

## FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8 CERTIFICATION TEST REPORT

## **FOR**

## REMOTE CONTROL STARTER SYSTEM

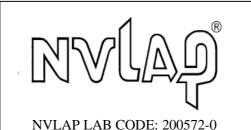
MODEL NUMBER: RS-07AC-1 / RS-08AC-1

FCC ID: TIC-RS07AC1 IC: 2500C-RS07AC1

**REPORT NUMBER: 31JE0182-AP-R1** 

**ISSUE DATE: JULY 8, 2011** 

Prepared for


Honda Access Corp. 4630 Shimotakanezawa, Haga-gun, Tochigi, 321-3393, Japan

Prepared by

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

TEL: +81 596 24 8116 FAX: +81 596 24 8124



This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. \*As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

## **Revision History**

DATE: JULY 8, 2011

|      | Issue    |                                                                                              |            |
|------|----------|----------------------------------------------------------------------------------------------|------------|
| Rev. | Date     | Revisions                                                                                    | Revised By |
|      | 06/29/11 | Initial Issue                                                                                | T.Hatakeda |
|      |          | Revise the sentence regarding uncertainty in Section 4.2                                     |            |
| 1    | 07/08/11 | * This report is a revised version of 30JE0182-AP. 30JE0182-AP is replaced with this report. | T.Hatakeda |

## DATE: JULY 8, 2011 IC: 2500C-RS07AC1

## **TABLE OF CONTENTS**

| 1. | ATT  | ESTATION OF TEST RESULTS          | 4   |
|----|------|-----------------------------------|-----|
| 2. |      | T METHODOLOGY                     |     |
| 3. |      | CILITIES AND ACCREDITATION        |     |
| 4. | CAL  | IBRATION AND UNCERTAINTY          | 5   |
|    | 4.1. | MEASURING INSTRUMENT CALIBRATION  | 5   |
|    | 4.2. | MEASUREMENT UNCERTAINTY           | 5   |
| 5. | EQU  | JIPMENT UNDER TEST                | 6   |
|    | 5.1. | DESCRIPTION OF EUT                | 6   |
|    | 5.2. | MODEL DIFFERENCES                 | 6   |
|    | 5.3. | DESCRIPTION OF AVAILABLE ANTENNAS | 6   |
|    | 5.4. | SOFTWARE AND FIRMWARE             | 6   |
|    | 5.5. | MODIFICATIONS                     | 6   |
|    | 5.6. | WORST-CASE CONFIGURATION AND MODE | 6   |
|    | 5.7. | DESCRIPTION OF TEST SETUP         | 7   |
| 6. | TES  | T AND MEASUREMENT EQUIPMENT       | 9   |
| 7. | LIM  | ITS AND RESULTS                   | .10 |
|    | 7.1. | 20dB & 99% BANDWIDTHS             | .10 |
|    | 7.2. | DUTY CYCLE                        | .13 |
|    | 7.3. | TRANSMISSION TIME                 | .15 |
|    | 7.4. | RADIATED EMISSION TEST RESULTS    | .16 |
|    | 7.5. | RX RADIATED SPURIOUS EMISSION     |     |
| 8. | SET  | UP PHOTOS                         | .21 |

## 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** Honda Access Corp.

4630 Shimotakanezawa, Haga-gun, Tochigi, 321-3393, Japan

**DATE: JULY 8. 2011** 

IC: 2500C-RS07AC1

**EUT DESCRIPTION:** REMOTE CONTROL STARTER SYSTEM

MODEL: RS-07AC-1 (Tested model), RS-08AC-1 (Variant model)

**SERIAL NUMBER:** 001, 002, AND 003

**DATE TESTED:** JUNE 16 AND 17, 2011

#### APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART C PASS
INDUSTRY CANADA RSS-210 ISSUE 8 PASS

UL Japan, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note**: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For UL Japan, Inc. By:

Hatakeda

TAKAHIRO HATAKEDA Leader of WiSE Japan

UL Verification Services

UL Japan, Inc.

Tested By:

KAZUYA YOŚHIOKA Engineer of WiSE Japan UL Verification Services

UL Japan, Inc.

