUDUCTED PEAK OUTPUT POWER	26
9.1 Block Diagram Of Test Setup	26
9.2 Limit	26
9.3 Test procedure	26
9.4 Test Result	26
10. 20DB OCCUPIED BANDWIDTH	28
10.1 Block Diagram Of Test Setup	28
10.2 Limit	28
10.3 Test procedure	28
10.4 Test Result	28
11. CARRIERFREQUENCIES SEPARATION	30
11.1 Block Diagram Of Test Setup	30
11.2 Limit	30

11.3	Test procedure	30
11.4	Test Result	30
12.	HOPPING CHANNEL NUMBER	32
12.1	Block Diagram Of Test Setup	32
12.2	Limit	32
12.3	Test procedure	32
12.4	Test Result	32
13.	DWELL TIME	33
13.1	Block Diagram Of Test Setup	33
13.2	Limit	33
13.3	Test procedure	33
13.4	Test Result	33
14.	ANTENNA REQUIREMENT	35
15.	EUT TEST SETUP PHOTOGRAPHS	36

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB25010606409RF01	Apr. 15, 2025	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209/15.247(d)	ANSI C63.10-2013	PASS
Band edge and RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)/15.205(a)	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(2)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.10-2013.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

Item	Uncertainty
Occupancy bandwidth	$U=\pm 54.3\text{Hz}$
Conducted output power Above 1G	$U=\pm 1.0\text{dB}$
Conducted output power below 1G	$U=\pm 0.9\text{dB}$
Power Spectral Density , Conduction	$U=\pm 1.0\text{dB}$
Conduction spurious emissions	$U=\pm 2.8\text{dB}$
Out of band emission	$U=\pm 54\text{Hz}$
3m chamber Radiated spurious emission(30MHz-1GHz)	$U=\pm 4.3\text{dB}$
3m chamber Radiated spurious emission(1GHz-18GHz)	$U=\pm 4.5\text{dB}$
humidity uncertainty	$U=\pm 5.3\%$
Temperature uncertainty	$U=\pm 0.59^\circ\text{C}$
Supply voltages	$U=\pm 3\%$
Time	$U=\pm 5\%$

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s):	XC-RT739-B
Model Description:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	902.75MHz~927.25MHz
Max. RF output power:	29.989dBm
Type of Modulation:	ASK
Antenna installation:	Internal antenna
Antenna Gain:	5dBi
Ratings:	5V === 4A from AC/DC Adapter

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1.	Laptop	DELL	Vostro 5490	N/A	AE

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	902.75	19	911.75	37	920.75
2	903.25	20	912.25	38	921.25
3	903.75	21	912.75	39	921.75
4	904.25	22	913.25	40	922.25
5	904.75	23	913.75	41	922.75
6	905.25	24	914.25	42	923.25
7	905.75	25	914.75	43	923.75
8	906.25	26	915.25	44	924.25
9	906.75	27	915.75	45	924.75
10	907.25	28	916.25	46	925.25
11	907.75	29	916.75	47	925.75
12	908.25	30	917.25	48	926.25
13	908.75	31	917.75	49	926.75
14	909.25	32	918.25	50	927.25
15	909.75	33	918.75		
16	910.25	34	919.25		
17	910.75	35	919.75		
18	911.25	36	920.25		

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting (ASK)	902.75MHz	914.75MHz	927.25MHz
Receiving (ASK)	902.75MHz	914.75MHz	927.25MHz

4.6 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(AC)(V):	120
Normal Temperature(°C)	23
Low Temperature(°C)	0
High Temperature(°C)	40

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at 1&2F., Building A, No. 26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

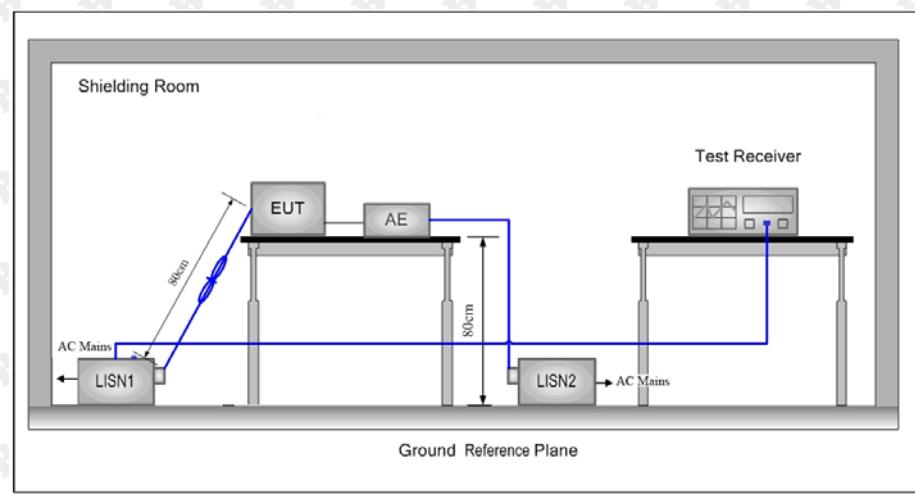
5.2 Test Instrument Used

No.	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	A.14.16	2025/6/28
2	Power Sensor	Agilent	U2021XA	MY56120032	/	2025/6/28
3	Power Sensor	Agilent	U2021XA	MY56120034	/	2025/6/28
4	Communication test set	R&S	CMW500	108058	V3.5.80	2025/6/28
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	A.14.16	2025/6/28
6	Signal Generator	Agilent	N5181A	MY50140365	A.01.60	2025/6/28
7	Vector signal generator	Agilent	N5182A	MY47420195	A.01.87	2025/6/28
8	Communication test set	Agilent	E5515C	MY50102567	B.19.07 (E1962B)	2025/6/28
9	2.4 GHz Filter	Shenxiang	MSF2400-2483.5MS-1154	20181015001	/	2025/6/30
10	5 GHz Filter	Shenxiang	MSF5150-5850MS-1155	20181015001	/	2025/6/30
11	Filter	Xingbo	XBLBQ-DZA120	190821-1-1	/	2025/6/30
12	BT&WI-FI Automatic test software	Microwave	MTS8310	Ver. 2.0.0.0	/	/
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	/	2025/6/28
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	/	2025/6/28
15	234G Automatic test software	Microwave	MTS8200	Ver. 2.0.0.0	/	/
16	966 chamber	C.R.T.	966	/	/	2027/6/21
17	Receiver	R&S	ESPI	100362	RF_ATTEN_7 (104489/003)	2025/6/28
18	Amplifier	HP	8447E	2945A02747	/	2025/6/28
19	Amplifier	Agilent	8449B	3008A01838	/	2025/6/28
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	/	2025/6/28
21	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911	/	2025/6/28

