

(Shielding removed for clarity)

DP1203 - C868 / C915

868 and 915MHz Drop-In RF Transceiver Modules

Small Form Factor and Direct Digital Interface Modules

GENERAL DESCRIPTION

The DP1203 is a 30mm x 18mm shielded radio transceiver module available for use in either the 868-870MHz or the 902-928MHz ISM bands. The module is suitable for circuit applications which have to satisfy either European (ETSI EN300-220-1, EN301-489-3) or the North American (FCC part 15.247, 15.249) regulatory standards.

Virtually no RF knowledge is required to use this RF module. Wireless communication can be obtained with just the addition of a suitable antenna and a microcontroller. The DP1203 fulfils a wide range of application requirements, ranging from basic point-to-point communication to more complex multipoint process control functions.

The module is suitable for surface mount reflow assembly.

XEMICS provides basic firmware routines for controlling the module and typical applications.

APPLICATIONS

- Home automation and access control
- Process and building control
- Cable replacement

KEY PRODUCT FEATURES

- Instant RF solder and use!
- No RF knowledge required
- Small size 30mm x 18mm
- Direct Digital Interface
- Supply voltage 2.4V 3.6V
- Minimum frequency synthesizer step size of 500Hz
- Maximum output power of +11dBm
- Receiver sensitivity of -111dBm
- Very high data rate up to 153.2kbps
- Current consumption Tx = 62mA @ 11dBm
- Current consumption Rx=14mA

DEVICE OPTIONS

Part Number	Description	Packing Method	Pin- package
DP1203-868	868-870MHz	Tray	Board
DP1203-915	902-928MHz	Tray	Board

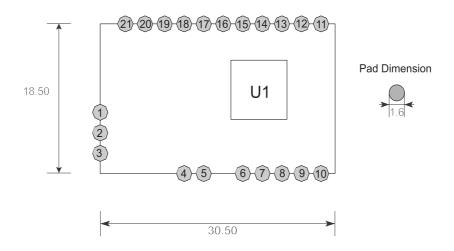


Table of Contents

1	Pin Description	3
2	Electrical Characteristics	4
2.1	Absolute maximum operating ranges	4
2.2	Electrical Characteristics	5
3	Functional Description	6
4	Serial Control Interface	7
5	Operating Modes	8
5.1	Standard sequence for switching between receiver and transmitter	9
6	Typical Application	10
7	Mechanical Dimension	11
8	Packaging Information	12

1 PIN DESCRIPTION

PIN	NAME	I/O	DESCRIPTION
1	GND	IN	Ground
2	RF	IN/OUT	RF input / output terminal
3	GND	IN	Ground
4	VDDP		VDD for power amplifier
5	VDDA		VDD for analog blocks
6	GND		Ground
7	VDD		Supply voltage
8	/EN	IN	3-wire interface communication enable signal
9	SWITCH	IN/OUT	Receiver or transmitter mode selection
10	GND	IN	Ground
11	GND	IN	Ground
12	SO	OUT	3-wire serial data interface: Data Out
13	SI	IN	3-wire serial data interface: Data In
14	SCK	IN	3-wire serial data interface: Data Clock
15	CLKOUT	OUT	Programmable reference clock output
16	DCLK	OUT	Receiver data clock
17	DATA	IN/OUT	Transmitter data input or receiver data output
18	DATAIN	IN	Transmitter data input
19	PATTERN	OUT	Receiver pattern recognition output
20	RX	IN	Antenna switch RX Select
21	TX	IN	Antenna switch TX select

2 ELECTRICAL CHARACTERISTICS

2.1 ABSOLUTE MAXIMUM OPERATING RANGES

Description	Min	Max	Unit
Supply voltage	2.4	3.6	V
Operating temperature	-40	+85	°C
Storage temperature	-55	125	°C
Soldering temperature (max 15 sec)		260	°C

CAUTION: ESD sensitive device.

