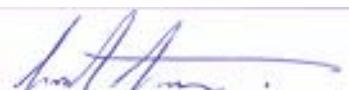


TEST REPORT FROM RFI GLOBAL SERVICES LTD


Test of: Gizmondo Europe Limited.
GZ020.

To: OET Bulletin 65 Supplement C: (2001-01)

Measurements were performed on the DASY4 System

Test Report Serial No:
RFI/SARE3/RP46498JD05A
Supersedes Test Report Serial No:
RFI/SARE2/RP46498JD05A

This Test Report Is Issued Under The Authority
Of Andrew Brown, Operations Manager:

Grant Taylor P.P on behalf of Andrew Brown.

Tested By: Nirav Modi	Checked By: Scott D'Adamo
Report Copy No: PDF01	
Issue Date: 09 August 2005	Test Dates: 06 June 2005

It should be noted that the standard, OET Bulletin 65 Supplement C: (2001-01) is not listed on RFI's current UKAS schedule and is therefore "not UKAS accredited".

This report may be reproduced in full. Partial reproduction may only be made with the written consent of RFI Global Services Ltd

The results in this report apply only to the sample(s) tested.

RFI GLOBAL SERVICES LTD

TEST REPORT
S.No. RFI/SARE3/RP46498JD05A
Page 2 of 48
Issue Date: 09 August 2005

Test Of: **Gizmondo Europe Limited.**
GZ020.

To: **OET Bulletin 65 Supplement C: (2001-01)**

This page has been left intentionally blank.

Test Of: **Gizmondo Europe Limited.
GZ020.**
To: **OET Bulletin 65 Supplement C: (2001-01)**

Table of Contents

1. Client Information	4
2. Equipment Under Test (EUT)	5
3. Deviations from the Test Specification.....	10
4. Operation of the EUT During Testing.....	11
5. Summary of Test Results	12
6. Measurements, Examinations and Derived Results	13
7. SAR Measurement System.....	16
8. SAR Safety Limits	17
9. Details of SAR Evaluation	18
10. Evaluation Procedures	19
11. System Validation	20
12. Simulated Tissues	21
13. Tissue Parameters	22
14. DASY4 Systems Specifications	23
15. Validation Results – 1800 MHz Band (Body)	24
16. Measurement Uncertainty	25
Appendix 1. Test Equipment Used	27
Appendix 2. SAR Distribution Scans	28
Appendix 3. Test Configuration Photograph.....	29
Appendix 4. Calibration Data	31
Appendix 5. Photographs of EUT	33

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

1. Client Information

Company Name:	Gizmondo Europe Limited.
Address:	1 Meadow Gate Avenue Farnborough Business Farnborough Hampshire GU14 6FG
Contact Name:	Mr J Mack

Test Laboratory

Company Name:	RFI Global Services Ltd
Address:	Ewhurst Park Ramsdell Basingstoke Hampshire RG26 5RQ.
Contact Name:	Mr A Brown

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

2. Equipment Under Test (EUT)

The following information (with the exception of the date of receipt) has been supplied by the client:

2.1. Identification of Equipment Under Test (EUT)

Brand Name:	Gizmondo
Model Name or Number:	GZ20 (Build 1.0.0001)
IMEI Number:	350390011249597
FCC Identification:	THGGIZMONDO
Serial Number:	G1F050140007
Battery Date Code:	0505
Country of Manufacture:	China
Date of Receipt:	08 April 2005

2.2. Accessories

Description:	AC / DC Adaptor
Brand Name:	Gizmondo
Model Name or Number:	None Stated
Unique Type Identification:	FW7650 / 151967
Serial Number:	4504B
Battery Serial Number:	Not Applicable
Country of Manufacture:	China
Date of Receipt:	08 April 2005

Description:	USB Data Cable
Brand Name:	None Stated
Model Name or Number:	None Stated
Unique Type Identification:	None Stated
Serial Number:	None Stated
Battery Serial Number:	Not Applicable
Country of Manufacture:	None Stated
Date of Receipt:	08 April 205

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

Accessories (Continued)

Description:	Personal Handsfree (PHF)
Brand Name:	Gizmondo
Model Name or Number:	None Stated
Unique Type Identification:	None Stated
Serial Number:	None Stated
Battery Serial Number:	Not Applicable
Country of Manufacture:	None Stated
Date of Receipt:	08 April 205

2.3. Description of EUT

The equipment under test is a GZ020 GSM / GPS Handheld unit with Bluetooth.

2.4. Modifications Incorporated in the EUT

During the course of testing the EUT was not modified.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

2.5. Additional Information Related to the EUT

Equipment Class:	GSM 1900 / Bluetooth		
FCC Rule Part(s):	OET Bulletin 65 Supplement C		
Device Category:	Portable		
Application Type:	Certification		
Maximum Power Output:	30 dBm		
Transmitter Frequency Range:	1850.0 to 1910.0 MHz		
Transmit Frequency Allocation of EUT When Under Test (Channels):	Channel Number	Channel Description	Frequency (MHz)
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
Modulation(s):	217 Hz		
Modulation Scheme (Crest Factor):	8.3		
Battery Type(s):	Li - Ion		
Antenna Length and Type:	Integral / Unknown		
Number Of Antenna Positions:	1 Fixed		
Intended Operating Environment:	Within GSM Network Coverage		
Weight:	184.10g		
Dimensions (without Antenna) mm:	80 (L) x 140 (W) x 30 (H) mm		
Power Supply Requirement:			
DC Supply (Volts/Amps)	110V to 240V, 50 Hz to 60 Hz, 100mA		
AC Supply (Volts/Amps)	Not Applicable		
Internal Battery Supply:	3.7V Li-Ion		

2.6. Port Identification

Port	Description	Type	Applicable
1	Enclosure	-	Y
2	DC Input	Jack	N
3	PHF	Jack	N
4	Data Cable	USB	N

Test Of: **Gizmondo Europe Limited.
GZ020.**
To: **OET Bulletin 65 Supplement C: (2001-01)**

2.7. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Communications Test Set
Brand Name:	Will'tek
Model Name or Number:	4202S
Serial Number:	0513018
Cable Length And Type:	1m Rosenberger
Connected to Port:	RF In / Out (Antenna)

Description:	Bluetooth Test Set
Brand Name:	Anritsu
Model Name or Number:	MT8852A
Serial Number:	6k00001529
Cable Length And Type:	Not Applicable
Connected to Port:	RF In / Out (Antenna)

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

3.2. Methods and Procedures

The methods and procedures used were as detailed in:

EN 50361: 2001

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

ANSI/IEEE C95.1: 1999

IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz.

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

3.3. Definition Of Measurement Equipment

The measurement equipment used complied with the requirements as detailed in OET Bulletin 65 Supplement C, Appendix D.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

4. Deviations from the Test Specification

None.

Test Of: **Gizmondo Europe Limited.
GZ020.**
To: **OET Bulletin 65 Supplement C: (2001-01)**

5. Operation of the EUT During Testing

5.1. Operating Modes

At the client's request the EUT was tested in the following operating mode(s):

GSM 1900 with Bluetooth active.

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

Stand alone with PHF, AC Adaptor and USB Data Cable Accessories (0mm separation distance).

Test Of: **Gizmondo Europe Limited.**
GZ020.

To: **OET Bulletin 65 Supplement C: (2001-01)**

6. Summary of Test Results

Test Name	Specification Reference	Compliancy Status
Specific Absorption Rate (SAR)	OET Bulletin 65 Supplement C	Complied

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 18 for details of measurement uncertainties.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

7.2. Test Results

7.2.1. Test Results for Specific Absorption Rate

Test Summary:

Maximum Level (W/kg):	0.930
Limit (W/kg):	1.600
Margin (W/kg):	0.670

Environmental Conditions:

Temperature Variation in Lab (°C):	24.0 to 25.0
Temperature Variation in Liquid (°C):	23.3 to 23.6

EIRP before Test:	Refer to section 6.2.2
--------------------------	------------------------

Results:

Position	Section	Channel Number	Level 1g (W/kg)	Limit 1g (W/kg)	Margin 1g (W/kg)	Note(s)	Result
Display of EUT Facing Phantom	Flat	660	0.540	1.600	1.060	-	Complied
Rear of EUT Facing Phantom	Flat	660	0.778	1.600	0.822	-	Complied
Rear of EUT Facing Phantom	Flat	810	0.738	1.600	0.862	-	Complied
Rear of EUT Facing Phantom	Flat	512	0.930	1.600	0.670	-	Complied

Note(s):

1. SAR measurements were performed with the EUT operating in a single transmit channel. However the EUT is capable of transmitting with two transmit channels, GPRS mode. SAR measurements have been multiplied by a factor 2 and the calculated measurement shown in the table of results.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

7.2.2. EIRP Measurement**Date: 06 June 2005**

Channel	Frequency	TX Power before Test / dBm
Bottom	1850.2	25.6
Middle	1879.8	24.0
Top	1909.8	23.6

Note(s):

1. *EIRP measurements are performed before testing only.*

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

8. SAR Measurement System

RFI Global Services Ltd, SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller; teach pendant (Joystick), and remote control. This is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. The data acquisition electronics (DAE) performs signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection etc. The DAE is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Test Of: **Gizmondo Europe Limited.
GZ020.**
To: **OET Bulletin 65 Supplement C: (2001-01)**

9. SAR Safety Limits

Exposure Limits (General Populations/Uncontrolled Exposure Environment)	SAR (W/Kg)
Spatial Peak (averaged over any 1 g of tissue)	1.6

Note(s):

1. *OET Bulletin 65 Supplement C SAR safety limits specified in the table above applies to devices operated in the general population / uncontrolled exposure environment.*
2. *Uncontrolled environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.*

Test Of: **Gizmondo Europe Limited.
GZ020.**
To: **OET Bulletin 65 Supplement C: (2001-01)**

10. Details of SAR Evaluation

The equipment under test was found to be compliant for localised Specific Absorption Rate (SAR) based on the following provisions and conditions:

- a) The EUT was positioned under the flat section of the SAM phantom.
- b) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- c) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- d) The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the EUT.
- e) The EUT was tested with a fully charged battery and AC Adaptor.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

11. Evaluation Procedures

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by FCC OET Bulletin 65 Supplement C.

(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the phantom was used. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 7x7x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

12. System Validation

Prior to the assessment, the system was verified in the flat region of the phantom. An 1800 MHz dipole was used to perform 1900 MHz Body system validation. A forward power of 250 mW was applied to the dipole and system was verified to a tolerance of $\pm 5\%$ for the 1800 MHz dipole. The applicable verification (normalised to 1 Watt) is as follows:

Dipole Validation Kit	Target SAR 1g (W/kg)	Measured SAR 1g (W/kg)
D1800V2 / 264	37.00	37.92

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

13. Simulated Tissues

The body mixture consists of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

Ingredient	Frequency
	1800 MHz (1900 MHz) Body
De-Ionised Water	69.79%
DGMBE	30.00%
Salt	0.20%

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

14. Tissue Parameters

The dielectric parameters of the fluids were verified prior to the SAR evaluation using a 58070C Dielectric Probe Kit and an 8753E network analyser. The dielectric parameters of the fluid are as follows:

Frequency (MHz)	Equivalent Tissue	Dielectric Constant ϵ_r	Conductivity σ (mho/m)
1800	Body	53.53	1.53

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

15. DASY4 Systems Specifications

Robot System

Positioner:	Stäubli Unimation Corp. Robot Model: RX90L
Repeatability:	0.025 mm
No. of Axis:	6
Serial Number:	F00/SD89A1/A/01
Reach:	1185 mm
Payload:	3.5 kg
Control Unit:	CS7
Programming Language:	V+

Data Acquisition Electronic (DAE) System

Cell Controller

PC:	Dell Precision 340
Operating System:	Windows NT
Data Card:	DASY4 Measurement Server
Serial Number:	1080

Data Converter

Features:	Signal Amplifier, multiplexer, A/D converter and control logic.
Software:	DASY4 Software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.

