

Nemko Korea Co., Ltd.

300-2, Osan-Ri, Mohyun-Myeon, Cheoin-Gu, Yongin-City, Gyeonggi-Do, Korea

TEL:+ 82 31 322 2333

FAX:+ 82 31 322 2332

FCC EVALUATION REPORT FOR CERTIFICATION

Applicant:

D&T Inc.

Daedeok Valley, 59-9, Jang Dong, Yuseong Gu,

Daejeon, 305-343 Korea

Attn: Mr. Wonwoo Lee

Dates of Issue: May 20, 2010

Test Report No.: NK10E507

Test Site: Nemko Korea Co., Ltd.

EMC site, Korea

FCC ID

Brand Name

Contact Person

THCFS-S2301F

TANDBERG

D&T Inc.

Daedeok Valley, 59-9, Jang Dong, Yuseong Gu, Daejeon, 305-343 Korea

> Mr. Wonwoo Lee Telephone No. : + 82 42 867 3100

Applied Standard:

Part 15 & 2

Classification:

FCC Class B Device

EUT Type:

23" Color TFT LCD Monitor

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Wonho Son

Engineer

Reviewed By: Hyunho Kim
Manager & Chief Engineer

D&T Inc.

Page 1 of 44

FCC ID: THCFS-S2301F

TABLE OF CONTENTS

SCOPE	3
INTRODUCTION (Site Description)	4
TEST CONDITIONS & EUT INFORMATION	5
SUMMARY OF TEST RESULTS	8
RECOMMANDATION / CONCLUSION	8
SAMPLE CALCULATION	8
DESCRIPTION OF TESTS (Conducted Emissions)	9
DESCRIPTION OF TESTS (Radiated Emissions)	10
TEST DATA (Conducted Emissions)	11
TEST DATA (Radiated Emissions)	12
PLOT OF EMISSIONS (Conducted Emissions Diagram)	14
ACCURACY OF MEASUREMENT	16
LIST OF TEST EQUIPMENT	19
APPENDIX A - SAMPLE LABEL	20
APPENDIX B - PHOTOGRAPHS OF TEST SET-UP	21
APPENDIX C - EUT PHOTOGRAPHS	23
APPENDIX D – MODIFICATION LIST	36
APPENDIX E - BLOCK DIAGRAM	42
APPENDIX F - USER'S MANUAL	43
APPENDIX G - SCHEMATIC DIAGRAM	44

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

Responsible Party: D&T Inc.

Contact Person: Mr. Wonwoo Lee

Tel No.: + 82 42 867 3100

Manufacturer: D&T Inc.

Daedeok Valley, 59-9, Jang Dong, Yuseong Gu,

Daejeon, 305-343 Korea

Factory: D&T Inc.

Daedeok Valley, 59-9, Jang Dong, Yuseong Gu,

Daejeon, 305-343 Korea

FCC ID: THCFS-S2301F
 Model: FS-S2301F

EUT Type: 23" Color TFT LCD Monitor

Electric Rating: Input: a.c. 100-240 V, 2 A, 50-60 Hz

Output: d.c. 24 V, 5.62 A

Test Voltage: a.c. 120 V, 60 Hz

Port/Connector: HDMI x 2 EA, USB x 1 EA, Serial x 1 EA, KEY 1/F x 1 EA

Classification: FCC Class B

Applied Standard: FCC Part 15 & Part 2
 Test Procedure(s): ANSI C63.4 (2003)

Dates of Test: April 20, 2010 to April 25, 2010
 Place of Tests: Nemko Korea Co., Ltd. EMC Site

Test Report No.: NK10E507

INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-2003) was used in determining radiated and conducted emissions emanating from **D&T Inc.**

FCC ID: THCFS-S2301F, 23" Color TFT LCD Monitor.

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory.

The site address is 300-2, Osan-Ri, Mohyun-Myeon, Cheoin-Gu, Yongin-City, Gyeonggi-Do, KOREA The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilometers (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on 2003.