22	EMI test software	Fala	EZ-EMC	FA-03A2 RE	/	/
23	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224	/	2025/6/28
24	loop antenna	ZHINAN	ZN30900A	GTS534	/	/
25	40G Horn antenna	A/H/System	SAS-574	588	/	2025/6/28
26	Amplifier	AEROFLEX	Aeroflex	097	/	2025/6/28
27	Power Meter	KEYSIGHT	N1912AP	N/A	A.05.00	2025/6/28

Continuous disturbance

No.	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Calibrated until
1	843 Shield Room	C/ R/ T	843	/	/	2027/6/21
2	AMN	ROHDE&SCHWARZ	ESH3-Z5	831551852	/	2025/6/30
3	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	/	2025/6/28
4	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428	V4.42.SP3	2025/6/30
5	Coaxial cable	ZDECL	Z302S	18091904	/	2025/6/30
6	ISN	Schwarzbeck	NTFM8158	183	/	2025/6/30
7	Voltage sensor	Schwarzbeck	TK 9420	01189	/	2025/10/25
8	EZ-EMC	Frad	EMC-con3A1.1	/	/	/
9	Current Probe	FCC	F-52B	199453	/	2025/5/27
10	Communication test set	R&S	CMW500	108058	B.19.07 (E1962B)	2025/6/28
11	Communication test set	Agilent	E5515C	MY50102567	V3.5.80	2025/6/28


Radiated emission(No.1 Chamber)

No.	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Calibrated until
1	966 Chamber	C/ R/ T	966	/	/	2027/6/21
2	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	01911	/	2025/7/06
3	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	/	2025/6/29
4	Amplifier	Agilent	8449B	3008A01838	/	2025/6/30
5	Amplifier	HP	8447E	2945A02747	/	2025/6/28
6	loop antenna	Schwarzbeck	FMZB 1519B	1519B-224	/	2025/6/29
7	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESPI	100362	RF_ATTEN_7 (104489/003)	2025/6/28
8	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	A.14.16	2025/6/28
9	Coaxial cable	ETS	RFC-SNS-100-NMS-80	/	/	2025/6/28

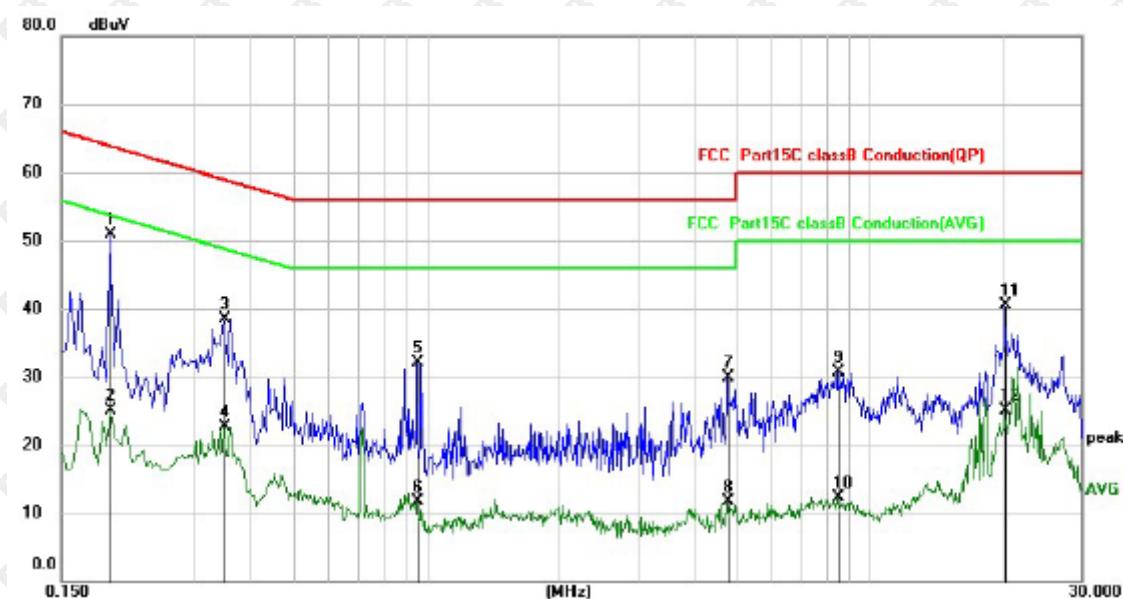
10	Coaxial cable	ETS	RFC-SN-100-NMS-20	/	/	2025/6/28
11	Coaxial cable	ETS	RFC-SNS-100-SMS-20	/	/	2025/6/28
12	Coaxial cable	ETS	RFC-NNS-100-NMS-300	/	/	2025/6/28
13	EMI test software	Frad	EZ-EMC	Ver/ FA-03A2 RE	/	/
14	Communication test set	R&S	CMW500	108058	B.19.07 (E1962B)	2025/6/28
15	Communication test set	Agilent	E5515C	MY50102567	V3.5.80	2025/6/28

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

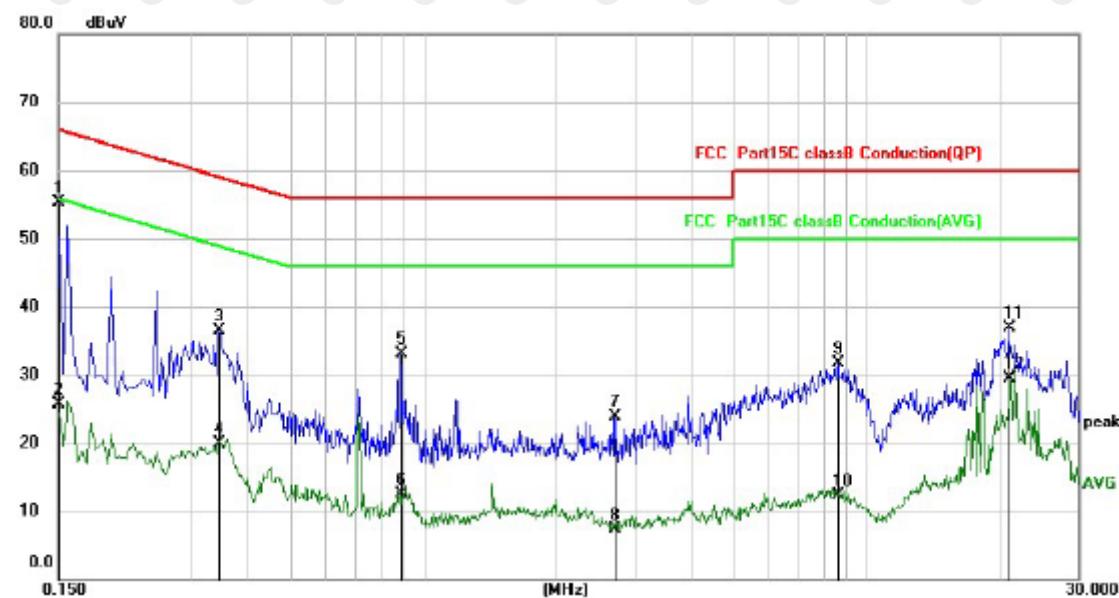
6.2 Limit

Frequency (MHz)	Maximum RF Line Voltage (dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50