PC Interface Card

Function:	24 bit (64 MHz) DSP for real time processing Link to DAE3 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.
------------------	--

E-Field Probe

Model:	ET3DV6
Serial No:	1528
Construction:	Triangular core fibre optic detection system
Frequency:	10 MHz to 3 GHz
Linearity:	± 0.2 dB (30 MHz to 3 GHz)
Probe Length (mm):	337
Probe Diameter (mm):	12
Tip Length (mm):	10
Tip Diameter (mm):	6.8
Sensor X Offset (mm):	2.7
Sensor Y Offset (mm):	2.7
Sensor Z Offset (mm):	2.7

Phantom

Phantom:	SAM Phantom
Shell Material:	Fibreglass
Thickness:	2.0 \pm 0.1 mm

Test Of: **Gizmondo Europe Limited.
GZ020.**
 To: **OET Bulletin 65 Supplement C: (2001-01)**

16. Validation Results – 1800 MHz Band (Body)

Date: 06 June 2005

16.1. System Validation

Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 1800 MHz	Measured Value of SAR in 1g volume (W/kg) at 1800 MHz	Percentage Difference ($\leq 5\%$)
D1800V2 / 164	37.00	37.92	(+2.50%) Yes

An 1800 MHz dipole was used to perform 1900 MHz body system validation. This was possible as the device centre frequency is within ± 100 MHz of the verification frequency.

15.2 Liquid Properties

Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (1800 MHz)	Measured/Calculated Value (1800 MHz)	Percentage Difference ($\leq 5\%$)
Relative Permittivity	53.30	53.53	(+0.43%) Yes
Conductivity	1.52	1.53	(+0.42%) Yes

15.3 Temperature Variation

The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range +15.0 °C to +30.0 °C.

The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature	Minimum Temperature
Laboratory	25.0	24.0
Tissue Simulating Liquid	23.6	23.3

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

17. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document “approximately” is interpreted as meaning “effectively” or “for most practical purposes”.

Measurement Type	Range	Confidence Level	Calculated Uncertainty
Specific Absorption Rate	1900	95%	± 17.12

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environment. However, the estimated measurement uncertainties in SAR are less than 30%.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ±1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ±2 dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is ±5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ±3 dB.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

Measurement Uncertainty (Continued)

**Specific Absorption Rate Uncertainty at 1900 MHz, GSM Modulation Scheme
calculated in accordance with IEEE 1528-200X**

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i	Standard Uncertainty		v _i or v _{eff}	Note
							+ u (dB μ V)	- u (dB μ V)		
B	Probe calibration	8.900	8.900	normal (k=2)	2.0000	1.0000	4.450	4.450	∞	
B	Axial Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	∞	
B	Hemispherical Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	∞	
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞	
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞	
B	Linearity	2.330	2.330	Rectangular	1.7321	1.0000	1.345	1.345	∞	
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞	
B	Readout Electronics	0.650	0.650	normal (k=2)	2.0000	1.0000	0.325	0.325	∞	
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞	
B	Integration Time	0.005	0.005	Rectangular	1.7321	1.0000	0.003	0.003	∞	
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞	
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞	
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞	
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞	
A	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10	
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10	
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞	
B	Dirt of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Conductivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	∞	
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Permittivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	∞	
	Combined standard uncertainty			t-distribution			8.74	8.74	>500	
	Expanded uncertainty			k = 1.96			17.12	17.12	>500	

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

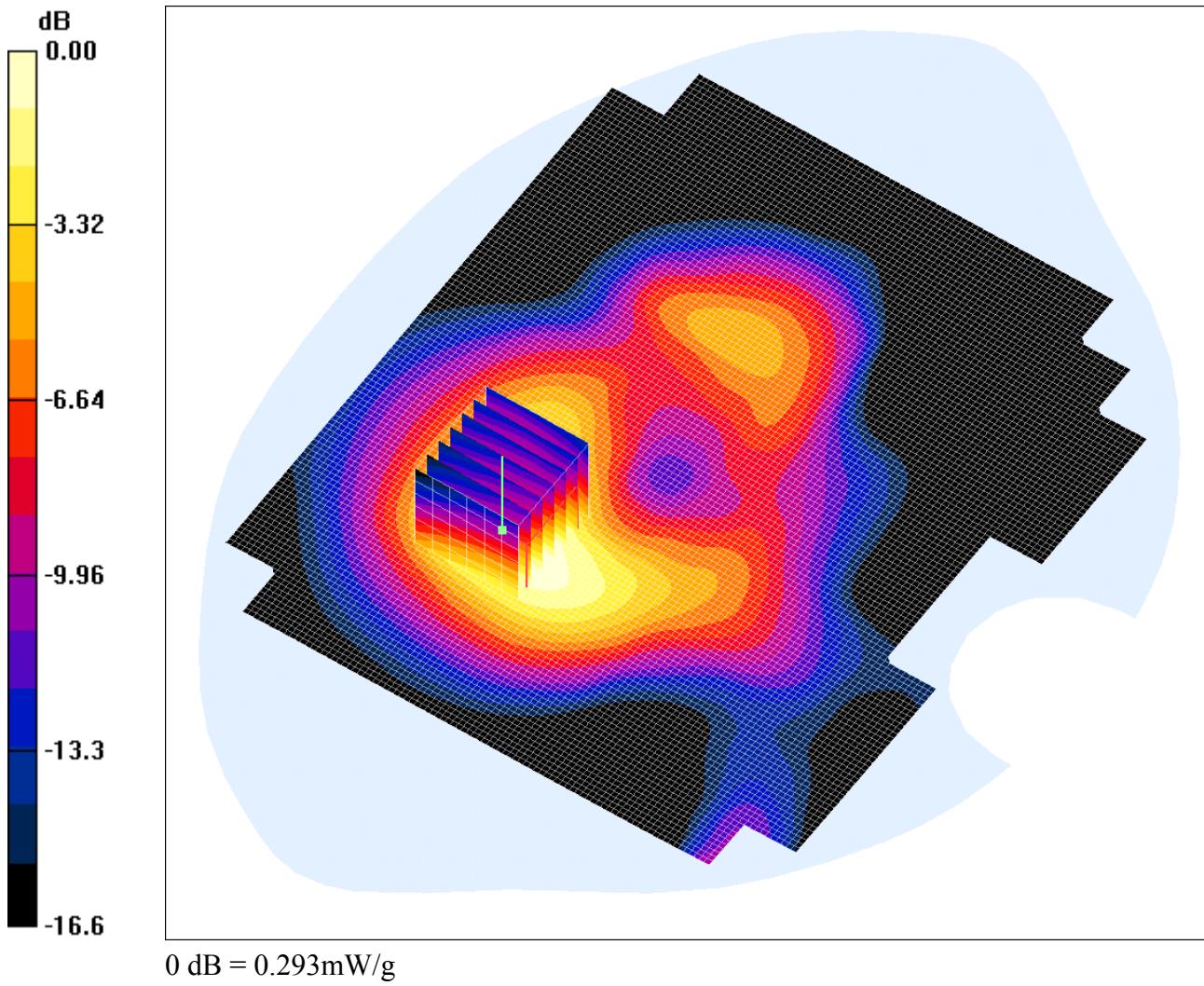
Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.
A034	Narda 20W Termination	Narda	374BNM	8706
A1094	Sony MVC FD-81	Sony	MVC - FD81	125805
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30	None
A1137	3dB Attenuator	Narda	779	04690
A1184	Data Acquisition Electronics	Schmid & Partner	DAE3	394
A1185	Probe	Schmid & Partner	ET3 DV6	1528
A1190	Dipole	Schmid & Partners	D1800V2	264
A1225	Low noise Amplifier	Mini Circuits	ZHL-42	E022601
A1238	SAM Phantom	Schmid & Partners	001	001
A215	20 dB Attenuator	Narda	766-20	9402
A512	Wave Guide Antenna	EMCO	3115	3993
C1025	Rosenberger Cable	Rosenberger	FA210A-1-020m	FA00B 7564
C1052	Cable	Utriflex	FA210A0030M3030	001
C1053	Cable	Utriflex	FA210A0003M3030	001
C1054	Cable	Utriflex	FA210A0001M3050A	001
G046	Signal Generator	Gigatronics	7100/.01-20	749474
G0528	Robot Power Supply	Schmid & Partner	DASY	None
G088	PSU	Thurlby Thandar	CPX200	100700
M011	NRV-Z1 Power Sensor	Rohde & Schwarz	NRV-Z1	882 321/004
M095	URY Power Meter	Rohde & Schwarz	URY	891 491/078
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/A/01
M1093	Communications Test Set	Will'tek	4202S	0513018
M1129	URY-Z2	Rohde & Schwarz	URY-Z2	890242/16
M136	Temperature/Humidity/Pressure Meter	RS Components	None	None
M1149	Bluetooth Test Set	Anritsu	MT8852A	6K00001529
M509	Thermometer	Testo	110	40378800433
S256	Site 56	RFI	N/A	N/A

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

Appendix 2. SAR Distribution Scans


This appendix contains SAR distribution scans.

Scan Reference Number	Title
SCN/46498_05_001	Display of EUT 0mm 1900MHz Middle
SCN/46498_05_002	Rear of EUT_0mm 1900MHz Middle
SCN/46498_05_003	Rear of EUT_0mm 1900MHz Top
SCN/46498_05_004	Rear of EUT 0mm 1900MHz Bottom
SCN/46498_05_Validation 001	System Performance Check-D1800 06/06/05

Date: 06/06/2005

46498_05_001

Test Laboratory: RFI GLOBAL SERVICES LTD.

46498_JD05_001_Display of EUT_0mm_1900MHz_Middle**DUT: Gizmondo Europe Ltd; Type: GZ020; Serial: 350390011249597**

Communication System: DCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1800 MHz MSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.62$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.24, 4.24, 4.24); Calibrated: 15/07/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 13/05/2005
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Display of EUT Facing Phantom_0mm Separation Distance - Middle/Area Scan 2

(131x111x1): Measurement grid: dx=15mm, dy=15mm

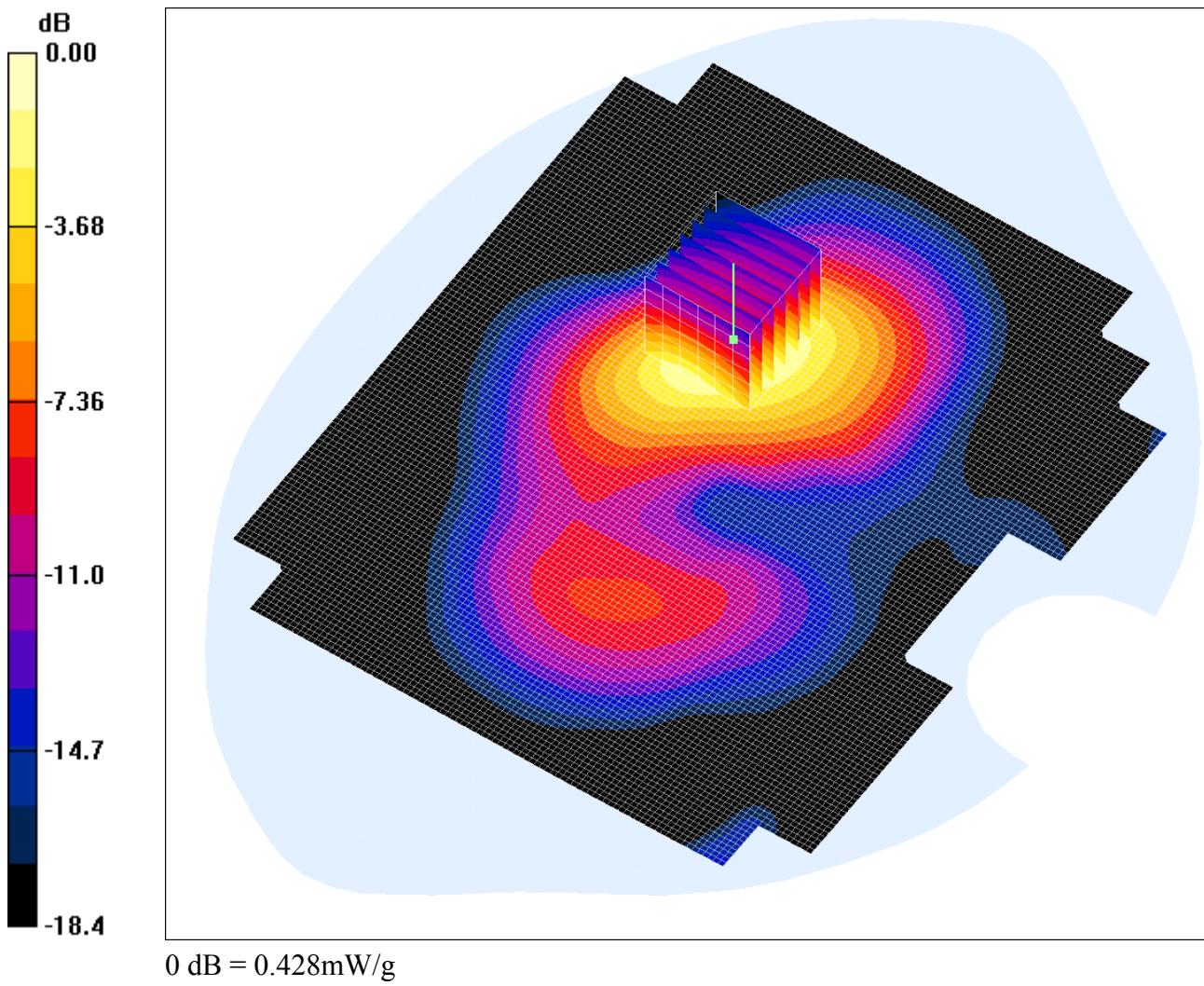
Maximum value of SAR (interpolated) = 0.290 mW/g

