

Page 1 of 42

Certificate of Compliance

Test Report No.:	SKTTRT-050923-022			
NVLAP CODE:	200220-0			
Applicant:	OPENBRAIN Technolog	jies Co., Ltd.		
Applicant Address:	#804,Anyang K-CENTER, 1 Anyang-city, Kyunggi-do, 43		Dongan-gu,	
Manufacturer:	OPENBRAIN Technologies Co., Ltd.			
Manufacturer Address:	#804,Anyang K-CENTER, 1591-9, Burim-dong, Dongan-gu, Anyang-city, Kyunggi-do, 431-815 South-Korea			
Device Under Test:	Bluetooth Stereo Headset			
FCC ID: IC:	TJK-OBH0110 6058A-OBH0110	Model No.:	OBH-0110	
Receipt No.:	SKTEU05-0479	Date of receipt:	July 12, 2005	
Date of Issue:	September 23, 2005			
Location of Testing:	SK TECH CO., LTD. 820-2, Wolmoon-Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea			
Test Specification:	FCC Part 15 Rules, RSS-210 Issue 6			
FCC Equipment Class: IC Equipment Category:	DSS - Part 15 Spread Spectrum Transmitter RSS-210 Issue 6: Category I Equipment, Annex 8			
Test Result:	The above-mentioned device has been tested and passed.			

Tested & Reported by: Jong-Soo, Yoon

Approved by: Jae-Kyung, Bae

A A

2005.09.23

2005.09.23

Signature Date Signature Date

Other Aspects:

Abbreviations: \cdot OK, Pass = passed \cdot Fail = failed \cdot N/A = not applicable

- •This test report is not permitted to copy partly without our permission.
- •This test result is dependent on only equipment to be used.
- •This test result is based on a single evaluation of one sample of the above mentioned.
 - •This test report must not be used to claim product endorsement by NVLAP or any agency of the U.S Government.
 - We certify that this test report has been based on the measurement standards that is traceable to the national or International standards.

NVLAP Lab. Code: 200220-0

Page 2 of 42

>> CONTENTS <<

1. GENERAL	4
	_
2. TEST SITE	
2.1 Location ·····	
2.2 List of Test and Measurement Instruments	5
2.3 Test Date ·····	
2.4 Test Environment	5
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST	
3.1 Rating and Physical Characteristics	6
3.2 Equipment Modifications ·····	
3.3 Submitted Documents ·····	6
4. MEASUREMENT CONDITIONS	7
4.1 Description of test configuration	7
4.2 List of Peripherals ·····	
4.3 Uncertainty ·····	7
5. TEST AND MEASUREMENTS	8
5.1 ANTENNA REQUIREMENT	
5.1.1 Regulation ·····	
5.1.2 Result ·····	8
5.2 MAXIMUM PEAK OUTPUT POWER ······	9
5.2.1 Regulation ·····	
5.2.2 Test Procedure ·····	
5.2.3 Test Results ·····	
Table 1: Measured values of the Maximum Peak Output Power (Conducted) ·	
Figure 1: Plot of the Maximum Peak Output Power (Conducted) ······	10
5.3 CARRIER FREQUENCY SEPARATION	···12
5.3.1 Regulation ·····	
5.3.2 Test Procedure	
5.3.3 Test Results	
Table 2: Measured values of the Carrier Frequency Separation (Conducted)	
Figure 2: Plot of the Carrier Frequency Separation (Conducted)	
5.4 20dB CHANNEL BANDWIDTH	
5.4.1 Regulation	
5.4.2 Test Procedure	
5.4.3 Test Results	
Table 3: Measured values of the 20dB Channel Bandwidth (Conducted)	
Figure 3: Plot of the 20dB Channel Bandwidth (Conducted)	10

Page 3 of 42

5.5 NUMBER OF HOPPING CHANNELS	
5.5.1 Regulation ·····	
5.5.2 Test Procedure ·····	
5.5.3 Test Results ·····	18
Table 4: Measured values of the Number of Hopping Channels (Conducted)···	18
Figure 4: Plot of the Number of Hopping Channels (Conducted)	19
5.6 TIME OF OCCUPANCY (DWELL TIME)	
5.6.1 Regulation ·····	
5.6.2 Test Procedure ·····	
5.6.3 Test Results	
Table 5: Measured values of the Time of Occupancy (Conducted)	
Figure 5: Plot of the Time of Occupancy (Conducted)	21
.7 SPURIOUS EMISSION, BAND EDGE, AND RESTRICTED BANDS	
5.7.1 Regulation ·····	
5.7.2 Test Procedure	
5.7.3 Test Results	
Table 6: Measured values of RF antenna port emission (Conducted)	
Table 7: Measured values of the field strength of spurious emission (Radiated)…	
Figure 6: Plot of the RF antenna port emission (Conducted)	
Figure 7: Plot of the Band Edge (Conducted)·····	
Figure 8: Plot of the Band Edge (Radiated) ······	31
.8 PEAK POWER SPECTRAL DENSITY	
5.8.1 Regulation ·····	
5.8.2 Test Procedure	
5.8.3 Test Results	
Table 8: Measured values of the Peak Power Spectral Density (Conducted)	
Figure 9: Plot of the Peak Power Spectral Density (Conducted)	34
.9 CONDUCTED EMISSIONS	36
5.9.1 Regulation ·····	36
5.9.2 Test Procedure ·····	36
5.9.3 Test Results ·····	37
Table 9: Measured values of the Conducted Emissions (DIRECTLY)	37
Table 10: Measured values of the Conducted Emissions (INDIRECTLY)	38
Figure 10: Plot of the Conducted Emissions (DIRECTLY)	39
Figure 11: Plot of the Conducted Emissions (INDIRECTLY)	40
5.10 Receiver Spurious Emissions	41
5.10.1 Regulation	
5.10.2 Test Results	···41
Table 11: Receiver Spurious Emissions (Radiated)······	41
5.11 RF EXPOSURE	42
0.11 RF EXPOSURE	
5.11.1 Regulation ······	

Page 4 of 42

1. GENERAL

These tests were performed using the test procedure outlined in ANSI C63.4, 2003 for intentional radiators, and in accordance with the limits set forth in FCC Part 15.247 for Spread Spectrum Transmitter. The EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards.

We attest to the accuracy of data. All measurements reported herein were performed by SK Tech Co., Ltd. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. TEST SITE

SK TECH Co., Ltd.

