

TESTING LABORATORY
CERTIFICATE#4323.01

FCC PART 15.249

TEST REPORT

For

Maverick Industries, Inc.

94 Mayfield Avenue Edison, New Jersey 08837 United States

FCC ID: TKCET-711

Report Type: Original Report	Product Type: WIRELESS REMOTE ROASTING THERMOMETER TRANSMITTER
Test Engineer: <u>Andy Liu</u>	
Report Number: <u>RXM190814050-00A</u>	
Report Date: <u>2019-09-12</u>	
Reviewed By: <u>Oscar Ye</u> <u>RF Leader</u>	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road,Kunshan,Jiangsu province,China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT EXERCISE SOFTWARE	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	9
ANTENNA CONNECTOR CONSTRUCTION	9
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION	10
APPLICABLE STANDARD	10
EUT SETUP	10
TEST EQUIPMENT SETUP	11
TEST PROCEDURE	11
CORRECTED AMPLITUDE & MARGIN CALCULATION (FOR ABOVE 1GHz).....	12
TEST RESULTS SUMMARY.....	12
TEST DATA	12
FCC §15.215(C) – 20 DB BANDWIDTH TESTING	17
APPLICABLE STANDARD	17
TEST PROCEDURE	17
TEST DATA	17

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Maverick Industries, Inc.
Tested Model	TKC ET-711
Product Type	WIRELESS REMOTE ROASTING THERMOMETER TRANSMITTER
Dimension	64mm(L)*26mm(W)*94mm(H)
Power Supply	DC 3.0V

All measurement and test data in this report was gathered from production sample serial number: 20190814050. (Assigned by BACL, Kunshan). The EUT was received on 2019-08-14.

Objective

This type approval report is prepared on behalf of *Maverick Industries, Inc.* in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions' rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.249 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Lab Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Item	Uncertainty	
AC Power Lines Conducted Emissions	3.19 dB	
RF conducted test with spectrum	0.9dB	
RF Output Power with Power meter	0.5dB	
Radiated emission	30MHz~1GHz	6.11dB
	1GHz~6GHz	4.45dB
	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Occupied Bandwidth	0.5kHz	
Temperature	1.0°C	
Humidity	6%	

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Justification

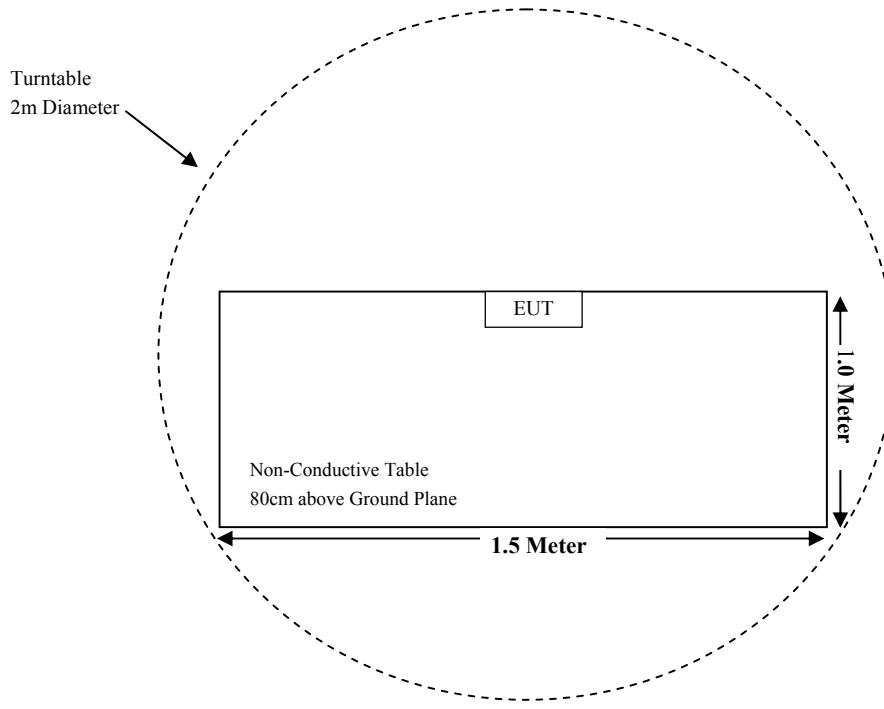
Channel list:

Channel	Frequency (MHz)
1	915

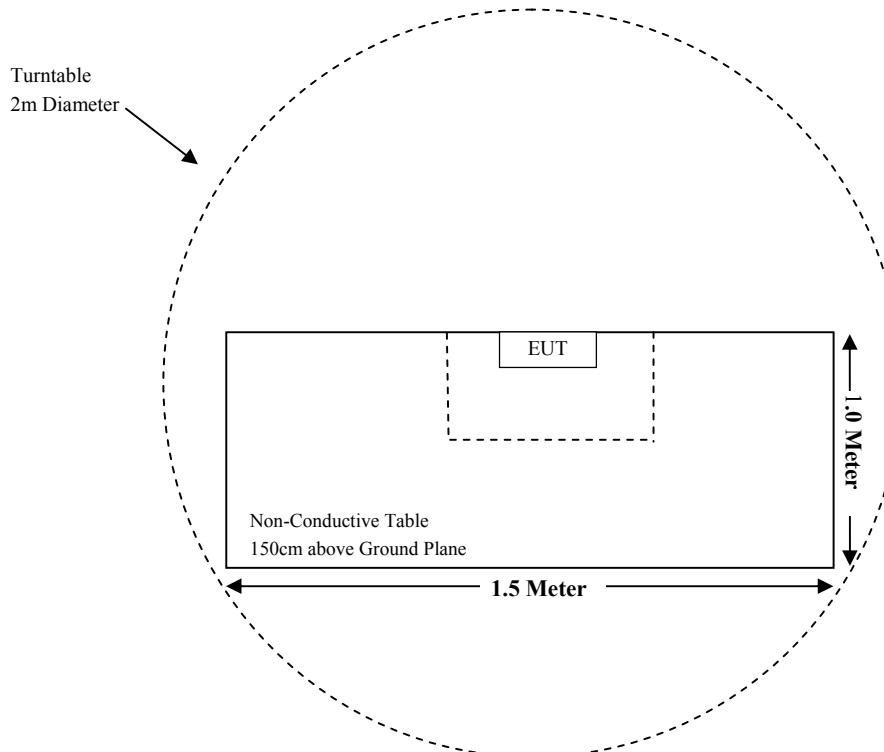
EUT Exercise Software

RF test tool: Engineering mode

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable


Cable Description	Length (m)	From Port	To
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions(Below 1GHz):

For Radiated Emissions(Above 1GHz):

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Conduction Emissions	Not Applicable
15.205, §15.209, §15.249	Radiated Emissions& Out of Band Emission	Compliant
§15.215 (c)	20 dB Bandwidth	Compliant

Note: The EUT is a battery operated device.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test (Chamber 1#)					
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03-102454-Qd	2019-06-25	2020-06-24
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25
Sonoma Instrunent	Pre-amplifier	310N	171205	2019-08-14	2020-08-13
Audix	Test Software	e3	V9	--	--
MICRO-TRONICS	Band Reject Filter	BCR50722	G013	2019-08-05	2020-08-04
MICRO-COAX	Coaxial Cable	Cable-8	008	2019-08-15	2020-08-14
MICRO-COAX	Coaxial Cable	Cable-9	009	2019-08-15	2020-08-14
MICRO-COAX	Coaxial Cable	Cable-10	010	2019-08-15	2020-08-14
Radiated Emission Test (Chamber 2#)					
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2019-08-27	2020-08-26
ETS-LINDGREN	Horn Antenna	3115	6229	2017-07-15	2020-07-14
A.H.Systems, inc	Amplifier	2641-1	491	2019-02-20	2020-02-19
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/
MICRO-COAX	Coaxial Cable	Cable-6	006	2019-08-15	2020-08-14
MICRO-COAX	Coaxial Cable	Cable-11	011	2019-08-15	2020-08-14
MICRO-COAX	Coaxial Cable	Cable-12	012	2019-08-15	2020-08-14
MICRO-COAX	Coaxial Cable	Cable-13	013	2019-08-15	2020-08-14
RF Conducted Test					
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2018-11-30	2019-11-29
Narda	Attenuator	10dB	010	2019-08-15	2020-08-14
Maverick	RF Cable	Maverick C01	C01	Each Time	/

