

FCC PART 74  
EMI MEASUREMENT AND TEST REPORT  
For  
**ARRAY ELECTRONIC CO., LTD.**

XISHANQIAO, YUHUATAI ZONE, NANJING, 210041, CHINA

**FCC ID: TOFAUT210**

October 19, 2005

|                                                                                                                                                                                                                                                        |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <b>This Report Concerns:</b><br><input checked="" type="checkbox"/> Original Report                                                                                                                                                                    | <b>Equipment Type:</b><br>Wireless Microphone |
| <b>Test Engineer:</b> <u>Louise Lu</u>                                                                                                                              |                                               |
| <b>Report No.:</b> <u>RSZ05092303</u>                                                                                                                                                                                                                  |                                               |
| <b>Test Date:</b> <u>October 11-13, 2005</u>                                                                                                                                                                                                           |                                               |
| <b>Reviewed By:</b> <u>Chris Zeng</u>                                                                                                                               |                                               |
| <b>Prepared By:</b><br>Bay Area Compliance Lab Corp. (ShenZhen)<br>6/F, the 3rd Phase of WanLi Industrial Building, ShiHua<br>Road, FuTian Free Trade Zone, ShenZhen, Guangdong<br>518038, P.R.China<br>Tel: +86-755-33320018<br>Fax: +86-755-33320008 |                                               |

**Note:** The test report is specially limited to the above company and this particular sample only.  
It may not be duplicated without prior written consent of Bay Area Compliance Lab Corp.  
(ShenZhen). This report **must not** be used by the client to claim product certification,  
approval, or endorsement by NVLAP, NIST or any agency of the US Government.

**TABLE OF CONTENTS**

|                                                               |           |
|---------------------------------------------------------------|-----------|
| <b>GENERAL INFORMATION.....</b>                               | <b>3</b>  |
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) .....      | 3         |
| OBJECTIVE .....                                               | 3         |
| RELATED SUBMITTAL(S)/GRANT(S).....                            | 3         |
| TEST METHODOLOGY .....                                        | 3         |
| TEST FACILITY .....                                           | 3         |
| <b>SYSTEM TEST CONFIGURATION.....</b>                         | <b>4</b>  |
| DESCRIPTION OF TEST CONFIGURATION .....                       | 4         |
| EQUIPMENT MODIFICATIONS .....                                 | 4         |
| CONFIGURATION OF TEST SETUP .....                             | 5         |
| BLOCK DIAGRAM OF TEST SETUP .....                             | 5         |
| <b>SUMMARY OF TEST RESULTS .....</b>                          | <b>6</b>  |
| <b>§74.861(e)(1)(ii) – OUTPUT POWER MEASUREMENT.....</b>      | <b>7</b>  |
| STANDARD APPLICABLE .....                                     | 7         |
| TEST EQUIPMENT LIST AND DETAILS.....                          | 7         |
| TEST PROCEDURE .....                                          | 7         |
| TEST DATA .....                                               | 7         |
| <b>§74.861(e)(3) – MODULATION CHARACTERISTICS .....</b>       | <b>10</b> |
| STANDARD APPLICABLE .....                                     | 10        |
| TEST EQUIPMENT LIST AND DETAILS.....                          | 10        |
| TEST PROCEDURE .....                                          | 10        |
| TEST DATA .....                                               | 11        |
| <b>§74.861(e)(5) - OCCUPIED BANDWIDTH OF EMISSION.....</b>    | <b>12</b> |
| STANDARD APPLICABLE .....                                     | 12        |
| TEST EQUIPMENT LIST AND DETAILS.....                          | 12        |
| TEST PROCEDURE .....                                          | 12        |
| TEST DATA .....                                               | 12        |
| <b>§74.861 (e)(6)(iii) – RADIATED SPURIOUS EMISSION .....</b> | <b>17</b> |
| STANDARD APPLICABLE .....                                     | 17        |
| MEASUREMENT UNCERTAINTY .....                                 | 17        |
| EUT SETUP.....                                                | 18        |
| EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP .....             | 18        |
| TEST EQUIPMENT LIST AND DETAILS.....                          | 19        |
| TEST PROCEDURE .....                                          | 19        |
| TEST DATA .....                                               | 19        |
| <b>§2.1051 - SPURIOUS EMISSION AT ANTENNA TERMINAL.....</b>   | <b>21</b> |
| STANDARD APPLICABLE .....                                     | 21        |
| TEST EQUIPMENT LIST AND DETAILS.....                          | 21        |
| TEST PROCEDURE .....                                          | 21        |
| TEST DATA .....                                               | 22        |
| <b>§74.86(e)(4) - FREQUENCY STABILITY MEASUREMENT .....</b>   | <b>26</b> |
| STANDARD APPLICABLE .....                                     | 26        |
| TEST EQUIPMENT LIST AND DETAILS.....                          | 26        |
| TEST PROCEDURE .....                                          | 26        |
| TEST DATA .....                                               | 27        |

## GENERAL INFORMATION

---

### Product Description for Equipment Under Test (EUT)

The *ARRAY ELECTRONIC CO., LTD.*'s product, model number: AUH210 or the "EUT" as referred to in this report is a Wireless Microphone. The EUT is measured approximately 12.8 cm L x 2.6 cm W x 2.4 cm H, rated input voltage: DC 1.5V battery.

*\* The test data gathered are from production sample, serial number: A08CF09001 provided by the manufacturer, we receive the EUT on 2005-9-23.*

### Objective

The following test report is prepared on behalf of *ARRAY ELECTRONIC CO., LTD.* in accordance with Part 74 Subpart H of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine compliance with FCC rules.

### Related Submittal(s)/Grant(s)

No related submittal(s).

### Test Methodology

Measurements contained in this report were also conducted with TIA/EIA Standard 603, Telecommunications Industry Association Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

All emissions measurement was performed at Bay Area Compliance Lab Corp. (ShenZhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

### Test Facility

The Test site used by Bay Area Compliance Lab Corp. (ShenZhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong 518038, P.R.China.

Test site at Bay Area Compliance Lab Corp. (ShenZhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003& TIA/EIA-603.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Lab Corp. (ShenZhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0). The current scope of accreditations can be found at <http://ts.nist.gov/ts/htdocs/210/214/scopes/2007070.htm>

---

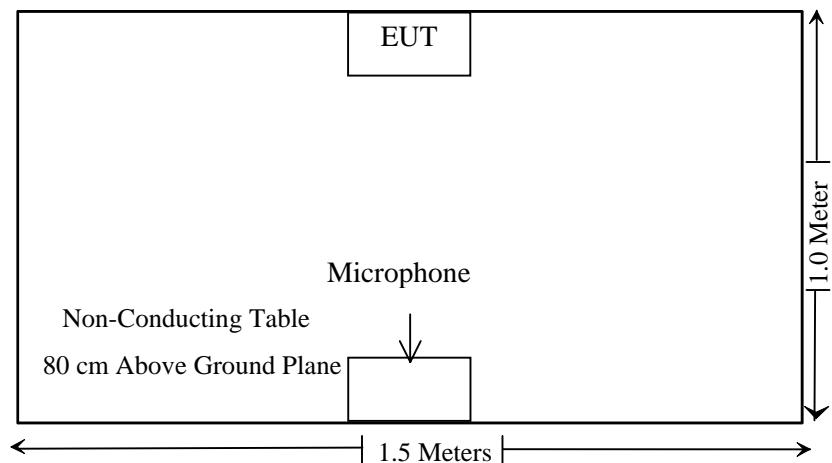
## SYSTEM TEST CONFIGURATION

---

### Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

### Equipment Modifications


Bay Area Compliance Lab Corp. (ShenZhen) has not done any modification on the EUT.

## Configuration of Test Setup



EUT

## Block Diagram of Test Setup



**SUMMARY OF TEST RESULTS**

| FCC RULES         | DESCRIPTION OF TEST               | RESULT      |
|-------------------|-----------------------------------|-------------|
| §74.861(e)(1)(ii) | Output Power Measurement          | Compliant   |
| §74.861(e)(3)     | Modulation Characteristics        | Compliant   |
| §74.861(e)(5)     | Occupied Bandwidth Emission       | Compliant   |
| §74.861(e)(6)     | Radiated Spurious Emission        | Compliant * |
| §2.1051           | Spurious Emission at Antenna Port | Compliant   |
| §74.86(e)(4)      | Frequency Stability               | Compliant   |

\* Within measurement uncertainty

## §74.861(e)(1)(ii) – OUTPUT POWER MEASUREMENT

### Standard Applicable

According to §74.861(e)(1)(ii), for low power auxiliary station operating in the 614-806MHz band, the power of the measured unmodulated carrier power and the output of the transmitter power amplifier (antenna input power) may not exceed 250mW.