#### 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15, IC RSS-GEN and IC RSS-210.

**DATE: JULY 8. 2011** 

IC: 2500C-RS07AC1

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 4383-326 Asamacho, Ise-shi, Mie-ken 516-0021 JAPAN.

UL Japan, Inc. is accredited by NVLAP, Laboratory Code 200572-0 The full scope of accreditation can be viewed at http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

## 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

#### 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

| Test room            |                | Radiated emission    |                 |                |                 |                   |                       |  |  |  |  |  |  |
|----------------------|----------------|----------------------|-----------------|----------------|-----------------|-------------------|-----------------------|--|--|--|--|--|--|
| (semi-               |                | (3m*)                | ( <u>+</u> dB)  |                | (1m*)           | ( <u>+</u> dB)    | (0.5m*)( <u>+</u> dB) |  |  |  |  |  |  |
| anechoic<br>chamber) | 9kHz<br>-30MHz | 30MHz<br>-<br>300MHz | 300MHz<br>-1GHz | 1GHz<br>-10GHz | 10GHz<br>-18GHz | 18GHz<br>-26.5GHz | 26.5GHz<br>-40GHz     |  |  |  |  |  |  |
| No.1                 | 3.5dB          | 5.1dB                | 5.2dB           | 4.8dB          | 5.1dB           | 4.4dB             | 4.3dB                 |  |  |  |  |  |  |
| No.2                 | 4.0dB          | 5.1dB                | 5.2dB           | 4.8dB          | 5.0dB           | 4.3dB             | 4.2dB                 |  |  |  |  |  |  |
| No.3                 | 4.2dB          | 4.7dB                | 5.2dB           | 4.8dB          | 5.0dB           | 4.5dB             | 4.2dB                 |  |  |  |  |  |  |
| No.4                 | 4.0dB          | 5.0dB                | 5.1dB           | 4.8dB          | 5.0dB           | 5.1dB             | 4.2dB                 |  |  |  |  |  |  |

<sup>\*3</sup>m/1m/0.5m = Measurement distance

## 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

| Equipment Type        | 429.175 MHz Transmitter        |
|-----------------------|--------------------------------|
| Fundamental Frequency | 429.175 MHz                    |
| Power Source          | 3V DC                          |
| Transmitting Time     | Periodic <u>&lt;</u> 5 seconds |
| Manufacturer          | Honda Access Corp.             |

**DATE: JULY 8, 2011** 

IC: 2500C-RS07AC1

#### 5.2. MODEL DIFFERENCES

The difference between RS-07AC-1 and RS-08AC-1 is Software at CPU with some minor different commands. There is no change in radio frequency, RF output power, radio frequency circuitry, Antenna, PCB and functional capabilities.

## 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Chip antenna with a maximum gain of -7 dBi.

#### 5.4. SOFTWARE AND FIRMWARE

Modified the ON switch circuitry to activate either continuous transmitting or receiving

## 5.5. MODIFICATIONS

No modifications were made during testing.

### 5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined by X, Y, and Z-axis. The highest measured output power was at X-axis.

