

Nemko Test Report: 6L0697RUS1

Applicant: SensoNix, Inc.
15755 32nd Avenue North
Plymouth, MN 55447

Equipment Under Test: DX80
(E.U.T.)

In Accordance With: **FCC Part 15, Subpart C, 15.247**
Frequency Hopping Transmitters

Tested By: Nemko USA Inc.
802 N. Kealy
Lewisville, Texas 75057-3136

TESTED BY: David Light DATE: 06 Oct 2006
David Light, Senior Wireless Engineer

APPROVED BY: DATE: _____

Total Number of Pages: 23

Table of Contents

SECTION 1. SUMMARY OF TEST RESULTS	3
SECTION 2. EQUIPMENT UNDER TEST (E.U.T.)	5
SECTION 3. POWERLINE CONDUCTED EMISSIONS	7
SECTION 4. SPURIOUS EMISSIONS (RADIATED)	11
SECTION 5. TEST EQUIPMENT LIST	18
ANNEX A - TEST DETAILS	19
ANNEX B - TEST DIAGRAMS	22

Section 1. Summary of Test Results

Manufacturer: Sensonix, Inc.

Model No.: DX80

Serial No.: None

General: **All measurements are traceable to national standards.**

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted in accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site.

A description of the test facility is on file with the FCC.

New Submission

Production Unit

Class II Permissive Change

Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Nemko USA, Inc.

FCC PART 15, SUBPART C

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: DX80

PROJECT NO.:6L0697RUS1

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a)	Complies**
Channel Separation	15.247(a)(1)	Not Tested*
Time of Occupancy	15.247(a)(1)	Not Tested*
20 dB Occupied Bandwidth	15.247(a)(1)	Not Tested*
Peak Power Output	15.247(b)	Not Tested*
Spurious Emissions (Antenna Conducted)	15.247(d)	Not Tested*
Spurious Emissions (Radiated)	15.247(d)	Complies

Footnotes:

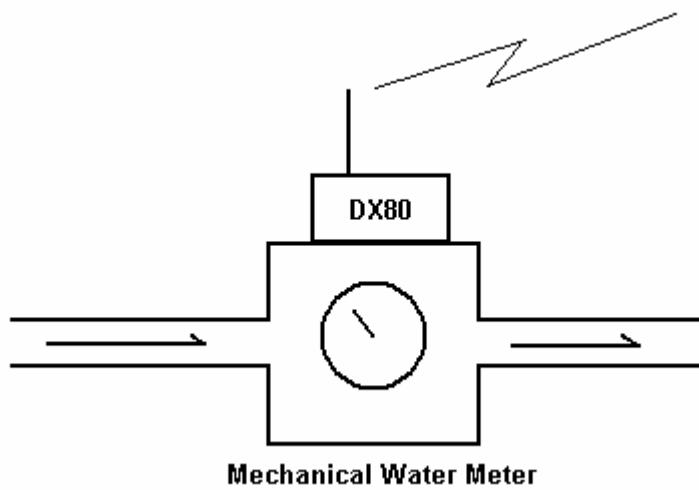
* Adding antennas for class 2 change only. Refer to original submission to the commission for FCC Identifier TGUDX80

** Adding option for end user to use device with external ac/dc converter. Original submission was battery powered only.

Section 2. Equipment Under Test (E.U.T.)**General Equipment Information**

Frequency Band: 902 – 928 MHz
 2400 – 2483.5 MHz
 5725 – 5850 MHz

Operating Frequency Range: 902.5 to 927.5 MHz


Number of Channels: 27

Channel Spacing: 500 kHz

User Frequency Adjustment: Software controlled

Description of EUT

The DX80 is a TDMA frequency hopping transmitter used to transmit water meter data.

System Diagram**Description for Class II Change**

- 1) Adding 4 antennas. Wide band omni-directional antenna at 8.2 dBi gain, Omni base antenna with 7.2 dBi gain and two Yagi antennas with 8 and 10 dBi gain.
- 2) The manufacturer is adding option for the end user to supply an AC/DC converter if battery power is not desired. The device was tested with a CUI, Inc. supply model EPAS-101W-24.

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: 15.207(a)
TESTED BY: Arturo Ruvalcaba	DATE: 08 Aug 2006