### Test Equipment List and Details

| Manufacturer    | Description       | Model | Serial Number | Calibration Date | Calibration Due Date |
|-----------------|-------------------|-------|---------------|------------------|----------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100035        | 2005-8-17        | 2006-8-17            |

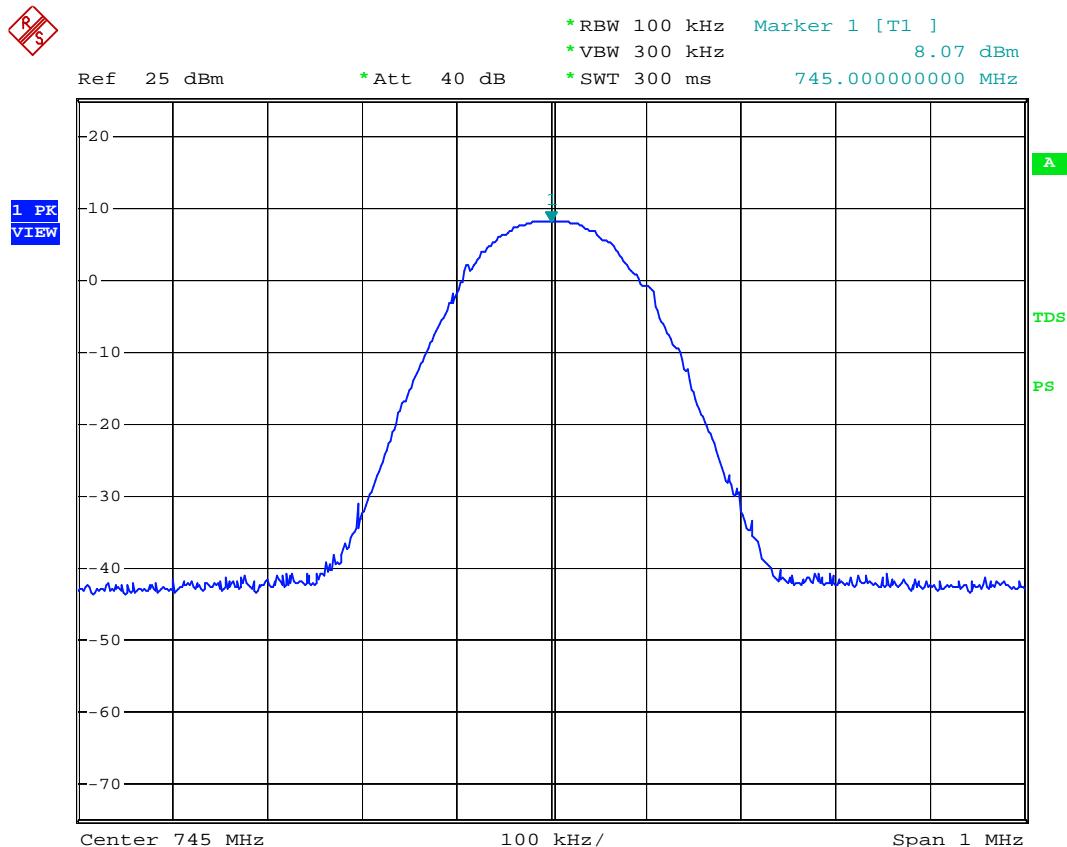
\* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

### Test Procedure

The maximum peak output power was measured with an EMI Test Receiver connected to the antenna terminal while EUT was operating in normal situation. Set RBW of EMI Test Receiver to 100 kHz and VBW to 300 kHz.

### Test Data

#### Environmental Conditions

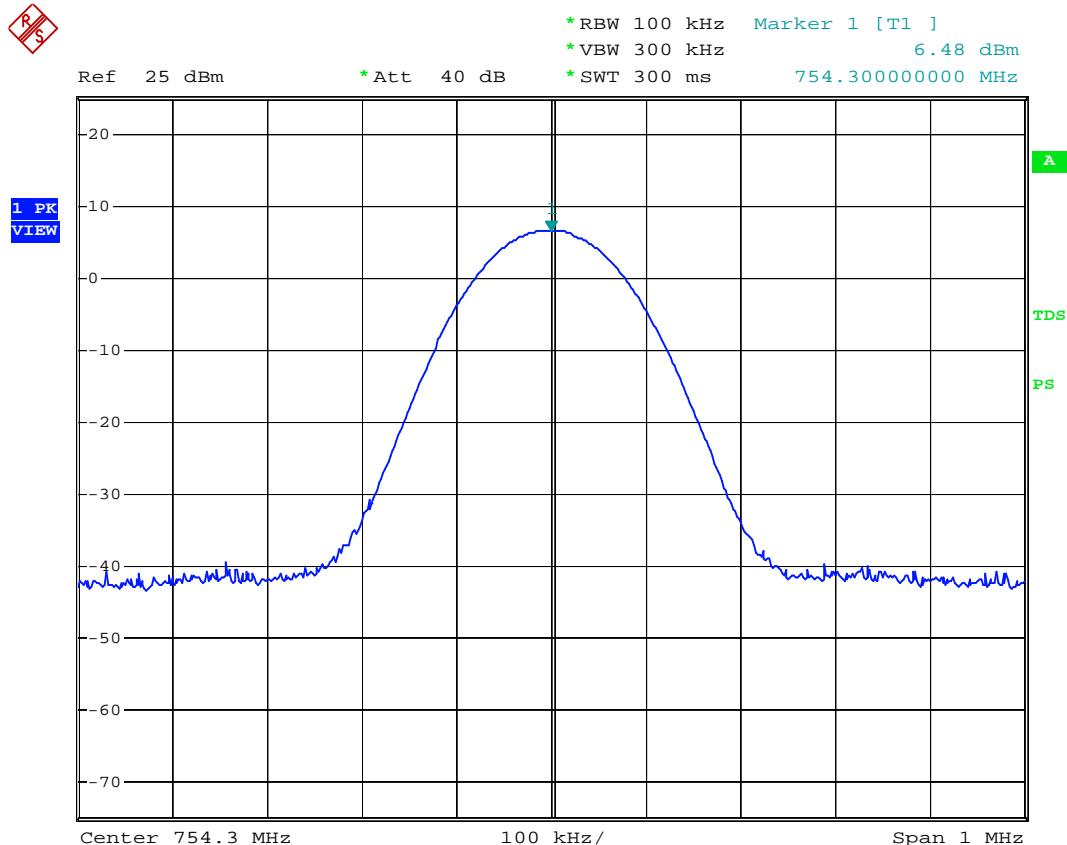

|                    |           |
|--------------------|-----------|
| Temperature:       | 27 °C     |
| Relative Humidity: | 50 %      |
| ATM Pressure:      | 1009 mbar |

*The testing was performed by Louise Lu on 2005-10-12.*

*Test Result: Pass*

*Test mode: Transmitting*

| Channel | Spec Frequency (MHz) | Peak Output Power (dBm) | Limit (dBm) | Margin (dBm) |
|---------|----------------------|-------------------------|-------------|--------------|
| High    | 754.3                | 6.48                    | 24          | -17.52       |
| Low     | 745.0                | 8.07                    | 24          | -15.93       |




ARRAY Wireless Microphone M/N: AUT210 Output Power Low c

hannel

Date: 12.OCT.2005 10:24:12

RS



ARRAY Wireless Microphone M/N: AUT210 Output Power High

channel

Date: 12.OCT.2005 10:26:28

## §74.861(e)(3) – MODULATION CHARACTERISTICS

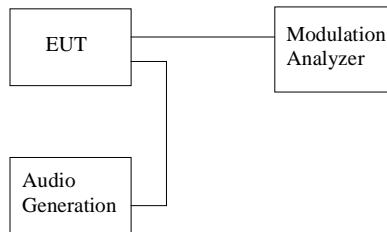
### Standard Applicable

According to FCC 2.1047 (a), for Voice Modulated Communication Equipment, the frequency response of the audio modulating circuit over a range of 100Hz to 5000Hz shall be measured. For equipment required to have an audio low-pass filter, the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be measured.

According to §74.861(e)(3), any form of modulation may be used. A maximum deviation of  $\pm 75$  kHz is permitted when frequency modulation is employed.