Precaution should be taken when handling the device in order to prevent permanent damage

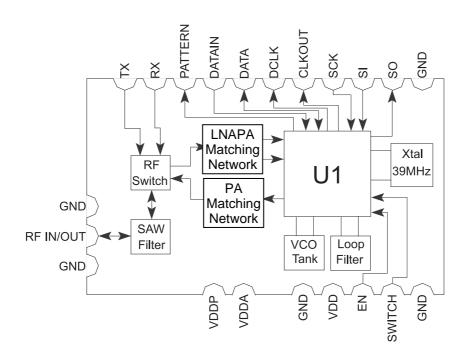
Life Support Policy and Use in Safety Critical Applications

XEMICS PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF XEMICS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK.

2.2 SPECIFICATIONS

Tamb = 25° C; VDD = 3.3V, Frequency Deviation, Δ_f = 55kHz, Bit-Rate, DR = 4.8kbps pseudo-random bit sequence unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{SYNTH}	Synthesizer Frequency Range	DP1203-C868	868	-	870	MHz
OTIVITI		DP1203-C915	902	ı	928	MHz
IDD _{SL}	Sleep mode supply current			0.2	1	uA
IDD _{ST}	Standby mode supply current	39 MHz running		0.85	1.1	mA
IDD_RX	RX mode supply current			14	17	mA
IDD_{TX}	TX mode supply current	$P_{RF} = 5 \text{ dBm}$		33	45	mΑ
		$P_{RF} = 11dBm$		62	75	mA
RFS	RF Sensitivity	DR = 4.8 kbps / BER = 0.1%		-111	-108	dBm
Δ_{f}	Frequency Deviation	Programmable	1	-	255	kHz
DR	Bit rate	Programmable	1.2	-	152.3	Kb/s
P_{RF}	RF output power	Programmable.				
		P _{RFMAX}	8	11	-	dBm
t _{TX}	Transmitter wake-up time	From oscillator enabled	-	200	250	us
t_{RX}	Receiver baseband wake up time	From oscillator enabled	-	1.5	1.8	ms
t _{XTAL}	Quartz oscillator wake up time		-	-	1	ms
f _{XTAL}	Quartz oscillator frequency	Fundamental mode osc.		39		MHz
	T	T			1	T
V _{IH}	Digital input level high	% VDD	75	-	-	%
V_{IL}	Digital input level low	% VDD	-		25	%
V _{OH}	Digital output level high	% VDD	75	-	-	%
V_{OL}	Digital output level low	% VDD	-	•	25	%

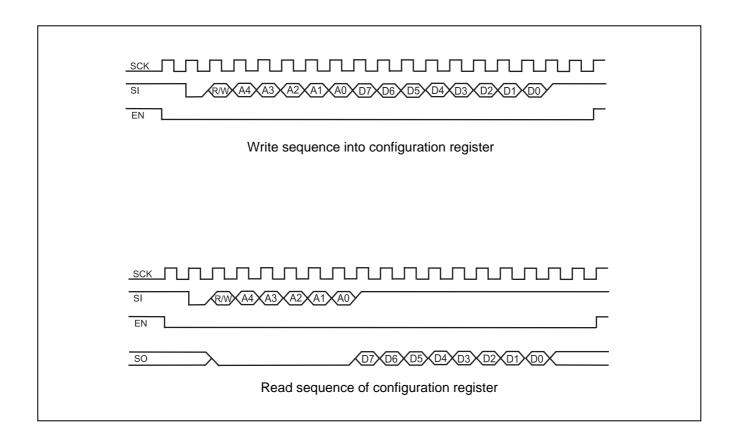


3 FUNCTIONAL DESCRIPTION

The DP1203 is a cost effective high performance radio transceiver module designed for the wireless transmission of digital information over distances of >500 meters in free space.

The module is based on the RF transceiver circuit from XEMICS, the XE1203. For more information on the XE1203, please refer to the XE1203 datasheet, available from the XEMICS' website http://www.xemics.com/xe1200/xe1203/.