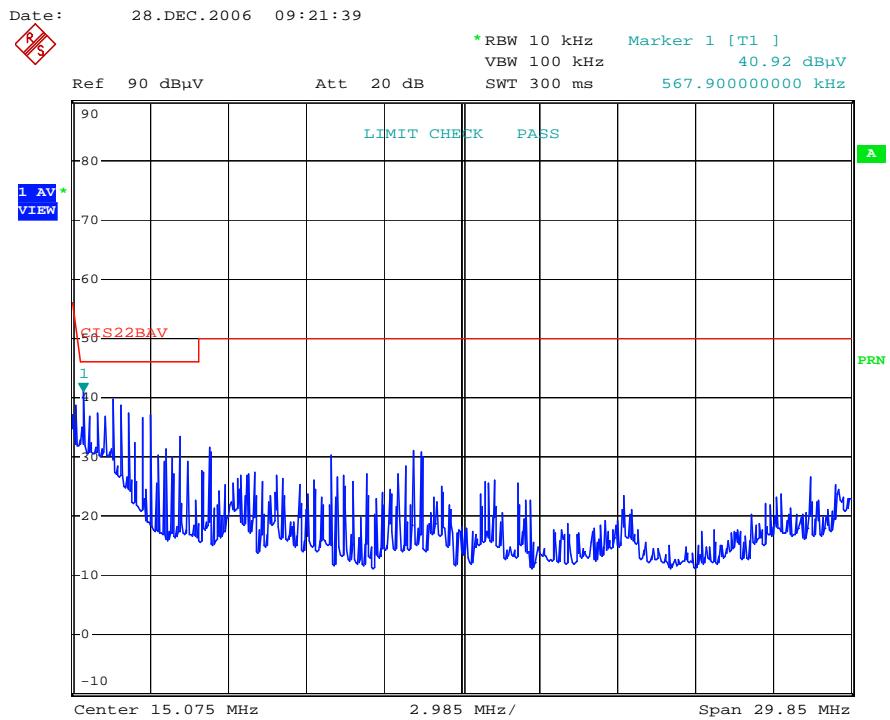
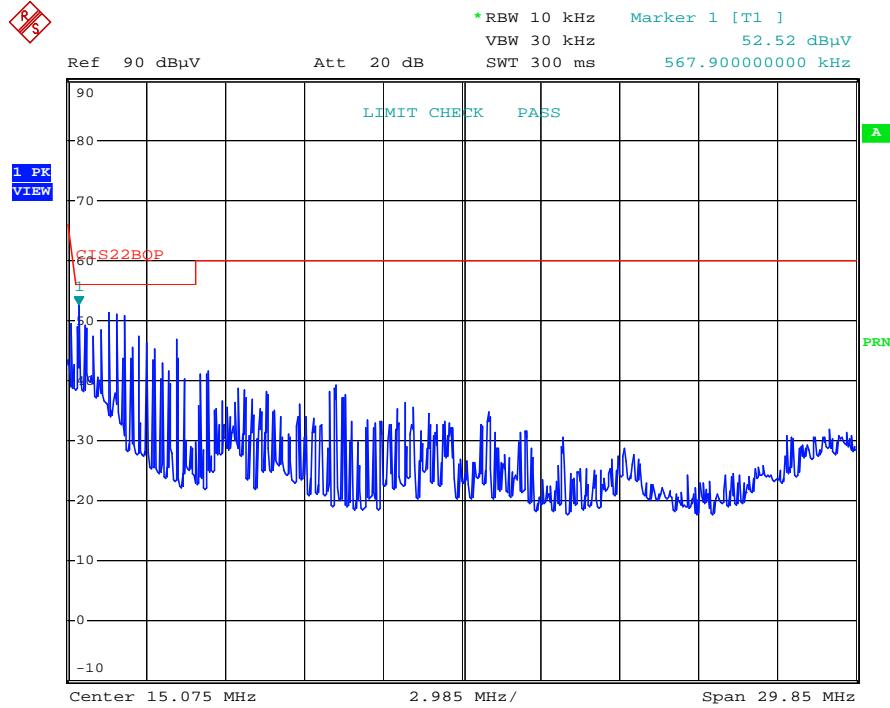
Test Results: Complies. The worst case emission was 53 dB μ V at 0.742 MHz. This is 7 dB below the average specification limit of 60 dB μ V.

Note: The device was tested with an "off the shelf" power adapter. It is the responsibility of the end user to furnish the AC/DC adapter.