### Test Equipment List and Details

| Manufacturer | Description         | Model  | Serial Number | Calibration Date | Calibration Due Date |
|--------------|---------------------|--------|---------------|------------------|----------------------|
| HP           | Modulation Analyzer | 8901B  | 3438A05208    | 2005-2-28        | 2006-2-28            |
| NANYAN       | Audio Generator     | NY2201 | 019829        | 2004-12-23       | 2005-12-23           |


\* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

### Test Procedure

#### Frequency response of audio circuits

- 1) Position the EUT as shown in figure 1

Figure 1  
Modulation Characteristic  
Measurement Configuration

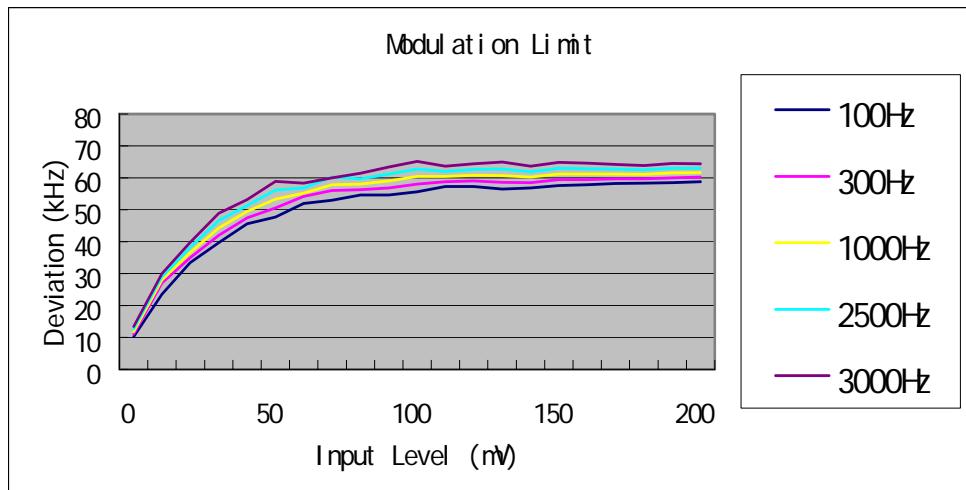
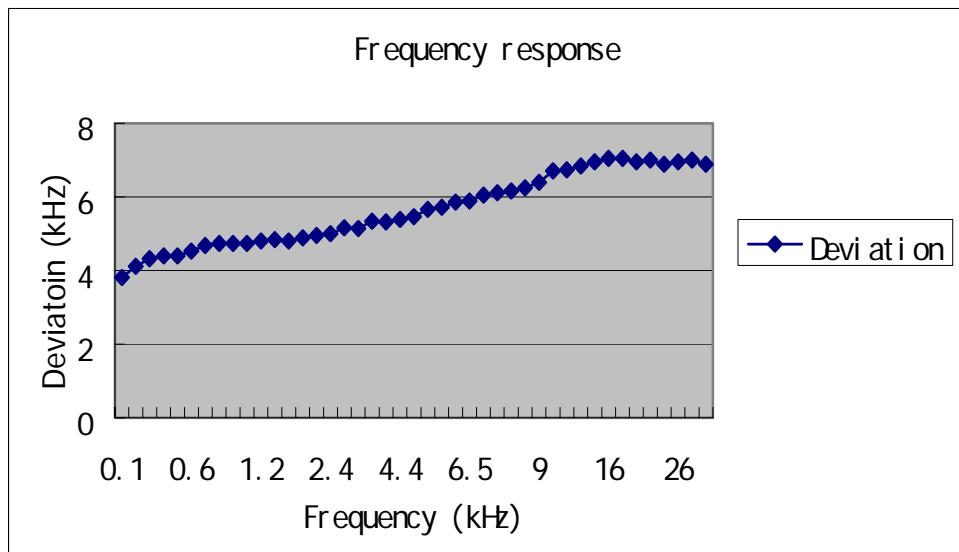


- 2) Adjust the audio input frequency for 100, 200, 500, 1000, 3000 and 5000Hz in sequence and the input level from 0V to maximum permitted input voltage with recording the change in output responding to respective input level

#### Modulation Limit

- 1) Position the EUT as shown in figure 1, adjust the audio input frequency to 100 Hz and the input level from 0V to maximum permitted input voltage with recording each carrier frequency deviation responding to respective input level.
- 2) Repeat step 1 with changing the input frequency for 100, 300, 1000, 2500 and 3000 Hz in sequence.

## Test Data



### Environmental Conditions

|                    |           |
|--------------------|-----------|
| Temperature:       | 27 °C     |
| Relative Humidity: | 50 %      |
| ATM Pressure:      | 1009 mbar |

The testing was performed by Louise Lu on 2005-10-12.

Test Result: Pass

Test mode: Transmitting



## §74.861(e)(5) - OCCUPIED BANDWIDTH OF EMISSION

### Standard Applicable

According to FCC 2.1049 (c) (1), for radiotelephone transmitter, other than single sideband or independent sideband transmitter, when modulated by a 2.5 kHz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation.

According to §74.861(e)(5), the operating bandwidth shall not exceed 200 kHz.

### Test Equipment List and Details

| Manufacturer    | Description       | Model | Serial Number | Calibration Date | Calibration Due Date |
|-----------------|-------------------|-------|---------------|------------------|----------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100035        | 2005-8-17        | 2006-8-17            |

**\* Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

### Test Procedure

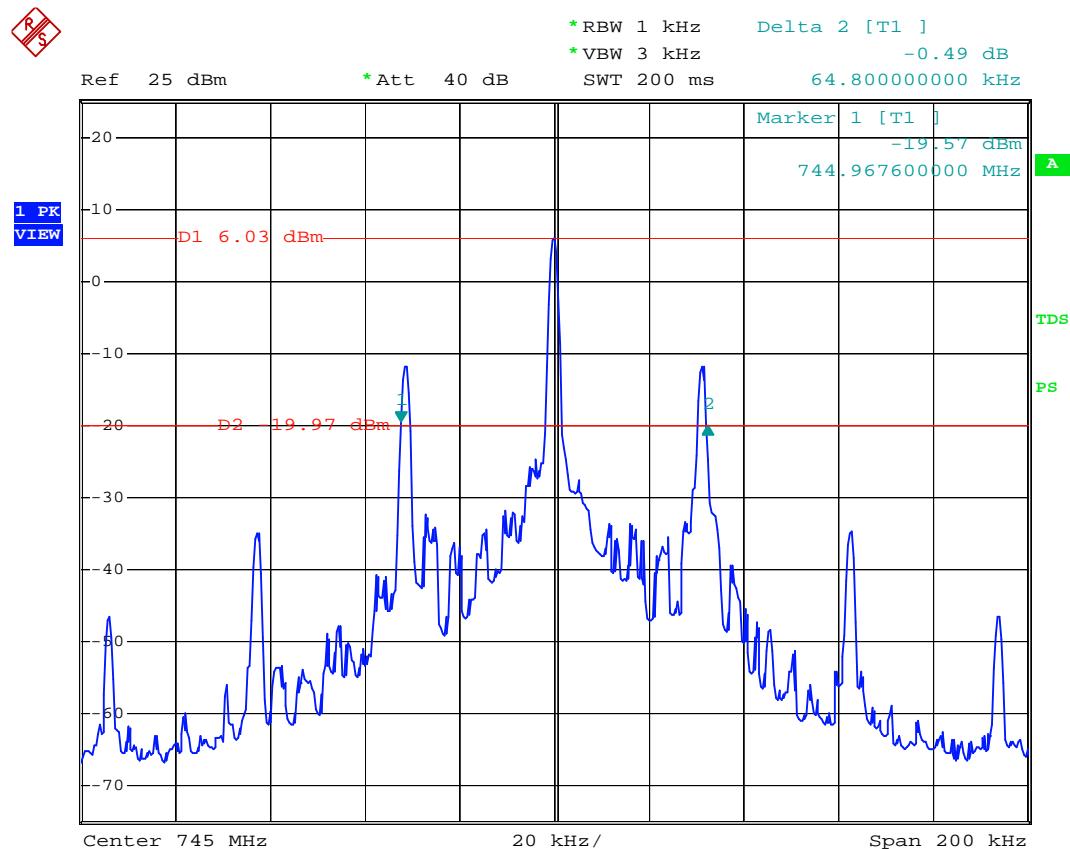
1. Check the calibration of the measuring instrument using a known signal from an external generator.
2. Position the EUT without connection to the tunable table. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 26 dB from the reference level. Record the frequency difference as the emission bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

### Test Data

#### Environmental Conditions

|                    |           |
|--------------------|-----------|
| Temperature:       | 27 °C     |
| Relative Humidity: | 50 %      |
| ATM Pressure:      | 1009 mbar |