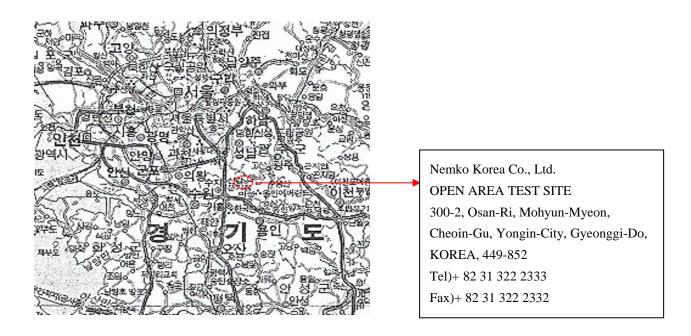


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab and Incheon Airport.

D&T Inc. FCC ID : THCFS-S2301F

TEST CONDITIONS & EUT INFORMATION

Operating During Test

The EUT was connected to the PC and it displayed continuously an "H" pattern on the screen. The EUT was set to 1920 x 1200 video resolution, with 60 Hz vertical refresh rate.

Support Equipment

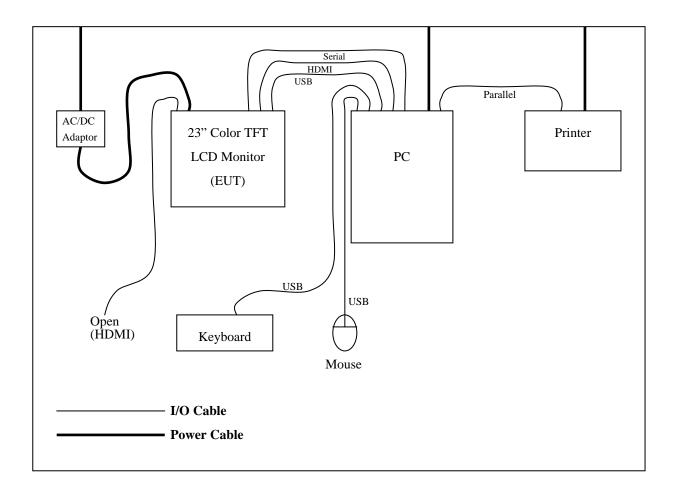
23" Color TFT LCD Monitor (EUT)	D&T Inc. FCC ID: THCFS-S2301F 1.8 m shielded HDMI cable 1.5 m shielded USB cable 1.5 m unshielded serial cable Adaptor: FSP GROUP INC. Model: FSP135-AAAN1 1.2 m unshielded AC cable, 1.3 m Shielded DC cable with 2 ferrite cores at DC jack end and adaptor end.	S/N: N/A S/N: H00000330
PC	Dell Inc. Model : DCSM 1.6 m unshielded AC power cable	FCC DOC S/N: DCM84BX
Keyboard	YET FOUNDATE LTD. Model: SK-8115 1.8 m unshielded USB cable	FCC DOC S/N: N/A
Mouse	DONGGUAN PRIMAX ELECTRONICS LTD Model : MO56UC 1.8 m unshielded USB cable	FCC DOC S/N: E1500FXW
Printer	HP Model : C6429A 1.5 m unshielded parallel cable	FCC DOC S/N: N/A

EUT Information

Clock	11.0592 MHz (Y1), 27.000 MHz(Y2, Y3, Y4)
Chipset(s)	U1A(GF9450_DDRII), U14(24LC21A), U19(IT6603)
LCD Panel Type	TFT Active matrix
Screen size	23 inch (Diagonal)
Maximum Resolution	1920 x 1200 @ 60 Hz
Pixel pitch	0.2655 (H) mm x 0.2655 (V) mm
Display colors	16.7 M (RGB 8-bit data)
Contrast Ratio(Typ.)	3000:1
Viewing Angle(CR≥10, Typ.)	89/89/89
Response Time(Typ.)	25 ms
Luminance(Typ.)	300 cd/m ²
Synchronization	Horizontal Frequency: 70 kHz
	Vertical Frequency: 85 kHz
Power Consumption	Maximum: 90 W
	Standby mode : under 30 W
Port(s)	HDMI x 2 EA, USB x 1 EA, Serial x 1 EA, KEY I/F x 1 EA
Size and weight	544.6 (W) x 215.2 (H) x 267.6 (D) : mm / 9 kg
Power	Adaptor : a.c. 100-240 V, 50-60 Hz, 2 A Max
	Monitor : d.c. 24 V, 5.62 A Max