Adapter used: CUI, Inc. Model EPAS-101W-24

Test Data: Refer to attached data

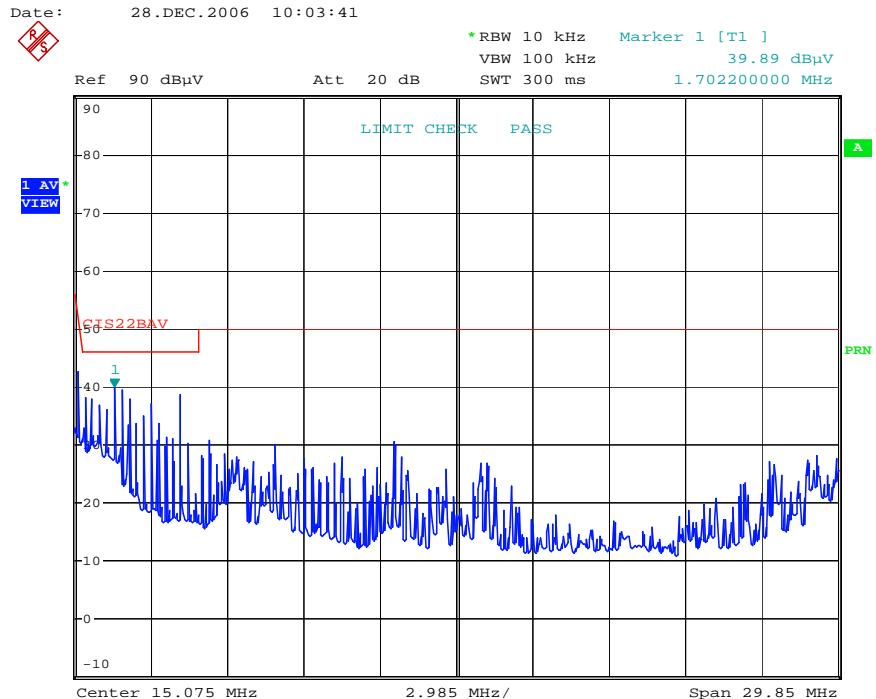
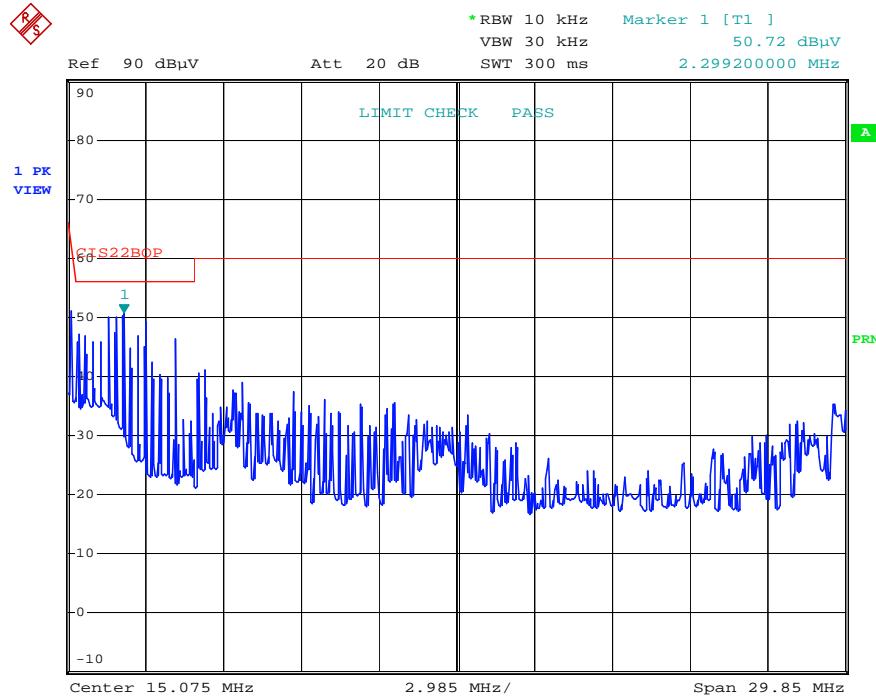
Equipment Used: 969-704-1194-1997-1663-674



Measurement Uncertainty: +/- 1.7 dB

Temperature: 31 °C

Relative Humidity: 41 %

Test Data – Powerline Conducted Emissions



Line 1

Date: 28.DEC.2006 09:22:33

Test Data – Powerline Conducted Emissions

Line 2

Date: 28.DEC.2006 09:23:33

Test Setup Photos – Powerline Conducted Emissions

Section 4. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated)	PARA. NO.: 15.247(d)
TESTED BY: David Light	DATE: 06 October 2006

Test Results: Complies. The noise floor data presented for transmit frequency 915 MHz is representative of other channels tested at 902.5 and 927.5 MHz.

Measurement Data: See attached table.

Duty Cycle Calculation: [None](#)

Notes:

- For handheld devices, the EUT was tested on three orthogonal axis'
- The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33
- The device was tested on three channels per 15.31(l).

Analyzer Settings:

Peak: RBW=VBW=100 kHz at frequencies below 1000 MHz
RBW=VBW=1 MHz at frequencies above 1000 MHz

Average: RBW=1 MHz / VBW=100 Hz

[Note: The device was transmitting in CW mode when tested.](#)