* Decreasing linearly with the logarithm of the frequency

6.3 Test procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


6.4 Test Result

L:

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over
			Level	Factor	ment		
		MHz	dBuV	dB	dBuV	dB	Detector
1	*	0.1940	40.17	10.73	50.90	63.86	-12.96 QP
2		0.1940	14.47	10.73	25.20	53.86	-28.66 AVG
3		0.3500	27.90	10.61	38.51	58.96	-20.45 QP
4		0.3500	12.15	10.61	22.76	48.96	-26.20 AVG
5		0.9540	21.17	10.91	32.08	56.00	-23.92 QP
6		0.9540	0.84	10.91	11.75	46.00	-34.25 AVG
7		4.7900	17.64	12.19	29.83	56.00	-26.17 QP
8		4.7900	-0.56	12.19	11.63	46.00	-34.37 AVG
9		8.4819	17.55	13.09	30.64	60.00	-29.36 QP
10		8.4819	-0.77	13.09	12.32	50.00	-37.68 AVG
11		20.2340	26.96	13.61	40.57	60.00	-19.43 QP
12		20.2340	11.58	13.61	25.19	50.00	-24.81 AVG

N:

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector
			Level	Factor	ment			
1	*	0.1500	44.41	10.89	55.30	66.00	-10.70	QP
2		0.1500	14.73	10.89	25.62	56.00	-30.38	AVG
3		0.3460	25.95	10.61	36.56	59.06	-22.50	QP
4		0.3460	9.37	10.61	19.98	49.06	-29.08	AVG
5		0.8860	22.16	10.86	33.02	56.00	-22.98	QP
6		0.8860	1.56	10.86	12.42	46.00	-33.58	AVG
7		2.6940	12.20	11.73	23.93	56.00	-32.07	QP
8		2.6940	-4.52	11.73	7.21	46.00	-38.79	AVG
9		8.6178	18.66	13.10	31.76	60.00	-28.24	QP
10		8.6178	-0.87	13.10	12.23	50.00	-37.77	AVG
11		20.9940	23.16	13.68	36.84	60.00	-23.16	QP
12		20.9940	15.82	13.68	29.50	50.00	-20.50	AVG

Remark:

1. Factor = Cable loss + LISN factor, Margin = Limit – Level
2. All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
3. All the test modes completed for test. Only the worst result of ASK Low Channel was reported.

7. RADIATED SPURIOUS EMISSION

7.1 Block Diagram Of Test Setup

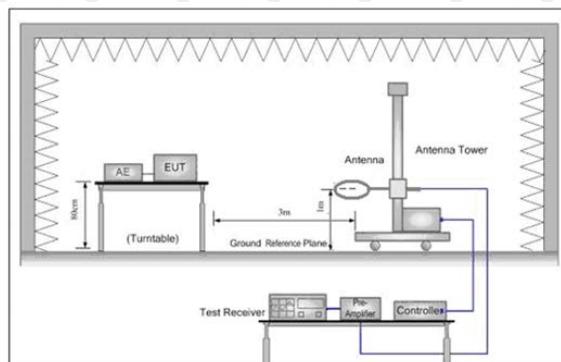


Figure 1. Below 30MHz

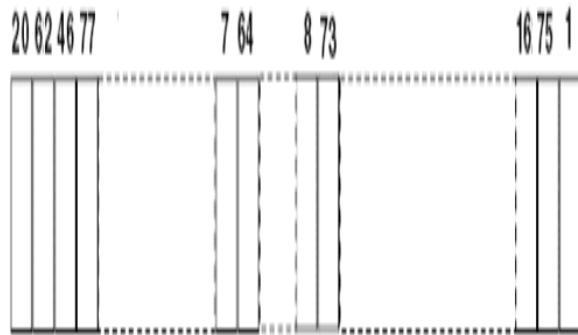


Figure 2. 30MHz to 1GHz

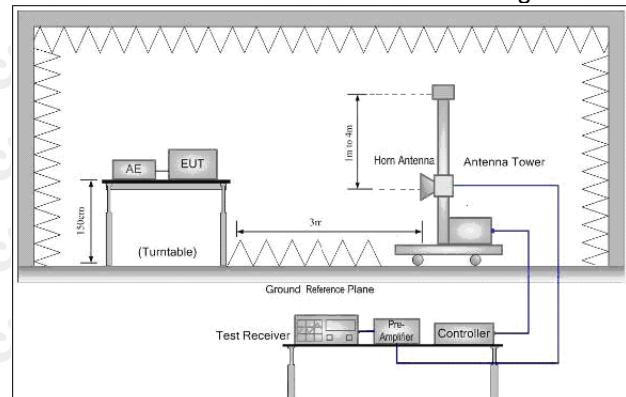


Figure 3. Above 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dB μ V/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	-	-	300
0.490MHz-1.705MHz	24000/F (kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: a.15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

b. The lower limit shall apply at the transition frequencies.

c. Emission level(dBuV/m)=20log Emission level(uV/m)

