

FCC TEST REPORT

REPORT NO.: RF950519H02

GPS-1210, BT-316, GPS-720,

MODEL NO.: BT-GPS-1020, GNT-121

RECEIVED: May 19, 2006

TESTED: May 23 to 30, 2006

ISSUED: June 2, 2006

APPLICANT: YOUNGTEK ELECTRONICS CORP.

ADDRESS: 4F, No. 5, Technology Rd., Science-Based

Industrial Park, Hsinchu, Taiwan 300, R.O.C.

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien,

Taiwan, R.O.C.

This test report consists of 60 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

TABLE OF CONTENTS

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	9
3.3	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	12
3.5	DESCRIPTION OF SUPPORT UNITS	13
3.6	CONFIGURATION OF SYSTEM UNDER TEST	14
4	TEST PROCEDURES AND RESULTS	15
4.1	CONDUCTED EMISSION MEASUREMENT	15
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	15
4.1.2	TEST INSTRUMENTS	15
4.1.3	TEST PROCEDURES	16
4.1.4	DEVIATION FROM TEST STANDARD	16
4.1.5	TEST SETUP	17
4.1.6	EUT OPERATING CONDITIONS	17
4.1.7	TEST RESULTS	18
4.2	NUMBER OF HOPPING FREQUENCY USED	20
4.2.1	LIMIT OF HOPPING FREQUENCY USED	20
4.2.2	TEST INSTRUMENTS	20
4.2.3	TEST PROCEDURES	21
4.2.4	DEVIATION FROM TEST STANDARD	21
4.2.5	TEST SETUP	22
4.2.6	TEST RESULTS	22
4.3	DWELL TIME ON EACH CHANNEL	24
4.3.1	LIMIT OF DWELL TIME USED	24
4.3.2	TEST INSTRUMENTS	24
4.3.3	TEST PROCEDURES	25
4.3.4	DEVIATION FROM TEST STANDARD	25
4.3.5	TEST SETUP	25
4.3.6	TEST RESULTS	26
4.4	CHANNEL BANDWIDTH	30
4.4.1	TEST INSTRUMENTS	30
4.4.2	TEST PROCEDURE	31
4.4.3	DEVIATION FROM TEST STANDARD	31
4.4.4	TEST SETUP	31
4.4.5	EUT OPERATING CONDITION	31

4.4.6	TEST RESULTS	32
4.5	HOPPING CHANNEL SEPARATION	35
4.5.1	LIMIT OF HOPPING CHANNEL SEPARATION	35
4.5.2	TEST INSTRUMENTS	35
4.5.3	TEST PROCEDURES	
4.5.4	DEVIATION FROM TEST STANDARD	36
4.5.5	TEST SETUP	36
4.5.6	TEST RESULTS	_
4.6	MAXIMUM PEAK OUTPUT POWER	40
4.6.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	40
4.6.2	INSTRUMENTS	
4.6.3	TEST PROCEDURES	41
4.6.4	DEVIATION FROM TEST STANDARD	41
4.6.5	TEST SETUP	
4.6.6	EUT OPERATING CONDITION	42
4.6.7	TEST RESULTS	43
4.7	RADIATED EMISSION MEASUREMENT	_
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.7.2	TEST INSTRUMENTS	47
4.7.3	TEST PROCEDURES	48
4.7.4	DEVIATION FROM TEST STANDARD	
4.7.5	TEST SETUP	49
4.7.6	TEST RESULTS	50
4.8	BAND EDGES MEASUREMENT	54
4.8.1	LIMITS OF BAND EDGES MEASUREMENT	54
4.8.2	TEST INSTRUMENTS	54
4.8.3	TEST PROCEDURE	54
4.8.4	DEVIATION FROM TEST STANDARD	54
4.8.5	EUT OPERATING CONDITION	55
4.8.6	TEST RESULTS	55
4.9	ANTENNA REQUIREMENT	57
4.9.1	STANDARD APPLICABLE	57
4.9.2	ANTENNA CONNECTED CONSTRUCTION	57
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	58
6	INFORMATION ON THE TESTING LABORATORIES	60

CERTIFICATION

PRODUCT: Bluetooth GPS Receiver

BRAND NAME: YTEC, Navilock, Ascen, Voyager, GNT

GPS-1210, BT-316, GPS-720,

MODEL NO.: BT-GPS-1020, GNT-121

APPLICANT: YOUNGTEK ELECTRONICS CORP.

TESTED DATE: May 23 to 30, 2006

TEST ITEM: MASS-PRODUCTION

STANDARDS: 47 CFR Part 15, Subpart C (Section 15.247),

ANSI C63.4-2003

The above equipment (Model: GPS-1210) has been tested by Advance Data **Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY: Carol Liao, DATE: June 2, 2006

(Carol Liao)

Hank Chung

Responsible for RF

(Hank Chung)

, DATE: June 2, 2006

Responsible for RF

APPROVED BY: **DATE:** June 2, 2006

(May Chen, Deputy Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: 47 CFR Part 15, Subpart C						
Standard Section	Test Type and Limit	Result	REMARK			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit Minimum passing margin is –16.97dB at 0.766 MHz			
15.247(a)(1) (I)-(ii)	Number of Hopping Frequency Used Spec.: At least 15 channels	PASS	Meet the requirement of limit			
15.247(a)(1) (ii)	Dwell Time on Each Channel Spec. : Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit			
15.247(a)(1) (I)-(ii)	Hopping Channel Separation Spec.: Min. 25 kHz or two-thirds of 20 dB bandwidth, which ever is greater	PASS	Meet the requirement of limit			
15.247(a)(2)	Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System Spec.: Max. 1 MHz	PASS	Meet the requirement of limit			
15.247(b)	Maximum Peak Output Power Spec.: max. 30dBm	PASS	Meet the requirement of limit			
15.247(c)	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Meet the requirement of limit Minimum passing margin is -10.50dB at 2488.35MHz			
15.247(c)	Band Edge Measurement	PASS	Meet the requirement of limit			