Equipment Used: 1195-759-791-1484-1485-1016-993-1464

Measurement Uncertainty: +/-3.6 dB

Temperature: 22 °C

Relative Humidity: 40 %

Test Data - Radiated Emissions**FB35T900WA base**

Measurement Data:		Reading listed by order taken.					Test Distance: 3 Meters				
#	Freq	Rdng	Cable	Cable	Pre-A	Horn	Dist	Corr	Spec	Margin	Polar
	MHz	dB μ V	dB	dB	dB	dB	Table	dB μ V/m	dB μ V/m	dB	Ant
1	2745.027	47.7	+0.8	+2.9	+32.7	+29.4	+0.0	48.1	74.0	-25.9	Vert
Ave 2	2745.027	36.0	+0.8	+2.9	+32.7	+29.4	+0.0	36.4	54.0	-17.6	Vert
3	3660.036	39.5	+0.8	+2.8	+32.3	+30.5	+0.0	41.3	74.0	-32.7	Vert
Ave 4	3660.036	31.7	+0.8	+2.8	+32.3	+30.5	+0.0	33.5	54.0	-20.5	Vert
5	4575.045	42.2	+1.0	+3.1	+31.8	+32.3	+0.0	46.8	74.0	-27.2	Vert
Ave 6	4575.045	30.8	+1.0	+3.1	+31.8	+32.3	+0.0	35.4	54.0	-18.6	Vert
7	5490.054	39.2	+1.2	+3.5	+31.9	+33.6	+0.0	45.6	74.0	-28.4	Vert
Ave 8	5490.054	30.0	+1.2	+3.5	+31.9	+33.6	+0.0	36.4	54.0	-17.6	Vert
9	6405.063	39.7	+1.3	+3.9	+30.9	+35.1	+0.0	49.1	74.0	-24.9	Vert
Ave 10	6405.063	29.2	+1.3	+3.9	+30.9	+35.1	+0.0	38.6	54.0	-15.4	Vert
11	7320.072	38.0	+1.2	+4.0	+32.3	+35.8	+0.0	46.7	74.0	-27.3	Vert
Ave 12	7320.072	29.2	+1.2	+4.0	+32.3	+35.8	+0.0	37.9	54.0	-16.1	Vert
13	8235.081	38.0	+1.3	+4.3	+33.2	+37.3	+0.0	47.7	74.0	-26.3	Vert
Ave 14	8235.081	30.7	+1.3	+4.3	+33.2	+37.3	+0.0	40.4	54.0	-13.6	Vert
15	9150.090	37.8	+1.3	+4.3	+34.8	+37.0	+0.0	45.6	74.0	-28.4	Vert
Ave 16	9150.090	30.3	+1.3	+4.3	+34.8	+37.0	+0.0	38.1	54.0	-15.9	Vert
17	2745.027	45.8	+0.8	+2.9	+32.7	+29.4	+0.0	46.2	74.0	-27.8	Horiz
Ave 18	2745.027	34.5	+0.8	+2.9	+32.7	+29.4	+0.0	34.9	54.0	-19.1	Horiz
19	3660.036	38.8	+0.8	+2.8	+32.3	+30.5	+0.0	40.6	74.0	-33.4	Horiz
Ave 20	3660.036	31.5	+0.8	+2.8	+32.3	+30.5	+0.0	33.3	54.0	-20.7	Horiz
21	4575.045	40.0	+1.0	+3.1	+31.8	+32.3	+0.0	44.6	74.0	-29.4	Horiz
Ave 22	4575.045	30.5	+1.0	+3.1	+31.8	+32.3	+0.0	35.1	54.0	-18.9	Horiz
23	5490.054	38.8	+1.2	+3.5	+31.9	+33.6	+0.0	45.2	74.0	-28.8	Horiz
Ave 24	5490.054	30.0	+1.2	+3.5	+31.9	+33.6	+0.0	36.4	54.0	-17.6	Horiz
25	6405.063	37.2	+1.3	+3.9	+30.9	+35.1	+0.0	46.6	74.0	-27.4	Horiz
Ave 26	6405.063	29.5	+1.3	+3.9	+30.9	+35.1	+0.0	38.9	54.0	-15.1	Horiz
27	7320.072	37.5	+1.2	+4.0	+32.3	+35.8	+0.0	46.2	74.0	-27.8	Horiz
Ave 28	7320.072	29.2	+1.2	+4.0	+32.3	+35.8	+0.0	37.9	54.0	-16.1	Horiz
29	8235.081	44.0	+1.3	+4.3	+33.2	+37.3	+0.0	53.7	74.0	-20.3	Horiz
Ave 30	8235.081	35.2	+1.3	+4.3	+33.2	+37.3	+0.0	44.9	54.0	-9.1	Horiz
31	9150.090	39.8	+1.3	+4.3	+34.8	+37.0	+0.0	47.6	74.0	-26.4	Horiz
Ave 32	9150.090	30.5	+1.3	+4.3	+34.8	+37.0	+0.0	38.3	54.0	-15.7	Horiz

