

**FCC CFR47 PART 15 SUBPART C
CERTIFICATION
TEST REPORT**

FOR

REMOTE CONTROL STARTER SYSTEM

MODEL NUMBER: RS-06AC

FCC ID: TIC-RS06AC

REPORT NUMBER: 05I3612-1

ISSUE DATE: AUGUST 18, 2005

Prepared for
HONDA ACCESS CORP.
4630 SHIMOTAKANEZAWA, HAGA-MACHI, HAGA-GUN,
TOCHIGI, 321-3393, JAPAN

Prepared by
COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY ROAD,
MORGAN HILL, CA 95037, USA
TEL: (408) 463-0885
FAX: (408) 463-0888

NVLAP[®]
LAB CODE:200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
A	8/18/05	Initial Issue	Thu
B	8/25/05	Update template	William

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS.....	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. CALIBRATION AND UNCERTAINTY.....	5
4.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	5
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	5
5. EQUIPMENT UNDER TEST.....	6
5.1. <i>DESCRIPTION OF EUT</i>	6
5.2. <i>SOFTWARE AND FIRMWARE</i>	6
5.3. <i>WORST-CASE CONFIGURATION AND MODE.....</i>	6
5.4. <i>DESCRIPTION OF TEST SETUP</i>	6
5.5. <i>DESCRIPTION OF AVAILABLE ANTENNAS.....</i>	6
6. TEST AND MEASUREMENT EQUIPMENT	7
7. LIMITS AND RESULTS	8
7.1. <i>20dB AND 99% BANDWIDTH.....</i>	8
7.2. <i>MAXIMUM MODULATION PERCENTAGE (M%)</i>	11
7.3. <i>LESS THAN 5 SECONDS PLOT</i>	13
7.4. <i>RADIATED EMISSIONS.....</i>	14
7.4.1. <i>TRANSMITTER RADIATED SPURIOUS EMISSIONS</i>	14
7.4.2. <i>RECEIVER SPURIOUS EMISSIONS LIMIT</i>	18
8. SETUP PHOTOS	22

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: HONDA ACCESS CORP.
4630 SHIMOTAKANEZAWA, HAGA-MACHI, HAGA-GUN,
TOCHIGI, 321-3393, JAPAN

EUT DESCRIPTION: REMOTE CONTROL STARTER SYSTEM

MODEL: RS-06AC

SERIAL NUMBER: 01576 & 01578

DATE TESTED: AUGUST 08-12, 2005

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

THU CHAN
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

WILLIAN ZHUUANG
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment Type	429.175 MHz Transceiver
Fundamental Frequency	429.175 MHz
Power Source	3V Battery
Transmitting Time	Periodic \leq 5 seconds
Associated Receiver	RS-06AU
Manufacturer	Circuit Design, Inc.

5.2. SOFTWARE AND FIRMWARE

Modified the ON switch circuitry to activate either continuous transmitting or receiving.

5.3. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined by X, Y, and Z-axis. The highest measured output power was at Z position.

5.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

N/A, The EUT is stand-alone unit and battery operated.

I/O CABLES

N/A, The EUT is stand-alone unit and battery operated.

TEST SETUP

The EUT is stand-alone unit and battery operated.

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

The device uses a Chip antenna with a maximum gain of -7dBi.

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	Cal Due
Antenna, Bilog 30MHz ~ 2Ghz	Sunol Sciences	JB1	A121003	3/3/2006
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	3/29/2006
RF Filter Section	HP	85420E	3705A00256	3/29/2006
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	MY43360112	3/28/2006
EMI Test Receiver	R & S	ESIB40	100192	5/9/2006
Preamplifier, 1 ~ 26 GHz	Miteq	NSP2600-44	646456	8/17/2006
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	4/22/2006

7. LIMITS AND RESULTS

7.1. 20dB AND 99% BANDWIDTH

LIMIT

§15.231 (c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth is just for reporting purpose.