2.1 Location

820-2, Wolmoon Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea

This test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200220-0 and DATech for DAR-Registration No.: TTI-P-G155/97-10

Page 5 of 42

2.2 List of Test and Measurement Instruments

Description	Manufacturer	Model #	Serial #	
Spectrum Analyzer	Agilent	E4405B	US40520856	\boxtimes
EMC Spectrum Analyzer	Agilent	E7405A	US40240203	\boxtimes
EMI Test Receiver	Rohde&Schwarz	ESVS10	825120/013	\boxtimes
EMI Test Receiver	Rohde&Schwarz	ESVS10	834468/008	\boxtimes
EMI Test Receiver	Rohde&Schwarz	ESHS10	825120/013	\boxtimes
EMI Test Receiver	Rohde&Schwarz	ESHS10	834468/008	\boxtimes
Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	836679/018	\boxtimes
Pre-amplifier	HP	8447F	3113A05153	\boxtimes
Pre-amplifier	HP	8349B	2644A03250	\boxtimes
Power Meter	Agilent	E4418B	3318A13916	
Power Sensor	HP	8485A	3318A13916	
VHF Precision Dipole Antenna (TX & RX)	Schwarzbeck	VHAP	1014 & 1015	
UHF Precision Dipole Antenna (TX & RX)	Schwarzbeck	UHAP	989 & 990	
Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9160	3141	\boxtimes
Biconical Antenna	Schwarzbeck	VHA9103	2265	\boxtimes
Log-Periodic Antenna	Schwarzbeck	UHALP9107	1819	\boxtimes
Horn Antenna	AH Systems	SAS-200/571	304	\boxtimes
Horn Antenna	ETS-LINDGREN	3115	00040723	
Horn Antenna	ETS-LINDGREN	3115	00056768	
Vector Signal Generator	Agilent	E4438C	MY42080359	
Signal Generator	HP	8349B	2644A03250	
DC Power Supply	HP	6634A	2926A-01078	\boxtimes
DC Power Supply	HP	6268B	2542A-07856	
Digital Multimeter	HP	HP3458A	2328A14389	\boxtimes
PCS Interface	HP	83236B	3711J00881	
CDMA Mobile Test Set	HP	8924C	US35360253	
Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	\boxtimes
Temperature/Humidity Chamber	All Three	ATH-50M	20030425	

2.3 Test Date

Date of Application: July 12, 2005

Date of Test : July 28, 2005 ~ August 3, 2005

2.4 Test Environment

See each test item's description.

Page 6 of 42

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The product specification described herein was obtained from the product data sheet or user's manual.

3.1 Rating and Physical Characteristics

Type / Model No.	Bluetooth Stereo Headset / OBH-0110
Power source	DC 3.7V (Polymer Lithium-ion battery)
Local Oscillator or X-Tal	X-Tal: 26 MHz
Transmit Frequency	2402 ~ 2480 MHz (1MHz step, 79 channels)
Antenna Type	Internal (Inverted F PCB Antenna, Gain 0 dBi)
Type of Modulation	FHSS (GFSK)
RF Output power	< 4dBm
External Ports	USB for charging the battery

3.2 Equipment Modifications

None

3.3 Submitted Documents

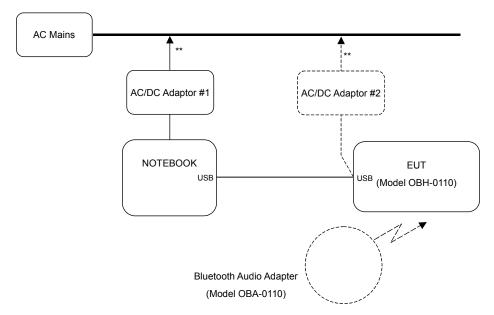
Block diagram

Schematic diagram

Antenna Specification

Part List

User manual



Page 7 of 42

4. MEASUREMENT CONDITIONS

4.1 Description of test configuration

The measurements were taken in continuous transmitting mode controlling the EUT via USB interface so that the operating frequency of the EUT could be changed with the frequency hopping turned off.

^{**} For conducted emissions measurements, both tested; The EUT was DIRECTLY powered from the LISN port through the AC/DC Adaptor and operated in normal operational condition paring with Bluetooth Audio Adapter (Model OBA-0110), and the EUT was INDIRECTLY powered from the LISN port (to which the NOTEBOOK was connected).

4.2 List of Peripherals

Equipment Type	Manufacturer	Model	Cable Spec.
NOTEBOOK	Trigem	Dreambook	USB, unshielded, 1.0 m
AC/DC Adaptor #1	ASUSTek COMPUTER INC.	ADP-50SB	TO AC mains: unshielded, 1.8 m TO NOTEBOOK: unshielded, 1.5 m
AC/DC Adaptor #2	Ktec	KSAFB050010W1US	5VDC, Unshielded, 1.8 m
Bluetooth Audio Adapter	OPENBRAIN	OBA-0110	None

4.3 Uncertainty

Measurement Item	Combined Standard Uncertainty Uc	Expanded Uncertainty U = KUc (K = 2)
Conducted RF power	± 1.49 dB	\pm 2.98dB
Radiated disturbance	± 2.37 dB	±4.74dB
Conducted disturbance	± 1.47 dB	± 2.94dB

Page 8 of 42

5. TEST AND MEASUREMENTS

Summary of Test Results

Requirement	CFR 47 Section	RSS Standards	Report Section	Test Result
Antenna Requirement	15.203, 15.247(b)(4)	RSS-Gen, 7.1.4	5.1	PASS
Maximum Peak Output Power	15.247(b)(1), (4)	RSS-210, A8.4 (2)	5.2	PASS
Carrier Frequency Separation	15.247(a)(1)	RSS-210, A8.1 (2)	5.3	PASS
20dB Channel Bandwidth	15.247(a)(1)	RSS-210, A8.1 (2)	5.4	PASS
Number of Hopping Channels	15.247(a)(iii), 15.247(b)(1)	RSS-210, A8.1 (2) RSS-210, A8.4 (2)	5.5	PASS
Time of Occupancy (Dwell Time)	15.247(a)(iii)	RSS-210, A8.1 (2)	5.6	PASS
Spurious Emission, Band Edge, and Restricted bands	15.247(d), 15.205(a), 15.209(a)	RSS-210, A8.5 Table 1, 2, and 3	5.7	PASS
Peak Power Spectral Density	15.247(e)	RSS-210, A8.2	5.8	PASS
Conducted Emissions	15.207(a)	RSS-Gen, 7.2.2	5.9	PASS
Receiver Spurious Emissions	-	RSS-Gen, 7.2.3	5.10	PASS
RF Exposure	15.247(i), 1.1307(b)(1)	RSS-Gen, 5.5 RSS-102	5.11	PASS

5.1 ANTENNA REQUIREMENT

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result: PASS

The transmitter has an integral PCB pattern antenna. The directional gain of the antenna is typically 0 dBi.

Page 9 of 42

5.2 MAXIMUM PEAK OUTPUT POWER

5.2.1 Regulation

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

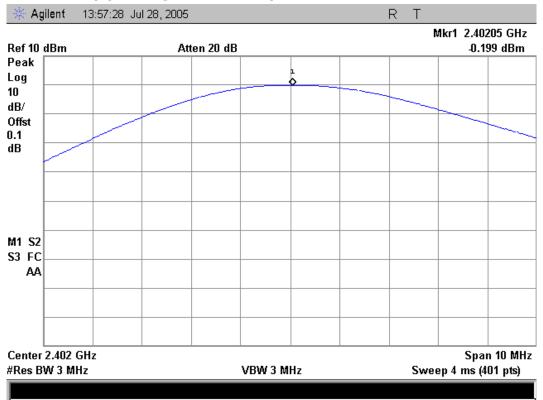
5.2.2 Test Procedure

- 1. Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via USB interface and make sure the spectrum analyzer is operated in its linear range.
- 4. Set the spectrum analyzer to MAX HOLD mode with RBW = 3 MHz.
- 5. Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 6. Repeat above procedures until all frequencies measured were complete.