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Antenna Connector Construction

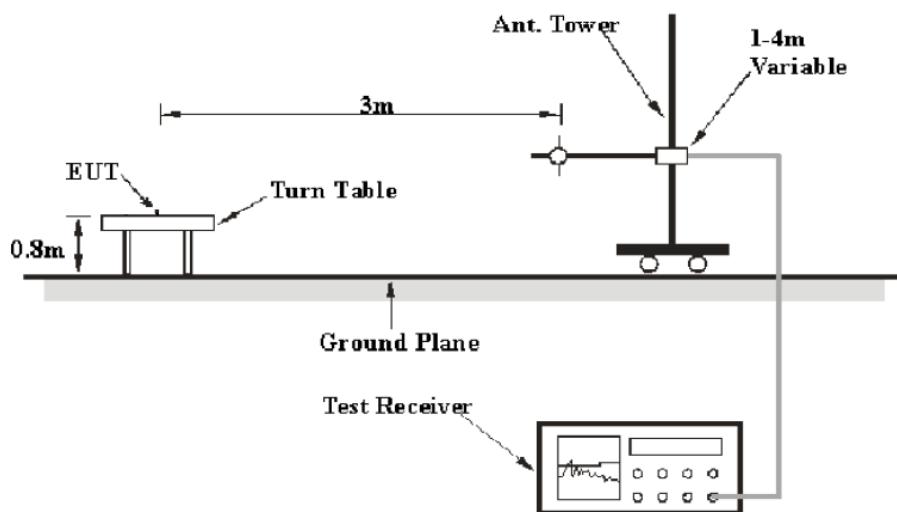
The EUT has a spring antenna and antenna gain is 0dBi, which was permanently attached, fulfill the requirement of this section, please refer to the EUT photos.

Result: Compliant.

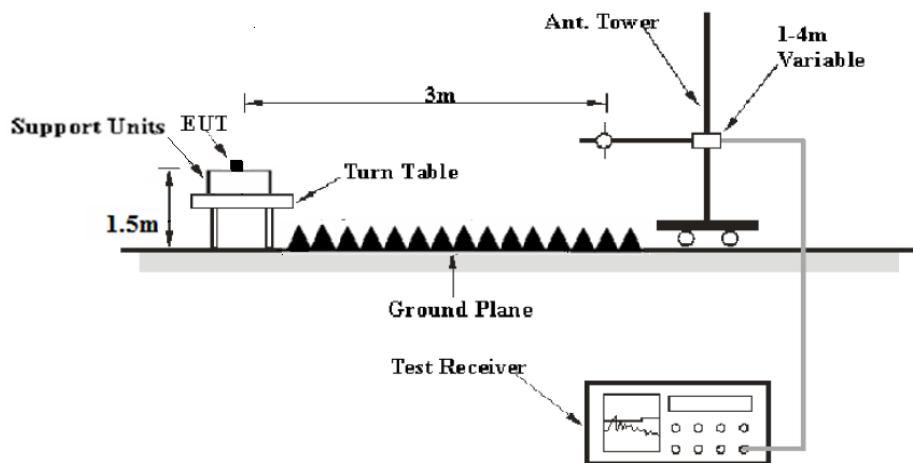
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24GHz-24.25GHz	250	2500

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.


(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Test Equipment Setup

The system was investigated from 30MHz to 10GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1GHz	1MHz	3 MHz	/	PK
	1MHz	3 MHz	/	Ave

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Over Limit Calculation (for below 1GHz)

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

$$\text{Factor (dB)} = \text{LISN VDF (dB)} + \text{Cable Loss (dB)} + \text{Transient Limiter Attenuation (dB)}$$

The “**Over Limit**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

$$\text{Over Limit (dB)} = \text{Read level (dB}\mu\text{V)} + \text{Factor (dB)} - \text{Limit (dB}\mu\text{V)}$$

Corrected Amplitude & Margin Calculation (for above 1GHz)