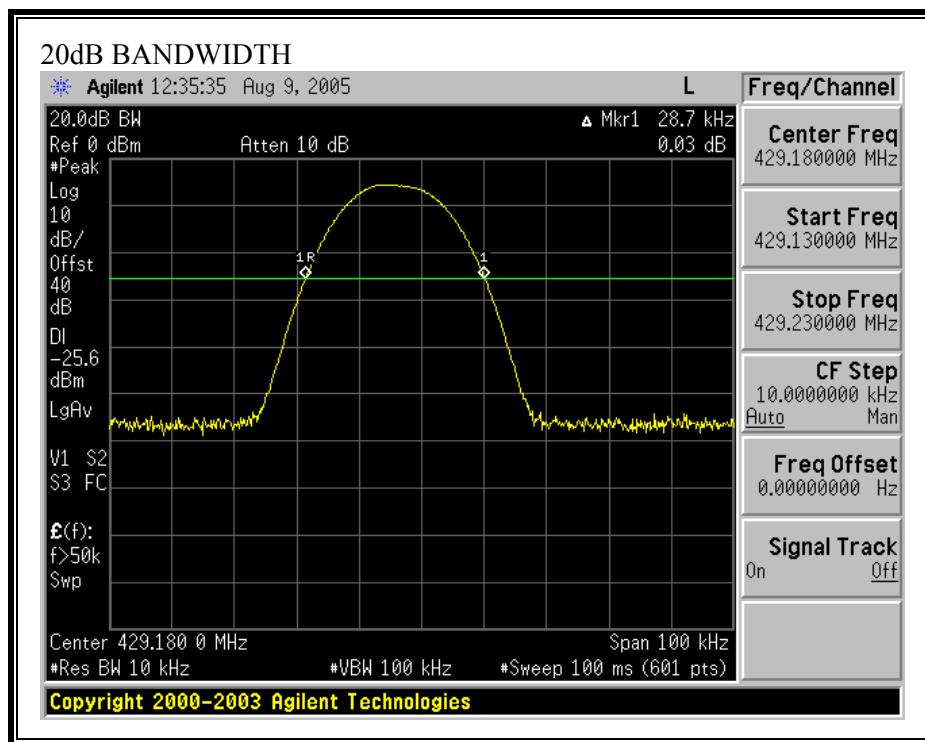
TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer.

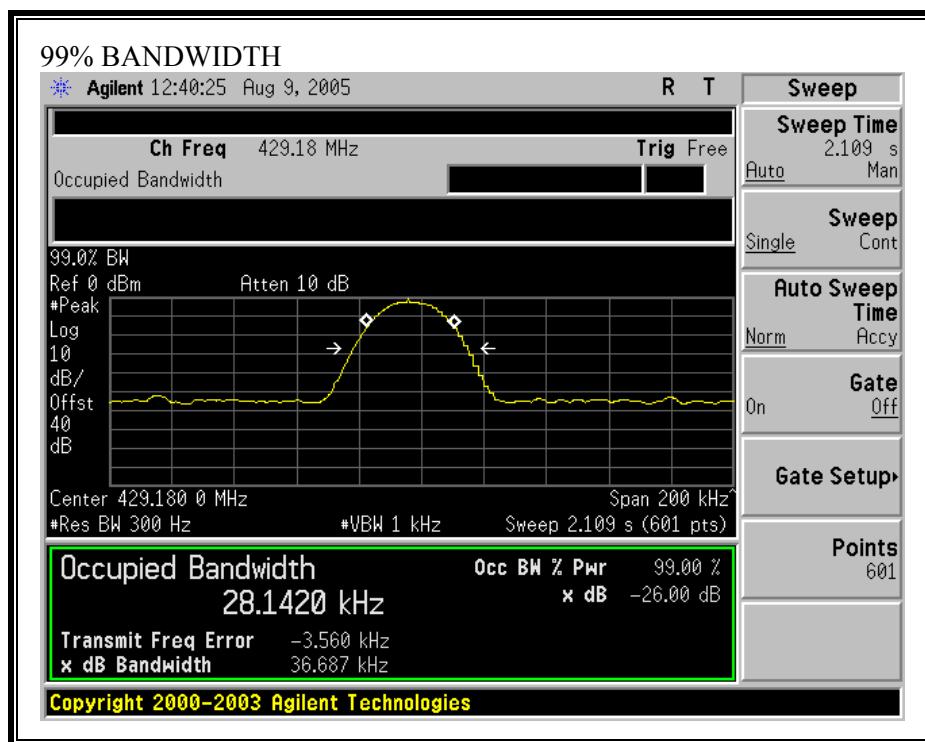
20dB Bandwidth: The RBW is set to 10 KHz. The VBW is set to 100 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


No non-compliance noted:

Frequency (MHz)	20dB Bandwidth (KHz)	Limit (KHz)	Margin (KHz)
429.175	28.7	1072.9	-1044.2


99% Bandwidth

Frequency (MHz)	99% Bandwidth (KHz)	Limit (KHz)	Margin (KHz)
429.175	28.142	1072.9	-1044.8

20dB BANDWIDTH

99% BANDWIDTH

7.2. MAXIMUM MODULATION PERCENTAGE (M%)

LIMIT

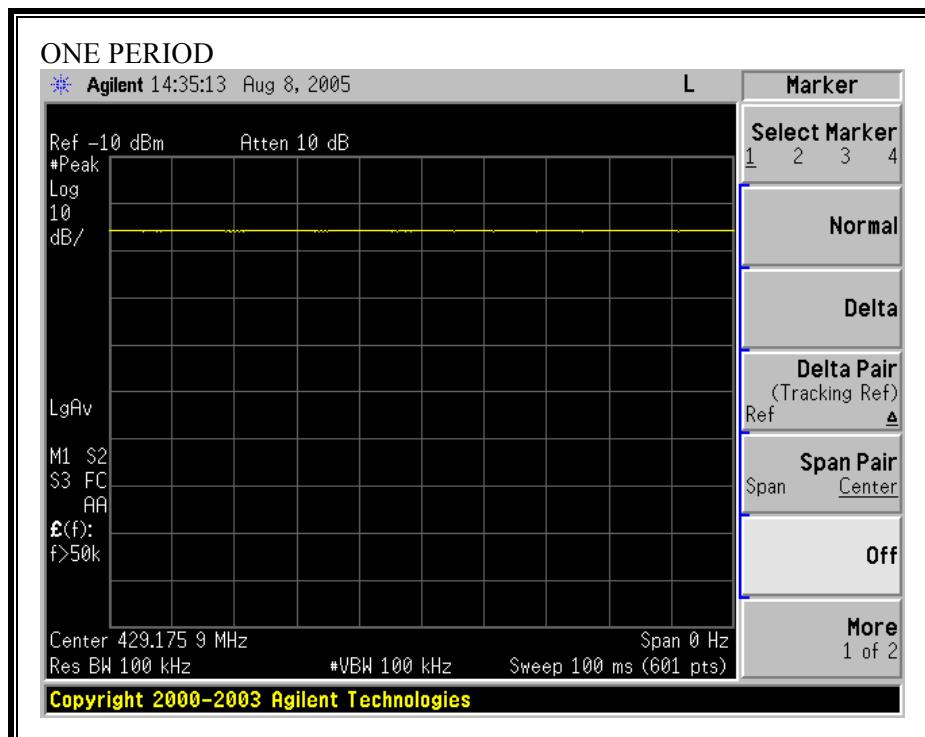
§15.35 (c) the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION:

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is
(# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T


RESULTS

No non-compliance noted:

MAXIMUM MODULATION PERCENTAGE

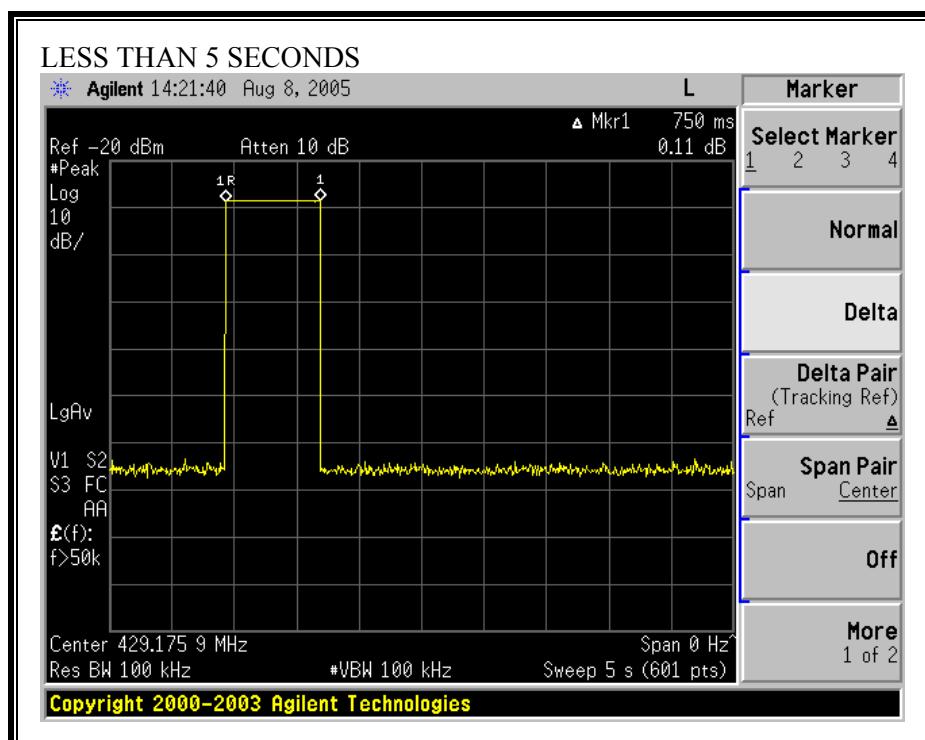
One Period (ms)	Long Pulse Width (ms)	# of Long Pulses	Short Width (ms)	# of Short Pulses	Duty Cycle	20*Log Duty Cycle (dB)
1	1	1	0.00	0	1.00	0.00