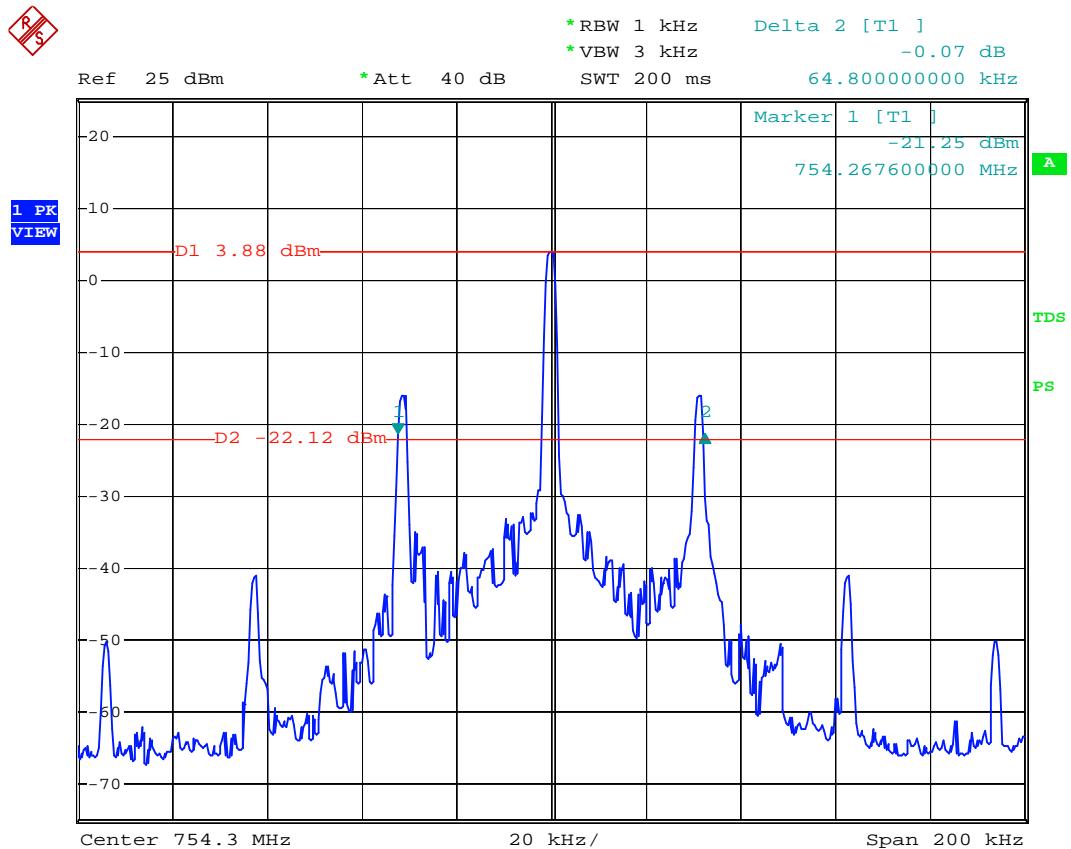
*The testing was performed by Louise Lu on 2005-10-12.*


*Test Result: Pass*

*Test mode: Transmitting*

| Spec Freq (MHz) | Occupied Bandwidth (KHz) | Limit (KHz) | Margin (KHz) |
|-----------------|--------------------------|-------------|--------------|
| 745.0           | 64.8                     | 200         | -135.2       |
| 754.3           | 64.8                     | 200         | -135.2       |