EUT System

Equipment	Model	Manufacturer	Serial Number
LCD Panel	LTM230HP01	SAMSUNG	7P9H01B19T
Touch Board	5406340 Rev 1.5	3M Touch Systems Inc.	N/A
Main Board	397226X201CD	D&T Inc.	N/A
Inverter	GH357A REV0.0	GREEN C & C TECH	G0041554AA
AC/DC Adaptor	FSP135-AAAN1	FSP GROUP INC.	H00000330


Description of Test Modes

The EUT was pre-tested under the following resolutions mode:

800 X 600 (75 Hz / 46.875 kHz) : Clock 49.5 MHz
 1400 X 1050 (60 Hz / 65.317 kHz) : Clock 121.751 MHz
 1920 X 1200 (60 Hz / 74 kHz) : Clock 153.999 MHz

The worst emission level was found when the EUT was tested under 1920 x 1200 resolution, therefore, the test data of this mode was recorded in the report.

Setup Drawing

D&T Inc. FCC ID : THCFS-S2301F

SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	Paragraph No.	Result	Remark
Conducted Emission	15.107(a)	Complies	
Radiated Emission	15.109(g)	Complies	Below 1 GHz
Radiated Emission	15.109(a)	Complies	Above 1 GHz

RECOMMENDATION/CONCLUSION

The data collected shows that the **D&T Inc.**

FCC ID: THCFS-S2301F, 23" Color TFT LCD Monitor.

The highest emission observed was at **0.37 MHz** for conducted emissions with a A.V margin of **8.8 dB**, at **262.20 MHz** for radiated emissions with a margin of **5.5 dB**.

SAMPLE CALCULATION

$$dB \mu V = 20 \log_{10}(\mu V/m)$$

$$\mu V = 10^{(dB \, \mu V/20)}$$

EX. 1.

@165.0 MHz

Class B limit = 30.0 dB µV/m

Reading = 38.2 dB μV (calibrated level)

Antenna factor + Cable Loss + Amplifier Gain = -12.9 dB

Total = 25.30 dB $\mu V/m$

Margin = 30.0 - 25.30 = 4.70

4.70 dB below the limit

D&T Inc.

Page 8 of 44

DESCRIPTION OF TESTS

Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 m shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 0.5 m away from the side of wall of the shielded room

Rohde & Schwarz (ESH2-Z5) and Rohde & Schwarz (ESH3-Z5) of the 50 ohm / 50 uH Line Impedance Stabilization Network(LISN) are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz (ESH3-Z5) LISN and the support equipment is powered from the Rohde & Schwarz (ESH2-Z5) LISN.

Power to the LISN s are filtered by high-current high insertion loss power line filters.

The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ".

If d.c. power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 m were shortened by non inductive bundling (serpentine fashion) to a 1 m length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 kHz to 30 MHz with 20 ms sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCS30).

The detector functions were set to CISPR quasi-peak mode & average mode.

The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux a.c. outlet, if applicable; which ever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

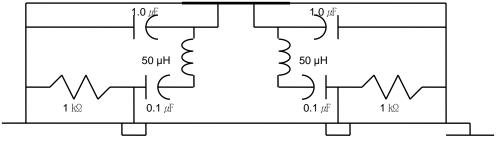


Fig. 2. LISN Schematic Diagram

D&T Inc.