ONE PERIOD, MSK MODULATION, 100% DUTY CYCLE

7.3. LESS THAN 5 SECONDS PLOT

LIMIT

§15.231 (a) (1) a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


(a) (2) a transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

7.4. RADIATED EMISSIONS

7.4.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.231 (b) In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental Frequency Spurious Emissions (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	1,000	100
70 - 130	500	50
130 - 174	500 to 1,500 ¹	50 to 150 ¹
174 - 260	1,500	150
260 - 470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

¹Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

FUNDAMENTAL, HARMONICS AND SPURIOUS EMISSIONS 30 – 1000 MHz

ACOMPLIANCE Certification Services		<p>Project #: 05I3612 Report #: 080805-5 Date & Time: 08/08/05 Test Engr: William Zhuang</p>												
<p>FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP 561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888</p>														
<p>Company: Honda Access Corp. EUT Description: Remote control starter system, 429.175 MHz Transmitter Test Configuration: EUT only Type of Test: FCC 15.231b Mode of Operation: Transmitting</p>														
M% = ((t1+t2+t3+...)/T) * 66.83% = 100.0%							Av Reading = Pk Reading + 20*log(M%) 20 * log (M%) = 0.00							
Freq. (MHz)	Pk Rdg (dBuV)	Av Rdg (dBuV)	AF (dB)	Closs (dB)	Pre-amp (dB)	Pk Level (dBuV/m)	Av Level (dBuV/m)	Pk Limit FCC_B	Av Limit FCC_B	Pk Margin (dB)	Avg Margin (dB)	Pol (H/V)	Az (Deg)	Height (Meter)
429.175Mhz Fundamental frequency														
X-Position (EUT Lay down)														
429.18	38.80	38.80	15.72	2.96	0.00	57.48	57.48	100.67	80.67	-43.19	-23.19	3mV	0.00	1.00
429.18	55.60	55.60	15.72	2.96	0.00	74.28	74.28	100.67	80.67	-26.39	-6.39	3mH	0.00	2.50
Y-Position (EUT Standup)														
429.18	42.90	42.90	15.72	2.96	0.00	61.58	61.58	100.67	80.67	-39.09	-19.09	3mV	0.00	1.00
429.18	56.46	56.46	15.72	2.96	0.00	75.14	75.14	100.67	80.67	-25.53	-5.53	3mH	0.00	2.00
Z-Position (EUT Sideway)														
429.18	57.60	57.60	15.72	2.96	0.00	76.28	76.28	100.67	80.67	-24.39	-4.39	3mV	0.00	1.00
429.18	45.20	45.20	15.72	2.96	0.00	63.88	63.88	100.67	80.67	-36.79	-16.79	3mH	0.00	2.00

HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz

<p>08/09/05 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site</p> <p>Test Engr:William Zhuang Project #:05I3612 Company:Honda Access EUT Descrip.:Remote control starter system, 429.175 MHz Transceiver EUT M/N: Test Target:FCC 15.231b Mode Oper:Transmit</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td colspan="4">Horn > 18GHz</td> <td>Limit</td> </tr> <tr> <td>T73; S/N: 6717 @3m</td> <td>T86 Miteq 924341</td> <td></td> <td colspan="4"></td> <td>FCC 15.109</td> </tr> <tr> <td colspan="6">Hi Frequency Cables</td> <td colspan="3">Peak Measurements</td> </tr> <tr> <td>2 foot cable</td> <td>3 foot cable</td> <td>4 foot cable</td> <td>12 foot cable</td> <td>HPF</td> <td>Reject Filter</td> <td colspan="3">RBW=VBW=1MHz</td> </tr> <tr> <td>2_William</td> <td></td> <td></td> <td>12_William</td> <td></td> <td></td> <td colspan="3">Average Measurements</td> </tr> <tr> <td colspan="6"></td> <td colspan="3">RBW=1MHz ; VBW=10Hz</td> </tr> </table> <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist (m)</th> <th>Read Pl dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>Fltr dB</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes (V/H)</th> </tr> </thead> <tbody> <tr> <td>1.288</td> <td>3.0</td> <td>48.0</td> <td>41.9</td> <td>24.8</td> <td>1.5</td> <td>-42.5</td> <td>0.0</td> <td>0.0</td> <td>31.8</td> <td>25.8</td> <td>74</td> <td>54</td> <td>-42.2</td> <td>-28.2</td> <td>V</td> </tr> <tr> <td>1.717</td> <td>3.0</td> <td>70.3</td> <td>53.9</td> <td>26.3</td> <td>1.8</td> <td>-42.6</td> <td>0.0</td> <td>0.0</td> <td>55.8</td> <td>39.4</td> <td>74</td> <td>54</td> <td>-18.2</td> <td>-14.6</td> <td>V</td> </tr> <tr> <td>1.288</td> <td>3.0</td> <td>47.7</td> <td>35.3</td> <td>24.8</td> <td>1.5</td> <td>-42.5</td> <td>0.0</td> <td>0.0</td> <td>31.6</td> <td>19.1</td> <td>74</td> <td>54</td> <td>-42.4</td> <td>-34.9</td> <td>H</td> </tr> <tr> <td>1.717</td> <td>3.0</td> <td>56.0</td> <td>41.6</td> <td>26.3</td> <td>1.8</td> <td>-42.6</td> <td>0.0</td> <td>0.0</td> <td>41.6</td> <td>27.1</td> <td>74</td> <td>54</td> <td>-32.4</td> <td>-26.9</td> <td>H</td> </tr> <tr> <td colspan="15">Note: No other emissions were detected above the system noise floor.</td> </tr> </tbody> </table> <p> f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit </p>															EMCO Horn 1-18GHz	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz				Limit	T73; S/N: 6717 @3m	T86 Miteq 924341						FCC 15.109	Hi Frequency Cables						Peak Measurements			2 foot cable	3 foot cable	4 foot cable	12 foot cable	HPF	Reject Filter	RBW=VBW=1MHz			2_William			12_William			Average Measurements									RBW=1MHz ; VBW=10Hz			f GHz	Dist (m)	Read Pl dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)	1.288	3.0	48.0	41.9	24.8	1.5	-42.5	0.0	0.0	31.8	25.8	74	54	-42.2	-28.2	V	1.717	3.0	70.3	53.9	26.3	1.8	-42.6	0.0	0.0	55.8	39.4	74	54	-18.2	-14.6	V	1.288	3.0	47.7	35.3	24.8	1.5	-42.5	0.0	0.0	31.6	19.1	74	54	-42.4	-34.9	H	1.717	3.0	56.0	41.6	26.3	1.8	-42.6	0.0	0.0	41.6	27.1	74	54	-32.4	-26.9	H	Note: No other emissions were detected above the system noise floor.														
EMCO Horn 1-18GHz	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz				Limit																																																																																																																																																										
T73; S/N: 6717 @3m	T86 Miteq 924341						FCC 15.109																																																																																																																																																										
Hi Frequency Cables						Peak Measurements																																																																																																																																																											
2 foot cable	3 foot cable	4 foot cable	12 foot cable	HPF	Reject Filter	RBW=VBW=1MHz																																																																																																																																																											
2_William			12_William			Average Measurements																																																																																																																																																											
						RBW=1MHz ; VBW=10Hz																																																																																																																																																											
f GHz	Dist (m)	Read Pl dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)																																																																																																																																																		
1.288	3.0	48.0	41.9	24.8	1.5	-42.5	0.0	0.0	31.8	25.8	74	54	-42.2	-28.2	V																																																																																																																																																		
1.717	3.0	70.3	53.9	26.3	1.8	-42.6	0.0	0.0	55.8	39.4	74	54	-18.2	-14.6	V																																																																																																																																																		
1.288	3.0	47.7	35.3	24.8	1.5	-42.5	0.0	0.0	31.6	19.1	74	54	-42.4	-34.9	H																																																																																																																																																		
1.717	3.0	56.0	41.6	26.3	1.8	-42.6	0.0	0.0	41.6	27.1	74	54	-32.4	-26.9	H																																																																																																																																																		
Note: No other emissions were detected above the system noise floor.																																																																																																																																																																	