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Bluetooth GPS Receiver	
MODEL NO.	GPS-1210, BT-316, GPS-720,	
WODEL NO.	BT-GPS-1020, GNT-121	
FCC ID	TJU-GPS-1210	
	3.7VDC from battery or	
POWER SUPPLY	DC 5V from power adapter or	
	DC 5V from Cigarette adapter	
MODULATION TYPE	GFSK	
MODULATION TECHNOLOGY	FHSS	
FREQUENCY RANGE	2402MHz ~ 2480MHz	
NUMBER OF CHANNEL	79	
OUTPUT POWER	1.052 mW	
ANTENNA TYPE	Built in Chip Antenna (for Bluetooth)	
	USB Charging cable	
DATA CABLE	(1.5m/Unshielded/with one core)	
	USB data cable (1m/shielded/with one core)	
I/O PORTS	USB port x1	
	Cigarette adapter x 3	
	Li-ion Battery x 1	
ASSOCIATED DEVICES	USB Charging cable x1	
	Power adapter x 1	
	USB Data Cable x 1	

NOTE:

- 1. The EUT consist of bluetooth device and GPS receiver.
- 2. This test report was prepared for bluetooth device.

3. The EUT has five model names which are identical to each other except for the followings:

Brand Name	Model Name	Description
YTEC	GPS-1210	
Navilock	BT-316	1. For morketing requirement
Ascen	GPS-720	For marketing requirement.
GNT	GNT-121	
		For marketing requirement.
Voyager	BT-GPS-1020	2. The shape of enclosure and appearance
		color of EUT are difference.

From the above models, model: **GPS-1210** was selected as representative model for the test and its data were recorded in this report.

4. The EUT has two samples which are identical to each other in all aspects except for the followings:

Material Name	Samples
GPS-1210-W	Sample 1: With White Crystal
GPS-1210-B	Sample 2: With Black Crystal

Above samples were pre-tested in chamber, **Sample 1**, worst case one, was chosen for final test and its data was recorded in this report.

5. The EUT could be supplied with Li-ion 3.7V battery or the following power adapter and Cigarette adapter:

Power adapt	Note			
Brand	Model Name			
SEMDICAR	TC-FU-USB	Input: 100-240Vac, 0.15A, 50-60Hz	for battery	
SEIVIDICAR	*TC-FE-USB	Output: DC 5V, 1A, 5W(Max)	recharge	
Cigarette ada	apter		(through USB	
Brand	Model Name Specification		cable/1.5m/	
SEMDICAR	IC-USB M310150	DC5V, 850mA	nonshielded/with	
CODETW	DU9080	DC5.2V, 800mA		
SEMDICAR	EMDICAR IC-IPOD-USBBS DC5V, 2.5mA			
Battery	Battery			
Brand	Model Name	Specification		
HELIX HX-NBL5C 3.7V		3.7V		

^{*}Same as TC-FU-USB, except the plug shape of Europe

6. The EUT was pre-tested in chamber as the following test modes:

For conduc	For conducted emission					
Test Mode	Description					
Mode A	GPS connection + Bluetooth + battery recharge (from Power adapter)					
Mode B	GPS connection through USB data cable					
Mode C	GPS connection + Bluetooth + battery recharge + Cigarette adapter + USB Charging cable					
For transm	itter radiated emissions					
Test Mode	Description					
Mode D	GPS connection + Bluetooth + battery recharge (from Power adapter)					
Mode E	GPS connection + Bluetooth + battery recharge (from Cigarette adapter with model: IC-USB M310150)					
Mode F	GPS connection + Bluetooth + battery recharge (from Cigarette adapter with model: DU9080)					
Mode G GPS connection + Bluetooth + battery recharge (from Cigarette adapter with model: IC-IPOD-USBBS)						
Mode H	GPS connection through USB data cable					
Mode I	GPS connection + Bluetooth + battery recharge + Cigarette adapter + USB Charging cable					

The worst conducted emission was found in Mode A. The worst transmitter radiated emissions was found in Mode H. The final test was executed under test mode with highest emission and recorded in this report individually.

7. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Seventy-nine channels are provided to this EUT.

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2431	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

NOTE:

1. The EUT was tested with the following modes:

For AC power conducted emission						
Test Mode	e Description					
Mode 1	GPS connection + Bluetooth + battery recharge (from Power adapter)					
For transm	For transmitter radiated emissions					
Test Mode	Test Mode Description					
Mode 1	GPS connection through USB data cable					

3.3 Test Mode Applicability and tested channel detail

EUT		Applic	able to		Description
CONFIGURE MODE	PLC	RE<1G	RE≥1G	APCM	Description
-	V	√	V	√	NA

Where **PLC:** Power Line Conducted Emission

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

APCM: Antenna Port Conducted Measurement

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL		MODULATION TYPE	PACKET TYPE
0 to 78	78	FHSS	GFSK	DH5

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	
0 to 78	78	FHSS	GFSK	DH5	

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	
0 to 78	0, 39, 78	FHSS	GFSK	DH5	

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION MODULATION TECHNOLOGY TYPE		PACKET TYPE
0 to 78	0, 78	FHSS	GFSK	DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	
0 to 78	0, 39, 78	FHSS	GFSK	DH5	

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a Bluetooth GPS Receiver. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247) ANSI C63.4: 2003

All test items have been performed and recorded as per the above standards.