Page 9 of 44

FCC ID: THCFS-S2301F

DESCRIPTION OF TESTS

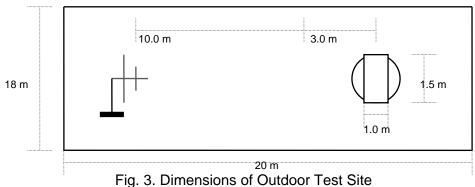
Radiated Emissions

Preliminary measurement were made indoors at 3 meter using broad band antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found. The spectrum was scanned from 30 to 1000 MHz using Biconical log Antenna(ARA, LPB-2520/A). Above 1 GHz, Double Ridged Broadband Horn Antenna (SCHWARTZBECK, BBHA9120D) was used.

Final Measurements were made outdoors at 10 m test range using Trilog-Broadband Antenna (Shwarzbeck, VULB9168) and Above 1 GHz, at 3 m test range using a Double Ridged Broadband Horn Antenna(SCHWARTZBECK, BBHA9120D) in fully anechoic chamber. The test equipment was placed on a wooden table.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

Each frequency found during pre-scan measurements was reexamined and investigated using EMI test receiver. (ESCS30) & (FSP40)


The detector function were set to CISPR quasi-peak and peak mode and the bandwidth of the receiver were set to 120 kHz and 1MHz depending on the frequency or type of signal. The half wave dipole antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 x 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The turn table containing the Technology was rotated; the antenna height was varied 1 to 4 meter and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux a.c. outlet, if applicable; which ever determined the worst case emission.

Each EME reported was calibrated using the R/S signal generator.

D&T Inc.

Page 10 of 44

TEST DATA

Conducted Emissions

FCC ID: THCFS-S2301F

Frequency	Level	(dB µ V)	*)Factor	**) Line	Limit(dBµV)		Margin(dB)	
(MHz)	Q-Peak	Average	(dB)		Q-Peak	Average	Q-Peak	Average
0.16	42.5	39.5	0.2	L	65.5	55.5	23.0	16.0
0.37	42.7	39.7	0.2	L	58.5	48.5	15.8	8.8
1.38	42.1	33.7	0.2	L	56.0	46.0	13.9	12.3
1.88	41.9	32.0	0.2	L	56.0	46.0	14.1	14.0
2.65	42.6	30.7	0.2	N	56.0	46.0	13.4	15.3
2.90	42.2	30.5	0.2	N	56.0	46.0	13.8	15.5

Table 1. Line Conducted Emissions Tabulated Data

NOTES:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
 3. LINE: L =Line, N = Neutral
- 4. The limit for Class B device is on the FCC Part section 15.107(a).

Tested by : Wonho Son

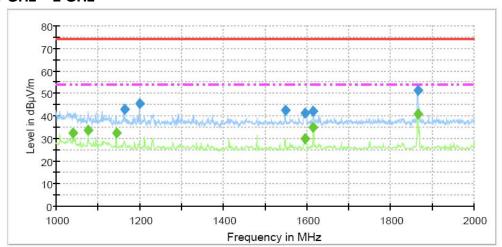
D&T Inc.

Page 11 of 44

FCC ID: THCFS-S2301F

TEST DATA

Radiated Emissions


FCC ID: THCFS-S2301F

▶ 30 MHz ~ 1 GHz

Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dB <i>µ</i> V/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
262.20	47.0	V	100	34	-15.5	31.5	37.0	5.5
336.50	44.1	V	100	187	-13.8	30.3	37.0	6.7
403.80	38.4	V	400	186	-11.3	27.1	37.0	9.9
445.51	39.2	V	100	81	-11.3	27.9	37.0	9.1
605.70	35.1	V	268	177	-7.4	27.7	37.0	9.3
807.60	32.8	V	400	169	-4.2	28.6	37.0	8.4

Table 2. Radiated Measurements at 10 meters (1920 x 1080, 60 Hz)

▶1 GHz ~ 2 GHz

Final Result 1

Frequency	MaxPeak-MaxHold	Height	Polarization	Azimuth	Corr.	Margin	Limit	Comment
(MHz)	(dBµV/m)	(cm)		(deg)	(dB)	(dB)	(dBµV/m)	3
1163.500000	42.8	160.0	Н	120.0	-5.5	31.2	74.0	
1199.500000	45.7	160.0	٧	0.0	-5.4	28.3	74.0	
1548.000000	42.5	160.0	V	15.0	-4.5	31.5	74.0	
1596.500000	41.3	190.0	٧	330.0	-4.3	32.7	74.0	
1614.500000	42.0	130.0	٧	0.0	-4.2	32.0	74.0	
1865.000000	51.4	160.0	Н	150.0	-3.8	22.6	74.0	