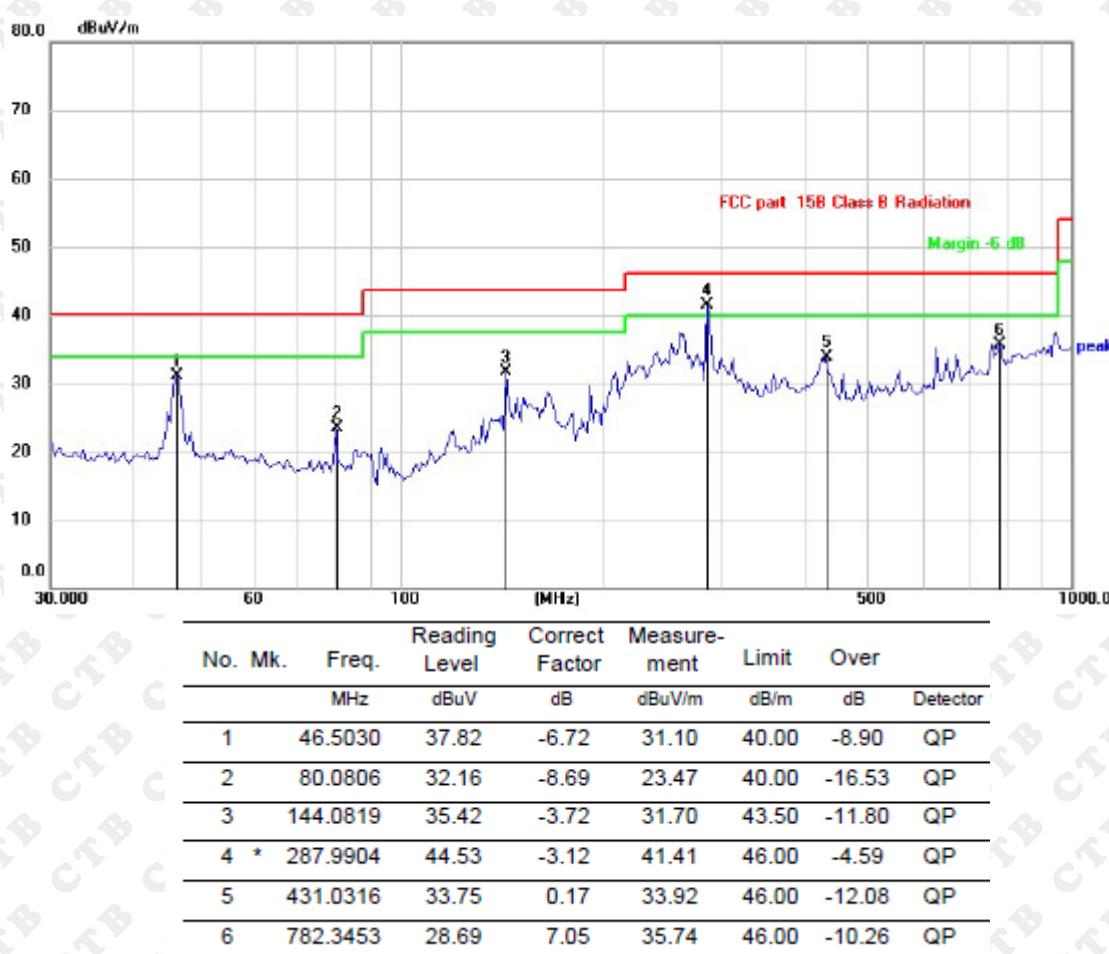
7.3 Test procedure

Below 1GHz test procedure as below:

- a.The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- j.Repeat above procedures until all frequencies measured was complete.


Receiver set:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100 kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

7.4 Test Result

Low channel below 1GHz Test Results:

Antenna polarity: H

Remark: Transd = Cableloss + Antenna factor - Pre-amplifier; Margin = Limit – Level.

Antenna polarity: V

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over
		MHz	dBuV	dB	dBuV/m	dB/m	dB
1		36.0638	32.92	-6.65	26.27	40.00	-13.73
2		45.6948	38.20	-6.74	31.46	40.00	-8.54
3		82.9385	41.33	-9.12	32.21	40.00	-7.79
4		151.8632	37.60	-2.48	35.12	43.50	-8.38
5		287.9904	38.44	-3.12	35.32	46.00	-10.68
6	*	650.7997	34.17	4.49	38.66	46.00	-7.34

Remark: Transd = Cableloss + Antenna factor - Pre-amplifier; Margin = Limit – Level

Above 1 GHz Test Results:

CH Low

Horizontal:

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
1805.5	108.35	-5.84	52.69	74	-21.31	peak
1805.5	95.60	-5.84	43.65	54	-10.35	AVG
2708.25	56.24	-3.64	52.60	74	-21.40	peak
2708.25	47.21	-3.64	43.57	54	-10.43	AVG
3611	58.10	-0.95	57.15	74	-16.85	peak
3611	48.09	-0.95	47.14	54	-6.86	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
1805.5	108.31	-5.84	52.69	74	-21.31	peak
1805.5	95.62	-5.84	43.65	54	-10.35	AVG
2708.25	56.31	-3.64	52.67	74	-21.33	peak
2708.25	47.06	-3.64	43.42	54	-10.58	AVG
3611	58.20	-0.95	57.25	74	-16.75	peak
3611	48.02	-0.95	47.07	54	-6.93	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH Middle

Horizontal:

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
1829.5	108.37	-5.71	52.67	74	-21.33	
1829.5	95.10	-5.71	45.61	54	-8.39	AVG
2744.25	55.98	-3.51	52.47	74	-21.53	peak
2744.25	46.79	-3.51	43.28	54	-10.72	AVG
3659	58.13	-0.82	57.31	74	-16.69	peak
3659	47.86	-0.82	47.04	54	-6.96	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
1829.5	108.24	-5.71	52.67	74	-21.33	
1829.5	95.12	-5.71	45.61	54	-8.39	AVG
2744.25	56.12	-3.51	52.61	74	-21.39	peak
2744.25	46.88	-3.51	43.37	54	-10.63	AVG
3659	57.97	-0.82	57.15	74	-16.85	peak
3659	47.87	-0.82	47.05	54	-6.95	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

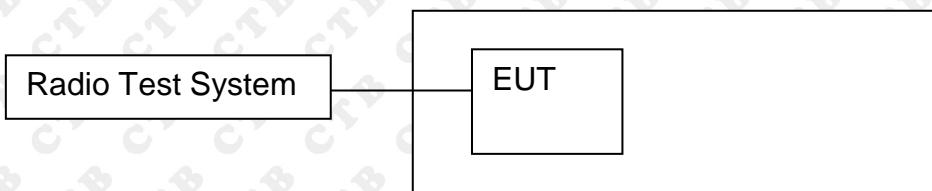
CH High
Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)	
1854.5	56.38	-5.65	52.36	74	-21.64	peak
1854.5	47.35	-5.65	46.89	54	-7.11	AVG
2781.75	56.17	-3.43	52.74	74	-21.26	peak
2781.75	47.33	-3.43	43.90	54	-10.10	AVG
3709	57.22	-0.75	56.47	74	-17.53	peak
3709	47.54	-0.75	46.79	54	-7.21	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)	
1854.5	56.45	-5.65	52.36	74	-21.64	peak
1854.5	47.21	-5.65	46.89	54	-7.11	AVG
2781.75	56.08	-3.43	52.65	74	-21.35	peak
2781.75	47.36	-3.43	43.93	54	-10.07	AVG
3709	57.39	-0.75	56.64	74	-17.36	peak
3709	47.63	-0.75	46.88	54	-7.12	AVG


Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1). Measuring frequencies from 1 GHz to the 25 GHz .
- (2). All modes of operation were investigated and the worst-case emissions are reported.
- (3). Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