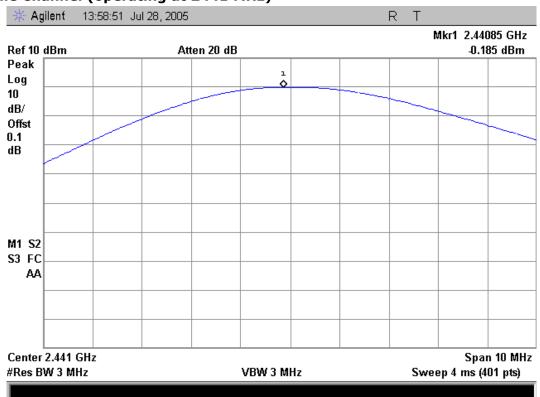
5.2.3 Test Results:

PASS

Table 1: Measured values of the Maximum Peak Output Power (Conducted)					
Operating Frequency	Resolution Bandwidth	Cable Loss	Reading	Limit	
2402 MHz	3 MHz	0.1 dB	-0.199 dBm (0.955 mW)	30 dBm (1 W)	
2441 MHz	3 MHz	0.1 dB	-0.185 dBm (0.958 mW)	30 dBm (1 W)	
2480 MHz	3 MHz	0.1 dB	-0.444 dBm (0.903 mW)	30 dBm (1 W)	

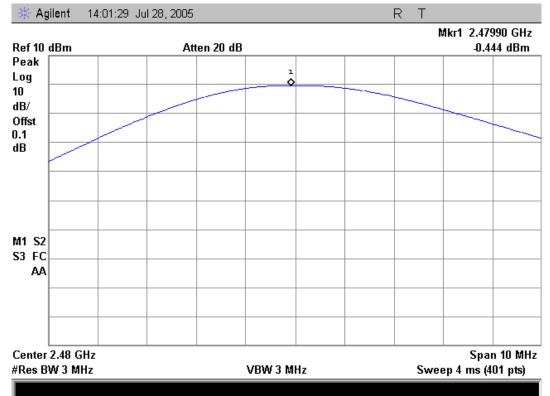

Cable Loss was included in Reading as Offset.

NOTE: Since the directional gain of the PCB pattern antenna declared by manufacturer ($G_{ANT} = 0$ dBi) does not exceed 6.0 dBi, there was no need to reduce the output power.



Page 10 of 42

Figure 1. Plot of the Maximum Peak Output Power (Conducted)
Lowest Channel (operating at 2402 MHz)


Middle Channel (operating at 2441 MHz)

Page 11 of 42

Highest Channel (operating at 2480 MHz)

Page 12 of 42

5.3 CARRIER FREQUENCY SEPARATION

5.3.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

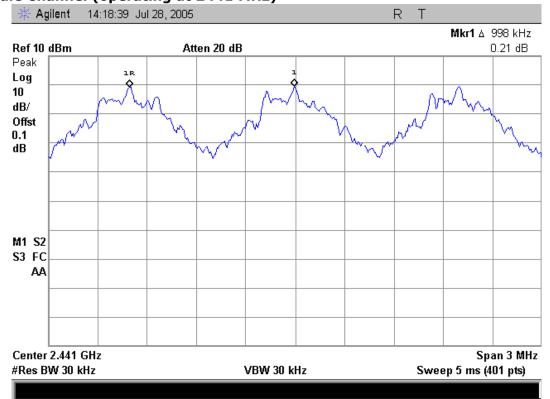
5.3.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via USB interface, and then set the spectrum analyzer to MAX HOLD mode.
- 4. Measure the separation between the peaks of the adjacent channels using the marker-delta function.
- 5. Repeat above procedures until all frequencies measured were complete.

5.3.3 Test Results:

PASS

Table 2: Measured values of the Carrier Frequency Separation (Conducted)				
Operating frequency				
2402 MHz	998 kHz	≥ 25 kHz or 20 dB bandwidth		
2441 MHz	998 kHz	≥ 25 kHz or 20 dB bandwidth		
2480 MHz	998 kHz	≥ 25 kHz or 20 dB bandwidth		



Page 13 of 42

Figure 2. Plot of the Carrier Frequency Separation (Conducted)
Lowest Channel (operating at 2402 MHz)

Page 14 of 42

Highest Channel (operating at 2480 MHz)

Page 15 of 42

5.4 20dB CHANNEL BANDWIDTH

5.4.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.4.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via USB interface and make sure the spectrum analyzer is operated in its linear range.
- 4. Set the spectrum analyzer to MAX HOLD mode and then set a reference level on it equal to the highest peak value.
- 5. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6. Repeat above procedures until all frequencies measured were complete.

5.4.3 Test Results:

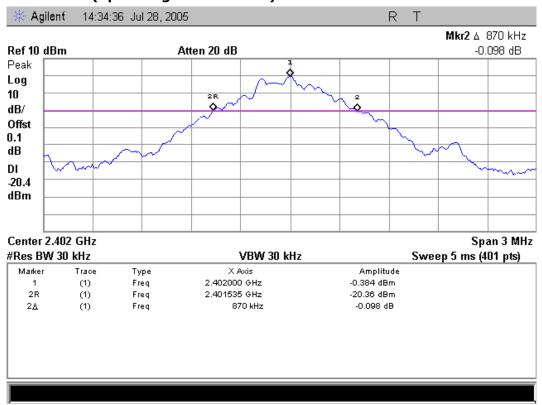
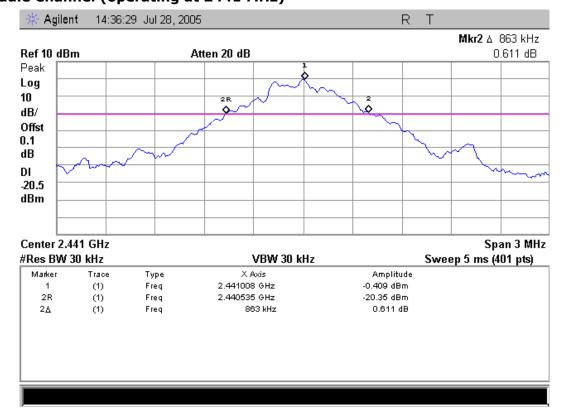
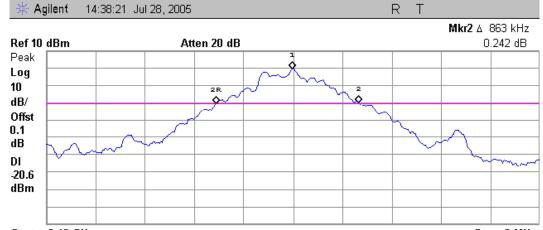

PASS

Table 3: Measured values of the 20dB Channel Bandwidth (Conducted)				
Operating frequency	20dB Channel bandwidth	Limit		
2402 MHz	870 kHz	< 1 MHz		
2441 MHz	863 kHz	< 1 MHz		
2480 MHz	863 kHz	< 1 MHz		



Page 16 of 42

Figure 3. Plot of the 20dB Channel Bandwidth (Conducted)
Lowest Channel (operating at 2402 MHz)


Middle Channel (operating at 2441 MHz)

Page 17 of 42

Highest Channel (operating at 2480 MHz)

 Center 2.48 GHz
 Span 3 MHz

 #Res BW 30 kHz
 VBW 30 kHz
 Sweep 5 ms (401 pts)

	JO KIIL		I D I I OU KITE		onoop o mo (ioi pio)
Marker	Trace	Type	X Axis	Amplitude	
1	(1)	Freq	2.479993 GHz	-0.623 dBm	
2R	(1)	Freq	2.479535 GHz	-20.48 dBm	
2∆	(1)	Freq	863 kHz	0.242 dB	

Page 18 of 42

5.5 NUMBER OF HOPPING CHANNELS

5.5.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.5.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set the hopping function enabled by controlling it via USB interface.
- 4. Set the spectrum analyzer MAX HOLD and record the number of hopping channels.