Display of EUT Facing Phantom_0mm Separation Distance - Middle/Zoom Scan (7x7x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.36 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.458 W/kg


SAR(1 g) = 0.270 mW/g; SAR(10 g) = 0.160 mW/g

Maximum value of SAR (measured) = 0.293 mW/g

Date: 06/06/2005

46498_05_002

Test Laboratory: RFI GLOBAL SERVICES LTD.

46498_JD05_002_Rear of EUT_0mm_1900MHz_Middle**DUT: Gizmondo Europe Ltd; Type: GZ020; Serial: 350390011249597**

Communication System: DCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3
Medium: 1800 MHz MSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.62$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.24, 4.24, 4.24); Calibrated: 15/07/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 13/05/2005
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear of EUT Facing Phantom_0mm Separation Distance - Middle/Area Scan 2

(131x111x1): Measurement grid: dx=15mm, dy=15mm

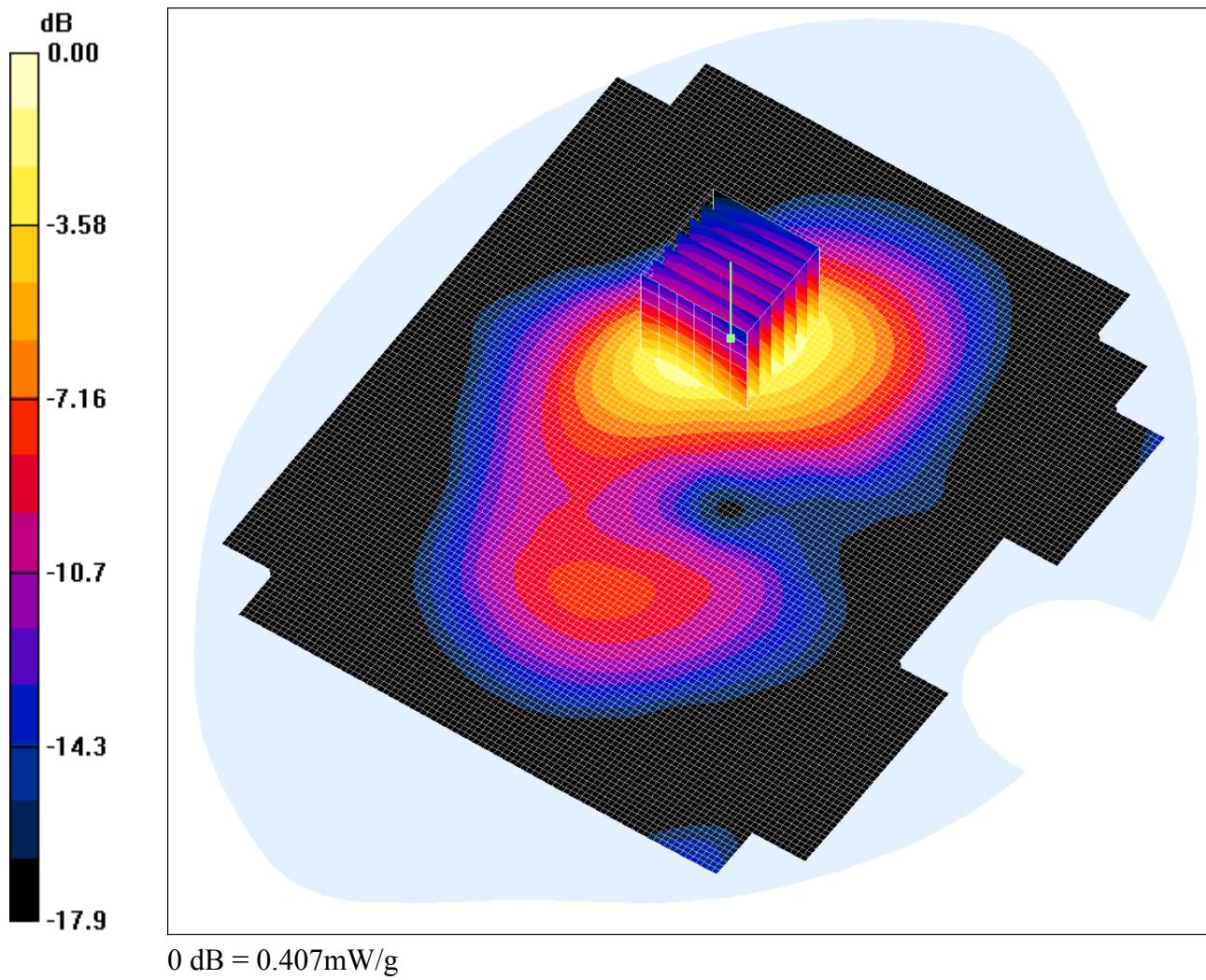
Maximum value of SAR (interpolated) = 0.488 mW/g

Rear of EUT Facing Phantom_0mm Separation Distance - Middle/Zoom Scan (7x7x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.55 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 0.678 W/kg


SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.222 mW/g

Maximum value of SAR (measured) = 0.428 mW/g

Date: 06/06/2005

46498_05_003

Test Laboratory: RFI GLOBAL SERVICES LTD.

46498_JD05_003_Rear of EUT_0mm_1900MHz_Top**DUT: Gizmondo Europe Ltd; Type: GZ020; Serial: 350390011249597**

Communication System: DCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: 1800 MHz MSL Medium parameters used (interpolated): $f = 1909.8$ MHz; $\sigma = 1.66$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.24, 4.24, 4.24); Calibrated: 15/07/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 13/05/2005
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear of EUT Facing Phantom_0mm Separation Distance - Middle/Area Scan 2

(131x111x1): Measurement grid: dx=15mm, dy=15mm

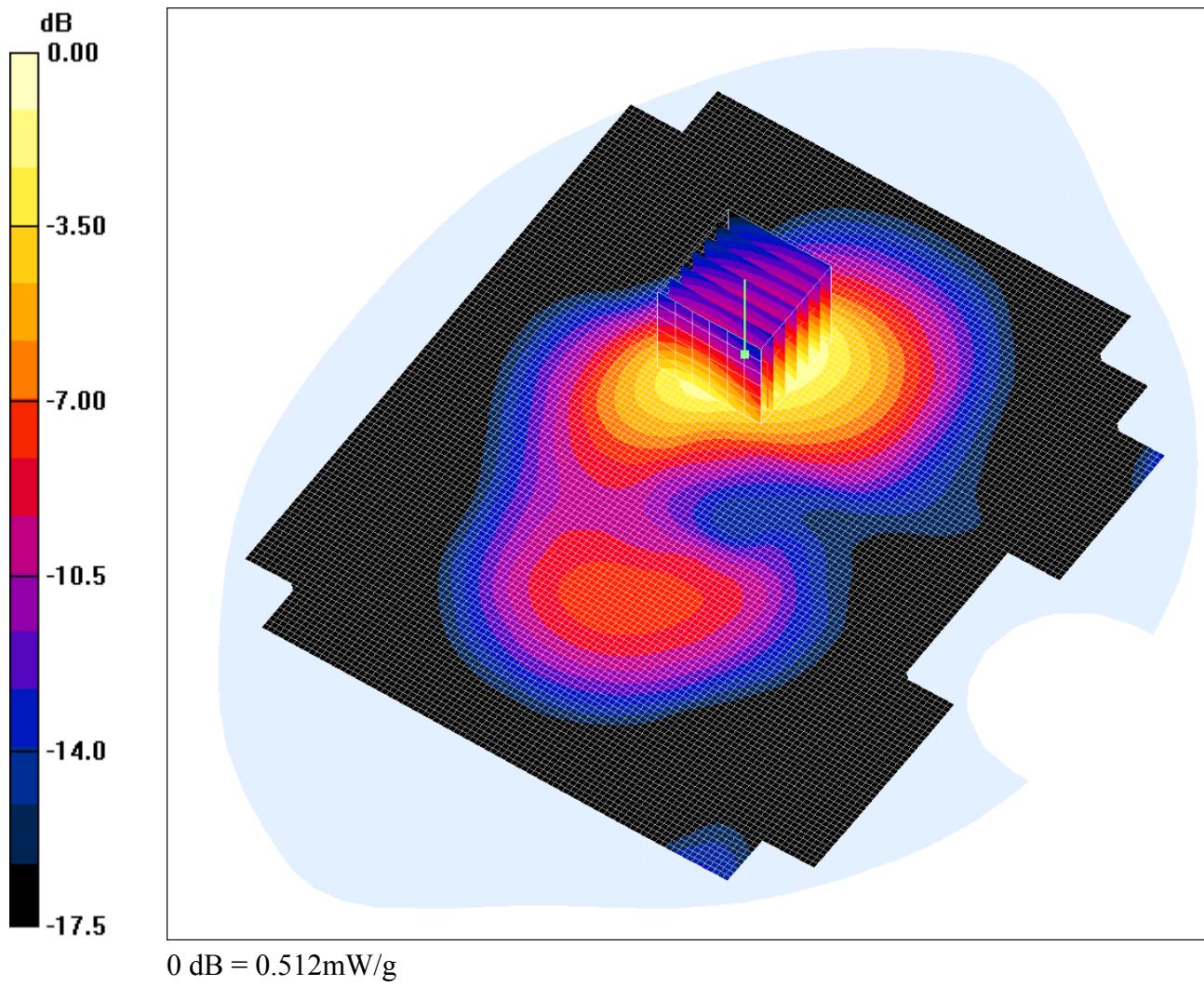
Maximum value of SAR (interpolated) = 0.452 mW/g

Rear of EUT Facing Phantom_0mm Separation Distance - Middle/Zoom Scan (7x7x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.36 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 0.637 W/kg


SAR(1 g) = 0.369 mW/g; SAR(10 g) = 0.208 mW/g

Maximum value of SAR (measured) = 0.407 mW/g

Date: 06/06/2005

46498_05_004

Test Laboratory: RFI GLOBAL SERVICES LTD.