All high frequency circuits and the 39MHz reference crystal are enclosed inside a shielding can. The module incorporates an antenna switch driven by two external pins (RX and TX), and a SAW Filter placed between the antenna port (RF IN/OUT). The switch provides a superior margin to satisfy the European or the North American regulatory standards.



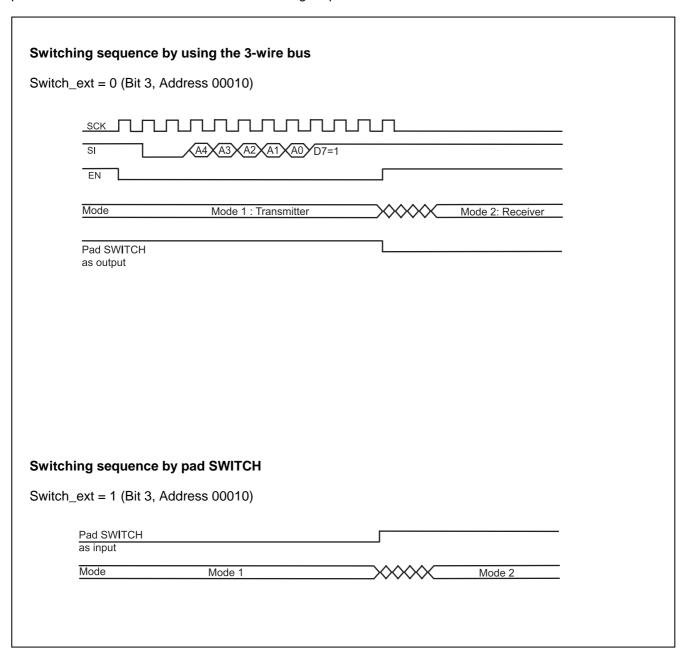
4 SERIAL CONTROL INTERFACE

A 3-wire bi-directional bus (SCK, SI, SO) is used to control the DP1203. The output signal, SO, is provided by the DP1203 in opposition to the SCK and SI which needs to be provided by the external application as an 8-bit microcontroller. An access *Read* or *Write* with the XE1203 is possible only when the enable signal is active (active LOW).

For more information about the 3-wire bus, please refer to the XE1203 datasheet chapter; *Interface definition, principles of operation*. You can find this at http://www.xemics.com/xe1203/ .

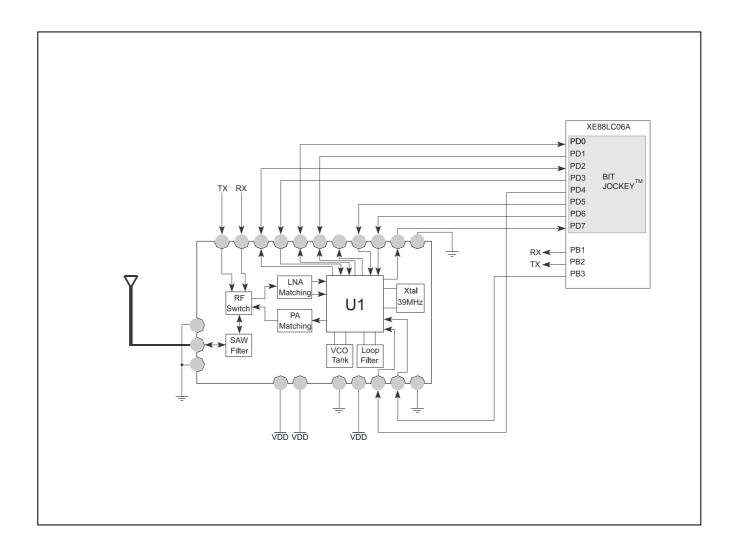
5 OPERATING MODES

The DP1203 has 2 main operating modes (Mode 1, Mode 2); each mode is subdivided into 4 modes illustrated in the table below. The switching between Mode 1 and Mode 2 can be done either through the 3-wire bus (Chip_config register) or by using the pin SWITCH. The selection depends on the Switch_ext which is a XE1203 register.