5.5.3 Test Results:

PASS

Table 4: Measured values of the Number of Hopping Channels (Conducted)								
Operating frequency Number of hopping channels Limit								
2402 - 2480 MHz	79	≥ 15						

Page 19 of 42

Figure 4. Plot of the Number of Hopping Channels (Conducted)

Page 20 of 42

5.6 TIME OF OCCUPANCY (DWELL TIME)

5.6.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

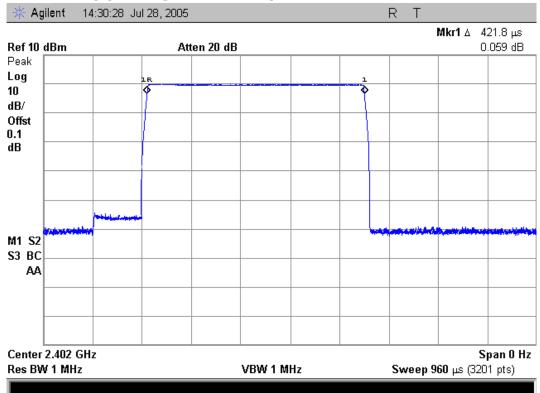
5.6.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via USB interface.
- 4. Set the spectrum analyzer to ZERO SAPN centered on the hopping channel with RBW = 1MHz, and then measure the dwell time using the marker-delta function.
- 6. Repeat above procedures until all frequencies measured were complete.
- 7. Repeat this test for different modes of operation (e.g., data rate, modulation format, etc.), if applicable.

5.6.3 Test Results: PASS

Table 5: M	Table 5: Measured values of the Time of Occupancy (Conducted)									
Operating frequency	Reading	Hopping rate	Number of Channels	Actual	Limit					
2402 MHz	0.4218 ms	800 hops/s	79	0.135 seconds	0.4 seconds					
2441 MHz	0.4218 ms	800 hops/s	79	0.135 seconds	0.4 seconds					
2480 MHz	0.4218 ms	800 hops/s	79	0.135 seconds	0.4 seconds					

Actual = Reading \times (Hopping rate / Number of channels) \times Test period Test period = 0.4 [seconds / channel] \times 79 [channel] = 31.6 [seconds]


NOTE: The EUT makes worst case 1600 hops per second or 1 time slot has a length of $625\mu s$ with 79 channels. A DH1 Packet needs 1 time slot for transmitting and 1 time slot for receiving. Then the EUT makes worst case 800 hops per second with 79 channels.

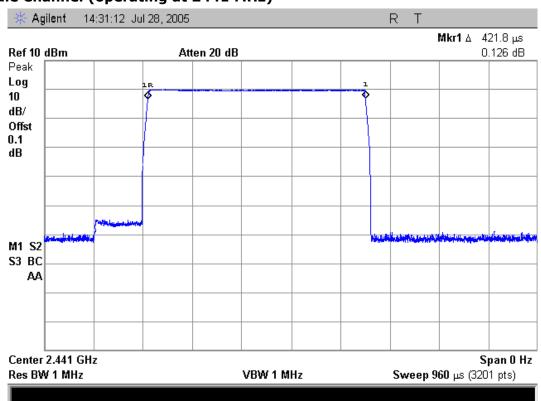
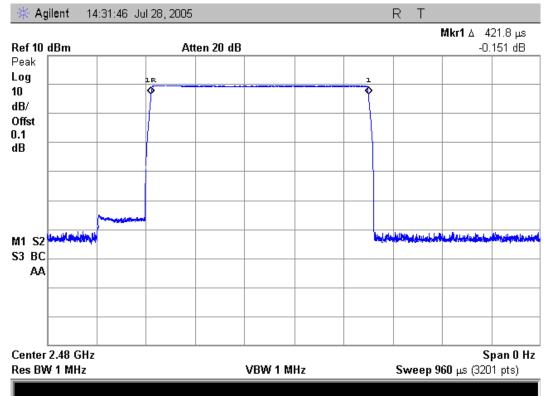

Page 21 of 42

Figure 5. Plot of the Time of Occupancy (Conducted)

Lowest Channel (operating at 2402 MHz)


Middle Channel (operating at 2441 MHz)

Page 22 of 42

Highest Channel (operating at 2480 MHz)

Page 23 of 42

5.7 SPURIOUS EMISSIONS, BAND EDGE, AND RESTRICTED BANDS

5.7.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field strength (µV/m @ 3m)	Field strength (dBµV/m @ 3m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

According to §15.109(a), for an unintentional device, except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the above table.

5.7.2 Test Procedure

- 1) Spurious RF Conducted Emissions:
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via USB interface and make sure the spectrum analyzer is operated in its linear range.
- 4. Set the spectrum analyzer to MAX HOLD mode with RBW = 100kHz, VBW = 100kHz and wide SPAN enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.

^{**} The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector and above 1000 MHz are based on the average value of measured emissions.

Page 24 of 42

- 5. Set the marker on the peak of any spurious emission, and then measure the peak level of the emissions marked, using the spectrum analyzer with RBW = 100kHz, VBW = 100kHz, and SPAN = 100MHz.
- 6. Repeat above procedures until all frequencies measured were complete.

2) Spurious Radiated Emissions:

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters.
- 2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 30 to 1000 MHz using the TRILOG broadband antenna, and from 1000 MHz to 18000 MHz using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 × 4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.

Page 25 of 42

5.7.3 Test Results:

PASS

Frequency [MHz]	Reading [dBm]	Cable Loss [dB]	Actual [dBm]	Limit [dBm]	Margin [dB]
		g at 2402 MHz)			
2402.0	-1.046	0.1	-0.946	-	-
800.0	-53.68	0.1	-53.58	-20.946	32.63
2386.0	-54.54	0.1	-54.44	-20.946	33.49
2400.0	-41.49	0.1	-41.39	-20.946	20.44
4804.0	-44.63	0.2	-44.43	-20.946	23.48
6408.0	-53.40	0.4	-53.00	-20.946	32.05
		at 2441 MHz)			
2441.0	-2.697	0.1	-2.597	-	-
815.0	-51.32	0.1	-51.22	-22.597	28.62
4882.0 6512.0	-41.96 -54.56	0.2	-41.76 -54.16	-22.597 -22.597	19.16 31.56
		g at 2480 MHz)	2.11		
2480.0	-3.24	0.1	-3.14	72 14	75 00
828.0	-48.24 50.72	0.1	-48.14 F0.62	-23.14	25.00
2483.5	-50.72	0.1	-50.62 -49.97	-23.14	27.48
2484.0 2484.5	-50.07 -49.16	0.1	-49.97 -49.06	-23.14 -23.14	26.83 25.92
4960.0	-49.16 -40.39	0.1	-49.06 -40.19	-23.14	17.05
4900.0	-40.39	0.2	-40.19	-23.14	17.03

Actual = Reading + Cable Loss

Remark "---" means the emission level was too low to be measured or in the noise floor.