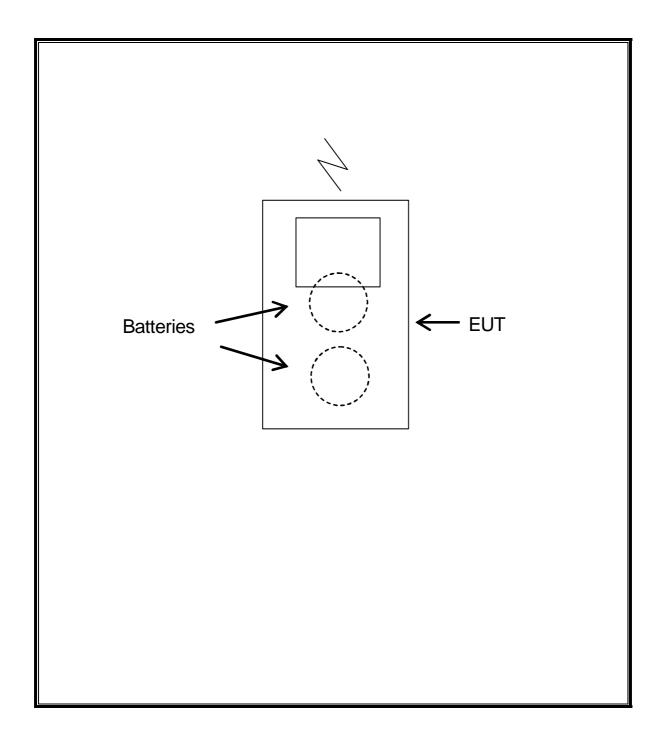
## 5.7. DESCRIPTION OF TEST SETUP

DATE: JULY 8, 2011

IC: 2500C-RS07AC1

## **SUPPORT EQUIPMENT**

N/A


## **I/O CABLES**

N/A

#### **TEST SETUP**

The EUT is stand-alone unit and is battery operated.

## **SETUP DIAGRAM FOR TESTS**



DATE: JULY 8, 2011

Page 8 of 24

## **6. TEST AND MEASUREMENT EQUIPMENT**

The following test and measurement equipment was utilized for the tests documented in this report:

| Control No. | Instrument                    | Manufacturer     | Model No                    | Serial No                    | Calibration Date * Interval(month) |
|-------------|-------------------------------|------------------|-----------------------------|------------------------------|------------------------------------|
| MAEC-02     | Semi Anechoic<br>Chamber(NSA) | TDK              | Semi Anechoic<br>Chamber 3m | DA-06902                     | 2010/09/01 * 12                    |
| MOS-22      | Thermo-Hygrometer             | Custom           | CTH-201                     | 0003                         | 2011/02/23 * 12                    |
| MJM-05      | Measure                       | PROMART          | SEN1955                     | -                            |                                    |
| COTS-MEMI   | EMI measurement program       | TSJ              | TEPTO-DV                    | -                            | -                                  |
| MSA-03      | Spectrum Analyzer             | Agilent          | E4448A                      | MY44020357                   | 2010/11/30 * 12                    |
| MTR-03      | Test Receiver                 | Rohde & Schwarz  | ESCI                        | 100300                       | 2011/04/15 * 12                    |
| MBA-02      | Biconical Antenna             | Schwarzbeck      | BBA9106                     | VHA91032008                  | 2010/10/11 * 12                    |
| MLA-02      | Logperiodic<br>Antenna        | Schwarzbeck      | USLP9143                    | 201                          | 2010/10/11 * 12                    |
| MCC-12      | Coaxial Cable                 | Fujikura/Agilent | -                           | -                            | 2011/02/18 * 12                    |
| MAT-07      | Attenuator(6dB)               | Weinschel Corp   | 2                           | BK7970                       | 2010/11/05 * 12                    |
| MPA-09      | Pre Amplifier                 | Agilent          | 8447D                       | 2944A10845                   | 2010/09/09 * 12                    |
| MHA-06      | Horn Antenna 1-<br>18GHz      | Schwarzbeck      | BBHA9120D                   | 254                          | 2011/01/16 * 12                    |
| MPA-10      | Pre Amplifier                 | Agilent          | 8449B                       | 3008A02142                   | 2010/09/30 * 12                    |
| MCC-56      | Microwave Cable               | Suhner           | SUCOFLEX104                 | 270875/4(1m) /<br>284655(5m) | 2011/03/02 * 12                    |

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

#### 7. LIMITS AND RESULTS

#### 7.1. 20dB & 99% BANDWIDTHS

#### **LIMITS**

#### FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

**DATE: JULY 8, 2011** 

IC: 2500C-RS07AC1

#### IC A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

#### **TEST PROCEDURE**

#### **ANSI C63.4**

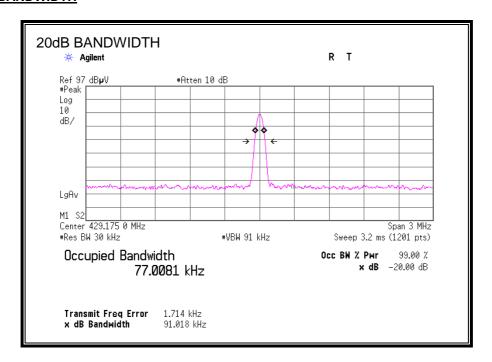
The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 30 KHz. The VBW is set to 91 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