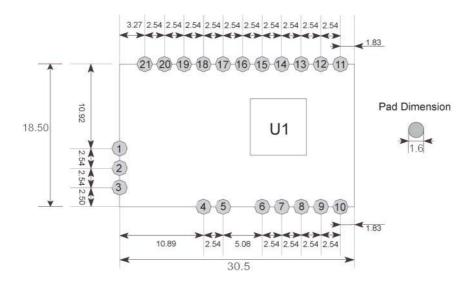

Switch_ext Bit 3, Address 00010	Chip_config Bit 0, Address 00000	SWITCH (pin)	Mode selected
0	0	Set in Output - "1" DP1203 is in transmitter - "0" DP1203 other modes	Mode 1 Bit 7-6, Address 00110 - 0 0 : sleep mode - 0 1 : standby mode - 1 0 : receiver mode - 1 1 : transmitter mode
0	1	Set in Output - "1" DP1203 is in transmitter - "0" DP1203 other modes	Mode 2 Bit 7-6, Address 01001 - 0 0 : sleep mode - 0 1 : standby mode - 1 0 : receiver mode - 1 1 : transmitter mode
1	X	0	Mode 1 Bit 7-6, Address 00110 - 0 0 : sleep mode - 0 1 : standby mode - 1 0 : receiver mode - 1 1 : transmitter mode
1	X	1	Mode 2 Bit 7-6, Address 01001 - 0 0 : sleep mode - 0 1 : standby mode - 1 0 : receiver mode - 1 1 : transmitter mode

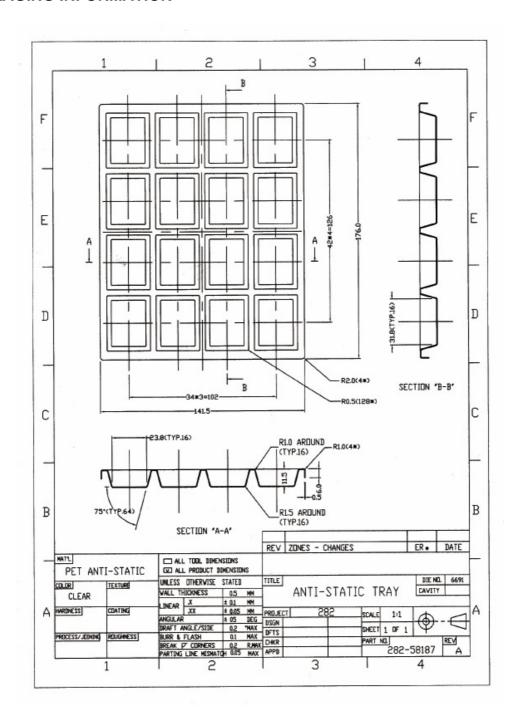
For more information about the modes of operation, please refer to the XE1203 Datasheet on the XEMICS website $\frac{\text{http://www.xemics.com/xe1200/xe1203/}}{\text{operation}}$.

5.1 STANDARD SEQUENCE FOR SWITCHING BETWEEN RECEIVER AND TRANSMITTER


The drop-in module DP1203 is able to switch between any configuration by using the 3-wire bus or by using the pin SWITCH. This section describes the switching sequence from Mode 1 to Mode 2.

6 TYPICAL APPLICATION


The schematic below shows the DP1203 interfaced with a XEMICS' microcontroller XE88LC06A. In this typical application, the pad SWITCH is used as an input and the two signals TX and RX are controlled directly by the microcontroller.


7 MECHANICAL DIMENSIONS

The following diagram shows the physical footprint and dimensions of the DP1203 drop-in module, which should be implemented on the mother board.

8 PACKAGING INFORMATION

©XEMICS 2004

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

XEMICS PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF XEMICS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK.

Should a customer purchase or use XEMICS products for any such unauthorized application, the customer shall indemnify and hold XEMICS and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.