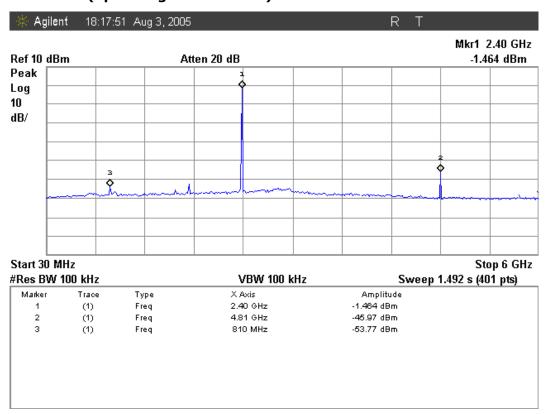
NOTE: All the Reading values were taken using Spectrum Analyzer with RBW=100 kHz, VBW=100 kHz, and SPAN=100 MHz

Page 26 of 42

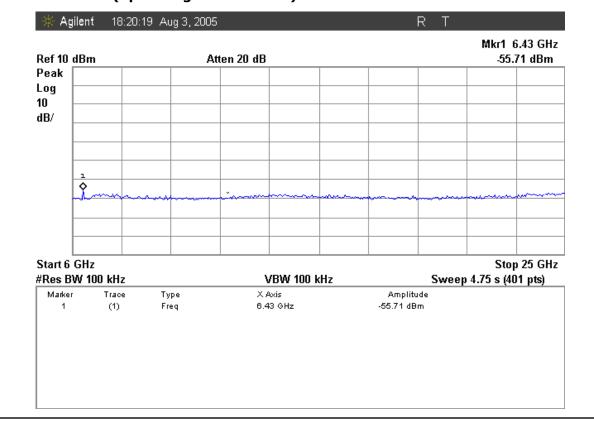
Table 7:	Measured	l val	ues of tl	ne Fiel	ld stren	gth of	spuriou	ıs emiss	ion (Rad	iated)
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Table Angle	Reading	Amp Gain	AF / CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]	_	[°]	[dB(µV)]	[dB]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Quasi-pe	ak data, en	nissi	ons belo	w 1000	MHz					
-	120									
			N	lo Spuri	ious Radi	ated E	missions	Found		
AVERAG	E data, em	issio	ns above	e 1000	MHz					
2402.0	1000	V	1.9	185	80.75	30.1	29.2/7.4	87.25	-	_
2386.0	1000	V	1.9	185	32.43	30.1	29.2/7.4	38.93	54.0	15.07
2441.0	1000	V	1.4	50	78.51	30.1	29.2/7.4	85.01	-	-
2480.0	1000	V	1.7	295	76.47	30.1	29.2/7.4	82.97	-	-
2483.5	1000	V	1.7	295	33.36	30.1	29.2/7.4	39.86	54.0	14.14
2484.0	1000	V	1.7	295	32.75	30.1	29.2/7.4	39.25	54.0	14.75
2484.5	1000	V	1.7	295	32.75	30.1	29.2/7.4	39.25	54.0	14.75
PEAK da	ta, emissio	ns a	1				T	T	T	
2402.0	1000	V	1.9	185	90.90	30.1	29.2/7.4	96.59	-	_
2386.0	1000	V	1.9	185	51.94	30.1	29.2/7.4	58.44	74.0	15.56
2441.0	1000	V	1.4	50	87.81	30.1	29.2/7.4	94.31	-	-
2480.0	1000	V	1.7	295	85.80	30.1	29.2/7.4	92.30	_	
2480.0	1000	V	1.7	295	33.08	30.1	29.2/7.4	59.58	74.0	- 14.42
2483.3	1000	V	1.7	295	52.16	30.1	29.2/7.4	58.66	74.0	15.34
2484.5	1000	V	1.7	295	52.47	30.1	29.2/7.4	58.97	74.0	15.03
2.07.3	1000	, v	-11/	233	32177	JU.1		30.37	7 710	15.05
					ĺ		l			

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + AF + CL]

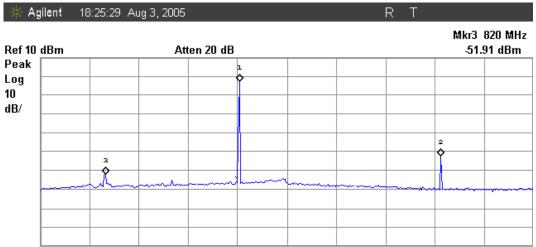

- 1. H = Horizontal, V = Vertical Polarization
- 2. AF/CL = Antenna Factor and Cable Loss

NOTE: The spectrum was scanned from 30 MHz to 18 GHz. All emissions not reported were more than 20 dB below the specified limit or in the noise floor. The measured data in the above table include the spurious radiated emissions that do not fall in the restricted bands.



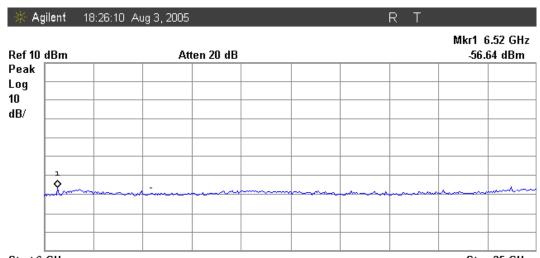
Page 27 of 42

Figure 6. Plot of the RF antenna port emissions (Conducted) Lowest Channel (operating at 2402 MHz): 30MHz ~ 6GHz


Lowest Channel (operating at 2402 MHz): 6GHz ~ 25GHz

Page 28 of 42

Middle Channel (operating at 2441 MHz): 30MHz ~ 6GHz

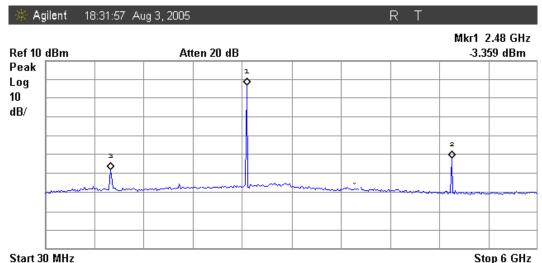


 Start 30 MHz
 Stop 6 GHz

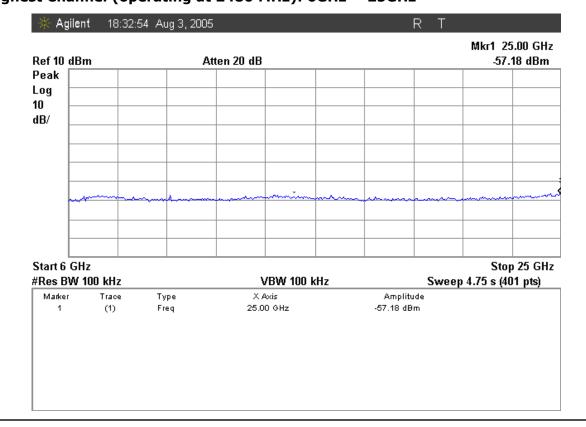
 #Res BW 100 kHz
 VBW 100 kHz
 Sweep 1.492 s (401 pts)

INCS DAY	IOO KIIZ		ADAA 100 KIIT	244 cch 1,425 9 (40 l b	· toj
Marker	Trace	Type	X Axis	Amplitude	
1	(1)	Freq	2.45 GHz	-2.728 dBm	
2	(1)	Freq	4.88 GHz	-42.57 dBm	
3	(1)	Freq	820 MHz	-51.91 dBm	