Test Data - Radiated Emissions

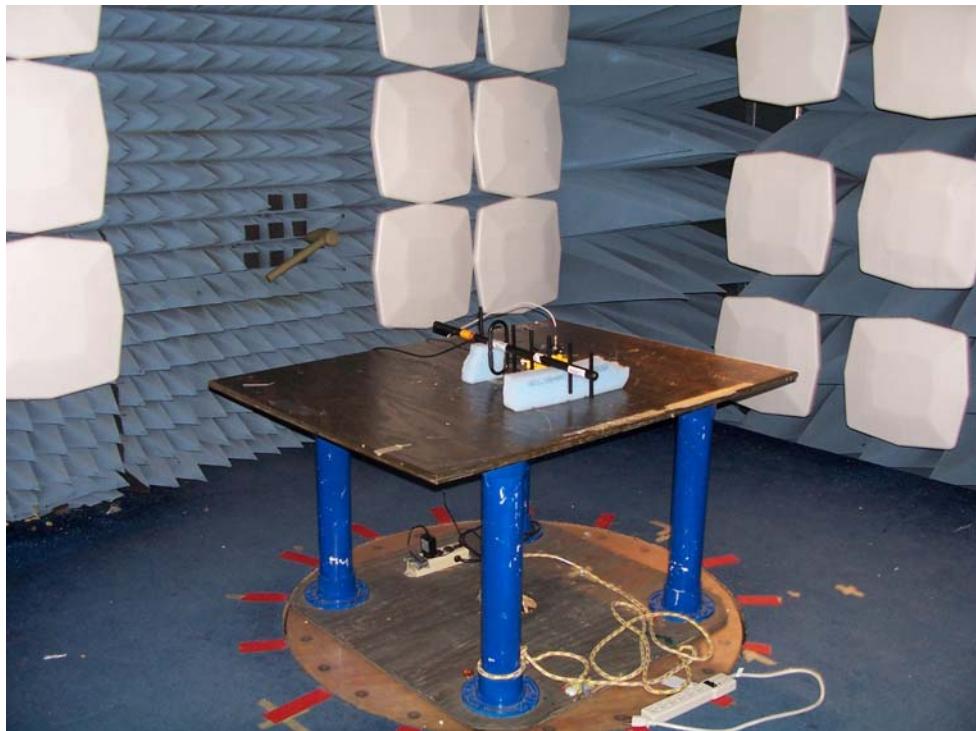
BGY890K yagi

Measurement Data:			Reading listed by order taken.			Test Distance: 3 Meters					
#	Freq	Rdng	Cable	Cable	Pre-A	Horn	Dist	Corr	Spec	Margin	Polar
	MHz	dB μ V	dB	dB	dB	dB	Table	dB μ V/m	dB μ V/m	dB	Ant
1	2745.027	42.2	+0.8	+2.9	+32.7	+29.4	+0.0	42.6	74.0	-31.4	Horiz
Ave 2	2745.027	32.3	+0.8	+2.9	+32.7	+29.4	+0.0	32.7	54.0	-21.3	Horiz
3	3660.036	39.7	+0.8	+2.8	+32.3	+30.5	+0.0	41.5	74.0	-32.5	Horiz
Ave 4	3660.036	31.2	+0.8	+2.8	+32.3	+30.5	+0.0	33.0	54.0	-21.0	Horiz
5	4575.045	38.8	+1.0	+3.1	+31.8	+32.3	+0.0	43.4	74.0	-30.6	Horiz
Ave 6	4575.045	30.7	+1.0	+3.1	+31.8	+32.3	+0.0	35.3	54.0	-18.7	Horiz
7	5490.054	40.5	+1.2	+3.5	+31.9	+33.6	+0.0	46.9	74.0	-27.1	Horiz
Ave 8	5490.054	30.0	+1.2	+3.5	+31.9	+33.6	+0.0	36.4	54.0	-17.6	Horiz
9	6405.063	37.3	+1.3	+3.9	+30.9	+35.1	+0.0	46.7	74.0	-27.3	Horiz
Ave 10	6405.063	29.0	+1.3	+3.9	+30.9	+35.1	+0.0	38.4	54.0	-15.6	Horiz
11	7320.072	35.8	+1.2	+4.0	+32.3	+35.8	+0.0	44.5	74.0	-29.5	Horiz
Ave 12	7320.072	29.2	+1.2	+4.0	+32.3	+35.8	+0.0	37.9	54.0	-16.1	Horiz
13	8235.081	39.0	+1.3	+4.3	+33.2	+37.3	+0.0	48.7	74.0	-25.3	Horiz
Ave 14	8235.081	30.2	+1.3	+4.3	+33.2	+37.3	+0.0	39.9	54.0	-14.1	Horiz
15	9150.090	38.8	+1.3	+4.3	+34.8	+37.0	+0.0	46.6	74.0	-27.4	Horiz
Ave 16	9150.090	30.2	+1.3	+4.3	+34.8	+37.0	+0.0	38.0	54.0	-16.0	Horiz
17	2745.027	40.5	+0.8	+2.9	+32.7	+29.4	+0.0	40.9	74.0	-33.1	Vert
Ave 18	2745.027	32.0	+0.8	+2.9	+32.7	+29.4	+0.0	32.4	54.0	-21.6	Vert
19	3660.036	39.2	+0.8	+2.8	+32.3	+30.5	+0.0	41.0	74.0	-33.0	Vert
Ave 20	3660.036	31.2	+0.8	+2.8	+32.3	+30.5	+0.0	33.0	54.0	-21.0	Vert
21	4575.045	40.5	+1.0	+3.1	+31.8	+32.3	+0.0	45.1	74.0	-28.9	Vert
Ave 22	4575.045	30.5	+1.0	+3.1	+31.8	+32.3	+0.0	35.1	54.0	-18.9	Vert
23	5490.054	37.3	+1.2	+3.5	+31.9	+33.6	+0.0	43.7	74.0	-30.3	Vert
Ave 24	5490.054	29.8	+1.2	+3.5	+31.9	+33.6	+0.0	36.2	54.0	-17.8	Vert
25	6405.063	38.0	+1.3	+3.9	+30.9	+35.1	+0.0	47.4	74.0	-26.6	Vert
Ave 26	6405.063	29.0	+1.3	+3.9	+30.9	+35.1	+0.0	38.4	54.0	-15.6	Vert
27	7320.072	37.0	+1.2	+4.0	+32.3	+35.8	+0.0	45.7	74.0	-28.3	Vert
Ave 28	7320.072	29.2	+1.2	+4.0	+32.3	+35.8	+0.0	37.9	54.0	-16.1	Vert
29	8235.081	39.0	+1.3	+4.3	+33.2	+37.3	+0.0	48.7	74.0	-25.3	Vert
Ave 30	8235.081	30.7	+1.3	+4.3	+33.2	+37.3	+0.0	40.4	54.0	-13.6	Vert
31	9150.090	40.3	+1.3	+4.3	+34.8	+37.0	+0.0	48.1	74.0	-25.9	Vert
Ave 32	9150.090	30.2	+1.3	+4.3	+34.8	+37.0	+0.0	38.0	54.0	-16.0	Vert