8. BAND EDGE AND RF CONDUCTED SPURIOUS EMISSIONS

8.1 Block Diagram Of Test Setup

8.2 Limit

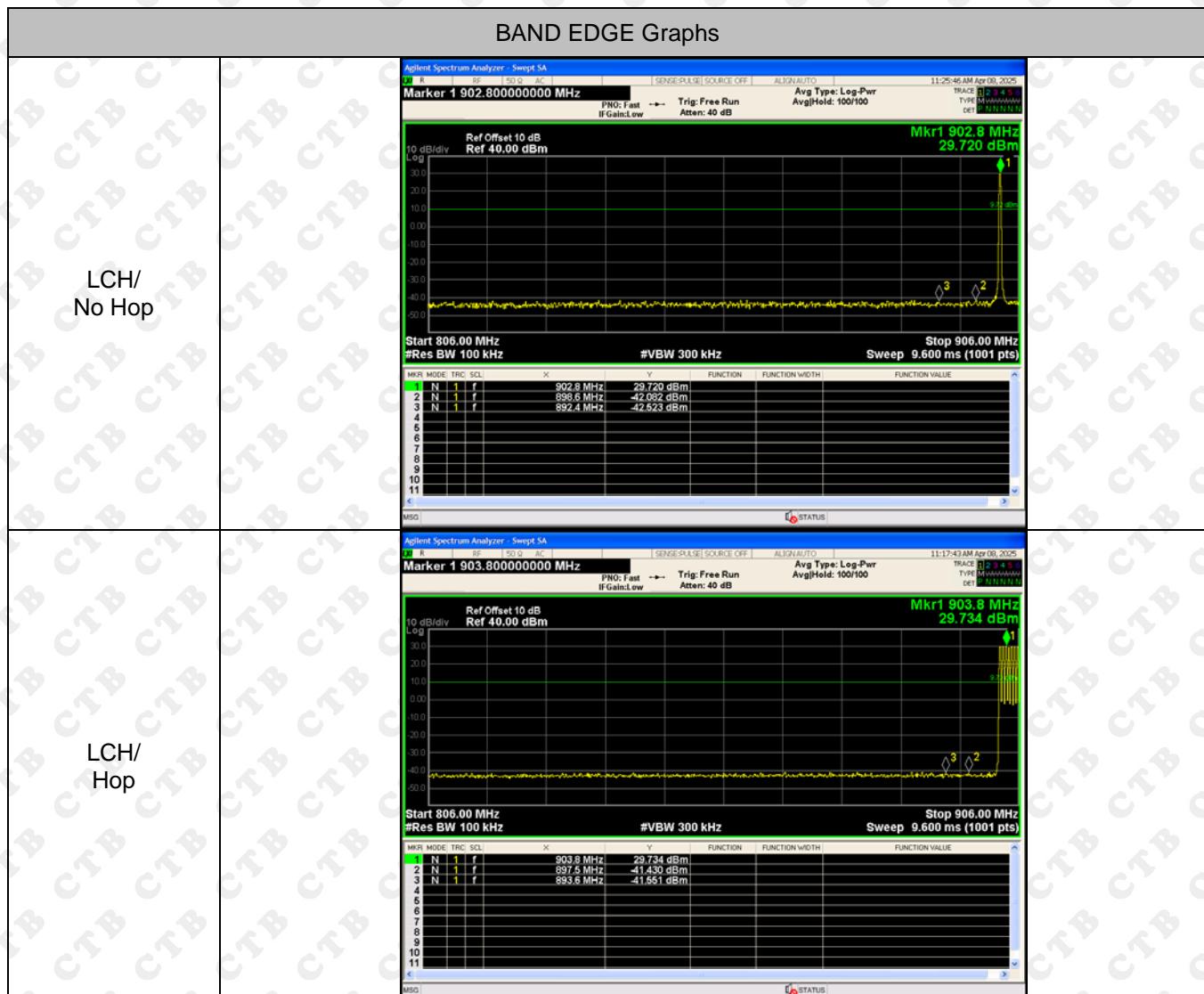
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

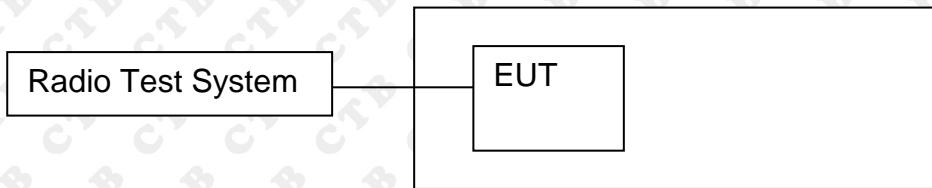

Detector function = peak, Trace = max hold

Above 30MHz:

RBW = 100KHz, VBW = 300KHz, Sweep = auto

Detector function = peak, Trace = max hold

8.4 Test Result


HCH/ No Hop	<p>Agilent Spectrum Analyzer - Swept SA</p> <p>Marker 1 927.300000000 MHz</p> <p>PNO: Fast Trig: Free Run Atten: 40 dB</p> <p>Avg Type: Log-Pwr Avg Hold: 100/100</p> <p>Ref Offset 10 dB Ref 40.00 dBm</p> <p>10 dB/div Log</p> <p>Start 920.00 MHz #VBW 300 kHz Stop 1.02000 GHz Sweep 9.600 ms (1001 pts)</p> <p>Marker Mode: TRC SCL: X Y Function Function Width Function Value</p> <table border="1"> <tr><td>1</td><td>N</td><td>1</td><td>f</td><td>927.3 MHz</td><td>29.694 dBm</td></tr> <tr><td>2</td><td>N</td><td>1</td><td>f</td><td>935.0 MHz</td><td>-42.518 dBm</td></tr> <tr><td>3</td><td>N</td><td>1</td><td>f</td><td>938.8 MHz</td><td>-42.107 dBm</td></tr> <tr><td>4</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>5</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>6</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>7</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>8</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>9</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>10</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>11</td><td></td><td></td><td></td><td></td><td></td></tr> </table> <p>MSG STATUS</p>	1	N	1	f	927.3 MHz	29.694 dBm	2	N	1	f	935.0 MHz	-42.518 dBm	3	N	1	f	938.8 MHz	-42.107 dBm	4						5						6						7						8						9						10						11					
1	N	1	f	927.3 MHz	29.694 dBm																																																														
2	N	1	f	935.0 MHz	-42.518 dBm																																																														
3	N	1	f	938.8 MHz	-42.107 dBm																																																														
4																																																																			
5																																																																			
6																																																																			
7																																																																			
8																																																																			
9																																																																			
10																																																																			
11																																																																			
HCH/ Hop	<p>Agilent Spectrum Analyzer - Swept SA</p> <p>Marker 1 920.300000000 MHz</p> <p>PNO: Fast Trig: Free Run Atten: 40 dB</p> <p>Avg Type: Log-Pwr Avg Hold: 100/100</p> <p>Ref Offset 10 dB Ref 40.00 dBm</p> <p>10 dB/div Log</p> <p>Start 920.00 MHz #VBW 300 kHz Stop 1.02000 GHz Sweep 9.600 ms (1001 pts)</p> <p>Marker Mode: TRC SCL: X Y Function Function Width Function Value</p> <table border="1"> <tr><td>1</td><td>N</td><td>1</td><td>f</td><td>920.3 MHz</td><td>29.927 dBm</td></tr> <tr><td>2</td><td>N</td><td>1</td><td>f</td><td>932.7 MHz</td><td>-41.343 dBm</td></tr> <tr><td>3</td><td>N</td><td>1</td><td>f</td><td>936.8 MHz</td><td>-41.661 dBm</td></tr> <tr><td>4</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>5</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>6</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>7</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>8</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>9</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>10</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>11</td><td></td><td></td><td></td><td></td><td></td></tr> </table> <p>MSG STATUS</p>	1	N	1	f	920.3 MHz	29.927 dBm	2	N	1	f	932.7 MHz	-41.343 dBm	3	N	1	f	936.8 MHz	-41.661 dBm	4						5						6						7						8						9						10						11					
1	N	1	f	920.3 MHz	29.927 dBm																																																														
2	N	1	f	932.7 MHz	-41.343 dBm																																																														
3	N	1	f	936.8 MHz	-41.661 dBm																																																														
4																																																																			
5																																																																			
6																																																																			
7																																																																			
8																																																																			
9																																																																			
10																																																																			
11																																																																			