Middle Channel (operating at 2441 MHz): 6GHz ~ 25GHz



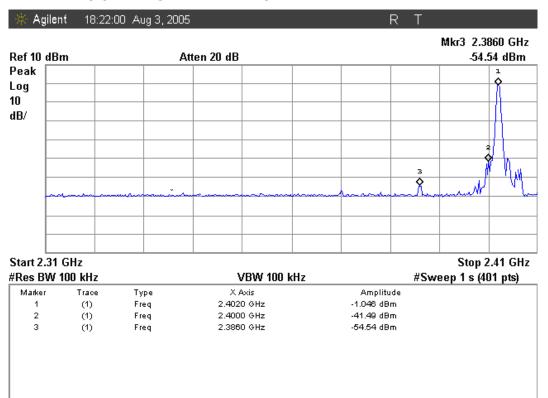
tart 6 GH	lz			Stop 2	25 GH	
Res BW	100 kHz		VBW 100 kHz	Sweep 4.75 s (401	Sweep 4.75 s (401 pts)	
Marker	Trace	Туре	X Axis	Amplitude		
1	(1)	Freq	6.52 GHz	-56.64 dBm		


Page 29 of 42

Highest Channel (operating at 2480 MHz): 30MHz ~ 6GHz

Stop 6 GHz #Res BW 100 kHz VBW 100 kHz Sweep 1.492 s (401 pts) Marker Туре X Axis Amplitude 2.48 GHz -3.359 dBm (1) Freq 2 (1) Freq 4.96 GHz -42.04 dBm 820 MHz -48.29 dBm (1) Freq

Highest Channel (operating at 2480 MHz): 6GHz ~ 25GHz



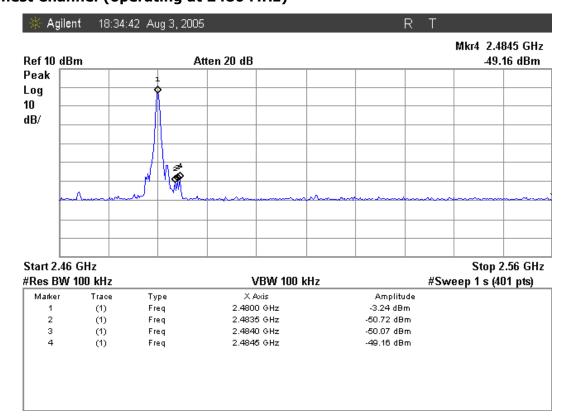
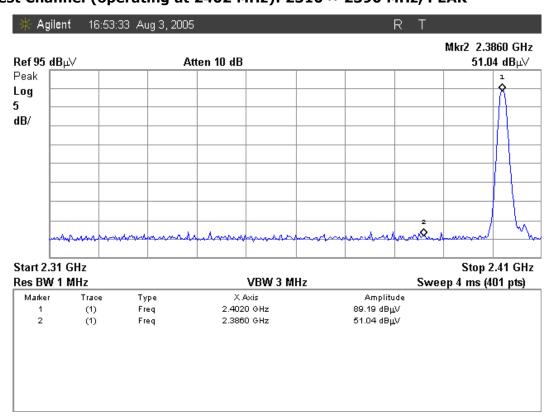
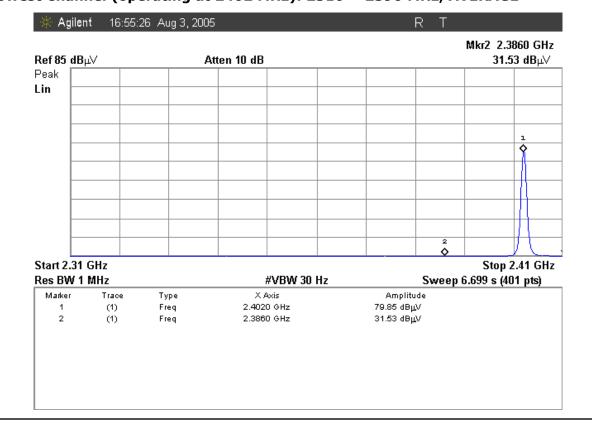

Page 30 of 42

Figure 7. Plot of the Band Edge (Conducted)

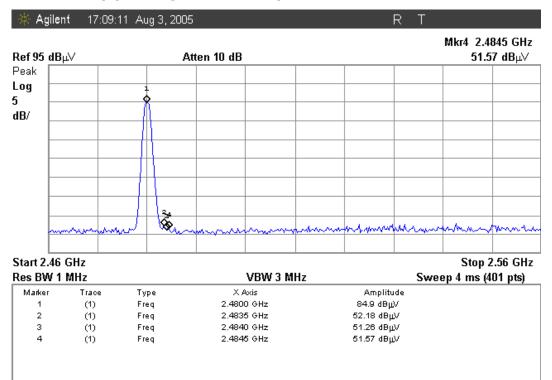
Lowest Channel (operating at 2402 MHz)

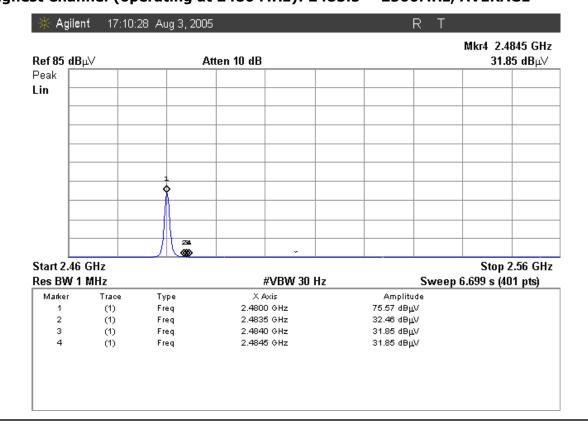

Highest Channel (operating at 2480 MHz)



Page 31 of 42

Figure 8. Plot of the Band Edge (Radiated)
Lowest Channel (operating at 2402 MHz): 2310 ~ 2390 MHz, PEAK


Lowest Channel (operating at 2402 MHz): 2310 ~ 2390 MHz, AVERAGE



Page 32 of 42

Highest Channel (operating at 2480 MHz): 2483.5 ~ 2500MHz, PEAK

Highest Channel (operating at 2480 MHz): 2483.5 ~ 2500MHz, AVERAGE

Page 33 of 42

5.8 PEAK POWER SPECTRAL DENSITY

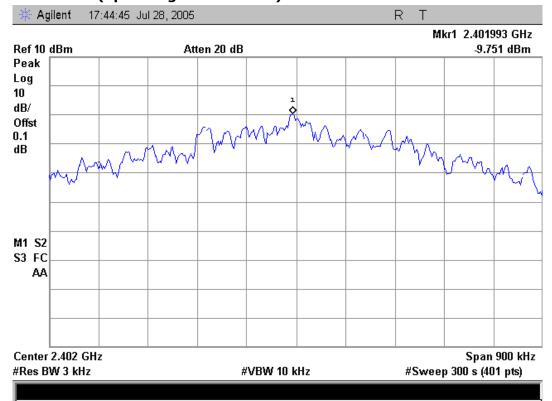
5.8.1 Regulation

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

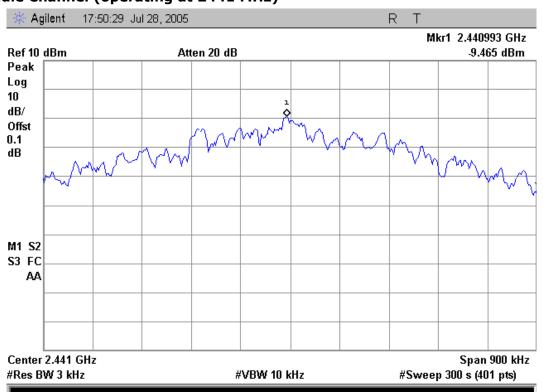
5.8.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 3. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via USB interface and make sure the spectrum analyzer is operated in its linear range.
- 4. Set the spectrum analyzer to MAX HOLD mode with RBW = 3kHz.
- 5. Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 6. Repeat above procedures until all frequencies measured were complete.