46498_JD05_004_Rear of EUT_0mm_1900MHz_Bottom**DUT: Gizmondo Europe Ltd; Type: GZ020; Serial: 350390011249597**

Communication System: DCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: 1800 MHz MSL Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.59$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.24, 4.24, 4.24); Calibrated: 15/07/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 13/05/2005
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear of EUT Facing Phantom_0mm Separation Distance - Middle/Area Scan 2

(131x111x1): Measurement grid: dx=15mm, dy=15mm

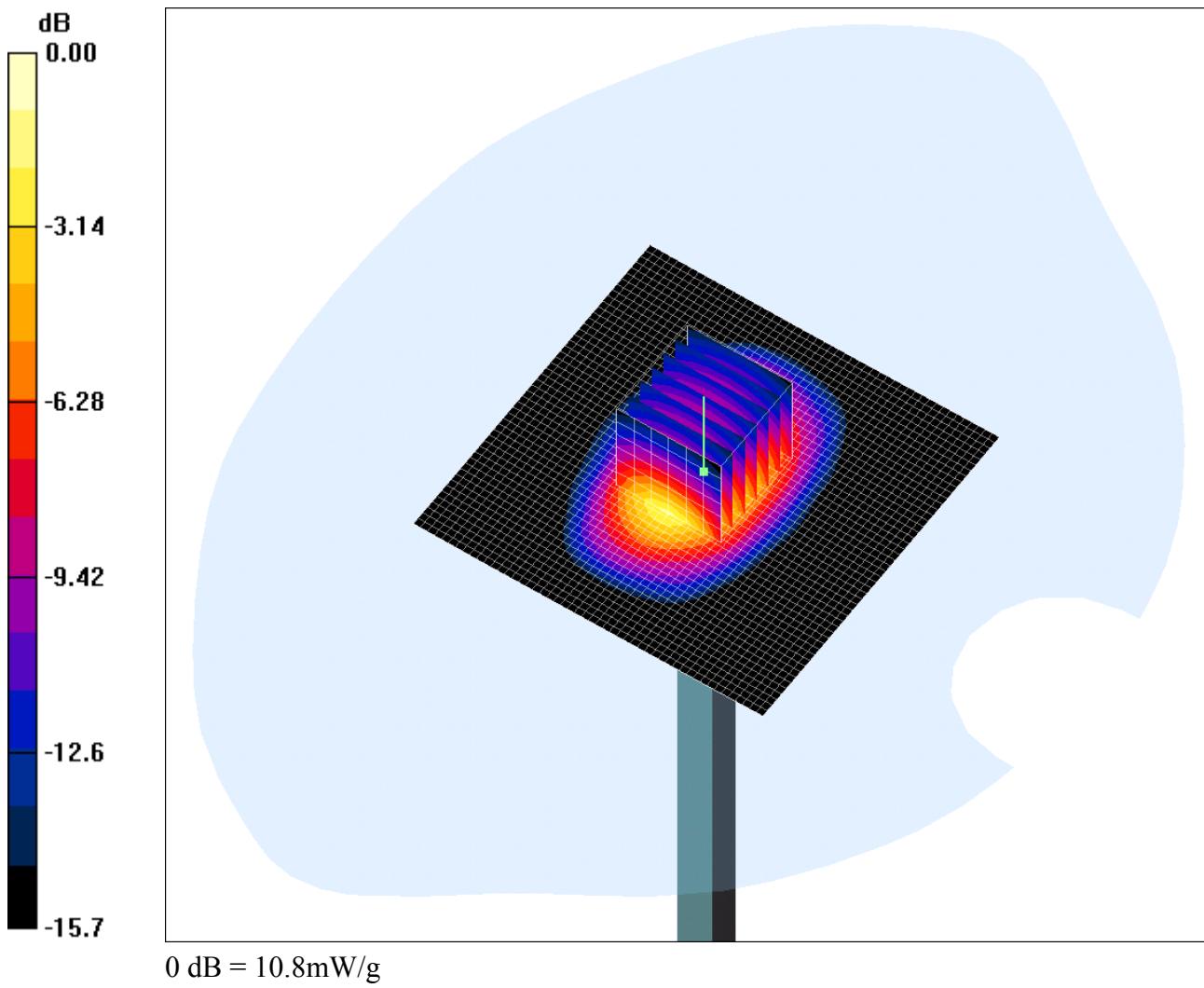
Maximum value of SAR (interpolated) = 0.578 mW/g

Rear of EUT Facing Phantom_0mm Separation Distance - Middle/Zoom Scan (7x7x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.72 V/m; Power Drift = -0.124 dB

Peak SAR (extrapolated) = 0.796 W/kg


SAR(1 g) = 0.465 mW/g; SAR(10 g) = 0.264 mW/g

Maximum value of SAR (measured) = 0.512 mW/g

Date: 06/06/2005

46498_05_Validation 002

Test Laboratory: RFI GLOBAL SERVICES LTD.

System Performance Check-D1800 06 06 05**DUT: Dipole 1800 MHz; Type: D1800V2; Serial: 264**

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: 1800 MHz MSL Medium parameters used: $f = 1800$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1528; ConvF(4.46, 4.46, 4.46); Calibrated: 15/07/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 4mm (Mechanical And Optical

Surface Detection)

- Electronics: DAE3 Sn394; Calibrated: 13/05/2005
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm
Maximum value of SAR (interpolated) = 13.3 mW/g

d=10mm, Pin=250mW/Zoom Scan 7x7x7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.8 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 15.3 W/kg

SAR(1 g) = 9.48 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 10.8 mW/g

Test Of: **Gizmondo Europe Limited.**
GZ020.

To: **OET Bulletin 65 Supplement C: (2001-01)**

Appendix 3. Test Configuration Photograph

This appendix contains the following photograph(s):

Photograph Reference Number	Title
PHT/SAR_Configuration	Test configuration for the measurement of Specific Absorption Rate (SAR)

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/SAR_Configuration

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

Appendix 4. Calibration Data

This appendix contains the calibration data and certificates.

Asset Number	Date	Title
A1190	15 April 2004	D1800V2-SN: 264
A1185	15 July 2004	ET3DV6-SN: 1528

RFI GLOBAL SERVICES LTD

TEST REPORT
S.No. RFI/SARE3/RP46498JD05A
Page 32 of 48
Issue Date: 09 August 2005

Test Of: **Gizmondo Europe Limited.**
GZ020.

To: **OET Bulletin 65 Supplement C: (2001-01)**

This page has been left intentionally blank.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

[Signature] *Alain*
07/05/04

Client

RFI

CALIBRATION CERTIFICATE

Object(s) **D1800V2 - SN:264**

Calibration procedure(s) **QA CAL-05 v2**
Calibration procedure for dipole validation kits

Calibration date: **April 15, 2004**

Condition of the calibrated item **In Tolerance (according to the specific calibration document)**

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E442	GB37480704	6-Nov-03 (METAS, No. 252-0254)	Nov-04
Power sensor HP 8481A	US37292783	6-Nov-03 (METAS, No. 252-0254)	Nov-04
Power sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04
RF generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-03)	In house check: Oct 05

Calibrated by:	Name	Function	Signature
	Judith Mueller	Technician	<i>[Signature]</i>
Approved by:	Katja Pokovic	Laboratory Director	<i>[Signature]</i>

Date issued: April 21, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 1 245 9700, Fax +41 1 245 9779
info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D1800V2

Serial: 264

Manufactured: March 5, 2000

Calibrated: April 15, 2004

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **head simulating solution** of the following electrical parameters at 1800 MHz:

Relative Dielectricity	40.6	$\pm 5\%$
Conductivity	1.36 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.08 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{ mW} \pm 3\%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm^3 (1 g) of tissue: **37.2 mW/g $\pm 16.8\%$ (k=2)**¹

averaged over 10 cm^3 (10 g) of tissue: **19.9 mW/g $\pm 16.2\%$ (k=2)**¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.201 ns	(one direction)
Transmission factor:	0.975	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1800 MHz: $\text{Re}\{Z\} = \text{46.9 } \Omega$

$\text{Im}\{Z\} = \text{-5.9 } \Omega$

Return Loss at 1800 MHz **-23.3 dB**

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **body simulating solution** of the following electrical parameters at 1800 MHz:

Relative Dielectricity	52.6	$\pm 5\%$
Conductivity	1.49 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.61 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{ mW} \pm 3\%$. The results are normalized to 1W input power.

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN264

Communication System: CW-1800; Frequency: 1800 MHz; Duty Cycle: 1:1
Medium: HSL 1800 MHz;

Medium parameters used: $f = 1800$ MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

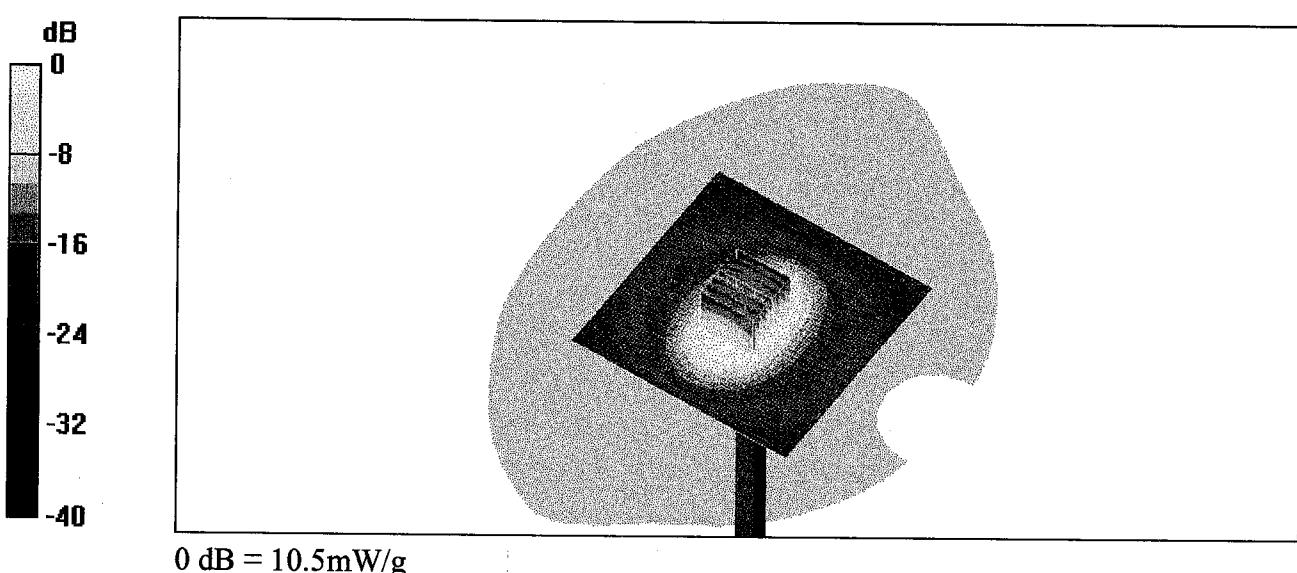
DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5.08, 5.08, 5.08); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 90.6 V/m; Power Drift = 0.0 dB

Maximum value of SAR (interpolated) = 10.6 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.6 V/m; Power Drift = 0.0 dB

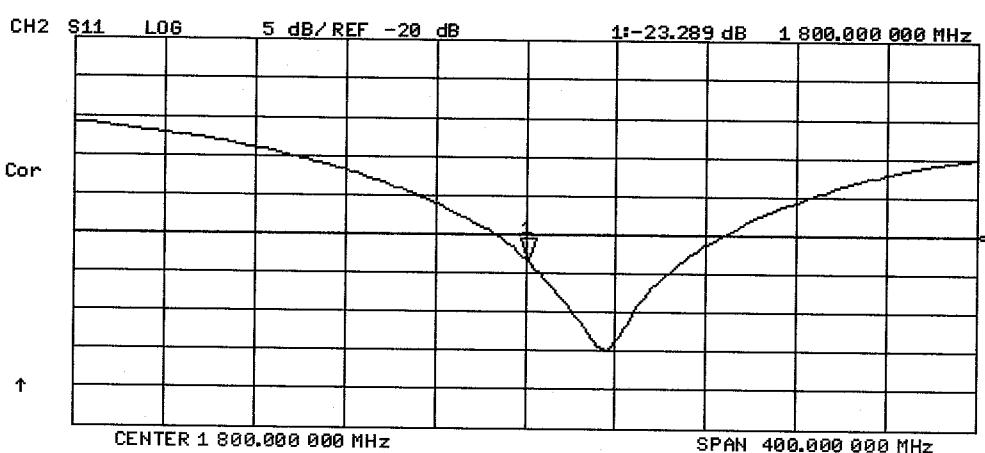
Maximum value of SAR (measured) = 10.5 mW/g