*Emission Designator*

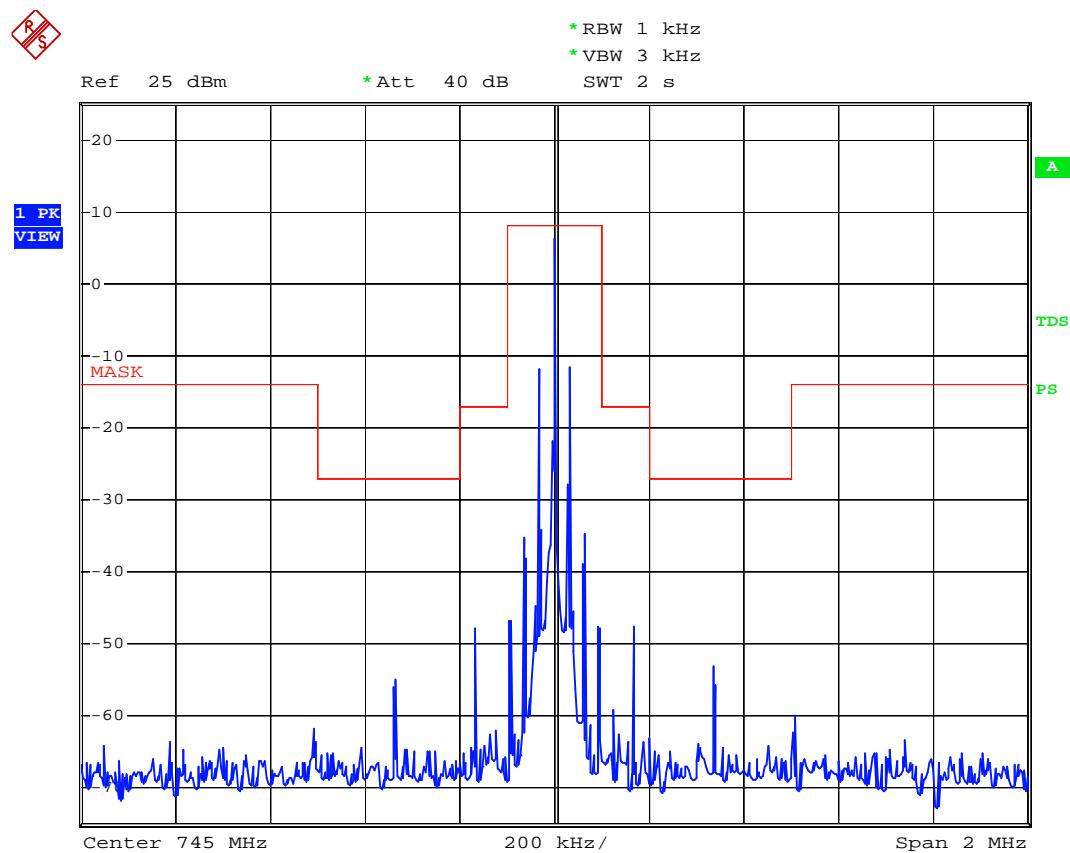

$$2M + 2D = (2 \times 15\text{kHz}) + (2 \times 75\text{kHz}) = 180\text{KF3E}$$



ARRAY Wireless Microphone M/N: AUT210 band width Low cha

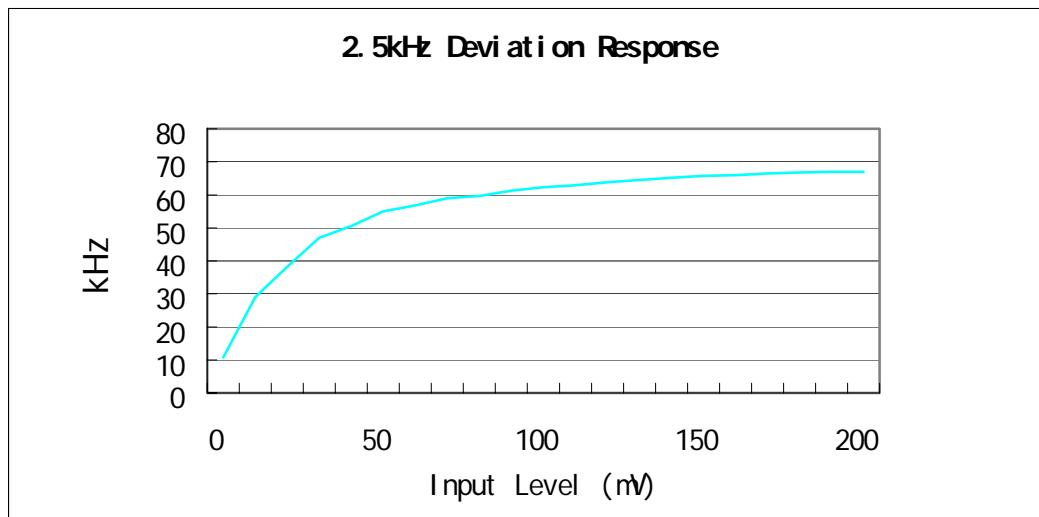
nnel

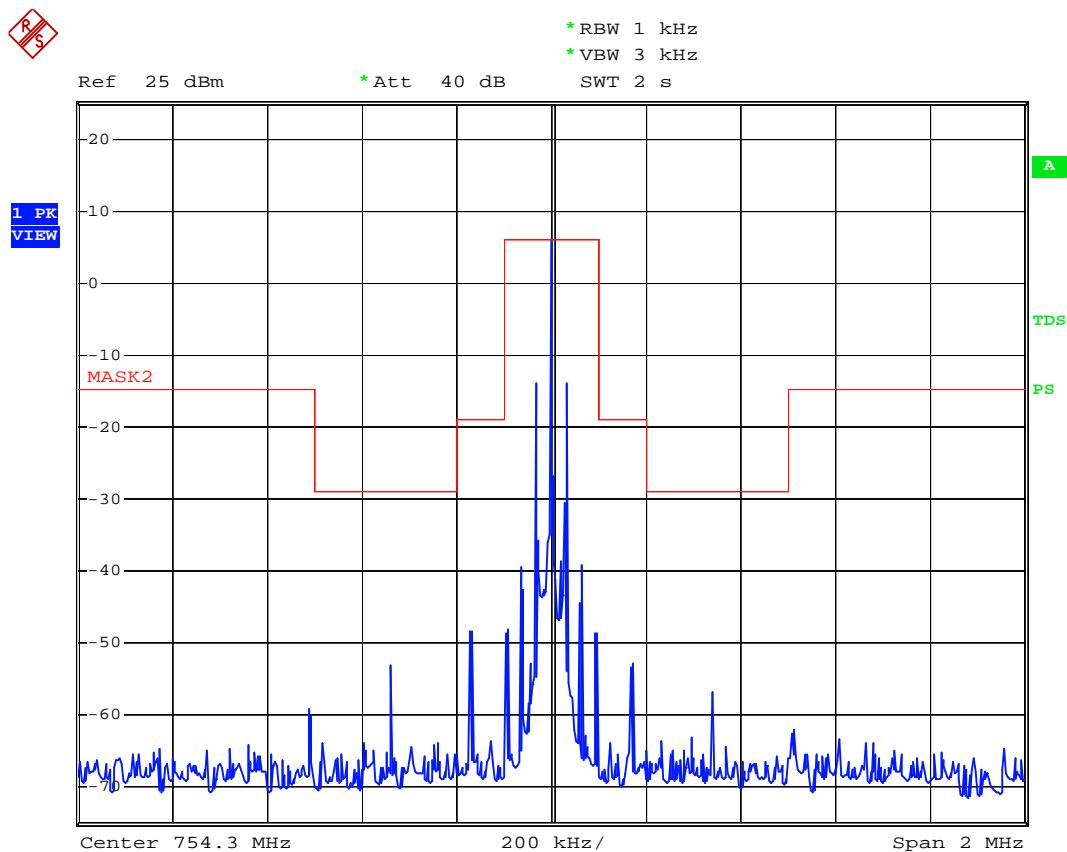
Date: 12.OCT.2005 12:06:51




ARRAY Wireless Microphone M/N: AUT210 band width High ch

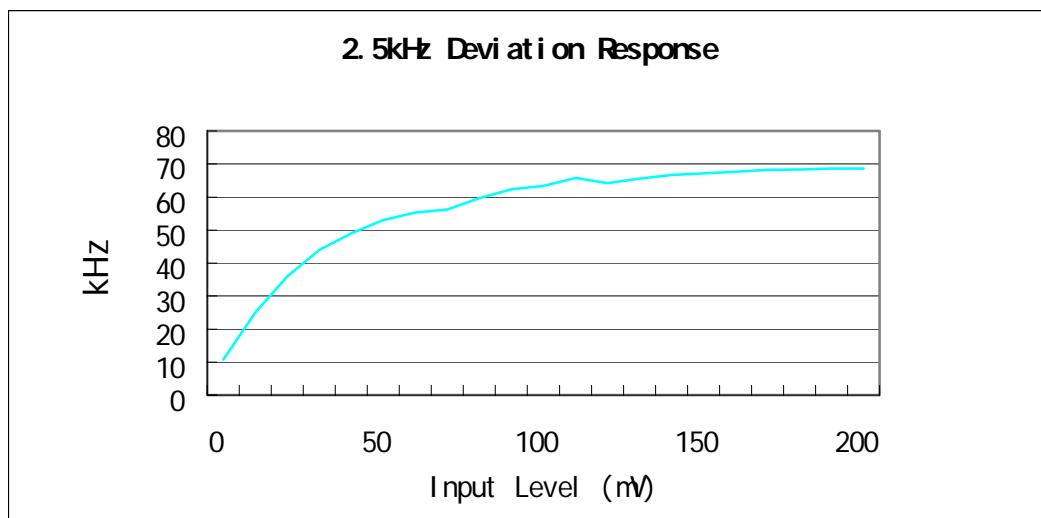
annel


Date: 12.OCT.2005 12:12:02


## Emission Mask



ARRAY Wireless Microphone M/N: AUT210 Low channel


Date: 12.OCT.2005 14:43:49





ARRAY Wireless Microphone M/N: AUT210 High channel

Date: 12.OCT.2005 15:12:30



---

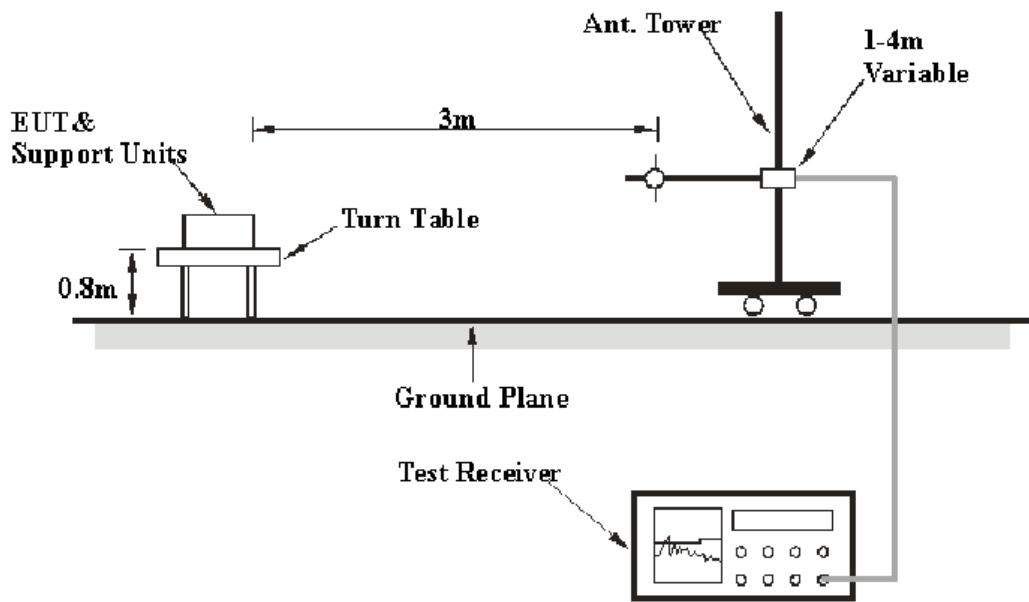
## §74.861 (e)(6)(iii) – RADIATED SPURIOUS EMISSION

---

### Standard Applicable

According to FCC2.1053, measurements shall be made to detect spurious emission that may be radiated directly from the cabinet, control circuits, power leads, or intermediated circuit elements under normal condition of installation and operation. Information submitted shall include the relative radiated power of spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from a halfwave dipole antenna.

According to FCC74.861 (e)(6), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:


1. on any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
2. on any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
3. on any frequency removed from the operating frequency by more than 250 percent up to and the authorized bandwidth shall be attenuated below the un-modulated carrier by at least 43 plus 10 Log (output power in watts)dB.

### Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Lab Corp. (ShenZhen) is  $\pm 4.4$  dB.

## EUT Setup



The radiated emission tests were performed in the 3-meter Chamber, using the setup accordance with the ANSI C63.4-2003.

## EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 8 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| <b><u>Frequency Range</u></b> | <b><u>RBW</u></b> | <b><u>Video B/W</u></b> |
|-------------------------------|-------------------|-------------------------|
| 30MHz – 1000 MHz              | 100 kHz           | 300 kHz                 |
| 1000 MHz – 8 GHz              | 1 MHz             | 3 MHz                   |

## Test Equipment List and Details

| Manufacturer    | Description       | Model       | Serial Number | Calibration Date | Calibration Due Date |
|-----------------|-------------------|-------------|---------------|------------------|----------------------|
| A.H. System     | Horn Antenna      | SAS-200/571 | 135           | 2005-4-28        | 2006-4-28            |
| COM POWER       | Dipole Antenna    | AD-100      | 041000        | N/A              | N/A                  |
| Giga-tronics    | Signal Generator  | 1026        | 270801        | 2005-2-28        | 2006-2-28            |
| HP              | Amplifier         | HP8447D     | 2944A09795    | 2005-8-17        | 2006-8-17            |
| HP              | Preamplifier      | 8449B       | 3008A00277    | 2005-8-17        | 2006-8-17            |
| HP              | Signal Generator  | 8657A       | 2849U00982    | 2005-2-28        | 2006-2-28            |
| Rohde & Schwarz | Spectrum Analyzer | FSEM30      | 849720/019    | 2004-11-10       | 2005-11-10           |
| Rohde & Schwarz | EMI Test Receiver | ESCI        | 100035        | 2005-8-17        | 2006-8-17            |
| Sunol Sciences  | Broadband Antenna | JB1         | A040904-1     | 2005-4-28        | 2006-4-28            |
| Sunol Sciences  | Horn Antenna      | DRH-118     | A052604       | 2005-7-20        | 2006-7-20            |

\* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

## Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =  $10 \lg (\text{TXpwr in Watts}/0.001)$  – the absolute level

Spurious attenuation limit in dB =  $43 + 10 \log_{10} (\text{power out in Watts})$

## Test Data

### Environmental Conditions

|                    |           |
|--------------------|-----------|
| Temperature:       | 27 °C     |
| Relative Humidity: | 50 %      |
| ATM Pressure:      | 1009 mbar |

The testing was performed by Louise Lu on 2005-10-12.