5.8.3 Test Results: PASS

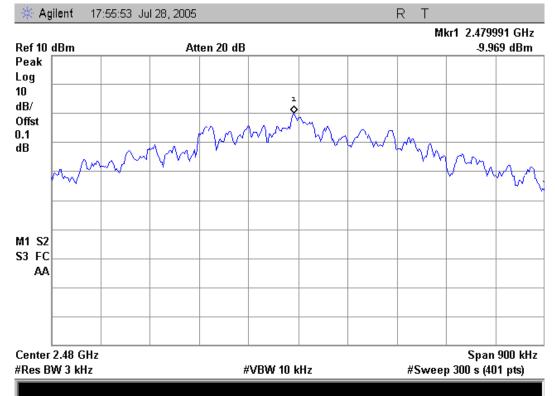

Table 8: Measured values of the Peak Power Spectral Density (Conducted)									
Operating frequency	Cable Loss	Reading	Limit						
2402 MHz	0.1 dB	-9.751 dBm	8.0 dBm						
2441 MHz	0.1 dB	-9.465 dBm	8.0 dBm						
2480 MHz	0.1 dB	-9.969 dBm	8.0 dBm						

Cable Loss was included in Reading as Offset.



Page 34 of 42

Figure 9. Plot of the Peak Power Spectral Density (Conducted)
Lowest Channel (operating at 2402 MHz)


Middle Channel (operating at 2441 MHz)

Page 35 of 42

Highest Channel (operating at 2480 MHz)

Page 36 of 42

5.9 CONDUCTED EMISSIONS

5.9.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Fraguency of omission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Qausi-peak	Average			
0.15 – 0.5	66 to 56 *	56 to 46 *			
0.5 – 5	56	46			
5 – 30	60	50			

^{*} Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

5.9.2 Test Procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
- 5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

Page 37 of 42

5.9.3 Test Results: PASS

Table 9:	Table 9: Measured values of the Conducted Emissions (DIRECTLY)											
Frequency	Reading	Reading [dBµV]	CF/CL	Actual	[dBµV]	Limit [dBµV]		Margin [dB]				
[MHz]	Qp	Ave	[dB]	Qp	Ave	Qp	Ave	Qp	Ave			
	LINE – PE											
0.18	43.56		0.09/0.1	43.75		64.49	54.49	20.74				
0.24	46.18		0.08/0.1	46.36		62.10	52.10	15.74				
0.30	33.64		0.08/0.1	33.82		60.24	50.24	26.42				
0.36	46.72		0.08/0.1	46.90		58.84	48.84	11.94				
0.42	40.13		0.09/0.1	40.32		57.55	47.55	17.23				
0.72	35.91		0.13/0.1	36.14		56.00	46.00	19.86				
0.78	36.60		0.13/0.1	36.83		56.00	46.00	19.17				
0.84	35.85		0.12/0.1	36.07		56.00	46.00	19.93				
1.25	35.10		0.11/0.2	35.41		56.00	46.00	20.59				
1.85	34.69		0.13/0.3	35.12		56.00	46.00	20.88				
	_		1	IEUTRAL	. – PE	_						
0.18	44.14		0.13/0.1	44.37		64.49	54.49	20.12				
0.24	38.56		0.13/0.1	38.79		62.10	52.10	23.31				
0.30	46.34		0.14/0.1	46.58		60.24	50.24	13.66				
0.36	40.60		0.14/0.1	40.84		58.73	48.73	17.89				
0.42	39.46		0.15/0.1	39.71		57.55	47.55	17.84				
0.48	39.42		0.15/0.1	39.67		56.43	46.43	16.76				
0.54	35.60		0.15/0.1	35.85		56.00	46.00	20.15				
0.60	35.36		0.15/0.1	35.61		56.00	46.00	20.39				
0.65	30.93		0.15/0.1	31.18		56.00	46.00	24.82				
1.31	33.96		0.16/0.2	34.32		56.00	46.00	21.68				

Margin (dB) = Limit - Actual [Actual = Reading + CF + CL]

- 1. Remark "---" means the level is undetectable or the Qausi-peak value is lower than the limit of Average.
- 2. CF/CL = Correction Factor and Cable Loss
- 3. Qp = Quasi-peak, Ave = Average value

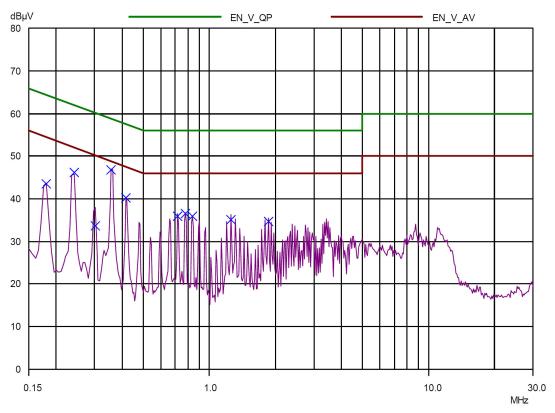
NOTE: The frequency range was scanned from 150 kHz to 30 MHz. All emissions not reported were more than 20 dB below the specified limit.

Page 38 of 42

Table 10:	Measur	ed valu	es of the	Conduc	cted Em	issions	(INDIRE	CTLY)			
Frequency	Reading	[dBµV]	CF/CL	Actual	[dBµV]	Limit [dBµV]	Margi	n [dB]		
[MHz]	Qp	Ave	[dB]	Qp	Ave	Qp	Ave	Qp	Ave		
	LINE – PE										
0.15	44.12		0.09/0.1	44.31		66.00	56.00	21.69			
0.20	43.86		0.08/0.1	44.04		63.61	53.61	19.57			
0.26	30.00		0.08/0.1	30.18		61.43	51.43	31.25			
0.33	33.82		0.08/0.1	34.00		59.45	49.45	25.45			
0.47	28.82		0.09/0.1	29.01		56.60	46.60	27.59			
0.53	20.27		0.10/0.1	20.47		56.00	46.00	35.53			
1.33	26.46		0.11/0.2	26.77		56.00	46.00	29.23			
1.53	26.37		0.12/0.2	26.69		56.00	46.00	29.31			
			N	IEUTRAL	. – PE						
0.15	43.76		0.13/0.1	43.99		66.00	56.00	22.01			
0.20	42.12		0.13/0.1	42.35		63.61	53.61	21.26			
0.27	33.26		0.14/0.1	33.50		61.27	51.27	27.77			
0.33	31.53		0.14/0.1	31.77		59.45	49.45	27.68			
0.47	27.10		0.15/0.1	27.35		56.60	46.60	29.25			
0.60	25.02		0.15/0.1	25.27		56.00	46.00	30.73			
1.26	25.82		0.16/0.2	26.18		56.00	46.00	29.82			
1.46	25.79		0.16/0.2	26.15		56.00	46.00	29.85			

Margin (dB) = Limit - Actual [Actual = Reading + CF + CL]

- 1. Remark "---" means the level is undetectable or the Qausi-peak value is lower than the limit of Average.
- 2. CF/CL = Correction Factor and Cable Loss
- 3. Qp = Quasi-peak, Ave = Average value


NOTE: The frequency range was scanned from $150\ \text{kHz}$ to $30\ \text{MHz}$. All emissions not reported were more than $20\ \text{dB}$ below the specified limit.