RF Conducted Spurious Emissions Graphs

9. CONDUCTED PEAK OUTPUT POWER

9.1 Block Diagram Of Test Setup

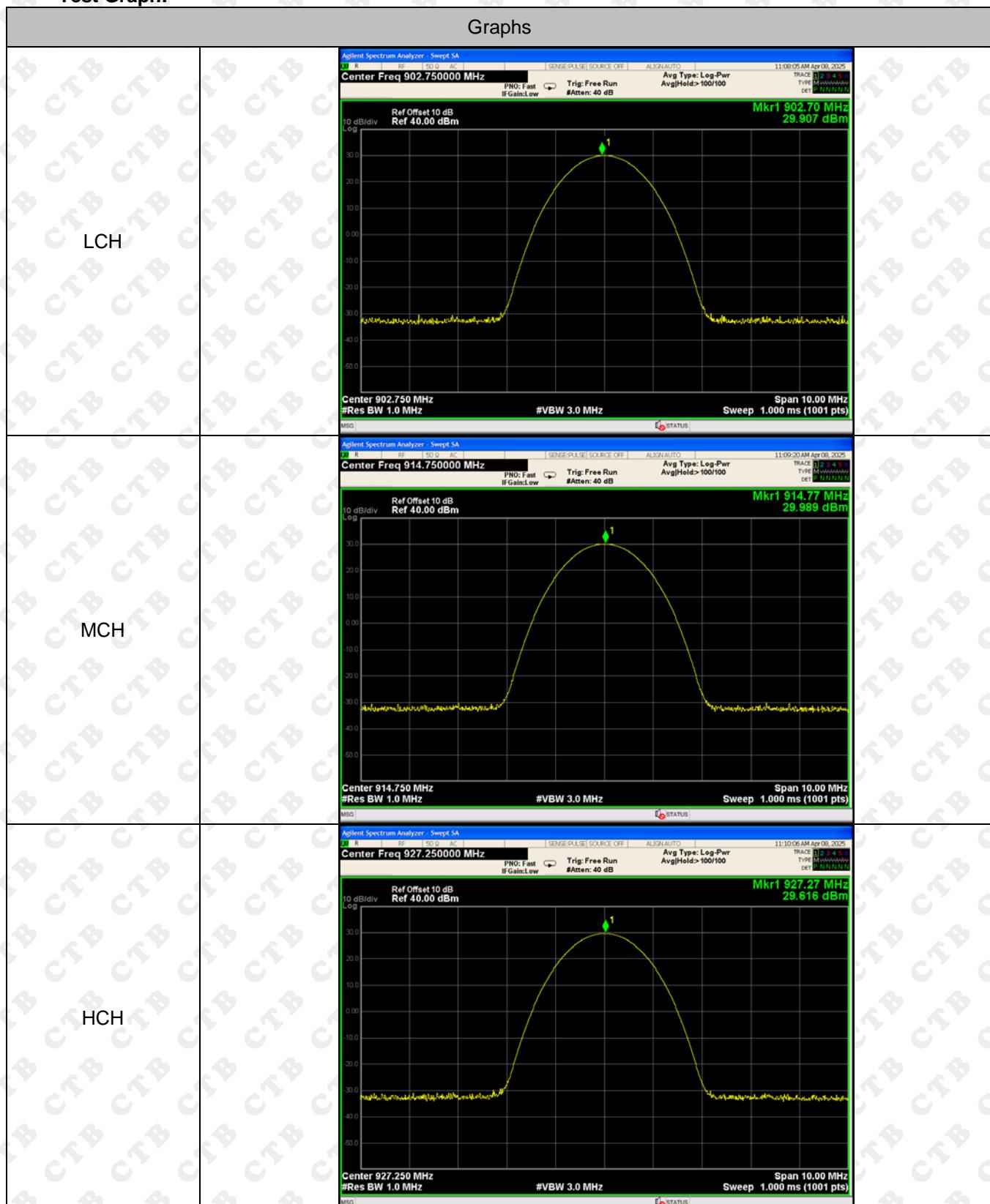
9.2 Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

- (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
- (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

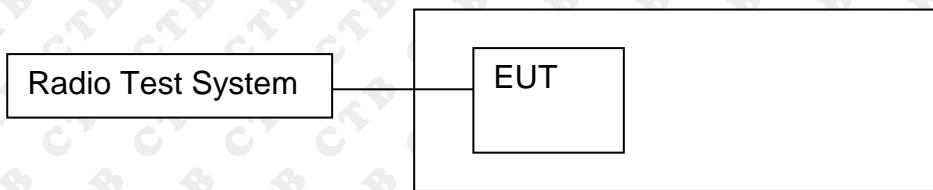
Peak output Power: <30dBm

9.3 Test procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
2. Set the spectrum analyzer: RBW = 1MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
3. Keep the EUT in transmitting at lowest, middle and highest channel individually. Record the max value.

9.4 Test Result

Antenna Gain: 5dBi


Channel.	Maximum Peak Output Power [dBm]	Limit [dBm]	Verdict
LCH	29.907	30	PASS
MCH	29.989	30	PASS
HCH	29.616	30	PASS

Test Graph:

10. 20DB OCCUPIED BANDWIDTH

10.1 Block Diagram Of Test Setup

10.2 Limit

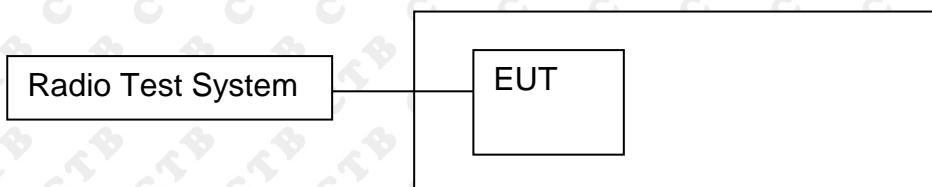
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies

10.3 Test procedure

1. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
2. RBW \geq 1% of the 20 dB bandwidth
3. Set the video bandwidth (VBW) \geq 3 x RBW.
4. Detector = Peak.
5. Trace mode = max hold.
6. Sweep = auto couple.
7. Allow the trace to stabilize.
8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Frequency	20dB Bandwidth (kHz)	Result
Low channel	64.68	PASS
Mid channel	68.32	PASS
High channel	69.02	PASS


Note: All modes of operation were Pre-scan and the worst-case emissions are reported.