Test Result: Pass

Test mode: Transmitting

| Indicated        |                          | Table           | Test Antenna    |              | Substituted      |              |              | Antenna | Cable | Absolute | Limit | Margin |
|------------------|--------------------------|-----------------|-----------------|--------------|------------------|--------------|--------------|---------|-------|----------|-------|--------|
| Frequency<br>MHz | Meter<br>Reading<br>dBuV | Angle<br>Degree | Height<br>Meter | Polar<br>H/V | Frequency<br>MHz | Level<br>dBm | Polar<br>H/V |         |       |          |       |        |
| Low Channel      |                          |                 |                 |              |                  |              |              |         |       |          |       |        |
| 1490             | 79.66                    | 180             | 1.2             | V            | 1490             | -23.3        | V            | 8.4     | 0.3   | -15.2    | -13   | -2.20  |
| 1490             | 77.85                    | 180             | 1.2             | H            | 1490             | -27.3        | H            | 8.4     | 0.3   | -19.2    | -13   | -6.20  |
| 2980             | 63.11                    | 60              | 1.0             | V            | 2980             | -40.7        | V            | 9.4     | 0.3   | -31.6    | -13   | -18.60 |
| 2235             | 63.24                    | 45              | 1.2             | V            | 2235             | -41.6        | V            | 8.4     | 0.3   | -33.5    | -13   | -20.50 |
| 2980             | 59.47                    | 60              | 1.0             | H            | 2980             | -45.8        | H            | 9.4     | 0.3   | -36.7    | -13   | -23.70 |
| 2235             | 59.43                    | 45              | 1.2             | H            | 2235             | -46.1        | H            | 8.4     | 0.3   | -38.0    | -13   | -25.00 |
| 5215             | 51.07                    | 45              | 1.0             | V            | 5215             | -53.4        | V            | 10.4    | 0.3   | -43.3    | -13   | -30.30 |
| 4470             | 49.73                    | 180             | 1.2             | H            | 4470             | -54.2        | H            | 10.7    | 0.3   | -43.8    | -13   | -30.80 |
| 4470             | 49.36                    | 180             | 1.2             | V            | 4470             | -56.1        | V            | 10.7    | 0.3   | -45.7    | -13   | -32.70 |
| 3725             | 49.72                    | 45              | 1.0             | V            | 3725             | -55.8        | V            | 9.0     | 0.3   | -47.1    | -13   | -34.10 |
| 5215             | 47.52                    | 45              | 1.0             | H            | 5215             | -57.3        | H            | 10.4    | 0.3   | -47.2    | -13   | -34.20 |
| 3725             | 49.28                    | 45              | 1.0             | H            | 3725             | -56.4        | H            | 9.0     | 0.3   | -47.7    | -13   | -34.70 |
| High channel     |                          |                 |                 |              |                  |              |              |         |       |          |       |        |
| 1508.6           | 80.63                    | 45              | 1.0             | V            | 1508.6           | -23.8        | V            | 8.4     | 0.3   | -15.7    | -13   | -2.70  |
| 1508.6           | 73.91                    | 180             | 1.2             | H            | 1508.6           | -30.5        | H            | 8.4     | 0.3   | -22.4    | -13   | -9.40  |
| 3017.2           | 63.12                    | 180             | 1.2             | V            | 3017.2           | -41.2        | V            | 9.4     | 0.3   | -32.1    | -13   | -19.10 |
| 2262.9           | 65.24                    | 45              | 1.2             | H            | 2262.9           | -44.2        | H            | 8.4     | 0.3   | -36.1    | -13   | -23.10 |
| 2262.9           | 61.82                    | 45              | 1.0             | V            | 2262.9           | -44.4        | V            | 8.4     | 0.3   | -36.3    | -13   | -23.30 |
| 3017.2           | 57.86                    | 60              | 1.0             | H            | 3017.2           | -53.1        | H            | 9.4     | 0.3   | -44.0    | -13   | -31.00 |
| 3771.5           | 49.36                    | 45              | 1.0             | V            | 3771.5           | -54.3        | V            | 8.8     | 0.3   | -45.8    | -13   | -32.80 |
| 4525.8           | 48.36                    | 60              | 1.0             | V            | 4525.8           | -56.7        | V            | 10.7    | 0.3   | -46.3    | -13   | -33.30 |
| 4525.8           | 48.7                     | 180             | 1.2             | H            | 4525.8           | -57.6        | H            | 10.7    | 0.3   | -47.2    | -13   | -34.20 |
| 5280.1           | 46.53                    | 45              | 1.2             | H            | 5280.1           | -58.2        | H            | 10.1    | 0.3   | -48.4    | -13   | -35.40 |
| 5280.1           | 47.64                    | 45              | 1.2             | V            | 5280.1           | -59.3        | V            | 10.1    | 0.3   | -49.5    | -13   | -36.50 |
| 3771.5           | 48.61                    | 45              | 1.2             | H            | 3771.5           | -58.4        | H            | 8.8     | 0.3   | -49.9    | -13   | -36.90 |

## §2.1051 - SPURIOUS EMISSION AT ANTENNA TERMINAL

### Standard Applicable

According to §2.1051, the radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

### Test Equipment List and Details

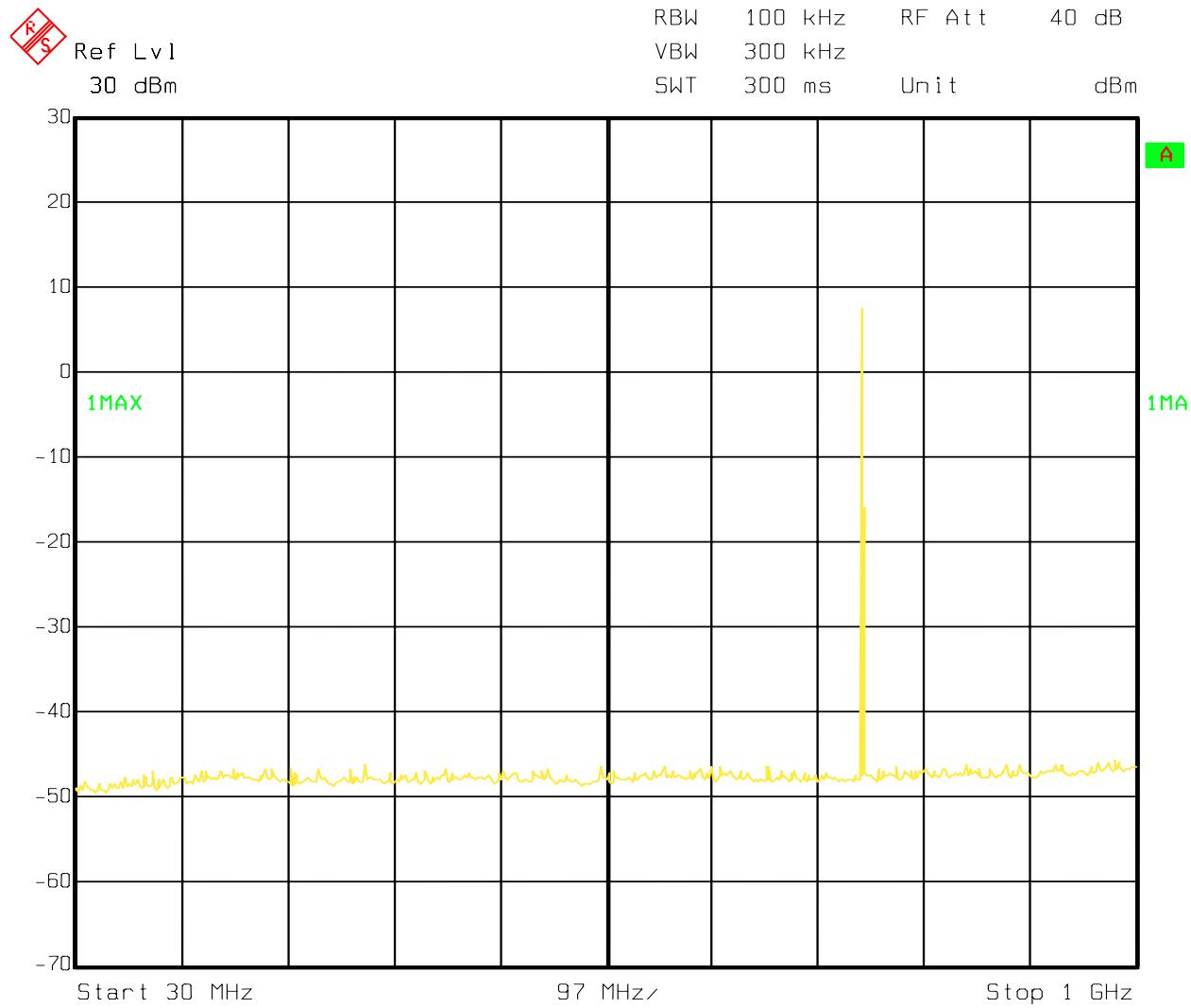
| Manufacturer    | Description       | Model       | Serial Number | Calibration Date | Calibration Due Date |
|-----------------|-------------------|-------------|---------------|------------------|----------------------|
| A.H. System     | Horn Antenna      | SAS-200/571 | 135           | 2005-4-28        | 2006-4-28            |
| HP              | Amplifier         | HP8447D     | 2944A09795    | 2005-8-17        | 2006-8-17            |
| HP              | Preamplifier      | 8449B       | 3008A00277    | 2005-8-17        | 2006-8-17            |
| Rohde & Schwarz | Spectrum Analyzer | FSEM30      | 849720/019    | 2004-11-10       | 2005-11-10           |
| Rohde & Schwarz | EMI Test Receiver | ESCI        | 100035        | 2005-8-17        | 2006-8-17            |
| Sunol Sciences  | Broadband Antenna | JB1         | A040904-1     | 2005-4-28        | 2006-4-28            |