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 9.31 mW/g; SAR(10 g) = 4.98 mW/g

CH1 S11 1 U FS

15 Apr 2004 08:46:49
1: 46.924 Ω -5.8965 Ω 14.995 pF
1 800.000 000 MHz


Del

Cor

Av9
16

↑

CH2

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue: **37.0 mW/g ± 16.8 % (k=2)**²

averaged over 10 cm³ (10 g) of tissue: **20.0 mW/g ± 16.2 % (k=2)**²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1800 MHz: **Re {Z} = 44.3 Ω**

Im {Z} = -5.7 Ω

Return Loss at 1800 MHz **-21.3 dB**

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN264

Communication System: CW-1800; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: Muscle 1800 MHz;

Medium parameters used: $f = 1800$ MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(4.61, 4.61, 4.61); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 87.5 V/m; Power Drift = 0.0 dB

Maximum value of SAR (interpolated) = 10.5 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

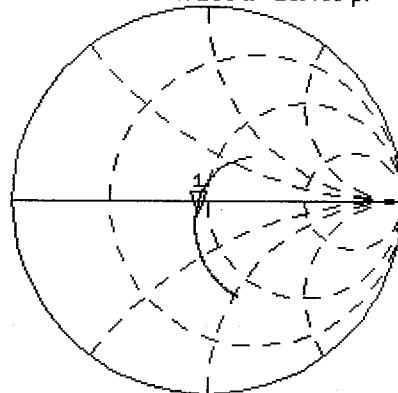
Reference Value = 87.5 V/m; Power Drift = 0.0 dB

Maximum value of SAR (measured) = 10.5 mW/g

Peak SAR (extrapolated) = 15.4 W/kg

SAR(1 g) = 9.25 mW/g; SAR(10 g) = 5 mW/g

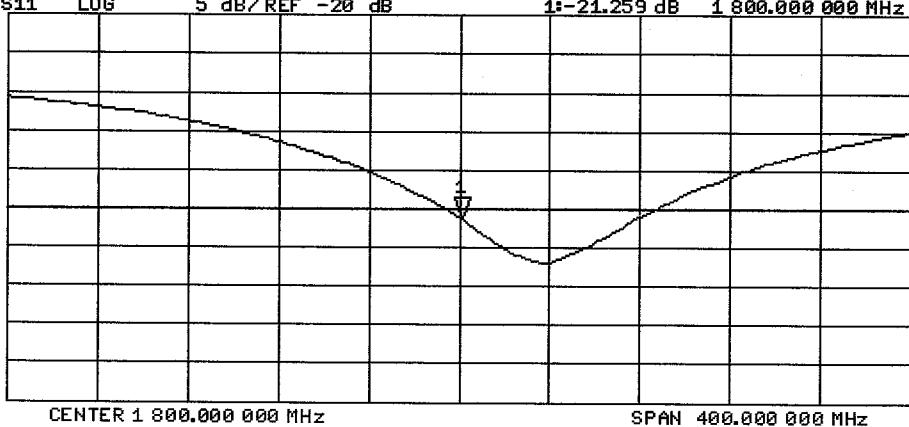
264
Body


CH1 S11 1 U FS 14 Apr 2004 10:07:36
1: 44.342 Ω -5.7285 Ω 15.435 pF 1 800.000 000 MHz

Del

Cor

Avg
16


↑

CH2 S11 L06 5 dB/REF -20 dB 1:-21.259 dB 1 800.000 000 MHz

Cor

↑

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

AIIS

19/07/04

Client

RFI

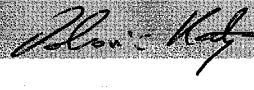
CALIBRATION CERTIFICATE

Object(s) **ET3DV6 - SN: 1528**

Calibration procedure(s) **QA CAL-01 v2
Calibration procedure for dosimetric E-field probes**

Calibration date: **July 15, 2004**

Condition of the calibrated item **In Tolerance (according to the specific calibration document)**


This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	5-May-04 (METAS, No 251-00388)	May-05
Power sensor E4412A	MY41495277	5-May-04 (METAS, No 251-00388)	May-05
Reference 20 dB Attenuator	SN: 5086 (20b)	3-May-04 (METAS, No 251-00389)	May-05
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05

Calibrated by: **Name: Nico Vetterli Function: Technician**

Approved by: **Name: Katja Pokovic Function: Laboratory Director**

Date issued: July 15, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1528

Manufactured:	March 21, 2000
Last calibrated:	July 29, 2003
Recalibrated:	July 15, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1528

Sensitivity in Free Space

NormX	1.55 $\mu\text{V}/(\text{V}/\text{m})^2$
NormY	1.33 $\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	1.40 $\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression^A

DCP X	100 mV
DCP Y	100 mV
DCP Z	100 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 7.

Boundary Effect

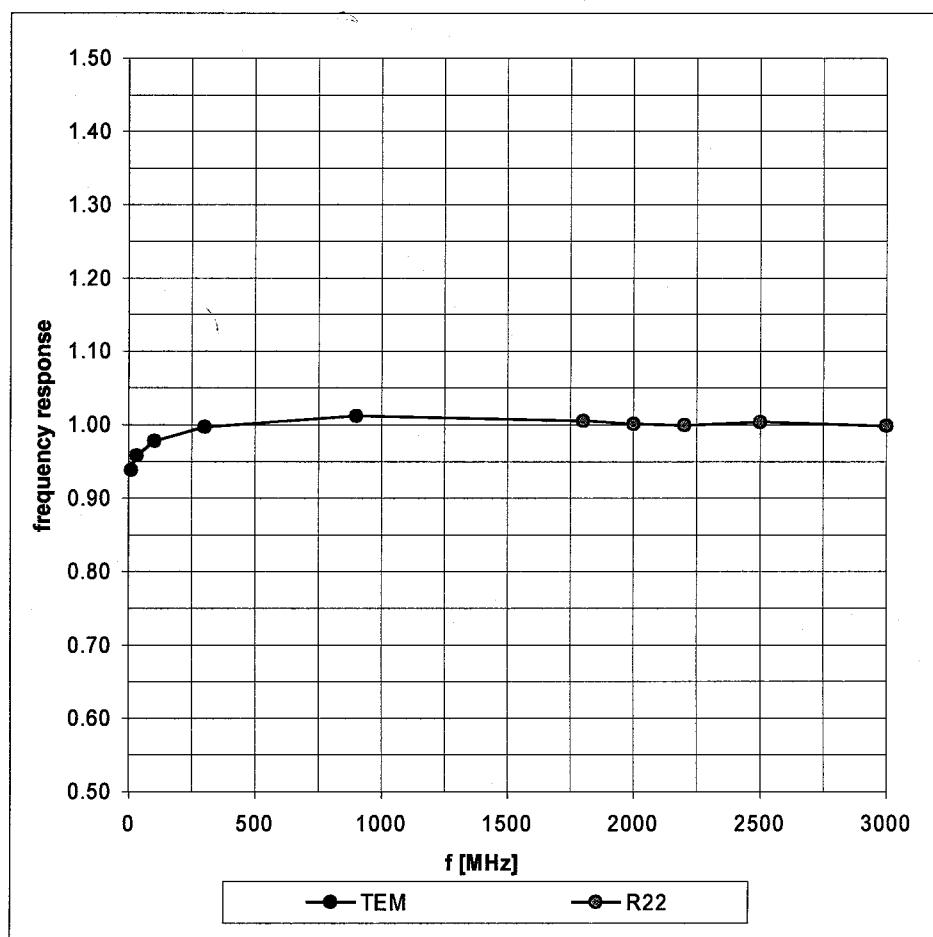
Head **900 MHz** **Typical SAR gradient: 5 % per mm**

Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	10.1	5.5
SAR _{be} [%] With Correction Algorithm	0.0	0.1

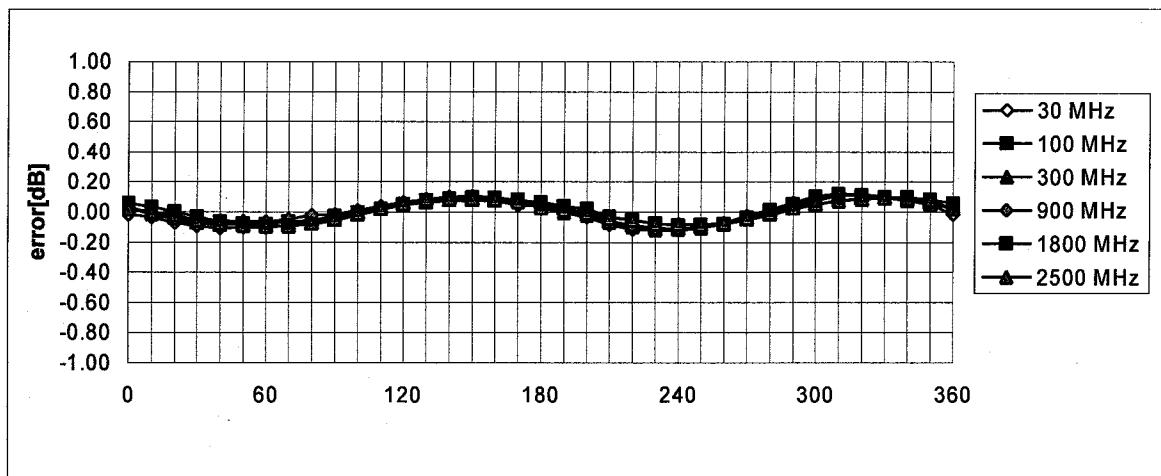
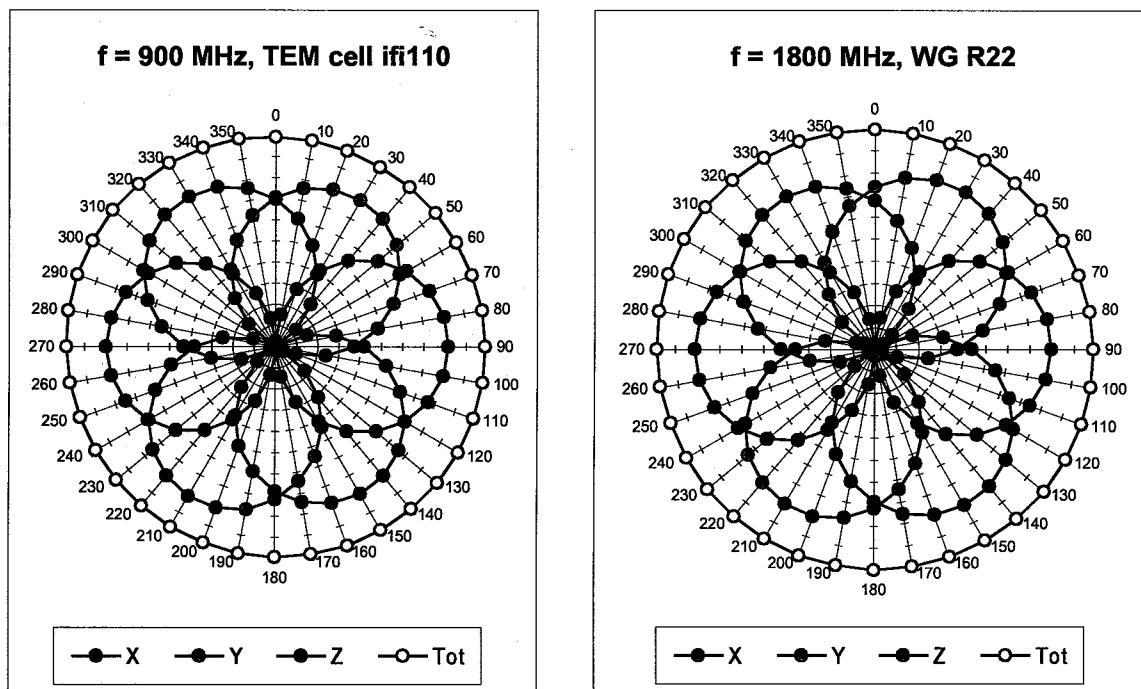
Head **1750 MHz** **Typical SAR gradient: 10 % per mm**

Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	12.9	8.9
SAR _{be} [%] With Correction Algorithm	0.2	0.4

Sensor Offset

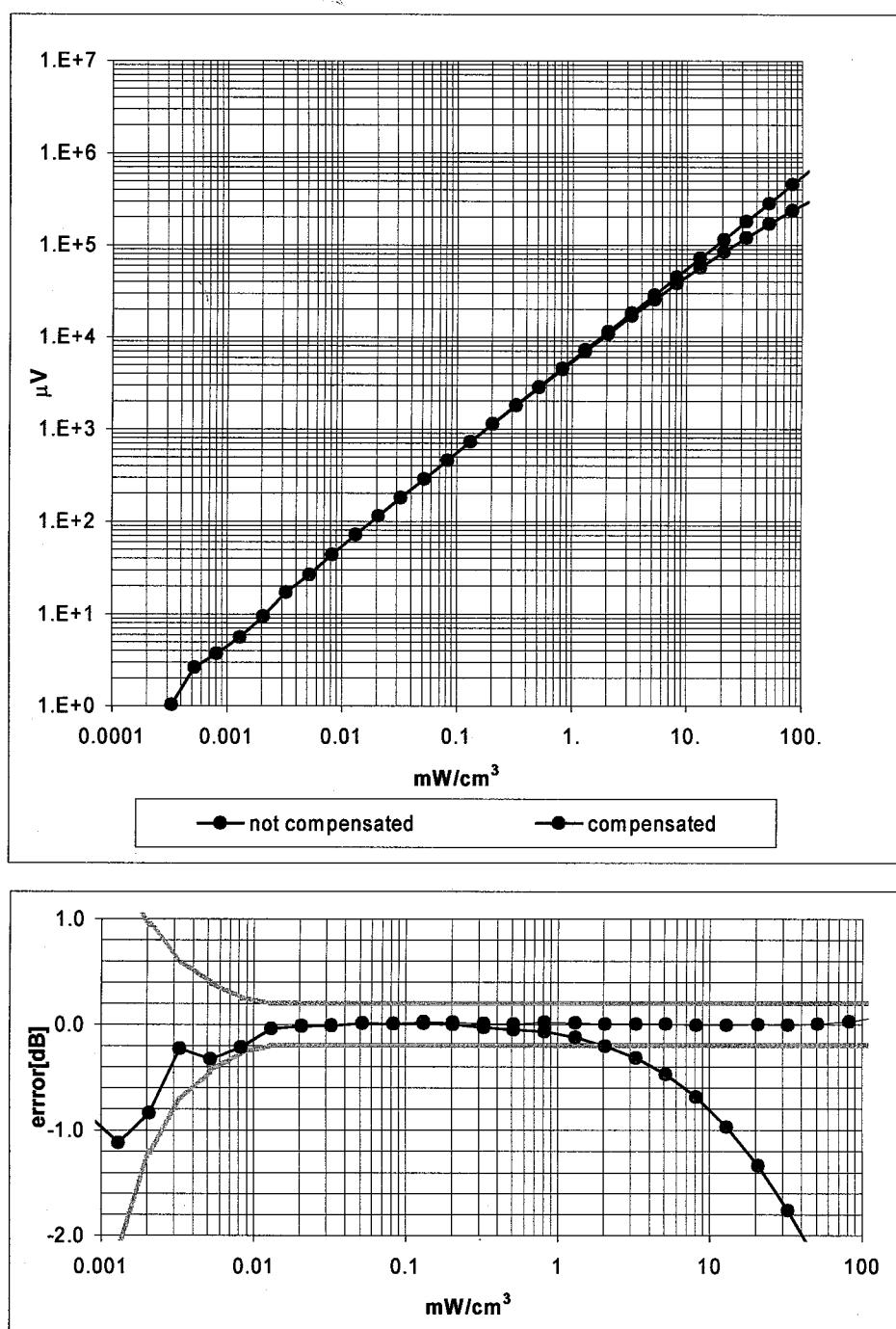

Probe Tip to Sensor Center	2.7 mm
Optical Surface Detection	in tolerance

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

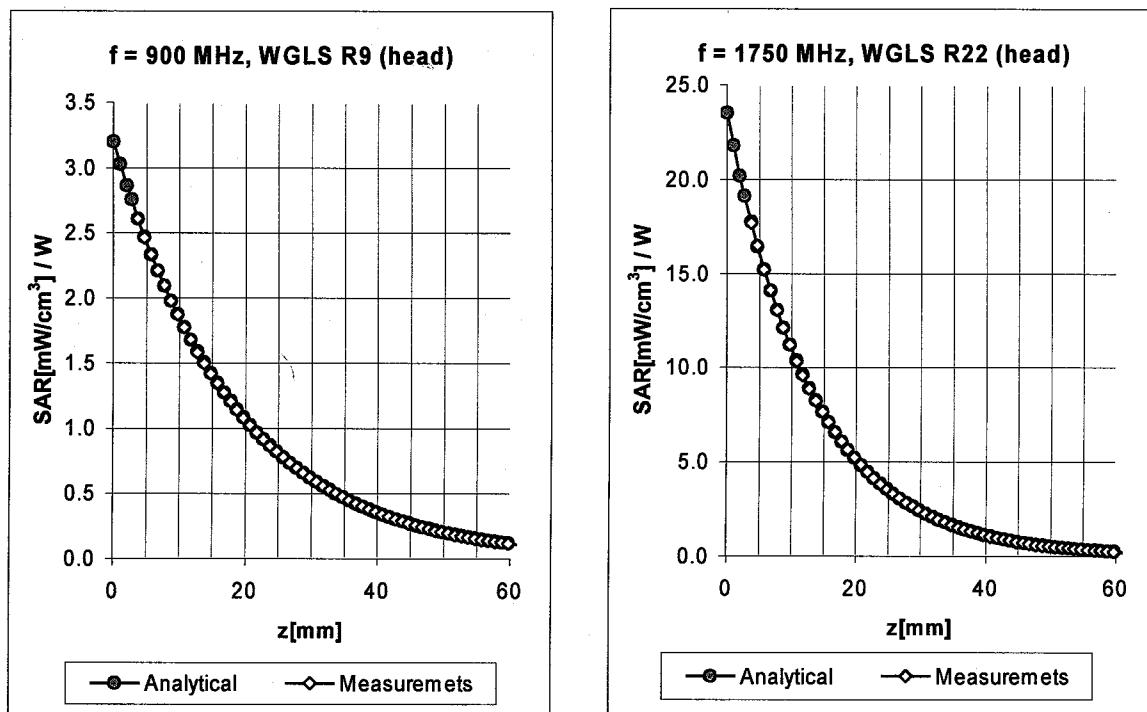


^A numerical linearization parameter: uncertainty not required

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)



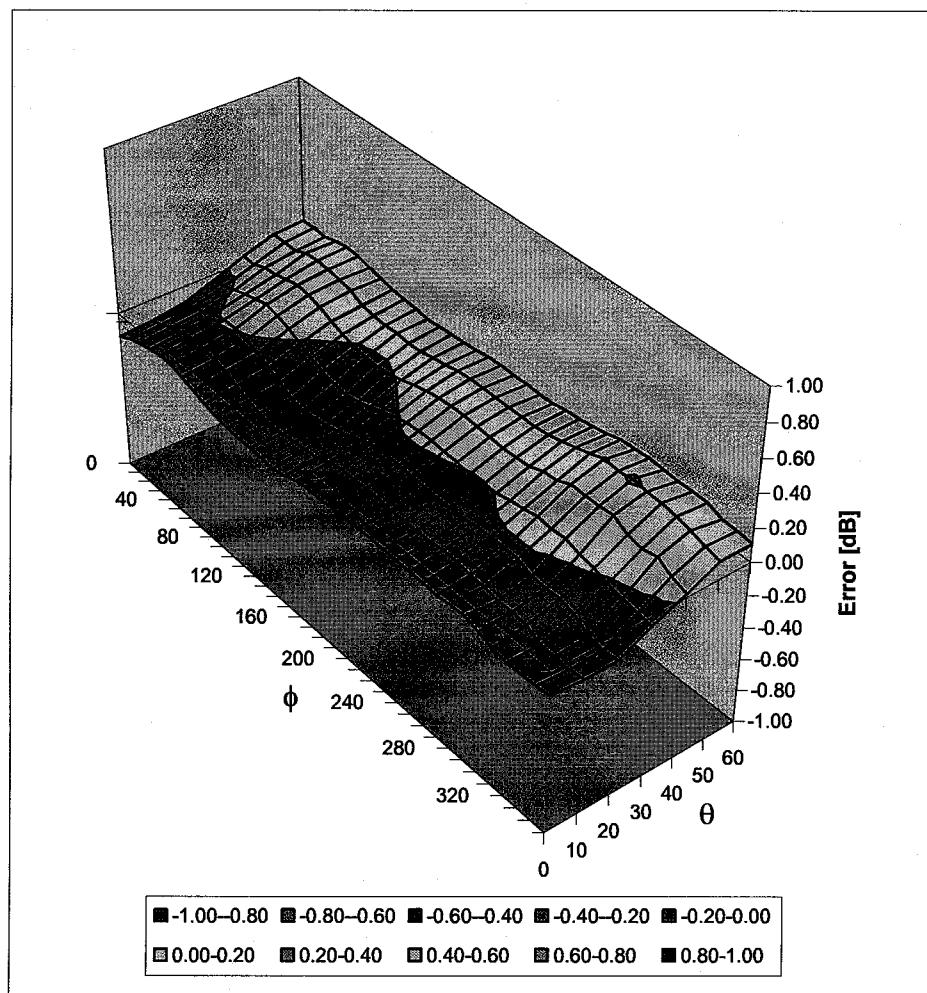
Receiving Pattern (ϕ), $\theta = 0^\circ$


Axial Isotropy Error $< \pm 0.2$ dB

Dynamic Range $f(\text{SAR}_{\text{head}})$ (Waveguide R22.)

Probe Linearity Error $< \pm 0.2 \text{ dB}$

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	785-885	Head	41.5 ± 5%	0.90 ± 5%	0.65	1.84	6.23	± 9.7% (k=2)
900	850-950	Head	41.5 ± 5%	0.97 ± 5%	0.68	1.84	6.01	± 9.7% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.49	4.93	± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.55	2.49	4.78	± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	1.10	1.83	4.35	± 9.7% (k=2)

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	785-885	Body	55.2 ± 5%	0.97 ± 5%	0.57	2.11	6.07	± 9.7% (k=2)
900	850-950	Body	55.0 ± 5%	1.05 ± 5%	0.60	2.03	5.86	± 9.7% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.56	2.84	4.46	± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.58	2.94	4.24	± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.41	1.47	4.13	± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (θ, ϕ), $f = 900$ MHz