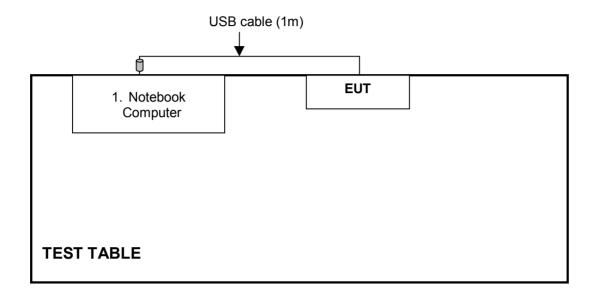
NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

Report No.: RF950519H02 12 Report Format Version 2.0.1

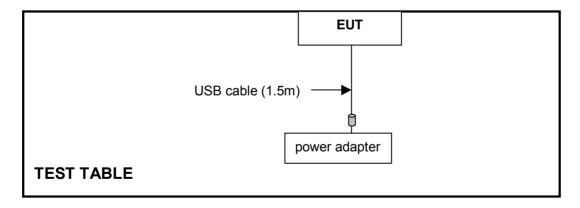
3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
4	NOTEBOOK	חבוו		CN-OHC416-70166-	DIMESSE00546640
1	COMPUTER	DELL	PP19L	5CA-0448	PIW632500516610


No.	Signal cable description
1	NA

Note: 1. All power cords of the above support units are unshielded (1.8m).



3.6 CONFIGURATION OF SYSTEM UNDER TEST

For transmitter radiated emissions:

For conducted emission:

NOTE: 1. Please refer to the photos of test configuration in Item 5 also.

4 TEST PROCEDURES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

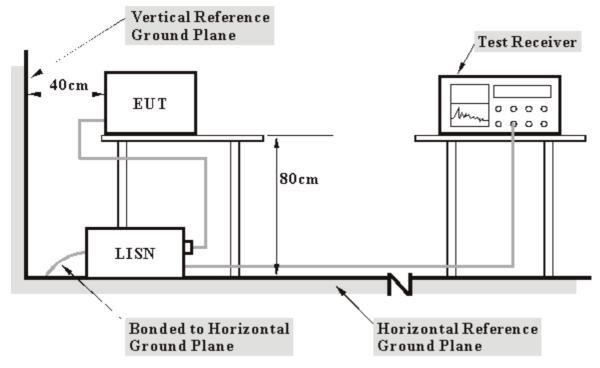
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL	
*Test Receiver	ESCS 30	847124/029	Dec. 15, 2006	
*Line-Impedance Stabilization Network(for EUT)	ENV-216	100071	Nov. 10, 2006	
*Line-Impedance Stabilization Network(for Peripheral)	KNW-407	8/1395/12	Jul. 19, 2006	
* RF Cable (JETBAO)	RG233/U	Cable_CB_01	Dec. 09, 2006	
*Terminator	50	2	Oct. 08, 2006	
*Software	ADT_Cond_V7.3.2	NA	NA	

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in ADT Shielded Room No. B.
- 3 The VCCI Con B Registration No. is C-2193.
- 4 * = These equipment are used for the final measurement.
- 5 The measurement uncertainty is 2.26 dB, which is calculated as per the document CISPR 16-4 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.1.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under Limit 20dB was not recorded.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

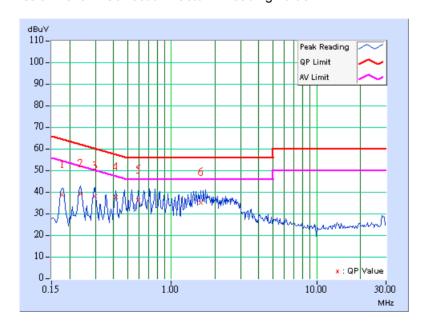
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. Placed the EUT on the testing table.
- b. The support unit 1 (Notebook computer) ran a test program "WDS Commander" to enable EUT under transmission condition continuously at specific channel frequency.

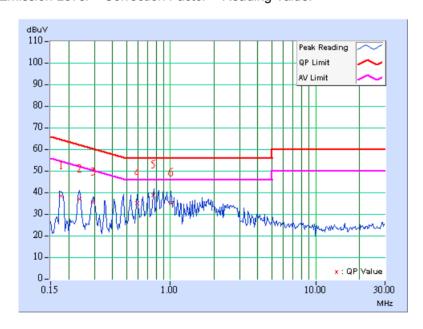

4.1.7 TEST RESULTS

TEST MODE	Mode 1	6dB BANDWIDTH	9 kHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	PHASE	Line (L)
ENVIRONMENTAL CONDITIONS	25 deg. C, 65%RH, 960 hPa	TESTED BY	Eric Lee

	Freq.	Corr.	Readin	g Value	Emission Level		Lir	nit	Margin	
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.177	9.60	29.20	-	38.80	-	64.61	54.61	-25.81	-
2	0.236	9.60	29.60	-	39.20	-	62.24	52.24	-23.04	-
3	0.298	9.60	28.67	-	38.27	-	60.29	50.29	-22.02	-
4	0.416	9.60	28.03	-	37.63	-	57.54	47.54	-19.91	-
5	0.591	9.60	26.59	-	36.19	ı	56.00	46.00	-19.81	-
6	1.599	9.66	25.58	-	35.24	-	56.00	46.00	-20.76	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



TEST MODE	Mode 1	6dB BANDWIDTH	9 kHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	PHASE	Neutral (N)
ENVIRONMENTAL CONDITIONS	25 deg. C, 65%RH, 960 hPa	TESTED BY	Eric Lee

	Freq.	Corr.	Reading	g Value	Emission Level		Limit		Margin	
No		Factor	[dB ((uV)]	[dB	(uV)]	[dB	(uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.177	9.60	28.85	-	38.45	-	64.62	54.62	-26.17	-
2	0.236	9.60	27.50	-	37.10	-	62.24	52.24	-25.14	-
3	0.295	9.60	25.80	-	35.40	-	60.40	50.40	-25.00	-
4	0.591	9.60	25.67	-	35.27	-	56.00	46.00	-20.73	-
5	0.766	9.60	29.43	-	39.03	•	56.00	46.00	-16.97	-
6	1.009	9.60	25.71	-	35.31	-	56.00	46.00	-20.69	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 NUMBER OF HOPPING FREQUENCY USED

4.2.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 hopping frequencies, and should be equally spaced.