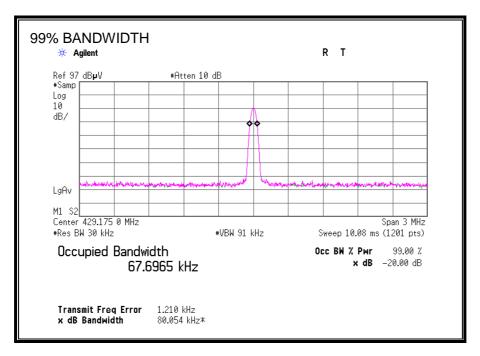
## **RESULTS**

#### 20dB Bandwidth


| Frequency | 20dB Bandwidth | Limit    | Margin   |
|-----------|----------------|----------|----------|
| (MHz)     | (KHz)          | (KHz)    | (KHz)    |
| 429.175   | 91.018         | 1072.938 | -981.920 |

### 99% Bandwidth

| Frequency | 99% Bandwidth | Limit    | Margin    |
|-----------|---------------|----------|-----------|
| (MHz)     | (KHz)         | (KHz)    | (KHz)     |
| 429.175   | 67.697        | 1072.938 | -1005.241 |


Page 10 of 24

## **20dB BANDWIDTH**



DATE: JULY 8, 2011

## 99% BANDWIDTH



### 7.2. DUTY CYCLE

#### **LIMITS**

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

**DATE: JULY 8. 2011** 

IC: 2500C-RS07AC1

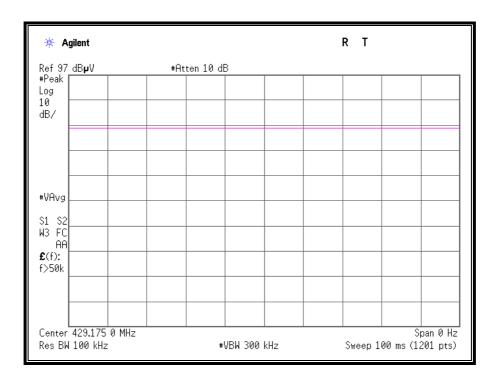
#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

#### **CALCULATION**

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses \* long pulse width) + (# of short pulses \* short pulse width) / 100 or T

### **RESULTS**


(Total)

| ON time | Cycle  | Duty            | Duty |  |  |  |
|---------|--------|-----------------|------|--|--|--|
| [ms]    | [ms]   | (On time/Cycle) | [dB] |  |  |  |
| 100.00  | 100.00 | 1.00            | 0.0  |  |  |  |

<sup>\*1)</sup>Duty = 20log<sub>10</sub>(ON time/Cycle)

## **Duty Cycle**

DATE: JULY 8, 2011



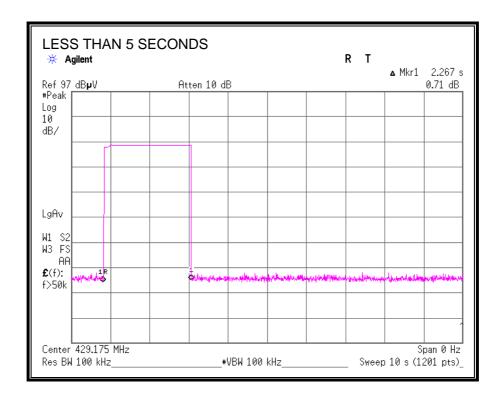
## 7.3. TRANSMISSION TIME

#### **LIMITS**

FCC §15.231 (a) (2)

IC A1.1.1 (b)

A transmitter activated automatically shall cease transmission within 5 seconds after activation.


**DATE: JULY 8, 2011** 

IC: 2500C-RS07AC1

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

#### **RESULTS**



Page 15 of 24

## 7.4. RADIATED EMISSION TEST RESULTS

## FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION

Test place Head Office EMC Lab.