Test Data - Radiated Emissions

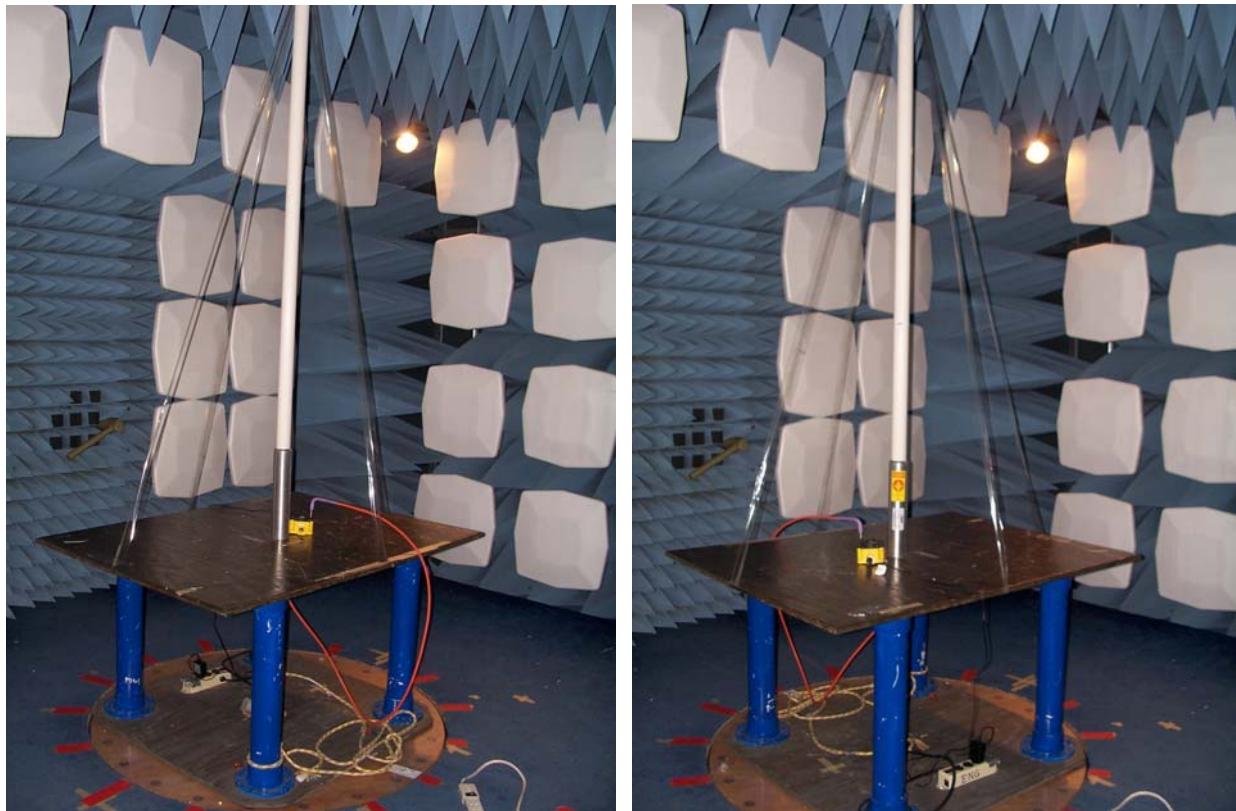
BA06 antenna

Measurement Data:			Reading listed by order taken.			Test Distance: 3 Meters					
#	Freq	Rdng	Cable	Cable	Pre-A	Horn	Dist	Corr	Spec	Margin	Polar
	MHz	dB μ V	dB	dB	dB	dB	Table	dB μ V/m	dB μ V/m	dB	Ant
1	2745.027	45.3	+0.8	+2.9	+32.7	+29.4	+0.0	45.7	74.0	-28.3	Vert
Ave 2	2745.027	36.3	+0.8	+2.9	+32.7	+29.4	+0.0	36.7	54.0	-17.3	Vert
3	3660.036	40.3	+0.8	+2.8	+32.3	+30.5	+0.0	42.1	74.0	-31.9	Vert
Ave 4	3660.036	31.0	+0.8	+2.8	+32.3	+30.5	+0.0	32.8	54.0	-21.2	Vert
5	4575.045	38.7	+1.0	+3.1	+31.8	+32.3	+0.0	43.3	74.0	-30.7	Vert
Ave 6	4575.045	30.2	+1.0	+3.1	+31.8	+32.3	+0.0	34.8	54.0	-19.2	Vert
7	5490.054	38.7	+1.2	+3.5	+31.9	+33.6	+0.0	45.1	74.0	-28.9	Vert
Ave 8	5490.054	29.7	+1.2	+3.5	+31.9	+33.6	+0.0	36.1	54.0	-17.9	Vert
9	6405.063	36.2	+1.3	+3.9	+30.9	+35.1	+0.0	45.6	74.0	-28.4	Vert
Ave 10	6405.063	28.8	+1.3	+3.9	+30.9	+35.1	+0.0	38.2	54.0	-15.8	Vert
11	7320.072	37.3	+1.2	+4.0	+32.3	+35.8	+0.0	46.0	74.0	-28.0	Vert
Ave 12	7320.072	28.8	+1.2	+4.0	+32.3	+35.8	+0.0	37.5	54.0	-16.5	Vert
13	8235.081	39.5	+1.3	+4.3	+33.2	+37.3	+0.0	49.2	74.0	-24.8	Vert
Ave 14	8235.081	30.2	+1.3	+4.3	+33.2	+37.3	+0.0	39.9	54.0	-14.1	Vert
15	9150.090	39.0	+1.3	+4.3	+34.8	+37.0	+0.0	46.8	74.0	-27.2	Vert
Ave 16	9150.090	30.2	+1.3	+4.3	+34.8	+37.0	+0.0	38.0	54.0	-16.0	Vert
17	2745.027	41.5	+0.8	+2.9	+32.7	+29.4	+0.0	41.9	74.0	-32.1	Horiz
Ave 18	2745.027	32.5	+0.8	+2.9	+32.7	+29.4	+0.0	32.9	54.0	-21.1	Horiz
19	3660.036	39.8	+0.8	+2.8	+32.3	+30.5	+0.0	41.6	74.0	-32.4	Horiz
Ave 20	3660.036	30.8	+0.8	+2.8	+32.3	+30.5	+0.0	32.6	54.0	-21.4	Horiz
21	4575.045	38.0	+1.0	+3.1	+31.8	+32.3	+0.0	42.6	74.0	-31.4	Horiz
Ave 22	4575.045	30.3	+1.0	+3.1	+31.8	+32.3	+0.0	34.9	54.0	-19.1	Horiz