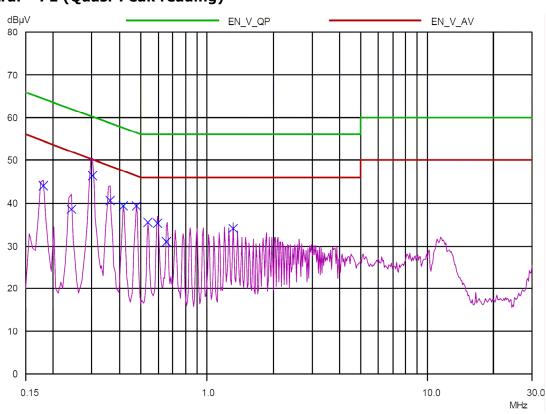
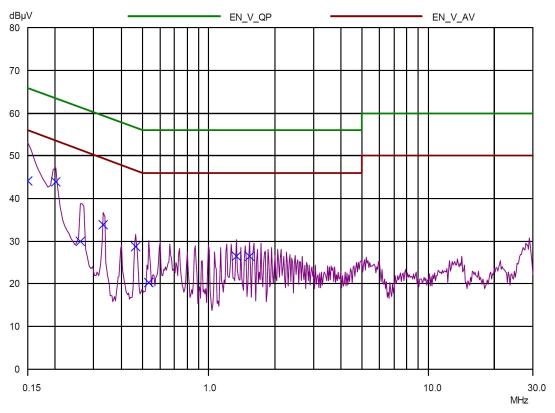

Page 39 of 42

Figure 10. Plot of the Conducted Emissions (DIRECTLY)

Line - PE (Quasi-Peak reading)

Neutral - PE (Quasi-Peak reading)



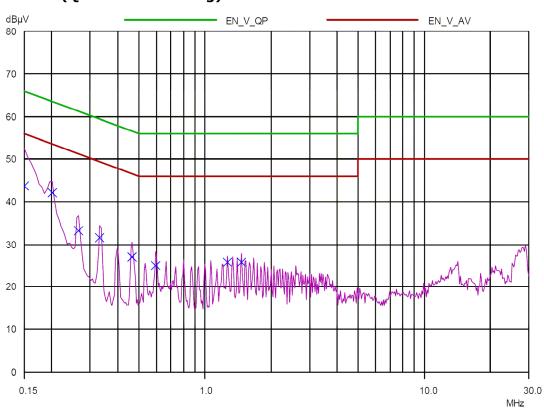

Page 40 of 42

Figure 11. Plot of the Conducted Emissions (INDIRECTLY)

Line - PE (Quasi-Peak reading)

Neutral - PE (Quasi-Peak reading)

Page 41 of 42

5.10 Receiver Spurious Emissions

5.10.1 Regulation

According to RSS-Gen 7.2.3, the following receiver spurious emission limits shall be complied with:

(a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz, and 1.0 MHz for measurements above 1.0 GHz.

Table 1. Spurious Emission Limit for Receivers

Frequency (MHz)	Field strength (μV/m @ 3m)	Field strength (dBµV/m @ 3m)		
30–88	100	40.0		
88–216	150	43.5		
216–960	200	46.0		
Above 960	500	54.0		

^{*} Use quasi-peak below 1000 MHz and averaging meter above 1000 MHz.

5.10.2 Test Results:

PASS

011012 10	ot itoouit	J .				7.00				
Table 11	: Receive	r spı	ırious e	missic	on (Radi	ated)				
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Table Angle	Reading	Amp Gain	AF/CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]	[m]	[°]	[dB(µV)]	[dB]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Receive mode at middle channel 2441 MHz										
118.3	120	Н	1.9	20	46.7	27.9	12.7/1.7	33.2	43.5	10.3
156.1	120	Н	1.9	20	42.1	27.6	14.9/2.0	31.4	43.5	12.1
168.4	120	Н	1.9	20	40.2	27.5	15.4/2.1	30.2	43.5	13.3
191.8	120	Н	1.9	20	40.0	27.4	15.9/2.3	30.8	43.5	12.7

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- 2. AF/CL = Antenna Factor and Cable Loss

NOTE: The spectrum was scanned from 30 MHz to 18 GHz. All emissions not reported were more than 20 dB below the specified limit or in the noise floor. The measured data in the above table include the spurious radiated emissions that do not fall in the restricted bands.

Page 42 of 42

5.11 RF Exposure

5.11.1 Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: According to §1.1310 and §2.1091, RF exposure is calculated.

Frequency Range	Electric Field Strength [V/m]	Magnetic Field Strength [A/m]	Power Density [mW/cm ²]	Averaging Time [minute]			
Limits for General Population/Uncontrolled Exposure							
0.3 ~ 1.34 1.34 ~ 30 30 ~ 300 300 ~ 1500 1500 ~ 15000	614 824/f 27.5 /	1.63 2.19/f 0.073 /	*(100) *(180/f²) 0.2 f/1500 <u>1.0</u>	30 30 30 30 <u>30</u>			

f = frequency in MHz,

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

S = power density [mW/cm²]

P = power input to antenna [mW]

 $\left(\Rightarrow R = \sqrt{PG/4\pi S} \right)$

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna [cm]

EUT: Maximum peak output power = -0.185[dBm] (= <u>0.958 [mW]</u>) & Antenna gain = 0 [dBi]					
100mW, at 20cm from an antenna 6[dBi]	$S = PG/4\pi R^2 = 100 \times 3.98 / (4 \times \pi \times 400)$ = 0.0792 [mW/cm ²] < 1.0 [mW/cm ²]				
0.958mW, at 20cm from the antenna 0 [dBi]	$S = PG/4\pi R^2 = 0.0002 [mW/cm^2] < 1.0 [mW/cm^2]$				
0.958mW, at 2.5cm from the antenna 0 [dBi]	$S = PG/4\pi R^2 = 0.0122 [mW/cm^2] < 1.0 [mW/cm^2]$				
0.958mW, at 0.3cm from the antenna 0 [dBi]	$S = PG/4\pi R^2 = 0.8471 \text{ [mW/cm}^2\text{]} < 1.0 \text{ [mW/cm}^2\text{]}$				

NOTE: The antenna used for the EUT is an integral PCB pattern antenna. The calculated values of MPE for the EUT show that MPE is safe beyond 0.3 cm from the antenna.

5.11.2 RF Exposure Compliance Issue

The EUT is categorically excluded from routine environmental because it operates at very low power level. The equipment is deemed to comply with the SAR or MPE limits without testing due to this very low power level. The maximum RF EIRP output from the EUT is less than 1 mW. If the entire RF power was absorbed by 1 gram of tissue (not possible considering typical RF circuits), the SAR limit of 1.6mW/g would still not be exceed. Therefore no warning labels, no RF exposure warnings in the manual or other protection measures are required for the EUT.

^{* =} Plane-wave equivalent power density