No.2 Semi Anechoic Chamber

**DATE: JULY 8, 2011** 

IC: 2500C-RS07AC1

Report No. 31JE0182-AP Date 06/16/2011

Temperature/ Humidity 21 deg. C / 62% RH Engineer Kazuya Yoshioka Mode Transmitting mode

#### For FCC

| QP or PK  |          |      |      |        |      |      |        |      |      |          |        |      |                     |
|-----------|----------|------|------|--------|------|------|--------|------|------|----------|--------|------|---------------------|
| Frequency | Detector | Rea  | ding | Ant    | Loss | Gain | Duty   | Res  | sult | Limit    | Margin |      | Remark              |
|           |          | [dB  | uV]  | Factor |      |      | Factor | [dBu | V/m] |          | [d     | B]   | Inside or Outside   |
| [MHz]     |          | Hor  | Ver  | [dB/m] | [dB] | [dB] | [dB]   | Hor  | Ver  | [dBuV/m] | Hor    | Ver  | of Restricted Bands |
| 429.175   | QP       | 78.1 | 77.2 | 17.5   | 9.4  | 28.5 | -      | 76.5 | 75.6 | 80.6     | 4.1    | 5.0  | Carrier             |
| 858.350   | QP       | 22.4 | 22.4 | 21.9   | 11.1 | 28.1 | -      | 27.3 | 27.3 | 60.6     | 33.3   | 33.3 | Outside             |
| 1287.525  | PK       | 44.9 | 45.8 | 24.8   | 1.8  | 33.4 | -      | 38.1 | 39.0 | 80.6     | 42.5   | 41.6 | Outside             |
| 1716.700  | PK       | 43.9 | 47.5 | 26.1   | 2.1  | 32.8 | -      | 39.3 | 42.9 | 80.6     | 41.3   | 37.7 | Outside             |
| 2145.875  | PK       | 43.3 | 44.8 | 27.0   | 2.4  | 32.5 | -      | 40.2 | 41.7 | 80.6     | 40.4   | 38.9 | Outside             |
| 2575.050  | PK       | 44.6 | 45.7 | 27.7   | 2.6  | 32.4 | -      | 42.5 | 43.6 | 80.6     | 38.1   | 37.0 | Outside             |
| 3004.225  | PK       | 43.4 | 43.2 | 28.3   | 2.8  | 32.4 | -      | 42.1 | 41.9 | 80.6     | 38.5   | 38.7 | Outside             |
| 3433.400  | PK       | 43.1 | 43.0 | 29.1   | 3.1  | 32.0 | -      | 43.3 | 43.2 | 80.6     | 37.3   | 37.4 | Outside             |
| 3862.575  | PK       | 42.0 | 41.1 | 30.0   | 3.3  | 31.7 | -      | 43.6 | 42.7 | 73.9     | 30.3   | 31.2 | Inside              |
| 4291.750  | PK       | 41.0 | 41.0 | 30.3   | 3.5  | 31.5 | -      | 43.3 | 43.3 | 73.9     | 30.6   | 30.6 | Inside              |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

| Frequency | Detector | Rea  | ding | Ant    | Loss | Gain | Duty   | Res  | sult | Limit    | Ma   | rgin | Remark  |
|-----------|----------|------|------|--------|------|------|--------|------|------|----------|------|------|---------|
|           |          | [dB  | uV]  | Factor |      |      | Factor | [dBu | V/m] |          | [d   | B]   |         |
| [MHz]     |          | Hor  | Ver  | [dB/m] | [dB] | [dB] | [dB]   | Hor  | Ver  | [dBuV/m] | Hor  | Ver  |         |
| 1287.525  | AV       | 44.9 | 45.8 | 24.8   | 1.8  | 33.4 | 0.0    | 38.1 | 39.0 | 60.6     | 22.5 | 21.6 | Outside |
| 1716.700  | AV       | 43.9 | 47.5 | 26.1   | 2.1  | 32.8 | 0.0    | 39.3 | 42.9 | 60.6     | 21.3 | 17.7 | Outside |
| 2145.875  | AV       | 43.3 | 44.8 | 27.0   | 2.4  | 32.5 | 0.0    | 40.2 | 41.7 | 60.6     | 20.4 | 18.9 | Outside |
| 2575.050  | AV       | 44.6 | 45.7 | 27.7   | 2.6  | 32.4 | 0.0    | 42.5 | 43.6 | 60.6     | 18.1 | 17.0 | Outside |
| 3004.225  | AV       | 43.4 | 43.2 | 28.3   | 2.8  | 32.4 | 0.0    | 42.1 | 41.9 | 60.6     | 18.5 | 18.7 | Outside |
| 3433.400  | AV       | 43.1 | 43.0 | 29.1   | 3.1  | 32.0 | 0.0    | 43.3 | 43.2 | 60.6     | 17.3 | 17.4 | Outside |
| 3862.575  | AV       | 42.0 | 41.1 | 30.0   | 3.3  | 31.7 | 0.0    | 43.6 | 42.7 | 53.9     | 10.3 | 11.2 | Inside  |
| 4291.750  | AV       | 41.0 | 41.0 | 30.3   | 3.5  | 31.5 | 0.0    | 43.3 | 43.3 | 53.9     | 10.6 | 10.6 | Inside  |