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

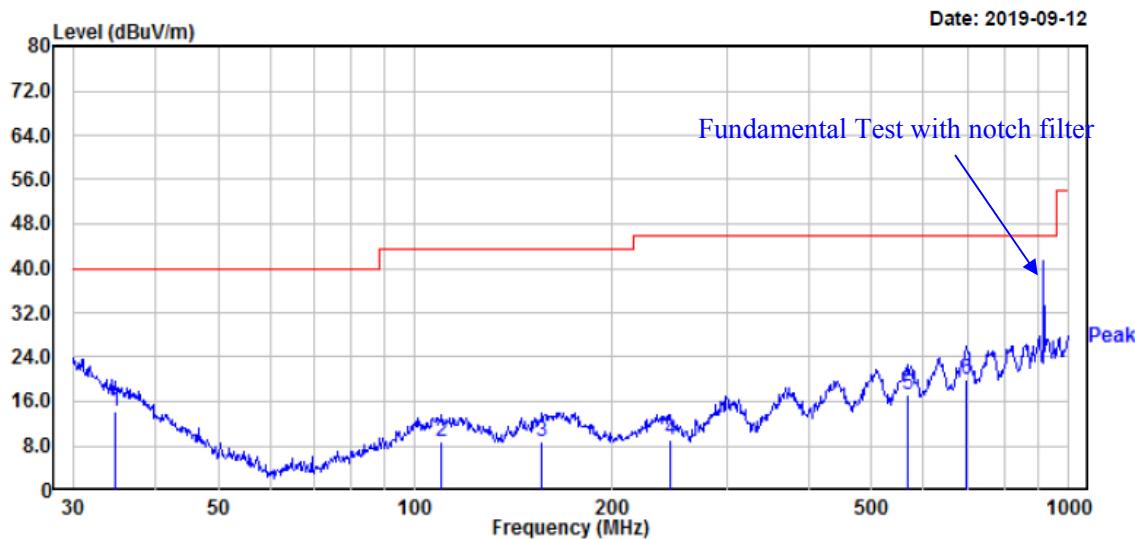
$$\text{Corrected Amplitude (dB}\mu\text{V/m)} = \text{Meter Reading (dB}\mu\text{V)} + \text{Antenna Factor (dB/m)} + \text{Cable Loss (dB)} - \text{Amplifier Gain (dB)}$$

The “**Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

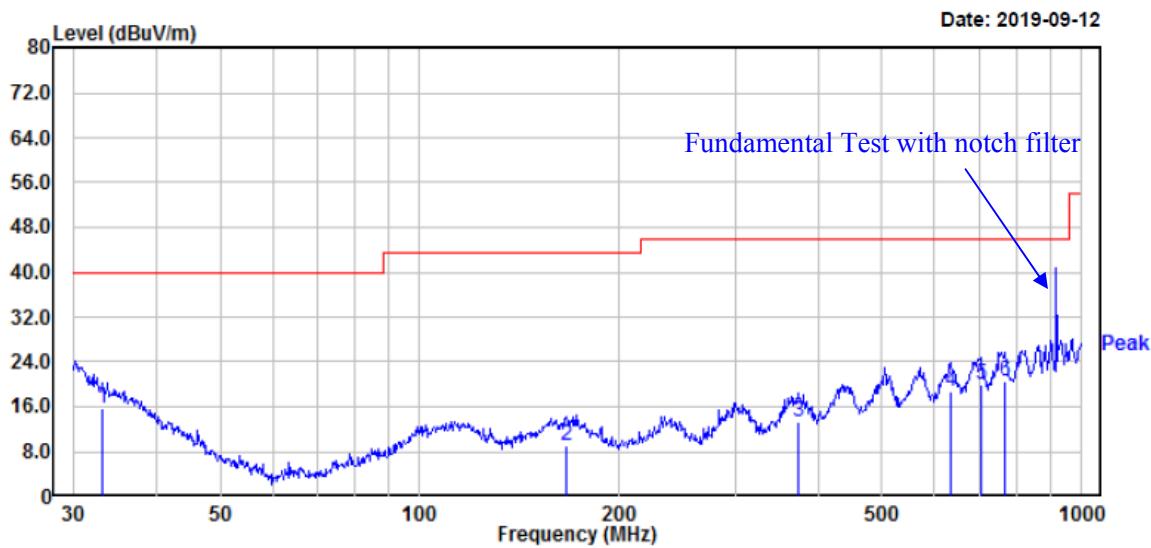
$$\text{Margin (dB)} = \text{Limit (dB}\mu\text{V/m)} - \text{Corrected Amplitude (dB}\mu\text{V/m)}$$

Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.209 &15.205 & 15.249.