Final Result 2

Frequency	Average-MaxHold	Height	Polarization	Azimuth	Corr.	Margin	Limit	Comment
(MHz)	(dBµV/m)	(cm)		(deg)	(dB)	(dB)	(dBµV/m)	
1039.500000	32.4	160.0	Н	150.0	-5.9	21.6	54.0	
1077.000000	33.7	190.0	V	180.0	-5.8	20.3	54.0	
1144.000000	32.2	160.0	V	240.0	-5.6	21.8	54.0	
1596.500000	30.1	130.0	V	15.0	-4.3	23.9	54.0	
1615.000000	34.9	160.0	٧	15.0	-4.2	19.1	54.0	
1865.000000	41.0	190.0	Н	90.0	-3.8	13.0	54.0	

Table 3. Radiated Measurements at 3 meters (1920 x 1080, 60 Hz)

D&T Inc.

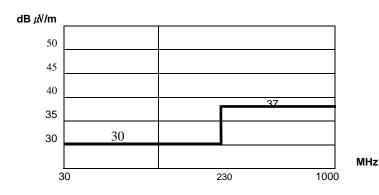


Fig. 4. Limits at 10 meters

NOTES:

- 1. All modes were measured and the worstcase emission was reported.
- 2. Below 1 GHz, the radiated limits are shown on Figure 4.

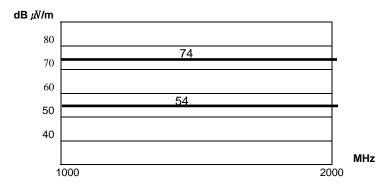


Fig. 5. Limits at 3 meters

NOTES:

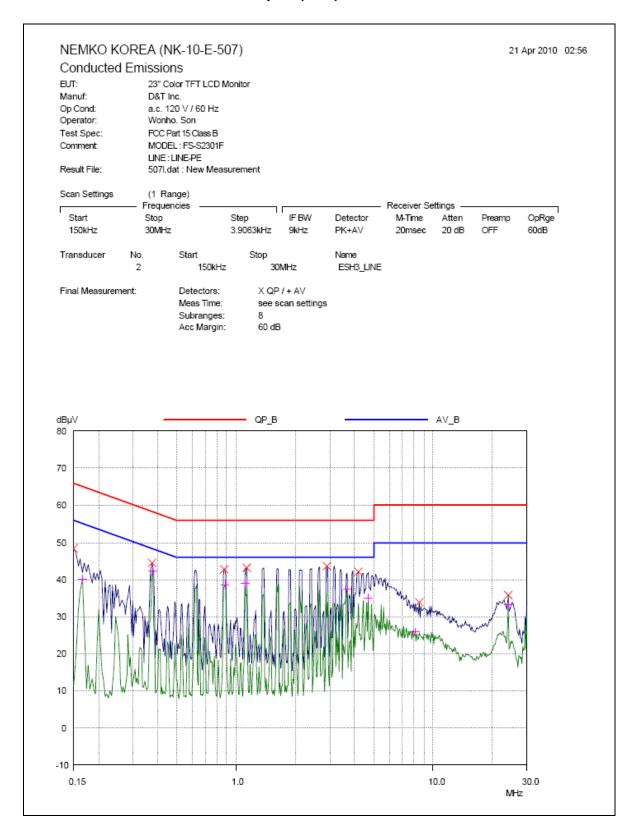
- 1. All modes were measured and the worstcase emission was reported.
- 2. Above 1 GHz, the radiated limits are shown on Figure 5.