23	5490.054	38.7	+1.2	+3.5	+31.9	+33.6	+0.0	45.1	74.0	-28.9	Horiz
Ave 24	5490.054	29.7	+1.2	+3.5	+31.9	+33.6	+0.0	36.1	54.0	-17.9	Horiz
25	6405.063	39.0	+1.3	+3.9	+30.9	+35.1	+0.0	48.4	74.0	-25.6	Horiz
Ave 26	6405.063	29.0	+1.3	+3.9	+30.9	+35.1	+0.0	38.4	54.0	-15.6	Horiz
27	7320.072	39.2	+1.2	+4.0	+32.3	+35.8	+0.0	47.9	74.0	-26.1	Horiz
Ave 28	7320.072	29.0	+1.2	+4.0	+32.3	+35.8	+0.0	37.7	54.0	-16.3	Horiz
29	8235.081	40.2	+1.3	+4.3	+33.2	+37.3	+0.0	49.9	74.0	-24.1	Horiz
Ave 30	8235.081	32.3	+1.3	+4.3	+33.2	+37.3	+0.0	42.0	54.0	-12.0	Horiz
31	9150.090	37.8	+1.3	+4.3	+34.8	+37.0	+0.0	45.6	74.0	-28.4	Horiz
Ave 32	9150.090	30.2	+1.3	+4.3	+34.8	+37.0	+0.0	38.0	54.0	-16.0	Horiz


Radiated Photographs

FB35T900WA base

Radiated Photographs


BGY890K yagi

Radiated Photographs

BA06 antenna

Section 5. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
759	ANTENNA, LOG PERIODIC	A.H. SYSTEMS SAS-200/510	556	02/13/06	02/13/07
1195	ANTENNA,BICONICAL	A.H. SYSTEMS SAS-200/542	235	02/10/06	02/10/07
791	PREAMP, 25dB	Nemko USA, Inc. LNA25	398	04/20/06	04/20/07
1484	Cable	Storm PR90-010-072	N/A	10/02/06	10/02/07
1485	Cable	Storm PR90-010-216	N/A	10/02/06	10/02/07
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/14/05	01/15/07
993	Horn antenna	A.H. Systems SAS-200/571	XXX	08/01/05	08/02/07
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	04/20/06	04/20/07
969	lisn	Schwarzbeck NNLA 8120	8120281	02/02/06	02/02/07
704	FILTER, HIGH PASS, 5 KHz	SOLAR 7930-5.0	933126	04/20/06	04/20/07
1194	CABLE, 7m	Nemko USA, Inc. RG214	N/A	03/09/06	03/09/07
1997	CABLE, 1.5M	Nemko USA, Inc. RG213	N/A	03/09/06	03/09/07
1663	Spectrum Analyzer	Rhode & Schwarz FSP	973351	05/18/06	05/18/07
674	LIMITER	HP 11947A	3107A02200	04/19/06	04/19/07

Nemko USA, Inc.