Test Data

Environmental Conditions


Temperature:	24.2~25°C
Relative Humidity:	48~52%
ATM Pressure:	101.3~102.0kPa

The testing was performed by Andy Liu on 2019-09-12.

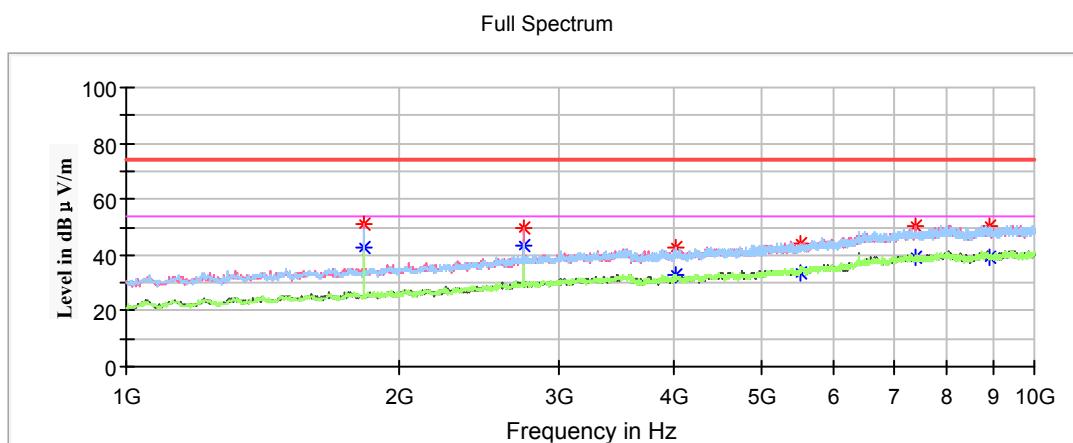
Test Mode: Transmitting

Spurious Emission Test:**30MHz-1GHz****Horizontal***(Pre-scan in the X, Y and Z axes of orientation, the worst case in Y-axis of orientation was recorded.)*

Freq	Read		Limit	Over	APos	TPos	Remark
	Level	Factor					
1	34.88	21.40	-7.19	14.21	40.00	-25.79	200 226 QP
2	109.80	21.50	-12.66	8.84	43.50	-34.66	100 4 QP
3	156.46	20.79	-11.98	8.81	43.50	-34.69	100 230 QP
4	245.95	21.40	-12.38	9.02	46.00	-36.98	200 358 QP
5	566.62	21.60	-4.51	17.09	46.00	-28.91	100 224 QP
6	696.86	22.00	-2.14	19.86	46.00	-26.14	100 358 QP

Vertical(Pre-scan in the X, Y and Z axes of orientation, the worst case in **Y-axis of orientation** was recorded.)

Freq	Read		Limit	Over	APos	TPos	Remark
	Level	Factor					
1 33.21	21.40	-5.80	15.60	40.00	-24.40	100	357 QP
2 166.65	21.40	-12.37	9.03	43.50	-34.47	100	357 QP
3 373.31	21.80	-8.45	13.35	46.00	-32.65	100	102 QP
4 633.91	22.10	-3.36	18.74	46.00	-27.26	200	300 QP
5 704.23	21.80	-2.02	19.78	46.00	-26.22	200	289 QP
6 768.75	21.70	-1.15	20.55	46.00	-25.45	100	347 QP


Note:

- 1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)
- 2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

1GHz-10GHz*(Pre-scan in the X, Y and Z axes of orientation, the worst case **Y-axis of orientation** was recorded.)*

Note:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB)

Corrected Amplitude (dB μ V/m) = Corrected Factor (dB/m) + Reading (dB μ V)Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)**Frequency:915MHz**