NOTES:

- 1. *Pol. H =Horizontal V=Vertical
- 2. **AF+CL+Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. *** average limit is met when using a peak detector receiver, the EUT was deemed to meet both limits and measurement with the average detector receiver is unnecessary.
- 4. The limit for Class B device is on the FCC Part section 15.109(g) & (a).
- 5. All modes of operations were invested and the worst -case emission was reported.
- 6. Above 1 GHz, peak detector function mode is used using a resolution bandwidth of 1 MHz and a video bandwidth of 1 MHz, average detector function mode is used using a resolution bandwidth of 1 MHz and a video bandwidth of 1 MHz.

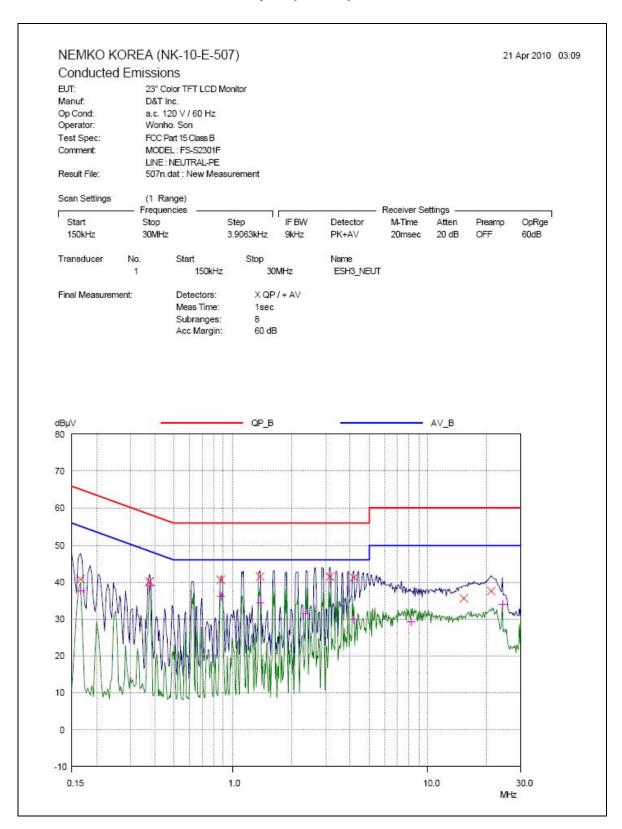
Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.

Tested by: Wonho Son


D&T Inc.

Page 13 of 44

PLOTS OF EMISSIONS

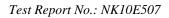

• Conducted Emission at the Mains port (Line)

PLOTS OF EMISSIONS

Conducted Emission at the Mains port (Neutral)

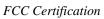
ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95 %


1. Conducted Uncertainty Calculation

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN- Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00			0.00	1	0.00
AMN Impedance	dΖ	± 1.80	triangular	2.449	0.73	1	0.73
a Mismatch	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
(b) Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	a: AMN-Receiver Mismatch: + b: AMN-Receiver Mismatch: -						
Combined Standard Uncertainty	© · AIVIIV	Normal		± 1.	.88		
Expended Uncertainty U		Normal ($k = 2$) ± 3.76					

2. Radiation Uncertainty Calculation

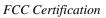

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Хі)</i> (dВ)	Ci	<i>Ci u(Xi)</i> (dB)
Receiver reading	RI	± 0.10	normal 1	1.000	0.10	1	0.10
Sine wave voltage	dVsw	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVpa	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVpr	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVnf	± 0.50	normal 2	2.000	0.25	1	0.25
Antenna Factor Calibration	AF	± 1.50	normal 2	2.000	0.75	1	0.75
Attenuation Antenna-receiver	CL	± 0.52	normal 2	2.000	0.26	1	0.26
Antenna Directivity	AD	± 1.00	rectangular	1.732	0.58	1	0.58
Antenna Factor Height Dependence	АН	± 0.50	rectangular	1.732	0.29	1	0.29
Antenna Phase Centre Variation	AP	± 0.30	rectangular	1.732	0.17	1	0.17
Antenna Factor Frequency Interpolation	Al	± 0.30	rectangular	1.732	0.17	1	0.17
Site Imperfections	SI	± 4.00	triangular	2.449	1.63	1	1.63
Measurement Distance Variation	DV	± 0.10	rectangular	1.732	0.06	1	0.06
Antenna Balance	Dbal	± 0.90	rectangular	1.732	0.52	1	0.52
Cross Polarisation	DCross	± 0.90	rectangular	1.732	0.52	1	0.52
a Mismatch	М	+ 0.25	U-Shaped	1.414	0.18	1	0.18
ⓑ Mismatch	М	- 0.26	U-Shaped	1.414	- 0.18	1	- 0.18
© Mismatch	М	+ 0.98	U-Shaped	1.414	0.69	1	0.69
d Mismatch	М	- 1.11	U-Shaped	1.414	- 0.79	1	- 0.79