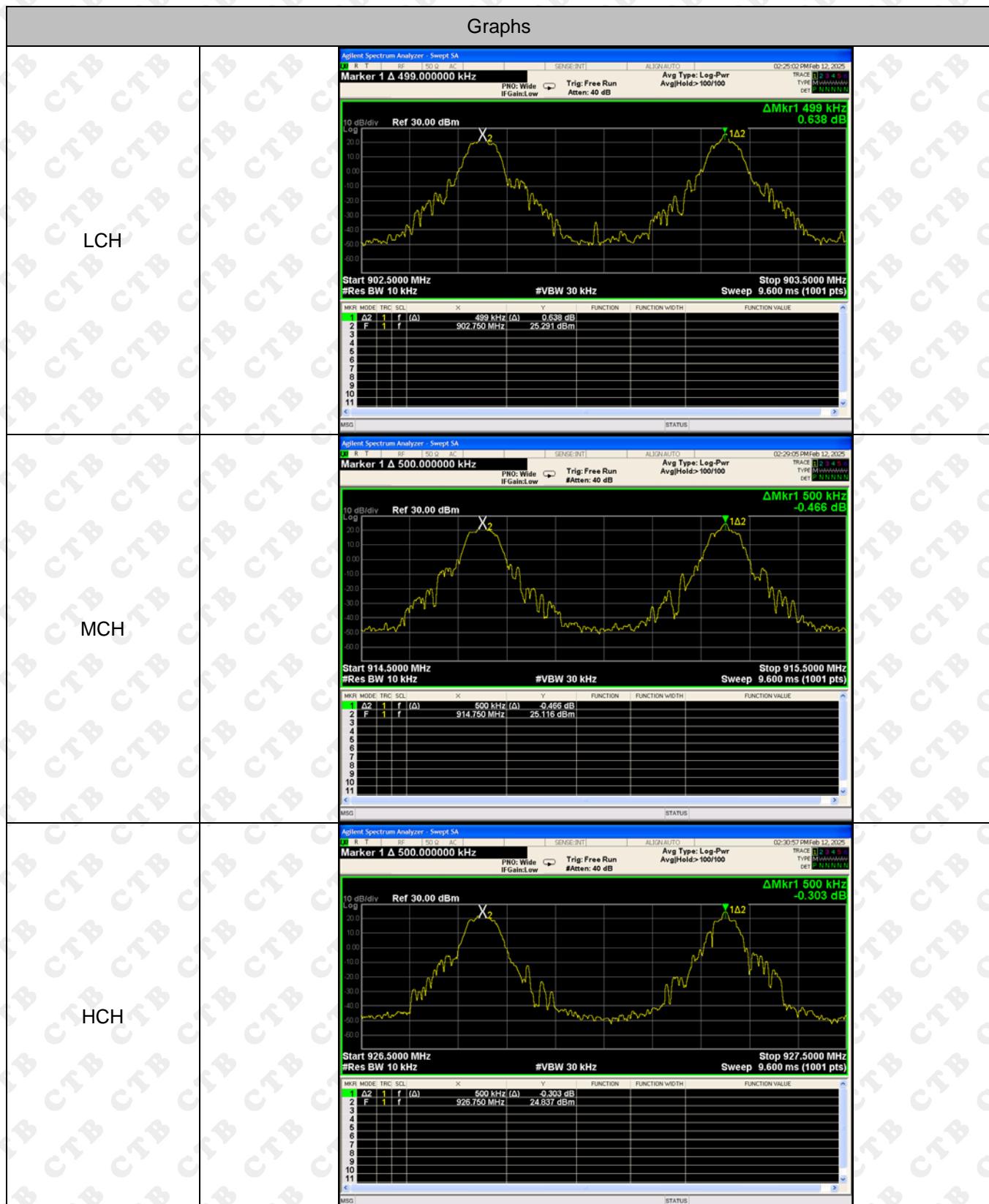
Test Graph:

11. CARRIERFREQUENCIES SEPARATION

11.1 Block Diagram Of Test Setup

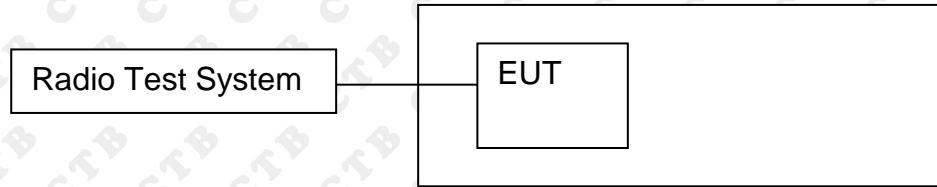
11.2 Limit

At least 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
2. Set the spectrum analyzer: RBW = 10kHz. VBW = 30kHz , Span = 1.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.4 Test Result

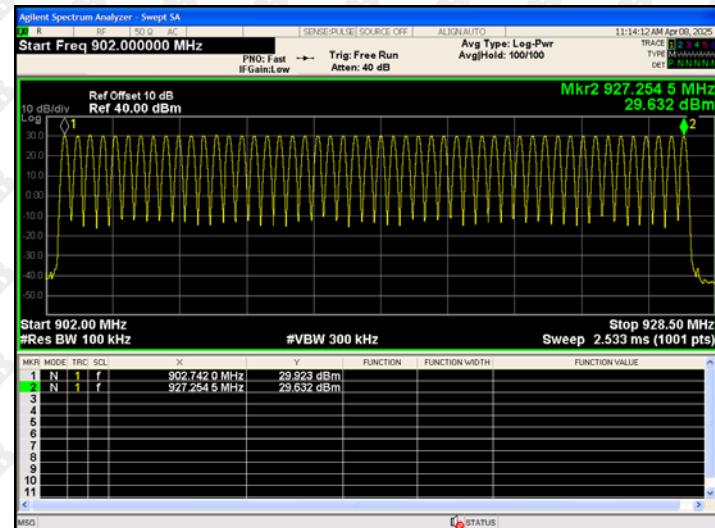

Channel.	Carrier Frequency Separation [MHz]	Verdict
LCH	0.499	PASS
MCH	0.500	PASS
HCH	0.500	PASS

Test Graph

12. HOPPING CHANNEL NUMBER

12.1 Block Diagram Of Test Setup

12.2 Limit


Frequency hopping systems in the 920-928 MHz band shall use at least 50 channels.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 902MHz, Stop Frequency = 928MHz. Sweep=auto;