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amprifier) + Duty factor (Refer to Duty factor data sheet)

<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

#### For IC

| QP or PK  |          |      |      |        |      |      |        |      |      |          |      |      |                     |
|-----------|----------|------|------|--------|------|------|--------|------|------|----------|------|------|---------------------|
| Frequency | Detector | Rea  | ding | Ant    | Loss | Gain | Duty   | Re   | sult | Limit    | Ma   | rgin | Remark              |
|           |          | [dB  | uV]  | Factor |      |      | Factor | [dBu | V/m] |          | [d   | B]   | Inside or Outside   |
| [MHz]     |          | Hor  | Ver  | [dB/m] | [dB] | [dB] | [dB]   | Hor  | Ver  | [dBuV/m] | Hor  | Ver  | of Restricted Bands |
| 429.175   | QP       | 78.1 | 77.2 | 17.5   | 9.4  | 28.5 | -      | 76.5 | 75.6 | 80.6     | 4.1  | 5.0  | Carrier             |
| 858.350   | QP       | 22.4 | 22.4 | 21.9   | 11.1 | 28.1 | -      | 27.3 | 27.3 | 60.6     | 33.3 | 33.3 | Outside             |
| 1287.525  | PK       | 44.9 | 45.8 | 24.8   | 1.8  | 33.4 | -      | 38.1 | 39.0 | 73.9     | 35.8 | 34.9 | Inside              |
| 1716.700  | PK       | 43.9 | 47.5 | 26.1   | 2.1  | 32.8 | -      | 39.3 | 42.9 | 80.6     | 41.3 | 37.7 | Outside             |
| 2145.875  | PK       | 43.3 | 44.8 | 27.0   | 2.4  | 32.5 | -      | 40.2 | 41.7 | 80.6     | 40.4 | 38.9 | Outside             |
| 2575.050  | PK       | 44.6 | 45.7 | 27.7   | 2.6  | 32.4 | -      | 42.5 | 43.6 | 80.6     | 38.1 | 37.0 | Outside             |
| 3004.225  | PK       | 43.4 | 43.2 | 28.3   | 2.8  | 32.4 | -      | 42.1 | 41.9 | 80.6     | 38.5 | 38.7 | Outside             |
| 3433.400  | PK       | 43.1 | 43.0 | 29.1   | 3.1  | 32.0 | -      | 43.3 | 43.2 | 80.6     | 37.3 | 37.4 | Outside             |
| 3862.575  | PK       | 42.0 | 41.1 | 30.0   | 3.3  | 31.7 | -      | 43.6 | 42.7 | 73.9     | 30.3 | 31.2 | Inside              |
| 4291.750  | PK       | 41.0 | 41.0 | 30.3   | 3.5  | 31.5 | -      | 43.3 | 43.3 | 73.9     | 30.6 | 30.6 | Inside              |