4.2.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

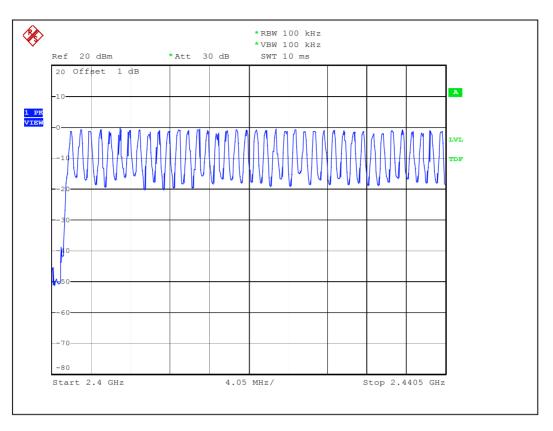
- 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

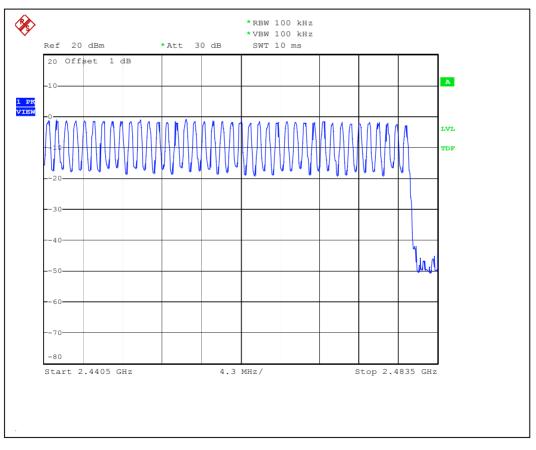
4.2.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation


4.2.5 TEST SETUP



4.2.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.3 DWELL TIME ON EACH CHANNEL

4.3.1 LIMIT OF DWELL TIME USED

For FHSS, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 31.6 second period. For hybrid systems, the average time of occupancy on any frequency should not exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

- 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

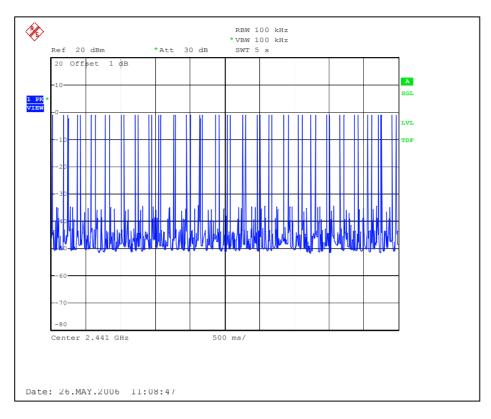
4.3.3 TEST PROCEDURES

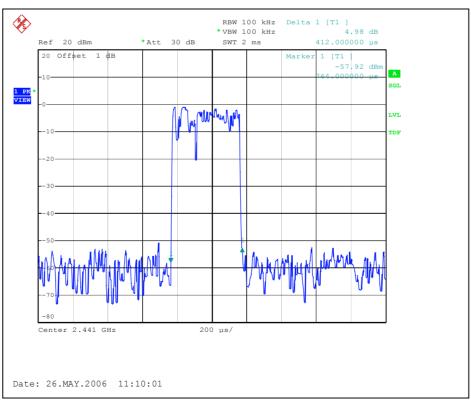
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