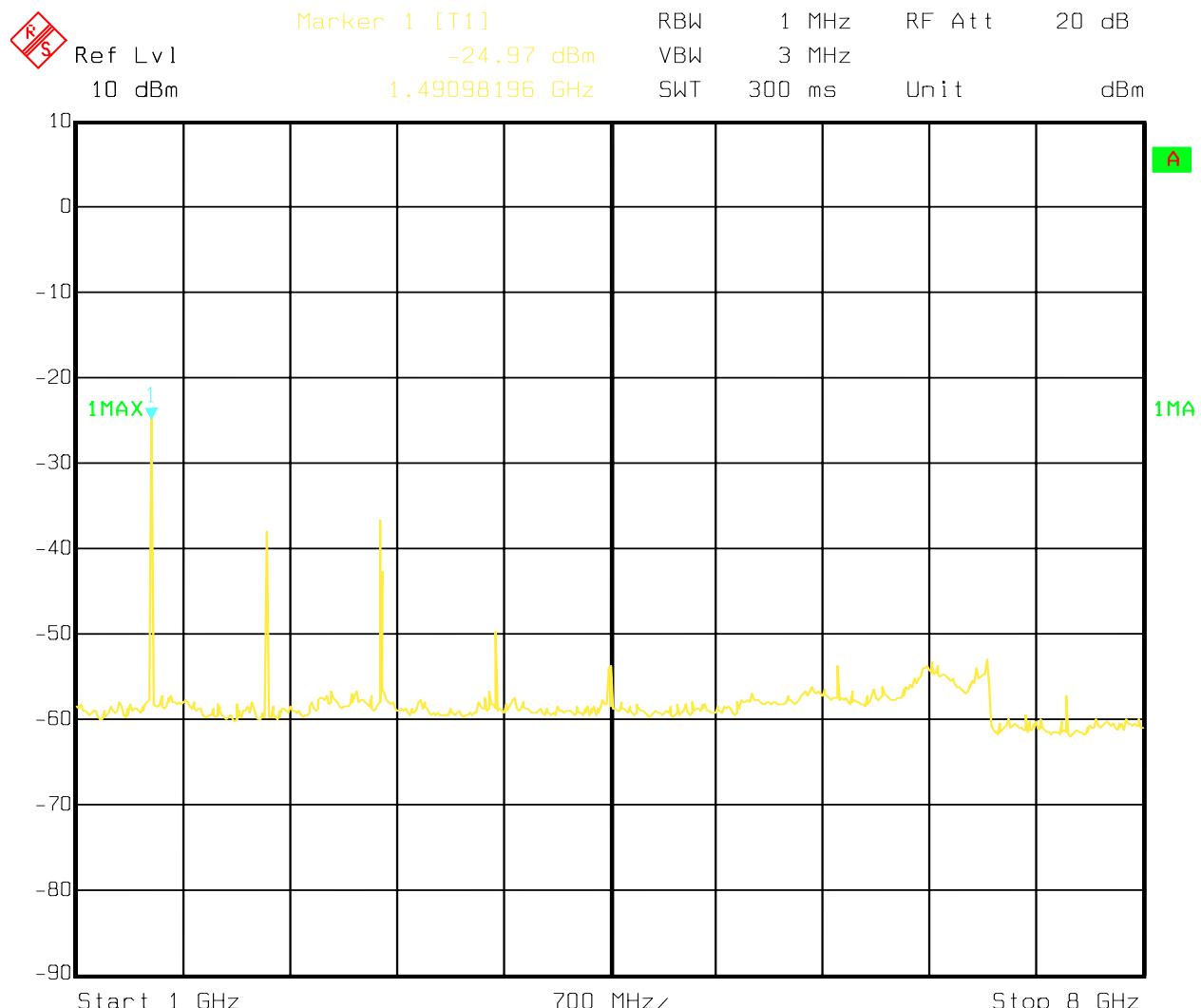
\* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

### Test Procedure

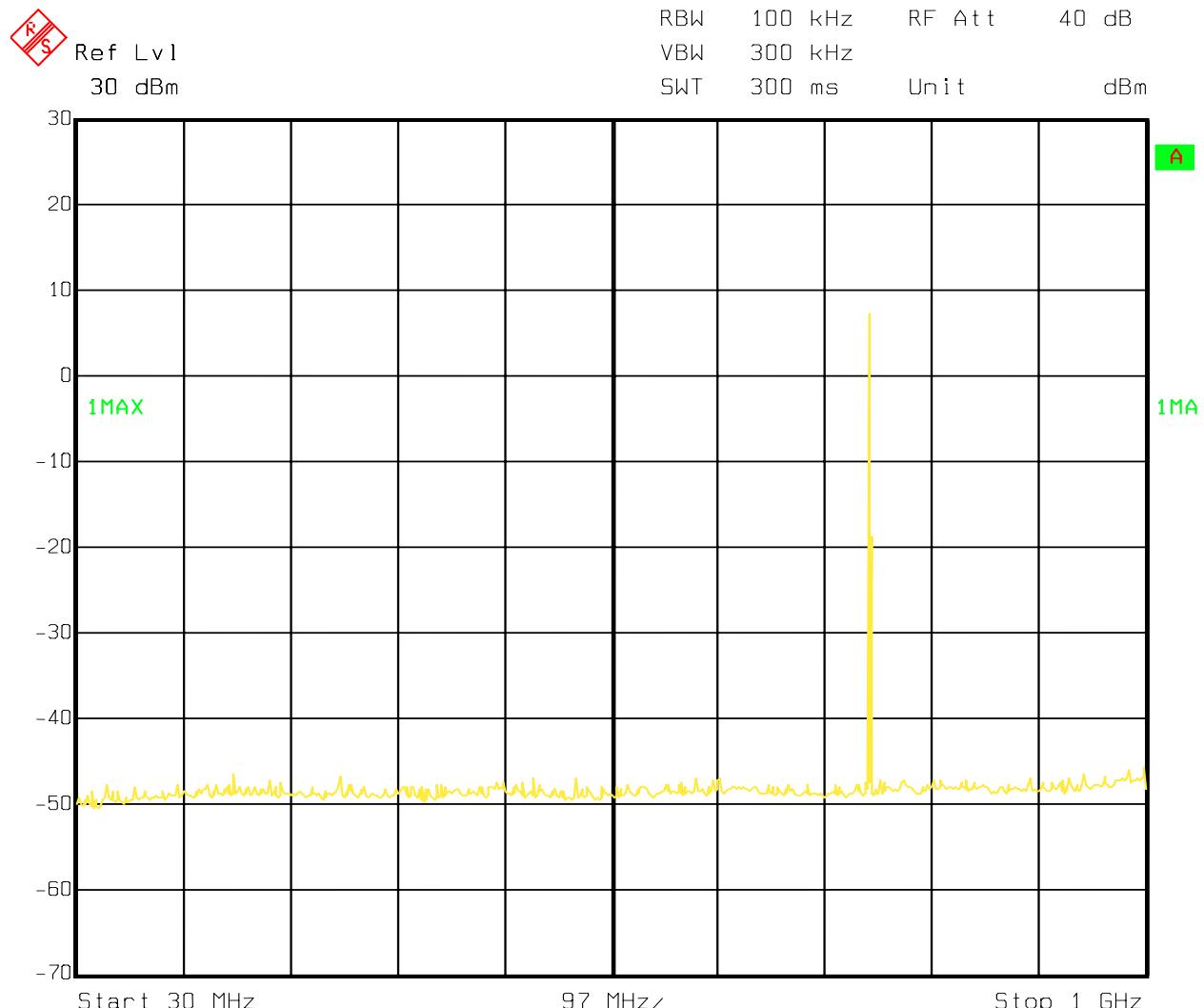
1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
4. Set the SA on View mode and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

