

RF Exposure Evaluation Report

APPLICANT : AMOD Technology Co., Ltd.
EQUIPMENT : HSPA module
BRAND NAME : AMOD
MODEL NAME : ACE9000
FCC ID : TLTACE9000
FILING TYPE : Certification
STANDARD : OET Bulletin 65 Supplement C (Edition 01-01)

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with FCC OET Bulletin 65 Supplement C (Edition 01-01).

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Roy Wu Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

REVISION HISTORY.....	3
1. INTRODUCTION.....	4
2. ADMINISTRATION DATA	6
2.1 Testing Laboratory	6
2.2 Applicant	6
2.3 Manufacturer.....	6
3. GENERAL INFORMATION	7
3.1 Description of Device Under Test (DUT)	7
4. RF EXPOSURE EVALUATION.....	8
4.1 Radio Frequency Radiation Exposure Evaluation.....	8

Revision History

1. Introduction

The report has been prepared on behalf of AMOD Technology Co., Ltd. HSPA module to show compliance with the RF Exposure.

➤ Requirements

Three different categories of transmitters are defined by the FCC in OET Bulletin 65. These categories are fixed installation, mobile and portable and are defined as follows:

▪ Fixed installation:

Fixed location means that the device, including its antenna, is physically secured at a permanent location and is not able to be easily moved to another location. Additionally, distance to humans from the antenna is maintained to at least 2 meters.

▪ Mobile Devices:

A mobile device is defined as a transmitting device designed to be used in other than fixed locations and to be generally used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitters's radiating structures and the body of the user or nearby persons. Transmitters designed to be used by consumers or workers that can be easily re-located are considered mobile devices if they meet the 20 centimeter separation requirement. The FCC rules for evaluating mobile devices for RF compliance are found in 47 CFR 2.1091.

▪ Portable Devices:

A portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user. Portable device requirements are found in Section 2.1093 of the FCC's Rules (47 CFR 2.1093)

For this test report the AMOD ACE9000 is being done as a mobile device and the MPE is evaluated at the 20cm test distance.

The FCC also categorizes the use of the device as based upon the user's awareness and ability to exercise control over his or her exposure. The two categories defined are Occupational/Controlled Exposure and General Population/Uncontrolled Exposure. These two categories are defined as follows:

▪ Occupational/controlled Exposure:

In general, occupational/controlled exposure limits are applicable to situation in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure. Awareness of the potential for RF exposure in a workplace or similar environment can be provided through specific training as part of a RF safety program. If appropriate, warning signs and labels can also be used to establish such awareness by providing prominent information on the risk of potential exposure and instructions on methods to minimize such exposure risks.

▪ General Population/Uncontrolled Exposure:

The general population / uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category and the general population/uncontrolled exposure limits apply to these devices.

Since there are no warnings or training associated with this unit and it can be used by anyone, HSPA module is evaluated to the General Population / Uncontrolled Exposure limits.

2. Administration Data

2.1 Testing Laboratory

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978

2.2 Applicant

Company Name	AMOD Technology Co., Ltd.
Address	8F., No. 46, Lane 10, Jihu Road, Neihu, Taipei 11492, Taiwan, R.O.C.

2.3 Manufacturer

Company Name	AMOD Technology Co., Ltd.
Address	3F., No. 6, Hsin Ann Rd., Hsinchu Science Park, Hsinchu, 30078, Taiwan

3. General Information

3.1 Description of Device Under Test (DUT)

Product Feature & Specification	
DUT Type	HSPA module
Brand Name	AMOD
Model Name	ACE9000
FCC ID	TLTACE9000
Tx Frequency	GSM850 : 824 MHz ~ 849 MHz GSM1900 : 1850 MHz ~ 1910 MHz WCDMA Band V : 824 MHz ~ 849 MHz WCDMA Band II : 1850 MHz ~ 1910 MHz
Rx Frequency	GSM850 : 869 MHz ~ 894 MHz GSM1900 : 1930 MHz ~ 1990 MHz WCDMA Band V : 869 MHz ~ 894 MHz WCDMA Band II : 1930 MHz ~ 1990 MHz
Antenna Type	Fixed External Antenna
HW Version	Amazon
SW Version	MACALLAN_xmm6160_v02.08
Type of Modulation	GSM / GPRS : GMSK EDGE : 8PSK WCDMA : QPSK HSDPA : QPSK / 16QAM HSUPA : BPSK
DUT Stage	Identical Prototype

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

4. RF Exposure Evaluation

4.1 Radio Frequency Radiation Exposure Evaluation

According to 1.1310 of the FCC rules, the power density limit for General Population/Uncontrolled Exposure is $f/1500$ mW/cm² for 300 MHz to 1500 MHz and 1.0 mW/cm² for 1500 MHz to 100000 MHz. As this is a mobile application the MPE shall be calculated at 20 cm to show compliance with the power density limit. The following formula was used to calculate the Power Density:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = Power Density

P = Output Power at Antenna Terminals

G = Gain of Transmit Antenna (linear gain)

R = Distance from Transmitting Antenna

For this device, the calculation is as follows:

Function	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Average EIRP (mW)	Calculated RF Exposure at d = 20 cm (mW/cm ²)	Limit (mW/cm ²)
GSM850	5	3.16	31.97	1573.98	622.17	0.12	0.55
GSM1900	5	3.16	29.33	857.04	338.77	0.07	1.00

Function	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated RF Exposure at d = 20 cm (mW/cm ²)	Limit (mW/cm ²)
WCDMA Band V	5	3.16	23.09	203.70	0.13	0.55
WCDMA Band II	5	3.16	23.60	229.09	0.14	1.00

Based on the above calculation at 20 cm the HSPA module is below the Power Density limit.