4.3.4 DEVIATION FROM TEST STANDARD

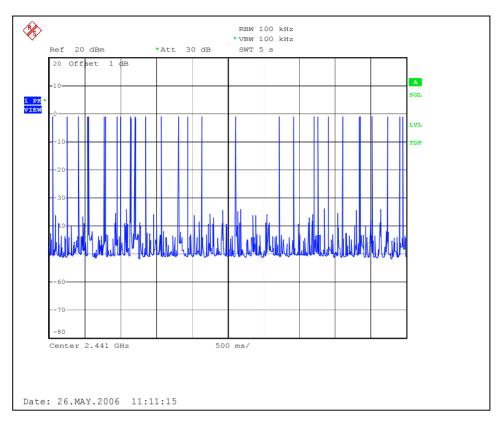
No deviation

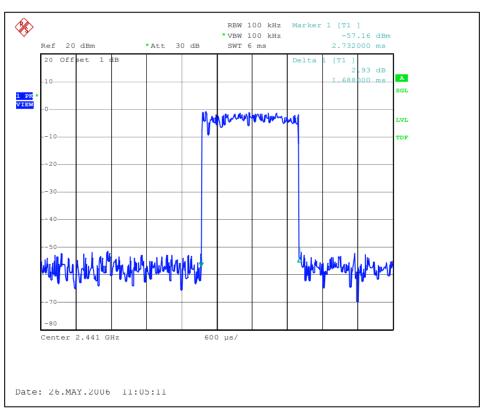
4.3.5 TEST SETUP

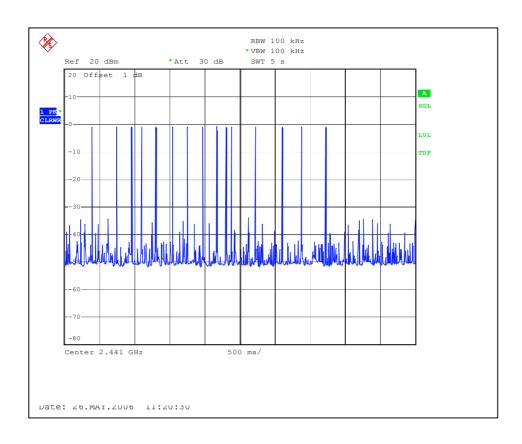

4.3.6 TEST RESULTS

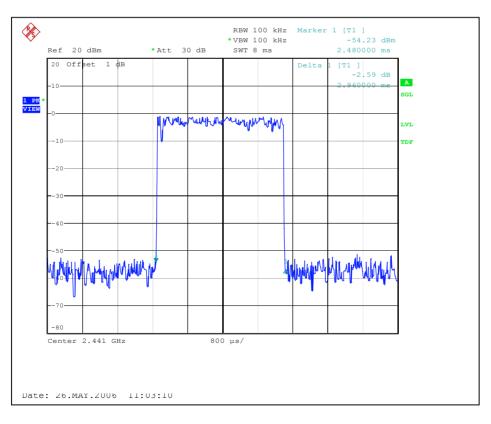

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	54 (times / 5 sec) *6.32=341.28 times	0.41	140.61	400
DH3	31 (times / 5 sec) *6.32=195.92 times	1.69	330.71	400
DH5	21 (times / 5 sec) *6.32=132.72 times	2.96	392.85	400

Test plots of the transmitting time slot are shown on next three pages.


DH1




DH3



DH5

4.4 CHANNEL BANDWIDTH

4.4.1 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

- 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

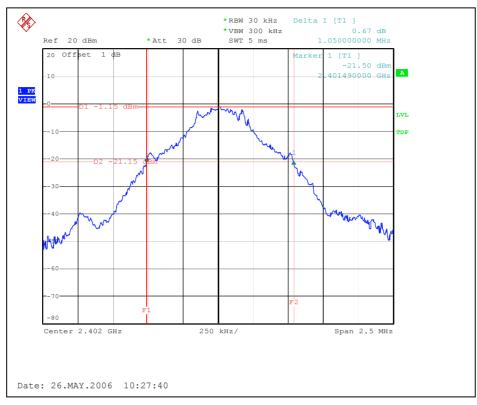
4.4.3 DEVIATION FROM TEST STANDARD

No deviation

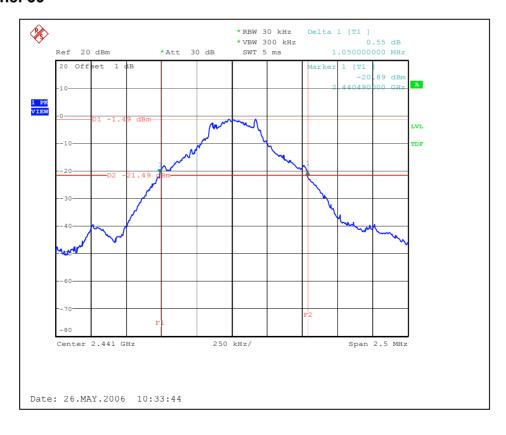
4.4.4 TEST SETUP

4.4.5 EUT OPERATING CONDITION

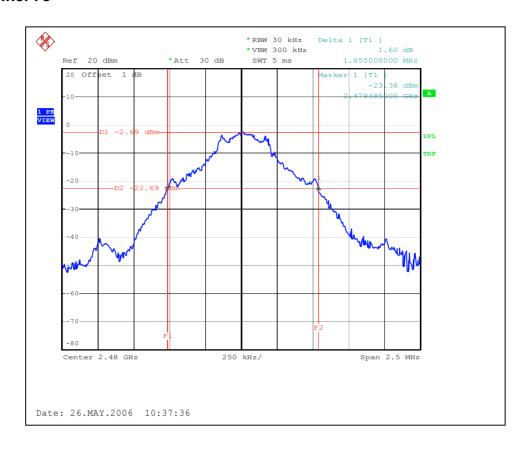
The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.4.6 TEST RESULTS

ENVIRONMENTAL CONDITIONS	25deg. C, 62%RH, 960 hPa	INPUT POWER (SYSTEM)	120Vac, 60 Hz
TESTED BY	Eric Lee		


CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (kHz)
0	2402	1050
39	2441	1050
78	2480	1055

Channel 0



Channel 39

Channel 78

4.5 HOPPING CHANNEL SEPARATION

4.5.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25 kHz or two-thirds of 20dB hopping channel bandwidth (whichever is greater).

4.5.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

- 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURES

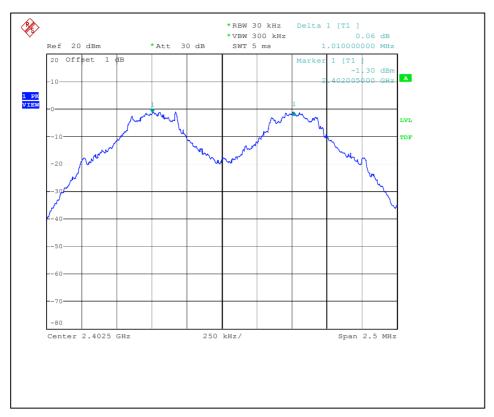
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