7.4.2. RECEIVER SPURIOUS EMISSIONS LIMIT

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

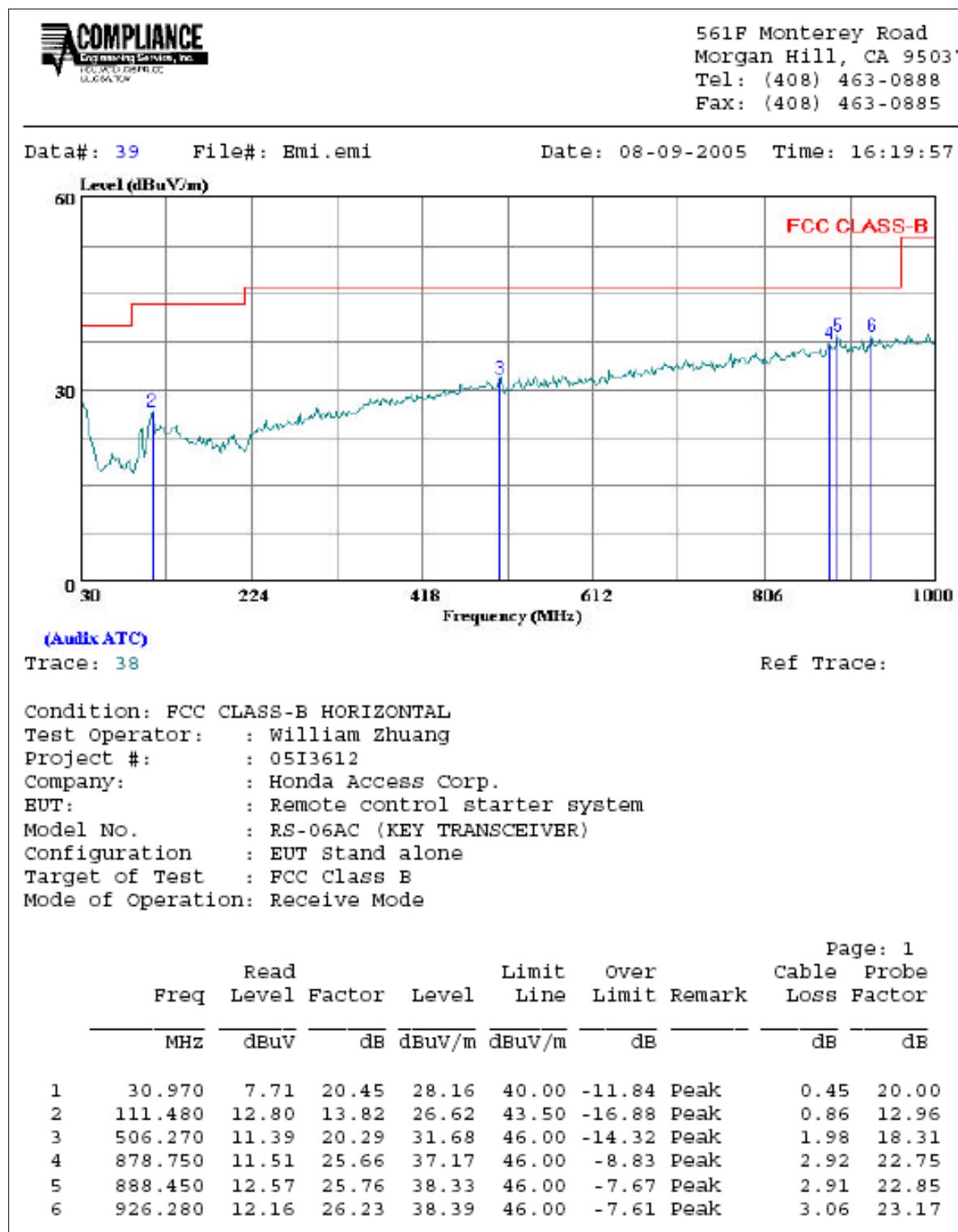
§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to receive in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