DATE: JULY 8, 2011

IC: 2500C-RS07AC1

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

#### PK with Duty factor

| Frequency | Detector | etor Reading |      | Ant    | Loss | Gain | Duty   | Result |      | Limit    | Margin |      | Remark  |
|-----------|----------|--------------|------|--------|------|------|--------|--------|------|----------|--------|------|---------|
|           |          | [dB          | uV]  | Factor |      |      | Factor | [dBu   | V/m] |          | [d     | B]   |         |
| [MHz]     |          | Hor          | Ver  | [dB/m] | [dB] | [dB] | [dB]   | Hor    | Ver  | [dBuV/m] | Hor    | Ver  |         |
| 1287.525  | AV       | 44.9         | 45.8 | 24.8   | 1.8  | 33.4 | 0.0    | 38.1   | 39.0 | 53.9     | 15.8   | 14.9 | Inside  |
| 1716.700  | AV       | 43.9         | 47.5 | 26.1   | 2.1  | 32.8 | 0.0    | 39.3   | 42.9 | 60.6     | 21.3   | 17.7 | Outside |
| 2145.875  | AV       | 43.3         | 44.8 | 27.0   | 2.4  | 32.5 | 0.0    | 40.2   | 41.7 | 60.6     | 20.4   | 18.9 | Outside |
| 2575.050  | AV       | 44.6         | 45.7 | 27.7   | 2.6  | 32.4 | 0.0    | 42.5   | 43.6 | 60.6     | 18.1   | 17.0 | Outside |
| 3004.225  | AV       | 43.4         | 43.2 | 28.3   | 2.8  | 32.4 | 0.0    | 42.1   | 41.9 | 60.6     | 18.5   | 18.7 | Outside |
| 3433.400  | AV       | 43.1         | 43.0 | 29.1   | 3.1  | 32.0 | 0.0    | 43.3   | 43.2 | 60.6     | 17.3   | 17.4 | Outside |
| 3862.575  | AV       | 42.0         | 41.1 | 30.0   | 3.3  | 31.7 | 0.0    | 43.6   | 42.7 | 53.9     | 10.3   | 11.2 | Inside  |
| 4291.750  | AV       | 41.0         | 41.0 | 30.3   | 3.5  | 31.5 | 0.0    | 43.3   | 43.3 | 53.9     | 10.6   | 10.6 | Inside  |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

 $<sup>{}^{*}\</sup>mathrm{Other}$  frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

<sup>\*</sup>The test below1GHz was performed with QP detect because the transmitting duty was 100% on all tests.

## 7.5. RX RADIATED SPURIOUS EMISSION

#### **LIMITS**

IC RSS-Gen Issue 3, section 6

All spurious emissions shall comply with the limits shown below:

| Limits for radiated disturbance of Class B ITE at measuring distance of 3 m |                   |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|
| Frequency range                                                             | Quasi-peak limits |  |  |  |  |  |  |
| (MHz)                                                                       | (dBµV/m)          |  |  |  |  |  |  |
| 30 to 88                                                                    | 40                |  |  |  |  |  |  |
| 88 to 216                                                                   | 43.5              |  |  |  |  |  |  |
| 216 to 960                                                                  | 46                |  |  |  |  |  |  |
| Above 960 MHz                                                               | 54                |  |  |  |  |  |  |
| Note: The lower limit shall apply at the transition frequency.              |                   |  |  |  |  |  |  |

**DATE: JULY 8. 2011** 

IC: 2500C-RS07AC1

#### **TEST PROCEDURE**

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to receive in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

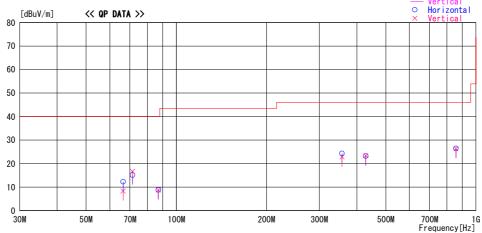
The spectrum from 30 MHz to 5th harmonic is investigated with the transmitter set to the middle channel.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