4.5.4 DEVIATION FROM TEST STANDARD

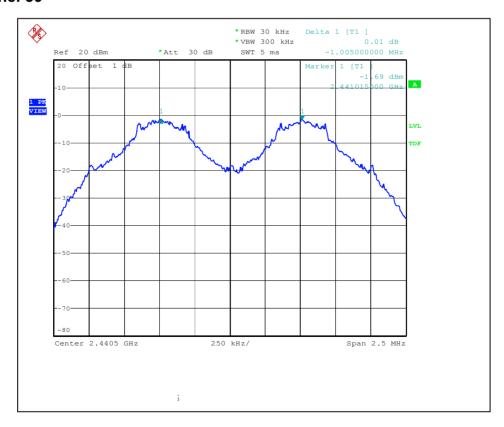
No deviation

4.5.5 TEST SETUP

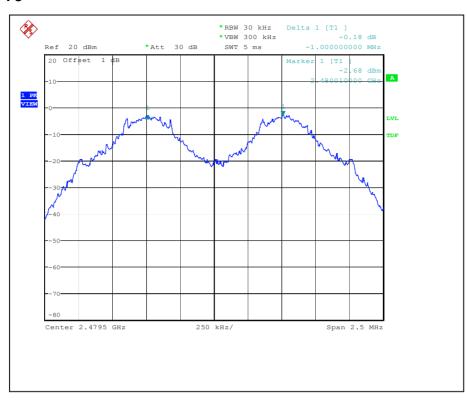
4.5.6 TEST RESULTS


ENVIRONMENTAL CONDITIONS	25deg. C, 62%RH, 960 hPa	INPUT POWER (SYSTEM)	120Vac, 60 Hz
TESTED BY	Eric Lee		

Channel	Frequency (MHz)	Adjacent Channel Separation	Minimum Limit (kHz)	Pass / Fail
0	2402	1.010MHz	630	PASS
39	2441	1.005MHz	633	PASS
78	2480	1.000MHz	620	PASS


The minimum limit is two-thirds of 20dB bandwidth. Test results please refer to next three pages.

Channel 0



Channel 39

Channel 78

4.6 MAXIMUM PEAK OUTPUT POWER

4.6.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 125mW.

4.6.2 INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

- 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3 MHz RBW and 3 MHz VBW.
- 4. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 5. Repeat above procedures until all frequencies measured were complete.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

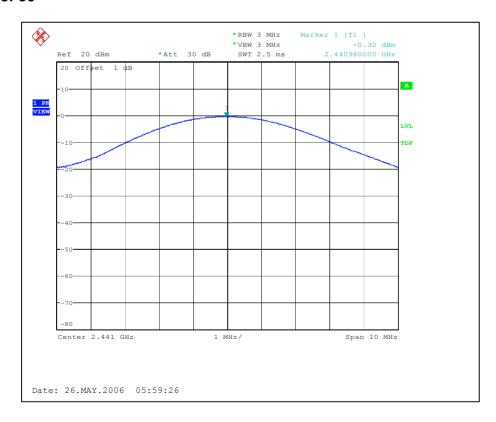
For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.6.6 EUT OPERATING CONDITION

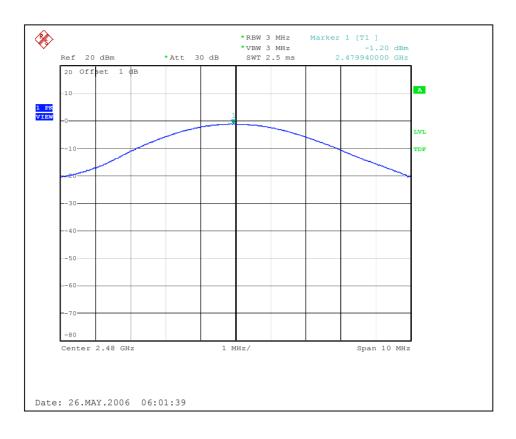
The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.6.7 TEST RESULTS

ENVIRONMENTAL CONDITIONS	25deg. C, 62%RH, 960 hPa	INPUT POWER (SYSTEM)	120Vac, 60 Hz
TESTED BY	Wen Yu		


CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	1.052	0.22	125	PASS
39	2441	0.933	-0.3	125	PASS
78	2480	0.759	-1.2	125	PASS

Channel 0



Channel 39

Channel 78

4.7 RADIATED EMISSION MEASUREMENT

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL	
ADVANTEST Spectrum Analyzer	R3271A	85060311	July 07, 2006	
HP Pre_Amplifier	8449B	3008A01922	Oct. 02, 2006	
ROHDE & SCHWARZ	ESCS30	100375	Son 10 2006	
Test Receiver	E3C330	100373	Sep. 19, 2006	
CHASE Broadband Antenna	VULB9168	138	Dec. 11, 2006	
Schwarzbeck Horn_Antenna	BBHA9120	D124	Dec. 27, 2006	
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 05, 2007	
SCHWARZBECK Biconical Antenna	VHBA9123	459	Jun. 26, 2006	
SCHWARZBECK Periodic Antenna	UPA6108	1148	Jun. 26, 2006	
RF Switches (ARNITSU)	CS-201	1565157	NA	
RF CABLE (Chaintek)	SF102	22054-2	Nov. 16. 2006	
DE Coble/DICHTEC)	9913-30M N-N	STCCAB-30M-	I.I. 46, 2006	
RF Cable(RICHTEC)	Cable	1GHz	Jul. 16, 2006	
Coffware	ADT_Radiated_V	NA	NA	
Software	5.14	INA	NA	
CHANCE MOST	AT-100	0203	NA	
Antenna Tower	A1-100	0203	INA	
CHANCE MOST Turn Table	TT-100	0203	NA	

Note: 1. The calibration interval of the above test instruments is 12 months (36 months for

Periodic Antenna) and the calibrations are traceable to NML/ROC and NIST/USA.

The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

The test was performed in ADT Open Site No. C.

The FCC Site Registration No. is 656396.

The VCCI Site Registration No. is R-1626.

The CANADA Site Registration No. is IC 4824-3.