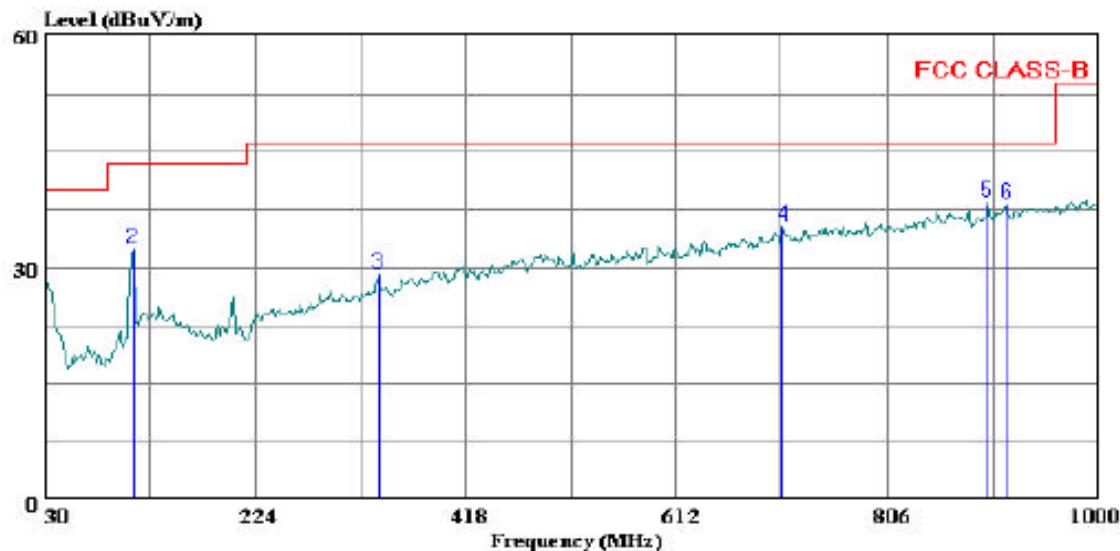
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The spectrum from 30 MHz to 5th harmonic is investigated with the transmitter set to the middle channel.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

No non-compliance noted:


RECEIVER SPURIOUS EMISSIONS 30M - 1GHZ

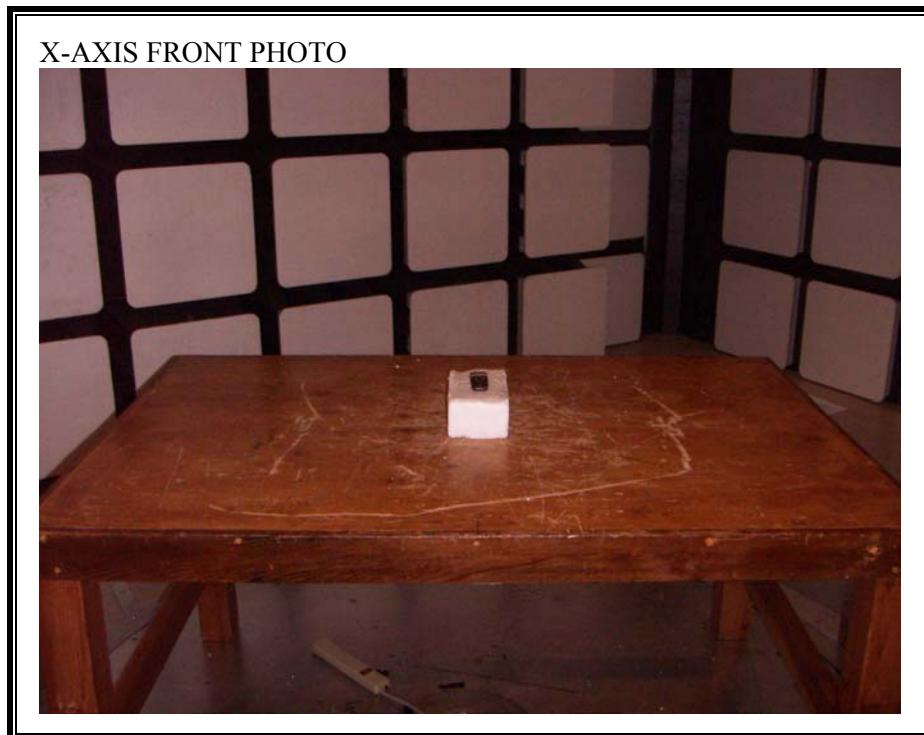
561F Monterey Road
Morgan Hill, CA 95037
Tel: (408) 463-0888
Fax: (408) 463-0885