#### **RESULTS**

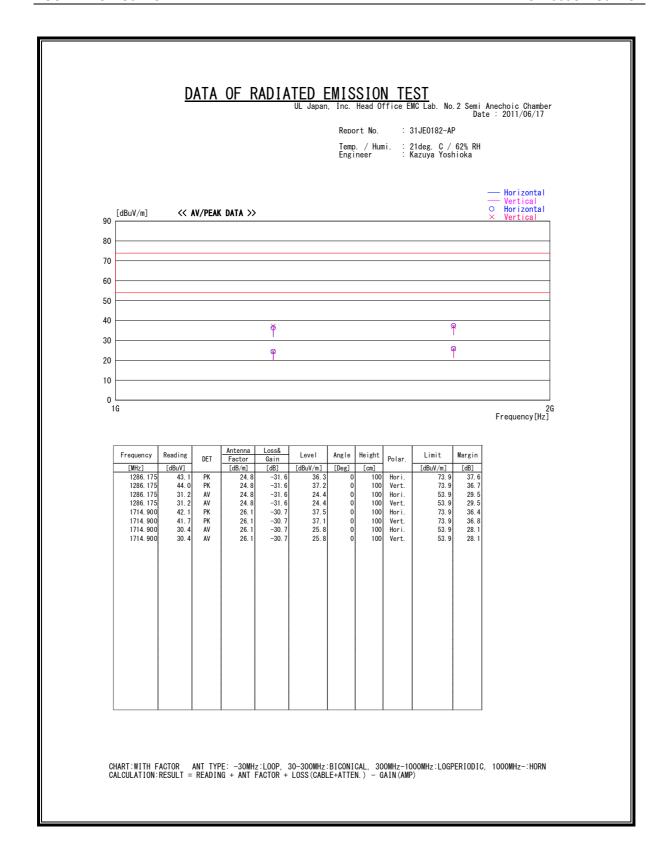
See data

# DATA OF RADIATED EMISSION TEST


UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date : 2011/06/17

: 31JE0182-AP

Temp. / Humi. : 21deg. C / 62% RH Engineer : Kazuya Yoshioka


Report No.

-- Horizontal
-- Vertical
O Horizontal



|                   |        |        | Antenna | Loss&  |          |        | Height Po |        |          |       |
|-------------------|--------|--------|---------|--------|----------|--------|-----------|--------|----------|-------|
| Frequency Reading | DET    | Factor | Gain    | Level  | Angle    | Polar. |           | Limit  | Margin   |       |
| [MHz]             | [dBuV] | , DET  | [dB/m]  | [dB]   | [dBuV/m] | [Deg]  | [cm]      | TOTAL. | [dBuV/m] | [dB]  |
| 66. 450           | 26. 5  | QP     | 7. 2    | -21. 4 | 12. 3    | 0      | 100       | Hori.  | 40.0     | 27. 7 |
| 66. 450           | 22.5   | QP     | 7. 2    | -21.4  | 8. 3     | 0      | 100       | Vert.  | 40.0     | 31.7  |
| 71. 400           | 29.9   | QP     | 6.6     | -21.4  | 15. 1    | 144    | 230       | Hori.  | 40.0     | 24. 9 |
| 71. 400           | 31.5   | QP     | 6.6     | -21.4  | 16. 7    | 74     | 178       | Vert.  | 40.0     | 23. 3 |
| 87. 150           | 22. 2  | QP     | 7.7     | -21.1  | 8. 8     | 0      | 300       | Hori.  | 40. 0    | 31. 2 |
| 87. 150           | 22. 2  | QP     | 7.7     | -21.1  | 8. 8     | 0      | 100       | Vert.  | 40. 0    | 31. 2 |
| 357. 266          | 25.4   | QP     | 16.4    | -19.0  | 22. 8    | 276    | 160       | Vert.  | 46. 0    | 23. 2 |
| 357. 266          | 26. 9  | QP     | 16.4    | -19.0  | 24. 3    | 276    | 100       | Hori.  | 46. 0    | 21.7  |
| 428. 725          | 25.0   | QP     | 17. 5   | -19. 1 | 23. 4    | 281    | 119       | Vert.  | 46. 0    | 22. 6 |
| 428. 725          | 24. 8  | QP     | 17. 5   | -19. 1 | 23. 2    | 259    | 100       | Hori.  | 46. 0    | 22. 8 |
| 857. 450          | 21.5   | QP     | 21.9    | -17. 0 | 26. 4    | 0      | 100       | Vert.  | 46. 0    | 19. 6 |
| 857. 450          | 21.5   | QP     | 21.9    | -17. 0 | 26. 4    | 0      | 100       | Hori.  | 46. 0    | 19. 6 |
|                   |        |        |         |        |          |        |           |        |          |       |

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)



Page 20 of 24