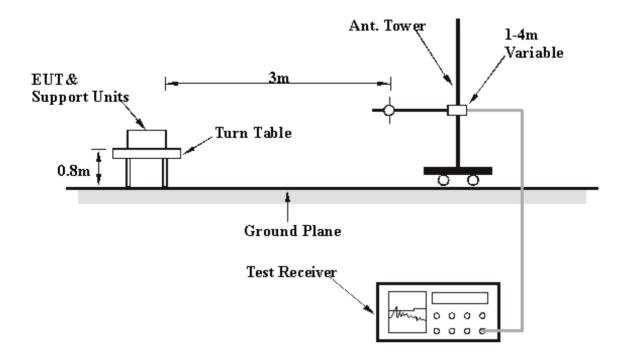
The CANADA site registration No. is 10 4024-5.
 The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Radiated emissions (30MHz-1GHz)	2.98 dB
Radiated emissions (1GHz ~18GHz)	2.21 dB
Radiated emissions (18GHz ~40GHz)	1.88 dB

4.7.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.7.6 TEST RESULTS

CHANNEL	78	FREQUENCY RANGE	Below 1GHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak
ENVIRONMENTAL CONDITIONS	20 deg. C, 68%RH, 960 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)	Level	(dBuV/m)	_	Height	Angle	Value	Factor
	(IVIITZ)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	120.01	24.10 QP	43.50	-19.40	1.28 H	197	12.60	11.50
2	240.01	24.10 QP	46.00	-21.90	1.77 H	1	11.20	12.90
3	360.01	27.70 QP	46.00	-18.30	1.34 H	35	10.60	17.10
4	420.04	28.60 QP	46.00	-17.40	1.65 H	171	9.70	18.90
5	480.05	30.80 QP	46.00	-15.20	1.60 H	339	10.40	20.40
6	624.00	33.20 QP	46.00	-12.80	1.55 H	31	9.50	23.80
7	720.01	35.40 QP	46.00	-10.60	1.44 H	309	9.90	25.50

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	120.01	26.40 QP	43.50	-17.10	1.00 V	2	15.00	11.50
2	240.02	24.90 QP	46.00	-21.10	1.00 V	104	12.10	12.90
3	360.02	26.30 QP	46.00	-19.70	1.00 V	84	9.20	17.10
4	420.01	30.70 QP	46.00	-15.30	1.27 V	330	11.80	18.90
5	480.12	27.80 QP	46.00	-18.20	1.00 V	310	7.40	20.40
6	624.07	27.20 QP	46.00	-18.80	1.11 V	258	3.40	23.80
7	720.04	27.00 QP	46.00	-19.00	1.05 V	123	1.50	25.50

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

CHANNEL	Channel 0	FREQUENCY RANGE	1 ~25GHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz		Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	18 deg. C, 68%RH, 960 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	· •	Level	(dBuV/m)	_	Height	Angle	Value	Factor		
	(MHz) (dBuV/m) (dBuV/m)	(ubuv/III)	//m) (dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	2386.60	57.00 PK	74.00	-17.00	1.40 H	312	27.30	29.70		
1	2386.60	27.00 AV	54.00	-27.00	1.40 H	312	-2.70	29.70		
2	*2402.00	98.10 PK			1.20 H	324	68.30	29.80		
2	*2402.00	68.10 AV			1.20 H	324	38.30	29.80		
3	4804.00	45.10 PK	74.00	-28.90	1.12 H	108	10.10	34.90		
3	4804.00	15.10 AV	54.00	-38.90	1.12 H	108	-19.90	34.90		
4	7206.00	52.20 PK	74.00	-21.80	1.08 H	135	11.10	41.00		
4	7206.00	22.20 AV	54.00	-31.80	1.08 H	135	-18.90	41.00		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2386.80	49.70 PK	74.00	-24.30	1.38 V	312	19.90	29.70		
1	2386.80	19.70 AV	54.00	-34.30	1.38 V	312	-10.10	29.70		
2	*2402.00	90.20 PK			1.00 V	307	60.40	29.80		
2	*2402.00	60.20 AV			1.00 V	307	30.40	29.80		
3	4804.00	44.50 PK	74.00	-29.50	1.02 V	208	9.50	34.90		
3	4804.00	14.50 AV	54.00	-39.50	1.02 V	208	-20.50	34.90		
4	7206.00	52.10 PK	74.00	-21.90	1.04 V	125	11.00	41.00		
4	7206.00	22.10 AV	54.00	-31.90	1.04 V	125	-19.00	41.00		

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB
- 7. Average value = peak reading -20log(duty cycle)

CHANNEL	Channel 39	FREQUENCY RANGE	1 ~25GHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	18 deg. C, 68%RH, 960 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq.	Emission Level	Limit	Margin	Antenna Height	Table	Raw Value	Correction Factor		
INO.	(MHz)	(dBuV/m)	(dBuV/m) (dB)	(m)	Angle (Degree)	(dBuV)	(dB/m)			
1	*2441.00	96.40 PK			1.00 H	297	66.40	30.00		
1	*2441.00	66.40 AV			1.00 H	297	36.40	30.00		
2	4882.00	45.00 PK	74.00	-29.00	1.08 H	132	9.80	35.20		
2	4882.00	15.00 AV	54.00	-39.00	1.08 H	132	-20.20	35.20		
3	7323.00	52.80 PK	74.00	-21.20	1.10 H	45	11.30	41.40		
3	7323.00	22.80 AV	54.00	-31.20	1.10 H	45	-18.70	41.40		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	(MHz)	Level	(dBuV/m)	•	Height	Angle	Value	Factor		
	(IVIF12)	(dBuV/m)	(ubuv/III)	dBuV/m) (dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	*2441.00	90.40 PK			1.00 V	2	60.40	30.00		
1	*2441.00	60.40 AV			1.00 V	2	30.40	30.00		
2	4882.00	44.60 PK	74.00	-29.40	1.00 V	192	9.40	35.20		
2	4882.00	14.60 AV	54.00	-39.40	1.00 V	192	-20.60	35.20		
3	7323.00	53.00 PK	74.00	-21.00	1.05 V	108	11.50	41.40		
3	7323.00	23.00 AV	54.00	-31.00	1.05 V	108	-18.50	41.40		