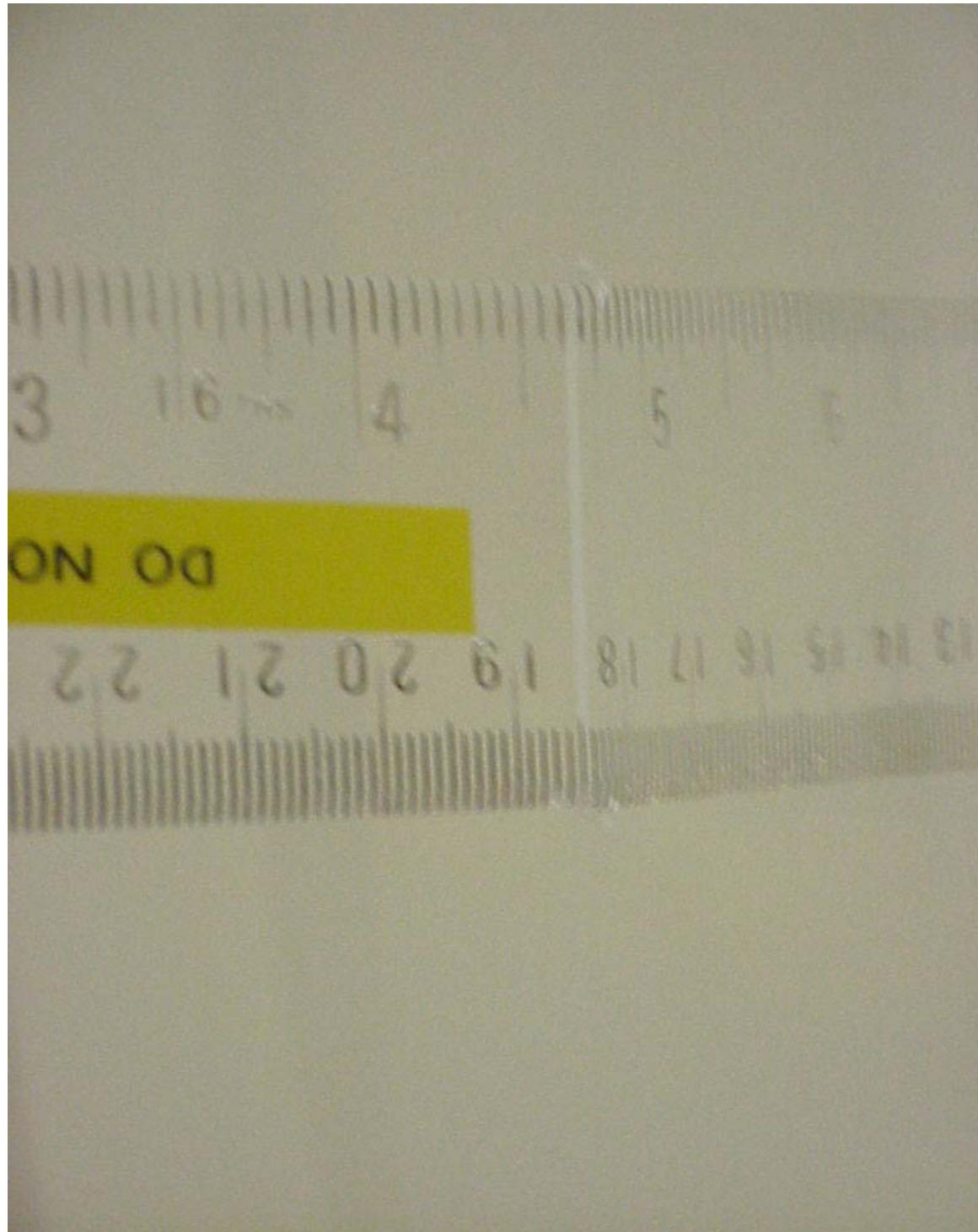
Spherical Isotropy Error $< \pm 0.4$ dB

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

Appendix 5. Photographs of EUT

This appendix contains the following photographs:

Photo Reference Number	Title
PHT/46498/001	1800 MHz (1900 MHz) MSL Fluid Level
PHT/46498/002	Display of EUT Facing Phantom View 1
PHT/46498/003	Display of EUT Facing Phantom View 2
PHT/46498/004	Front View of AC Adaptor
PHT/46498/005	Front View of Battery
PHT/46498/006	Front View of EUT
PHT/46498/007	Internal View of EUT
PHT/46498/008	PHF and USB Data Cable
PHT/46498/009	Rear of EUT Facing Phantom View 1
PHT/46498/010	Rear of EUT Facing Phantom View 2
PHT/46498/011	Rear View of AC Adaptor
PHT/46498/012	Rear View of Battery
PHT/46498/013	Rear View of EUT
PHT/46498/014	Rear View of EUT with Cover Removed


RFI GLOBAL SERVICES LTD

TEST REPORT
S.No. RFI/SARE3/RP46498JD05A
Page 34 of 48
Issue Date: 09 August 2005

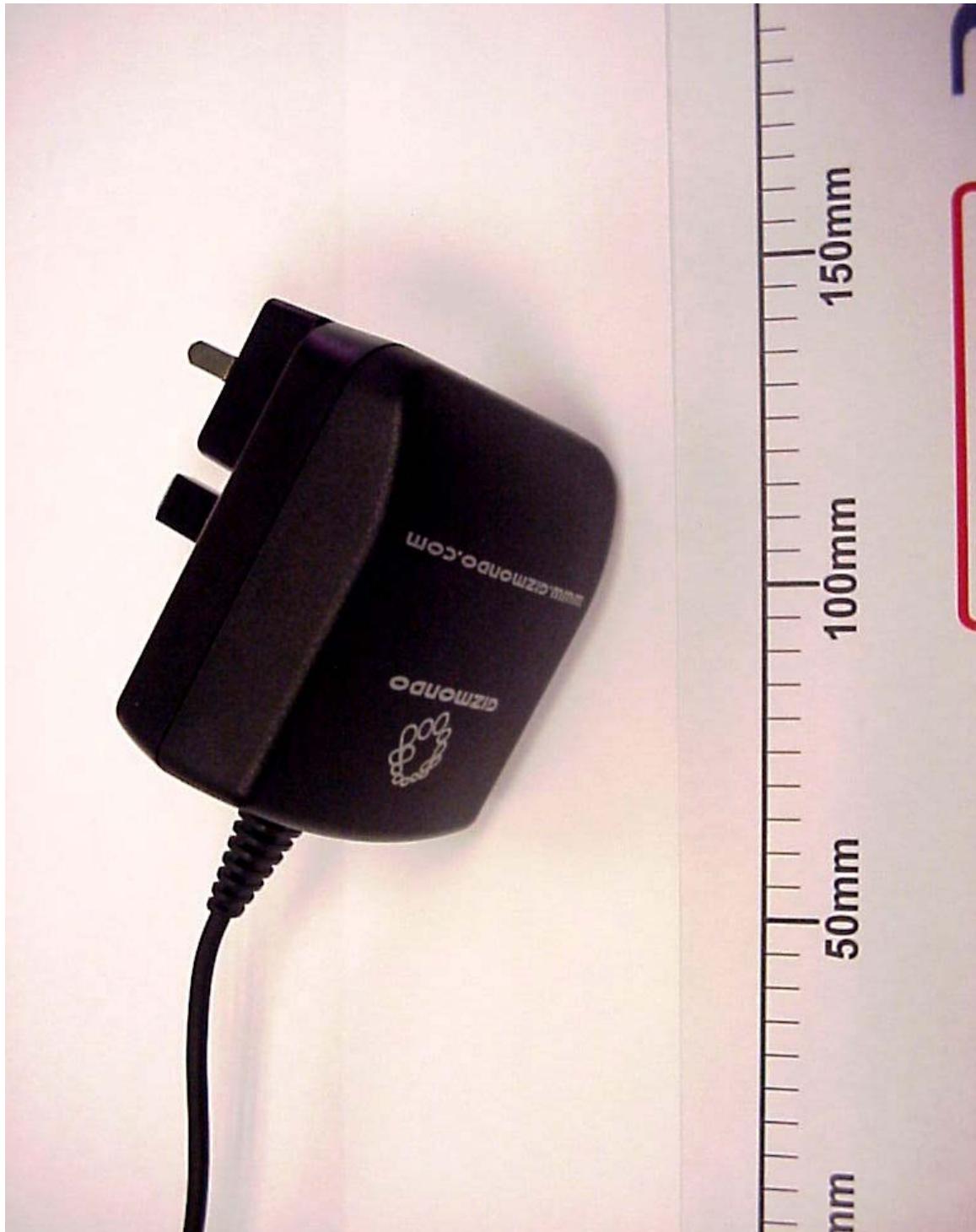
Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)


PHT/46498/001: 1800 MHz (1900 MHz) MSL Fluid Level

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**

PHT/46498/002: Display of EUT Facing Phantom View 1

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

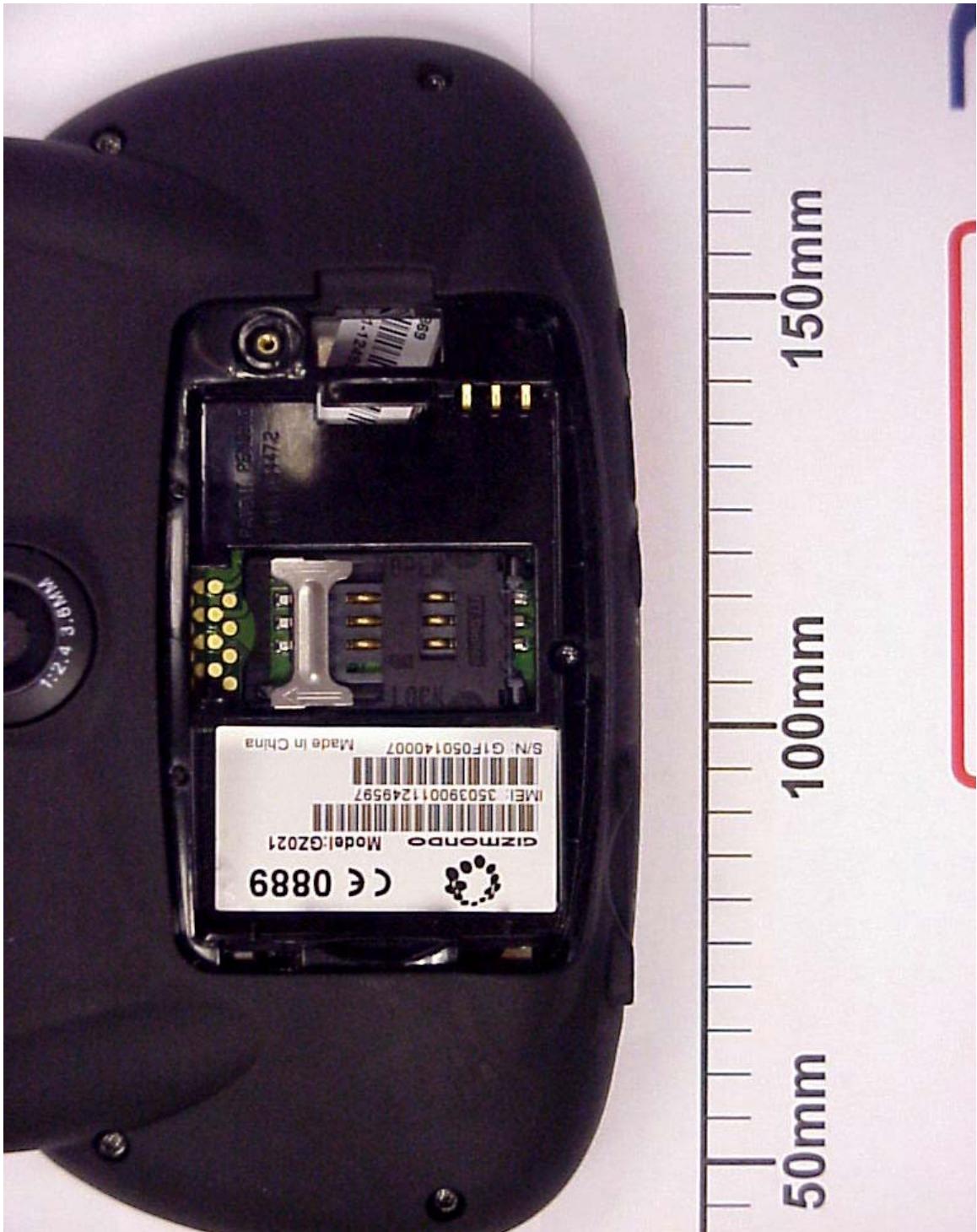

PHT/46498/003: Display of EUT Facing Phantom View 2

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/46498/004: Front View of AC Adaptor

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/46498/005: Front View of Battery