Data#: 41 File#: Emi.emi Date: 08-09-2005 Time: 16:24:31

(Auxx ATC)

Trace: 40

Ref Trace:


Condition: FCC CLASS-B VERTICAL
Test Operator: : William Zhuang
Project #: : 05I3612
Company: : Honda Access Corp.
EUT: : Remote control starter system
Model No. : RS-06AC (KEY TRANSCEIVER)
Configuration : EUT Stand alone
Target of Test : FCC Class B
Mode of Operation: Receive Mode

Freq	Read		Limit	Over	Page: 1		Cable	Probe	
	Level	Factor			Line	Limit	Remark		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		Loss	Factor
1	31.940	8.42	19.94	28.36	40.00	-11.64	Peak	0.47	19.47
2	111.480	18.65	13.82	32.47	43.50	-11.03	Peak	0.86	12.96
3	337.490	12.55	16.56	29.11	46.00	-16.89	Peak	1.56	15.00
4	710.940	12.07	23.26	35.33	46.00	-10.67	Peak	2.41	20.85
5	897.180	12.65	25.85	38.50	46.00	-7.50	Peak	2.92	22.93
6	914.640	12.14	26.03	38.17	46.00	-7.83	Peak	2.95	23.08

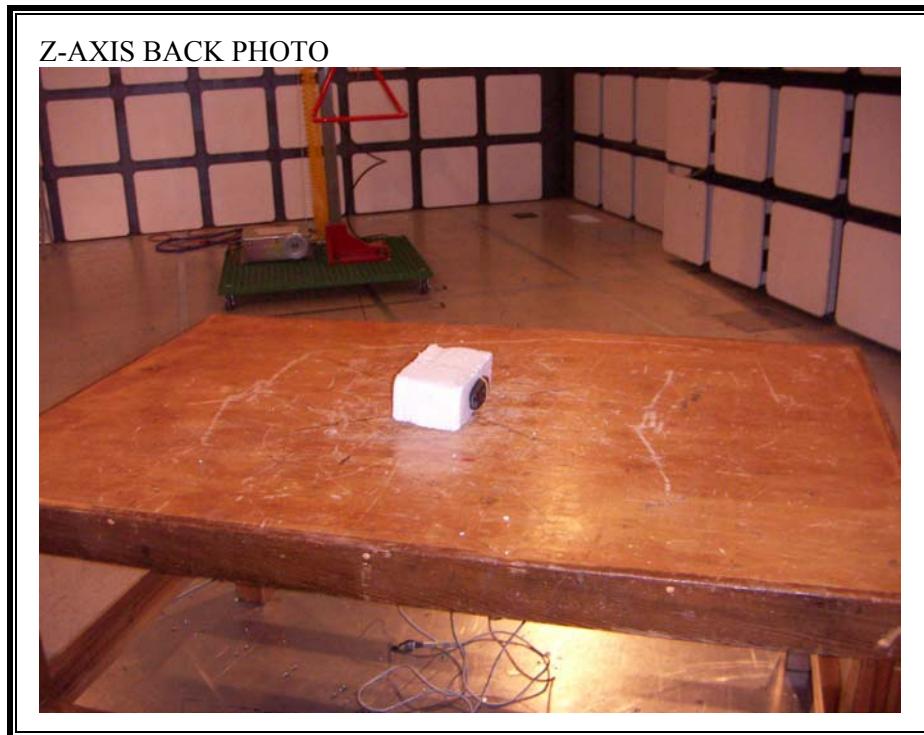
*No other missions were found up to 2GHz.

8. SETUP PHOTOS

RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION

X-AXIS BACK PHOTO

Y-AXIS FRONT PHOTO



Y-AXIS BACK PHOTO

Z-AXIS FRONT PHOTO

END OF REPORT