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB
- 7. Average value = peak reading -20log(duty cycle)

CHANNEL	Channel 78	FREQUENCY RANGE	1 ~25GHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz		Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	18 deg. C, 68%RH, 960 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	(MHz)	Level	(dBuV/m)	_	Height	Angle	Value	Factor		
	(IVIF1Z)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	*2480.00	89.40 PK			1.23 H	265	59.20	30.20		
1	*2480.00	59.40 AV			1.23 H	265	29.20	30.20		
2	2488.35	63.50 PK	74.00	-10.50	1.16 H	284	33.20	30.20		
2	2488.35	33.50 AV	54.00	-20.50	1.16 H	284	3.20	30.20		
3	4960.00	44.80 PK	74.00	-29.20	1.20 H	122	9.30	35.50		
3	4960.00	14.80 AV	54.00	-39.20	1.20 H	122	-20.70	35.50		
4	7440.00	53.10 PK	74.00	-20.90	1.15 H	21	11.30	41.80		
4	7440.00	23.10 AV	54.00	-30.90	1.15 H	21	-18.70	41.80		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq.	Emission Level	Limit (dBuV/m)	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor		
	(MHz) (dBuV/m) (dBu	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	*2480.00	89.40 PK			1.00 V	308	59.20	30.20		
1	*2480.00	59.40 AV			1.00 V	308	29.20	30.20		
2	2488.00	56.30 PK	74.00	-17.70	1.19 V	305	26.10	30.20		
2	2488.00	26.30 AV	54.00	-27.70	1.19 V	305	-3.90	30.20		
3	4960.00	44.70 PK	74.00	-29.30	1.00 V	232	9.20	35.50		
3	4960.00	14.70 AV	54.00	-39.30	1.00 V	232	-20.80	35.50		
4	7440.00	54.00 PK	74.00	-20.00	1.02 V	184	12.20	41.80		
4	7440.00	24.00 AV	54.00	-30.00	1.02 V	184	-17.80	41.80		

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB
- 7. Average value = peak reading -20log(duty cycle)

4.8 BAND EDGES MEASUREMENT

4.8.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until	
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006	

Note:

- 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation

4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS

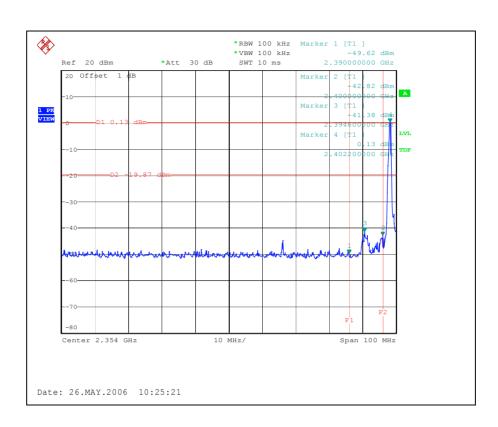
The spectrum plots are attached on the following 2 pages. D2 line indicates the highest level, D1 line indicates the 20dB offset below D2. It shows compliance with the requirement in part 15.247(C).

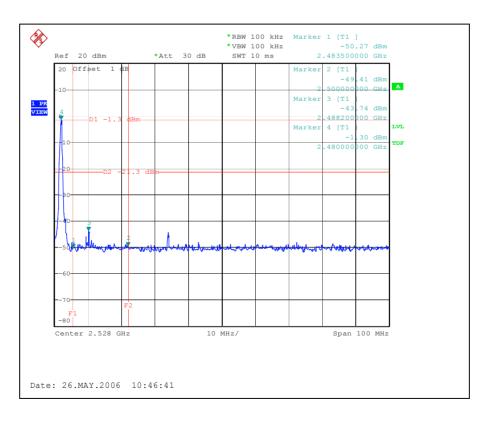
Note - The delta method is only used up to 2 MHz away from the restricted bandage, The radiated emissions which located in other restricted frequency band, the result, please refer to 4.2.

NOTE (Peak):

The band edge emission plot on the following page show 49.75dB delta between carrier maximum power and local maximum emission in restrict band (2.3900GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2 is 98.10dBuV/m, so the maximum field strength in restrict band is 98.10-49.75=48.35dBuV/m which is under 74 dBuV/m limit.

The band edge emission plot on the following page shows 48.97dB delta between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2 is 89.40dBuV/m, so the maximum field strength in restrict band is 89.40-48.97=40.43dBuV/m which is under 74 dBuV/m limit.


NOTE (Average):


Average value = 48.35-30.00=18.35dBuV/m, which is under 54dBuV/m limit.

*The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: $20\log(3.125/100) = -30$ dB. Average value = peak reading -30.00.

Average value = 40.43-30.00=10.43dBuV/m, which is under 54dBuV/m limit. *The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30 dB. Average value = peak reading - 30.00.

4.9 ANTENNA REQUIREMENT

4.9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is as following.

for Bluetooth

Built in Chip Antenna without connector / Gain: 1.3dBi

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST

RADIATED EMISSION TEST

6 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025:

USA FCC, UL, A2LA Germany TUV Rheinland

Japan VCCI Norway NEMKO

Canada INDUSTRY CANADA, CSA

R.O.C. CNLA, BSMI, DGT

Netherlands Telefication

Singapore PSB, GOST-ASIA (MOU)

Russia CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service@adt.com.tw
Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.