FCC PART 15, SUBPART C

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER
EQUIPMENT: DX80 PROJECT NO.:6L0697RUS1

ANNEX A - TEST DETAILS

NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: 15.207(a)
---	----------------------

Minimum Standard: §15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted Emission (MHz)	Limit (dBmV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

(1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §§15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

NAME OF TEST: Radiated Spurious Emissions

PARA. NO.: 15.247(d)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μ V/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

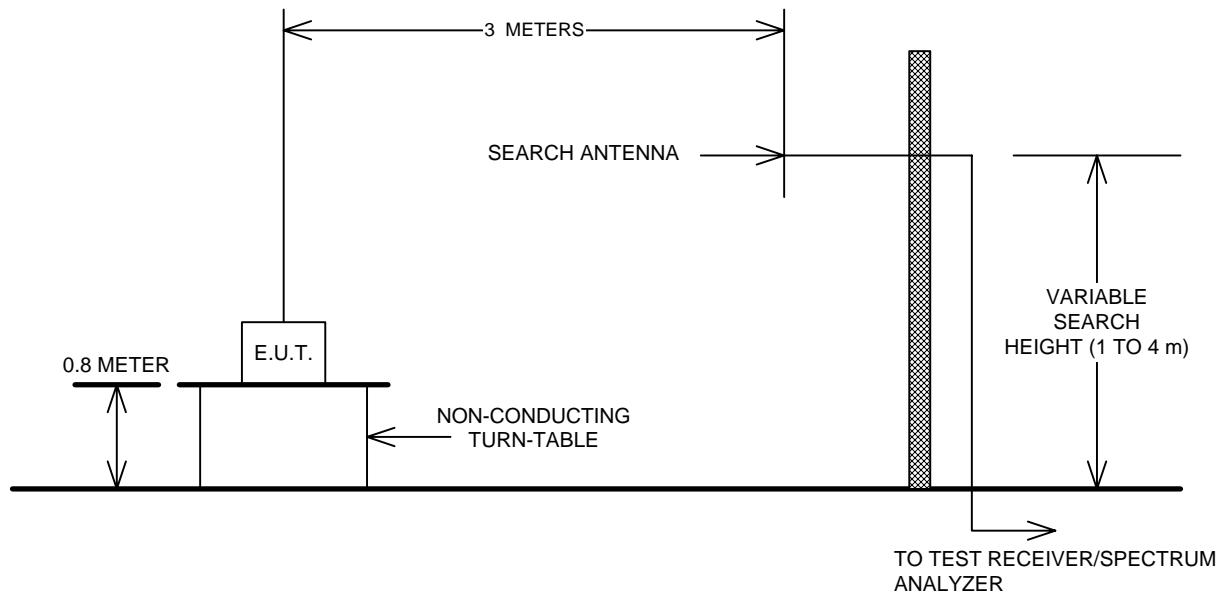
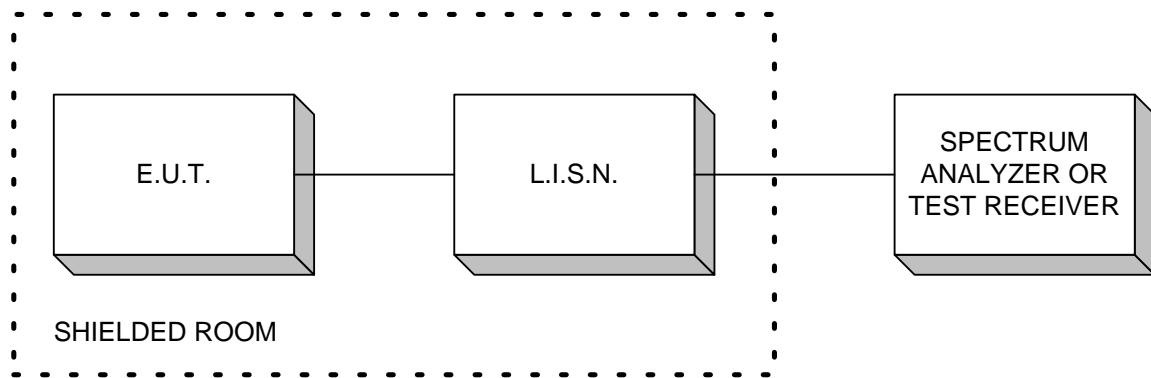
THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom



Nemko USA, Inc.

FCC PART 15, SUBPART C

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER
EQUIPMENT: DX80 PROJECT NO.:6L0697RUS1

ANNEX B - TEST DIAGRAMS

Test Site For Radiated Emissions**Conducted Emissions**