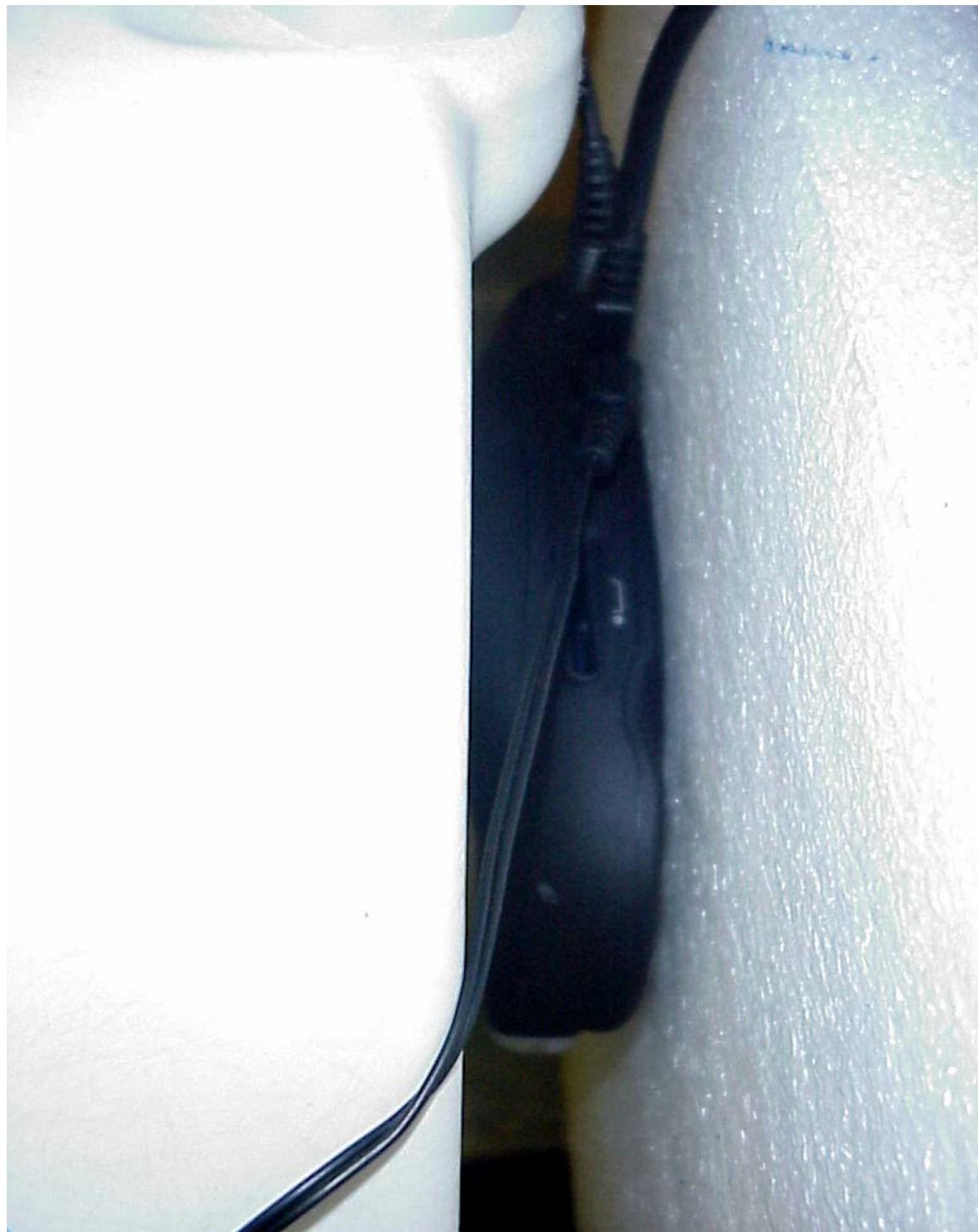

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/46498/006: Front View of EUT

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/46498/007: Internal View of EUT

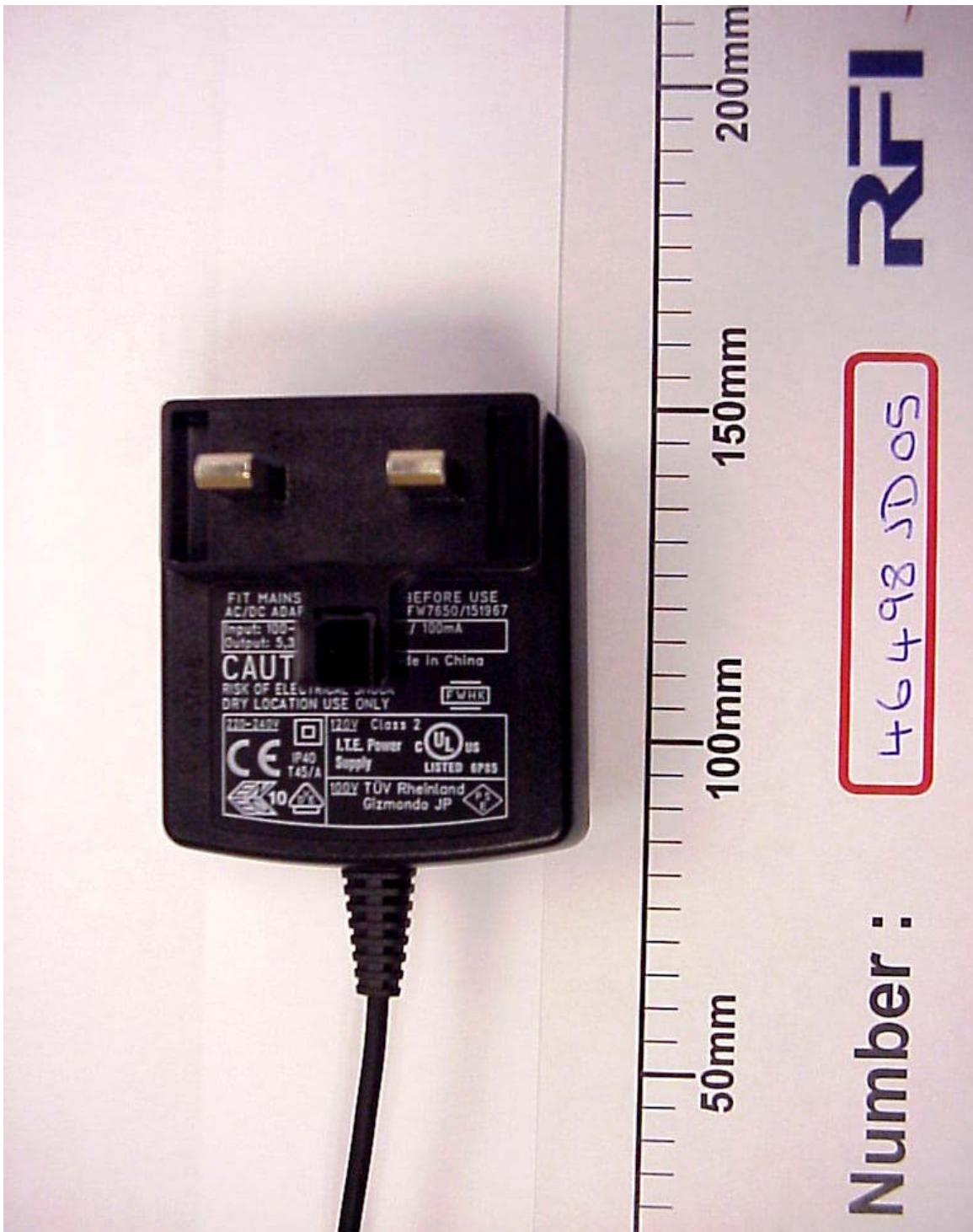
Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)


PHT/46498/008: PHF and USB Data Cable

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

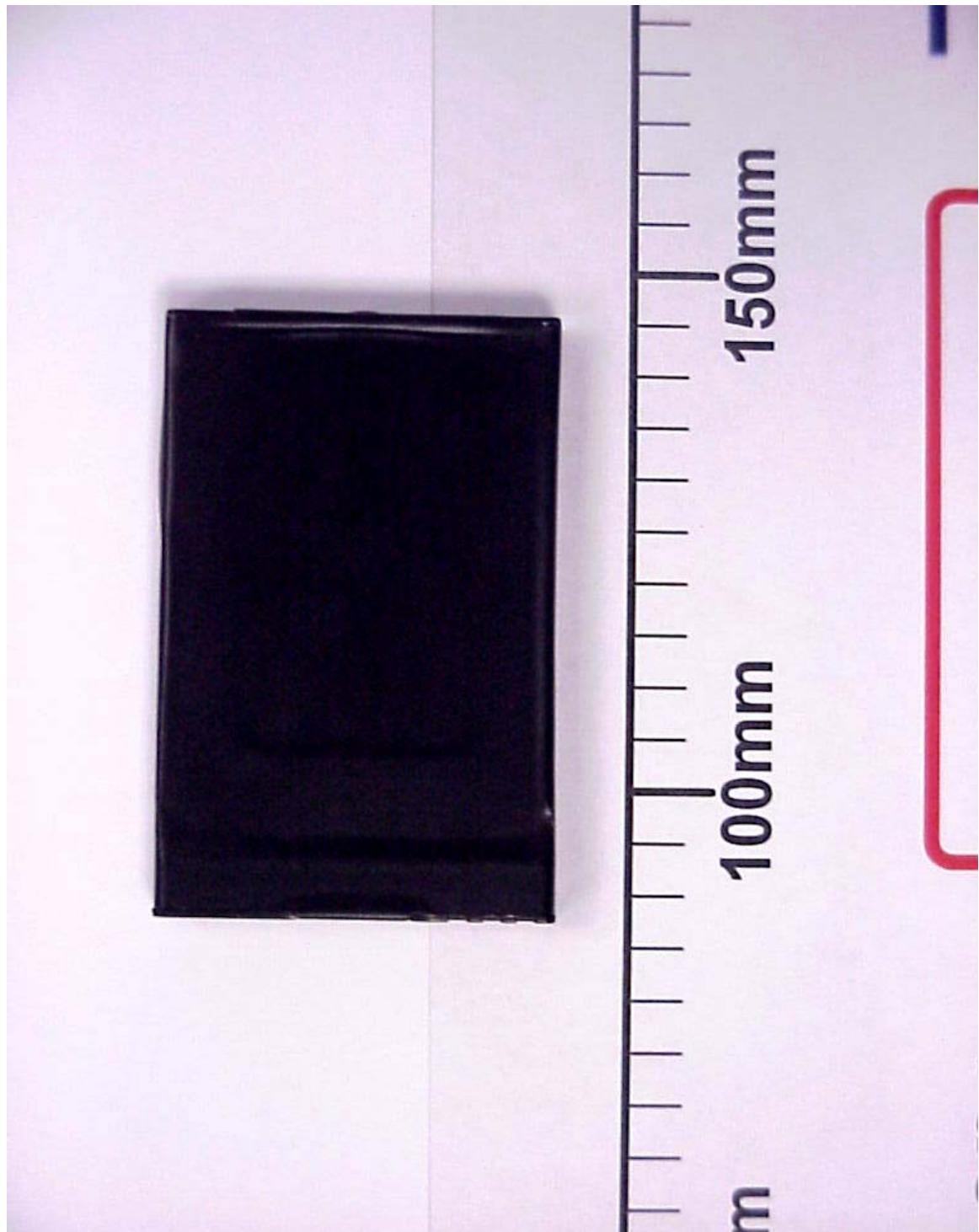
PHT/46498/009: Rear of EUT Facing Phantom View 1

Test Of: **Gizmondo Europe Limited.**
GZ020.
To: **OET Bulletin 65 Supplement C: (2001-01)**



PHT/46498/010: Rear of EUT Facing Phantom View 2

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)


PHT/46498/011: Rear View of AC Adaptor

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/46498/012: Rear View of Battery

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/46498/013: Rear View of EUT

Test Of: Gizmondo Europe Limited.
GZ020.
To: OET Bulletin 65 Supplement C: (2001-01)

PHT/46498/014: Rear View of EUT with Cover Removed

RFI GLOBAL SERVICES LTD

TEST REPORT
S.No. RFI/SARE3/RP46498JD05A
Page 48 of 48
Issue Date: 09 August 2005

Test Of: **Gizmondo Europe Limited.**
GZ020.

To: **OET Bulletin 65 Supplement C: (2001-01)**

This page has been left intentionally blank.