Frequency (MHz)	Corrected Amplitude		Rx Antenna		Turntable Degree	Corrected Factor (dB/m)	Limit (dB μ V/m)	Margin (dB)
	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Height (cm)	Polar (H/V)				
1830.00	---	42.67	150	V	2	-8.8	54.00	11.33
1830.00	51.20	---	150	V	2	-8.8	74.00	22.80
2745.00	---	43.68	150	V	350	-5.7	54.00	10.32
2745.00	49.82	---	150	V	350	-5.7	74.00	24.18
4034.80	---	32.64	200	H	330	-1.8	54.00	21.36
4034.80	42.52	---	200	H	330	-1.8	74.00	31.48
5516.20	---	33.43	250	V	309	1.4	54.00	20.57
5516.20	44.31	---	250	V	309	1.4	74.00	29.69
7391.80	---	39.10	200	V	354	6.0	54.00	14.90
7391.80	50.21	---	200	V	354	6.0	74.00	23.79
8909.20	---	39.34	250	V	342	7.4	54.00	14.66
8909.20	50.40	---	250	V	342	7.4	74.00	23.60

Fundamental Test & Restricted Bands Emissions Test:*(Pre-scan in the X, Y and Z axes of orientation, the worst case Y-axis of orientation was recorded.)*

Note:

1. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB)

Corrected Amplitude (dB μ V/m) = Corrected Factor (dB/m) + Reading (dB μ V)Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Frequency (MHz)	Corrected Amplitude	Detector	Rx Antenna		Turntable	Corrected Factor (dB/m)	Limit (dB μ V/m)	Margin (dB)
	(dB μ V/m)	(PK/QP/Ave.)	Height (cm)	Polar (H/V)	Degree			
Channel Frequency: 915MHz								
902.00	33.78	QP	150.0	V	133.0	0.2	46.00	12.22
902.00	32.53	QP	200.0	H	123.0	0.3	46.00	13.47
915.00	92.31	QP	200.0	V	70.0	0.5	94.00	1.69
915.00	90.78	QP	100.0	H	100.0	0.4	94.00	3.22
928.00	34.05	QP	150.0	V	43.0	0.8	46.00	11.95
928.00	32.87	QP	200.0	H	73.0	0.9	46.00	13.13

FCC §15.215(c) – 20 dB BANDWIDTH TESTING

Applicable Standard

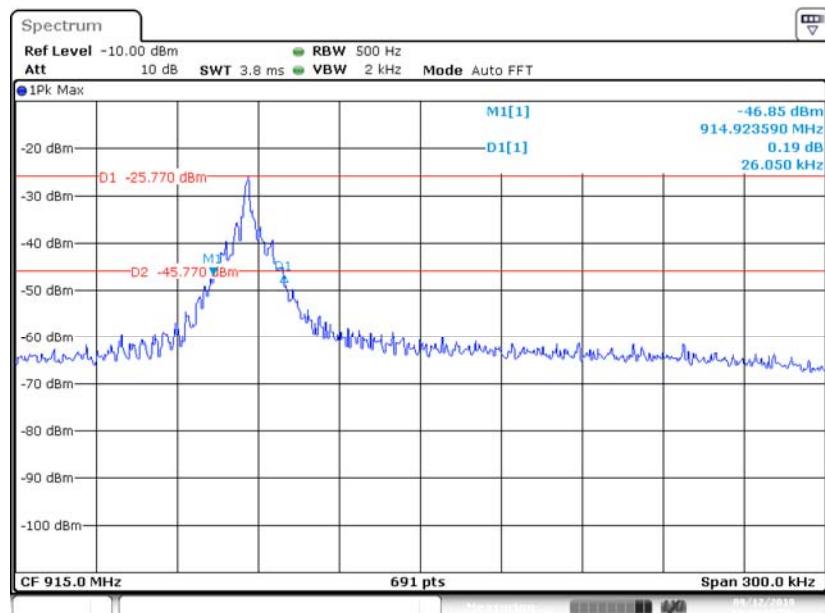
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions


Temperature:	25.0°C
Relative Humidity:	50%
ATM Pressure:	101.3kPa

The testing was performed by Andy Liu on 2019-09-12.

Test Result: Compliant.

Test Mode: Transmitting

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
1	915	0.026

915MHz

Date: 12.SEP.2019 15:38:21

******* END OF REPORT *******