## Test Data

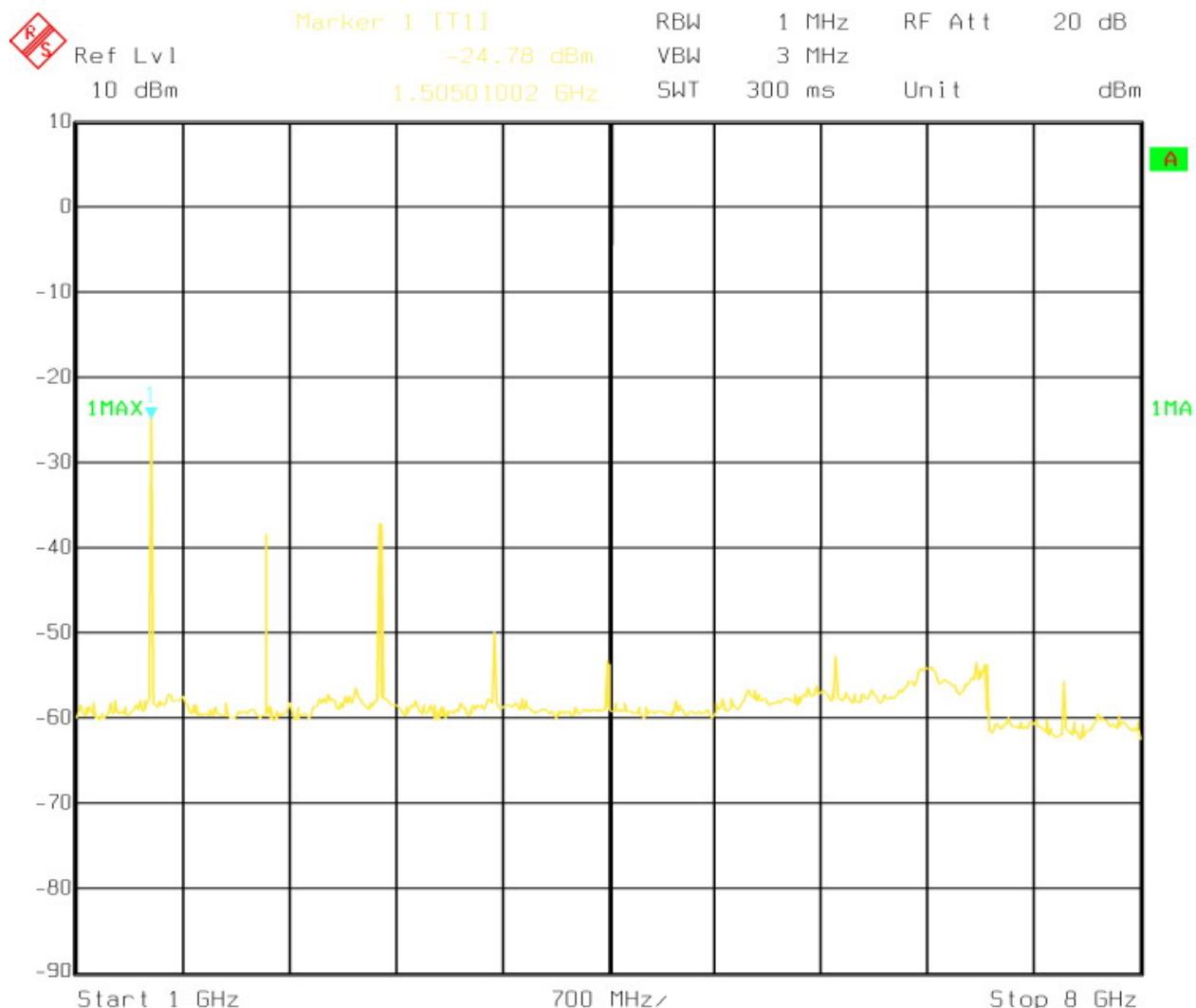

### Environmental Conditions


|                    |           |
|--------------------|-----------|
| Temperature:       | 27 °C     |
| Relative Humidity: | 50 %      |
| ATM Pressure:      | 1009 mbar |

The testing was performed by Louise Lu on 2005-10-19.


Test Result: Pass

Test mode: Transmitting






Date: 19.OCT.2005 10:54:31



Date: 19.OCT.2005 10:42:20



Date: 19.OCT.2005 11:00:45

## §74.86(e)(4) - FREQUENCY STABILITY MEASUREMENT

### Standard Applicable

According to FCC 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from  $-30^{\circ}\text{C}$  to  $+50^{\circ}\text{C}$ , and according to FCC 2.1055(d)(2), the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point which is specified by the manufacturer.

According to FCC 74.861, the frequency tolerance of the transmitter shall be 0.005 percent.

### Test Equipment List and Details

| Manufacturer  | Description                    | Model      | Serial Number | Calibration Date | Calibration Due Date |
|---------------|--------------------------------|------------|---------------|------------------|----------------------|
| WUHUAN        | Temperature & Humidity Chamber | HTP205     | 20021115      | 2004-12-29       | 2005-12-29           |
| ZHONGCE       | DC Power supply                | DF1731SL5A | N/A           | N/A              | N/A                  |
| Rohde&Schwarz | EMI Test Receiver              | ESCI       | 100035        | 2005-8-17        | 2006-8-17            |

\* **Statement of Traceability:** Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

### Test Procedure

#### A) Frequency stability versus environmental temperature

1. Setup the configuration per figure 7 for frequencies measured at ambient temperature if it is within  $15^{\circ}\text{C}$  to  $25^{\circ}\text{C}$ . otherwise, an environmental chamber set for a temperature of  $20^{\circ}\text{C}$  shall be used. Install new batteries in the EUT.
2. Turn on EUT and set frequency counter center frequency to the right frequency needs to be measured, then set SA RBW to 30kHz, VBW to 100kHz and frequency span to 500 kHz. Record this frequency to be a reference.
3. Set the temperature of chamber to  $50^{\circ}\text{C}$ . Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
4. Repeat step 2 with a  $10^{\circ}\text{C}$  decreased per stage until the lowest temperature  $-30^{\circ}\text{C}$  is measured, record all measurement frequencies.

#### B) Frequency stability versus input voltage

1. Setup the configuration per figure 7 for frequencies measured at ambient temperature if it is within  $15^{\circ}\text{C}$  to  $25^{\circ}\text{C}$ . otherwise, an environmental chamber set for a temperature of  $20^{\circ}\text{C}$  shall be used. Install new batteries in the EUT.
2. Set frequency counter center frequency to the right frequency needs to be measured. Then set SA RBW to 30 kHz, VBW to 100kHz and frequency span to 500 kHz. Record this frequency to be a reference.
3. For battery operated only device, supply the EUT primary voltage at the battery operating end point which is specified by the manufacturer and record the frequency.

**Test Data****Environmental Conditions**

|                    |           |
|--------------------|-----------|
| Temperature:       | 27 °C     |
| Relative Humidity: | 50 %      |
| ATM Pressure:      | 1009 mbar |

*The testing was performed by Louise Lu on 2005-10-11.*

*Test Result: Pass*

*Test mode: Transmitting*

**Frequency Stability vs. Voltage**

**Low Power supply: 1.0V**

| Channel | Spec Frequency<br>MHz | Measured<br>Frequency<br>MHz | Frequency<br>Error<br>% | Limit<br>% |
|---------|-----------------------|------------------------------|-------------------------|------------|
| High    | 754.3                 | 754.282                      | -0.00238                | 0.005      |
| Low     | 745                   | 744.980                      | -0.00268                | 0.005      |

| Frequency Stability vs. Temperature |                       |                           |                      |            |        |
|-------------------------------------|-----------------------|---------------------------|----------------------|------------|--------|
| Temperature<br>°C                   | Spec Frequency<br>MHz | Measured Frequency<br>MHz | Frequency Error<br>% | Limit<br>% | Result |
| Low channel                         |                       |                           |                      |            |        |
| -30                                 | 745                   | 744.9743                  | -0.00344             | 0.005      | Pass   |
| -20                                 | 745                   | 744.9776                  | -0.003               | 0.005      | Pass   |
| -10                                 | 745                   | 744.9828                  | -0.0023              | 0.005      | Pass   |
| 0                                   | 745                   | 744.9853                  | -0.0019              | 0.005      | Pass   |
| 10                                  | 745                   | 744.9946                  | -0.0007              | 0.005      | Pass   |
| 20                                  | 745                   | 744.9987                  | -0.0001              | 0.005      | Pass   |
| 30                                  | 745                   | 745.010                   | 0.0013               | 0.005      | Pass   |
| 40                                  | 745                   | 745.0158                  | 0.0021               | 0.005      | Pass   |
| 50                                  | 745                   | 745.0237                  | 0.0031               | 0.005      | Pass   |

| Frequency Stability vs. Temperature |                       |                           |                      |            |        |
|-------------------------------------|-----------------------|---------------------------|----------------------|------------|--------|
| Temperature<br>°C                   | Spec Frequency<br>MHz | Measured Frequency<br>MHz | Frequency Error<br>% | Limit<br>% | Result |
| High channel                        |                       |                           |                      |            |        |
| -30                                 | 754.3                 | 754.2862                  | -0.0018              | 0.005      | Pass   |
| -20                                 | 754.3                 | 754.2904                  | -0.00127             | 0.005      | Pass   |
| -10                                 | 754.3                 | 754.2936                  | -0.0008              | 0.005      | Pass   |
| 0                                   | 754.3                 | 754.2974                  | -0.0003              | 0.005      | Pass   |
| 10                                  | 754.3                 | 754.2995                  | -0.00006             | 0.005      | Pass   |
| 20                                  | 754.3                 | 754.3019                  | 0.0002               | 0.005      | Pass   |
| 30                                  | 754.3                 | 754.3154                  | 0.00204              | 0.005      | Pass   |
| 40                                  | 754.3                 | 754.3176                  | 0.00233              | 0.005      | Pass   |
| 50                                  | 754.3                 | 754.3214                  | 0.00283              | 0.005      | Pass   |