FCC Certification

Measurement System Repeatability	RS	0.09	normal 1	1.000	0.09	1	0.09
Remark	(b): Bicon (c): Log P	ical Antenna-re eriodic Antenna	eceiver Mismatch eceiver Mismatch a-receiver Misma a-receiver Misma	: - (< 200 M tch : + (≧ 20	Hz) 00 MHz)		
Combined Standard Uncertainty	± 2.63 (< 200 MHz) Normal ± 2.74 (≥200 MHz)						
Expended Uncertainty U	± 5.26 (< 200 MHz) Normal (k = 2) ± 5.48 (≥200 MHz)						

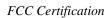
LIST OF TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R & S	ESCS 30	833364/020	Mar. 24 2010	1 year
2	*Test Receiver	R & S	ESCS 30	100302	Nov. 11 2009	1 year
3	*Amplifier	НР	8447F	2805A03427	Jul. 20 2009	1 year
4	Amplifier	НР	8447F	2805A03351	Oct. 12 2009	1 year
5	*Amplifier	Sonoma Instrument	310N	291916	Jul. 22 2009	1 year
6	*Pre Amplifier	НР	8449B	3008A00107	Feb. 03 2010	1 year
7	*Spectrum Analyzer	ADVANTEST	R3265A	45060401	Jul. 20 2009	1 year
8	Spectrum Analyzer	НР	8593E	3926A04282	Nov. 11 2009	1 year
9	*Spectrum Analyzer	R & S	FSP40	100361	Sep. 04 2009	1 year
10	Biconical Log Antenna	ARA	LPB-2520/A	1180	Apr. 21 2008	2 years
11	*Biconical Log Antenna	ARA	LPB-2520/A	1209	Dec. 08 2008	2 years
12	*Trilog-Broadband Antenna	SCHWARZBECK	VULB9168	9168-257	Apr. 14 2010	2 years
13	*Double Ridged Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-474	June. 13 2008	2 years
14	Signal Generater	R & S	SMP02	833286/003	Jul. 20 2009	1 year
15	*LISN	R & S	ESH3-Z5	833874/006	Nov. 11 2009	1 year
16	*LISN	R & S	ESH2-Z5	100227	Feb. 03 2010	1 year
17	*Position Controller	DAEIL EMC	N/A	N/A	N/A	N/A
18	*Turn Table	DAEIL EMC	N/A	N/A	N/A	N/A
19	*Antenna Mast	DAEIL EMC	N/A	N/A	N/A	N/A
20	*Anechoic Chamber	EM Eng.	N/A	N/A	N/A	N/A
21	*Shielded Room	EM Eng.	N/A	N/A	N/A	N/A
22	*Position Controller	Seo-Young EMC	N/A	N/A	N/A	N/A
23	*Turn Table	Seo-Young EMC	N/A	N/A	N/A	N/A
24	*Antenna Mast	Seo-Young EMC	N/A	N/A	N/A	N/A
25	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A


^{*)} Test equipment used during the test

FCC Certification

APPENDIX E – BLOCK DIAGRAM


D&T Inc.
FCC ID: THCFS-S2301F

APPENDIX F - USER'S MANUAL

D&T Inc.
FCC ID: THCFS-S2301F

APPENDIX G – SCHEMATIC DIAGRAM

D&T Inc.
FCC ID: THCFS-S2301F