12.4 Test Result

Mode	Channel.	Number of Hopping Channel	Verdict
ASK	Hop	50	PASS

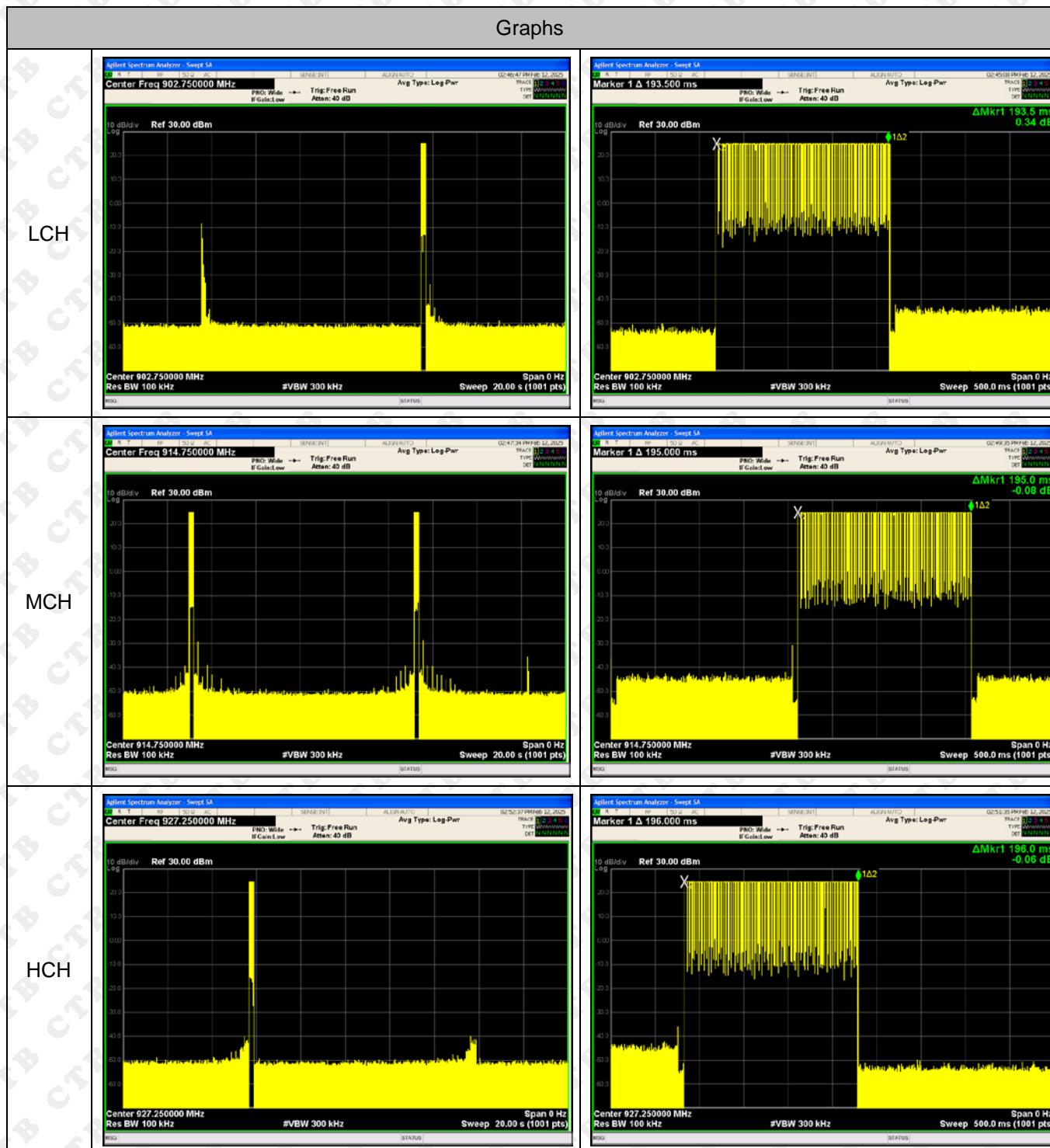
13. DWELL TIME

13.1 Block Diagram Of Test Setup

13.2 Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

13.3 Test procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
2. Set spectrum analyzer span = 0. Centred on a hopping channel;
3. Set RBW = 1MHz and VBW = 3MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g.. data rate, modulation format, etc.). repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.4 Test Result

Channel	No. of transmission in 20s(a)	Pulse Time (ms)(b)	Total Dwell Time in 20s (ms) (c)	Limit (ms)	Verdict
LCH	1	193.5	193.5	400	PASS
MCH	2	195	390	400	PASS
HCH	1	196	196	400	PASS

Remark: Total dwell time in 20s, c=(a)*(b)

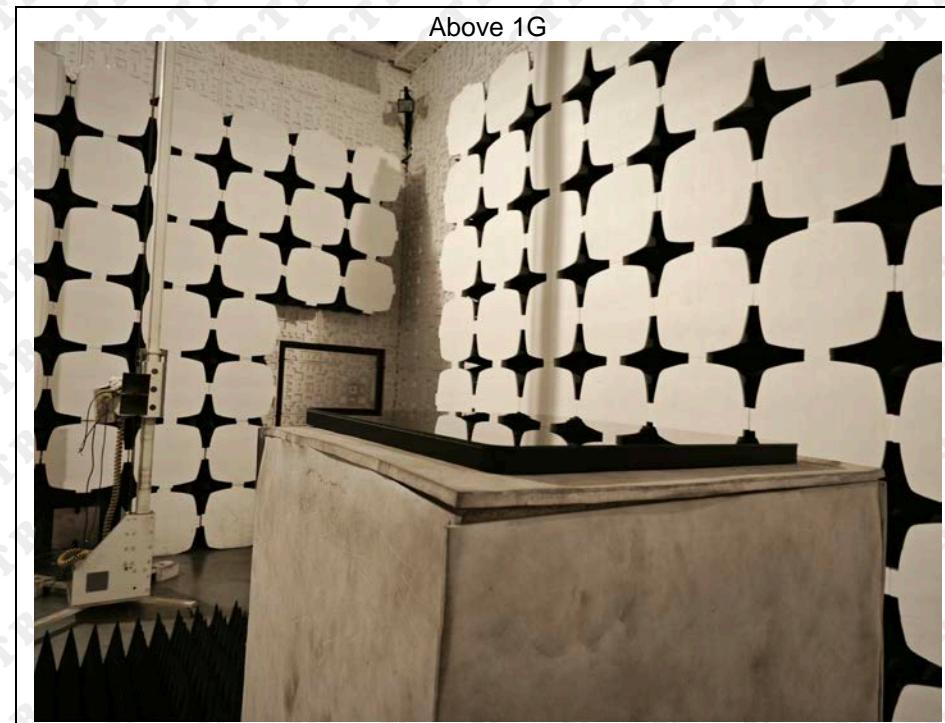
Test Graph

14. ANTENNA REQUIREMENT

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:



The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:


The antenna is Internal antenna and no consideration of replacement. The best case gain of the antenna is 5dBi.

15. EUT TEST SETUP PHOTOGRAPHS

Radiated Emission

Conducted emission

***** END OF REPORT *****