

TEST REPORT

Report No.: CHTEW19070020

Report verification:

ReportNo: CHTEW19070020

Project No.: SHT1905073004EW

FCC ID.: TEYA560T

Applicant's name.: ABELL INDUSTRIES CO.,LTD.

Address.: 2/F, Bldg. 14, ZhongXing Industrial City, NanShan Dist. ShenZhen, P.R. China

Manufacturer.: ABELL INDUSTRIES CO.,LTD.

Address.: 2/F, Bldg. 14, ZhongXing Industrial City, NanShan Dist. ShenZhen, P.R. China

Test item description.: Two way radio

Trade Mark.: ABELL

Model/Type reference.: A560T

Listed Model(s): -

FCC 47 CFR Part2.1093

IEEE Std C95.1, 1999 Edition

IEEE 1528: 2013

Date of receipt of test sample.: Jun. 12, 2019

Date of testing.: Jun. 13, 2019- Jul. 04, 2019

Date of issue.: Jul. 05, 2019

Result.: PASS

Compiled by

(position+printed name+signature).: File administrators: Xiaodong Zhao

Xiaodong Zhao

Supervised by

(position+printed name+signature).: Test Engineer: Xiaodong Zhao

Xiaodong Zhao

Approved by

(position+printed name+signature).: Manager: Hans Hu

Hans Hu

Testing Laboratory Name.: Shenzhen Huatongwei International Inspection Co., Ltd

Address.: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1. Test Standards and Report version</u>	3
1.1. Test Standards	3
1.2. Report version	3
<u>2. Summary</u>	4
2.1. Client Information	4
2.2. Product Description	4
2.3. Test frequency list	5
<u>3. Test Environment</u>	6
3.1. Test laboratory	6
3.2. Test Facility	6
3.3. Environmental conditions	6
<u>4. Equipments Used during the Test</u>	7
<u>5. Measurement Uncertainty</u>	8
<u>6. SAR Measurements System Configuration</u>	9
6.1. SAR Measurement Set-up	9
6.2. DASY5 E-field Probe System	10
6.3. Phantoms	11
6.4. Device Holder	11
<u>7. SAR Test Procedure</u>	12
7.1. Scanning Procedure	12
7.2. Data Storage and Evaluation	14
<u>8. Position of the wireless device in relation to the phantom</u>	16
8.1. Front-of-face	16
8.2. Body Position	16
<u>9. Dielectric Property Measurements & System Check</u>	17
9.1. Tissue Dielectric Parameters	17
9.2. SAR System Validation	18
9.3. SAR System Check	19
<u>10. SAR Exposure Limits</u>	23
<u>11. Conducted Power Measurement Results</u>	24
<u>12. Maximum Tune-up Limit</u>	25
<u>13. SAR Measurement Results</u>	26
<u>14. Test Setup Photos</u>	28
<u>15. External and Internal Photos of the EUT</u>	28

1 . **Test Standards and Report version**

1.1. **Test Standards**

The tests were performed according to following standards:

[FCC 47 Part 2.1093](#): Radiofrequency Radiation Exposure Evaluation:Portable Devices

[IEEE Std C95.1, 1999 Edition](#): IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

[IEEE Std 1528™-2013](#): IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

[KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04](#): SAR Measurement Requirements for 100 MHz to 6 GHz

[KDB 865664 D02 RF Exposure Reporting v01r02](#): RF Exposure Compliance Reporting and Documentation Considerations

[KDB 447498 D01 General RF Exposure Guidance v06](#): Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

[KDB 643646 D01:SAR Test for PTT Radios v01r03](#): SAR Test Reduction Considerations for Occupational PTT Radios

1.2. **Report version**

Revision No.	Date of issue	Description
N/A	2019-07-05	Original

2. Summary

2.1. Client Information

Applicant:	ABELL INDUSTRIES CO.,LTD.
Address:	2/F, Bldg. 14, ZhongXing Industrial City, NanShan Dist. ShenZhen, P.R. China
Manufacturer:	ABELL INDUSTRIES CO.,LTD.
Address:	2/F, Bldg. 14, ZhongXing Industrial City, NanShan Dist. ShenZhen, P.R. China

2.2. Product Description

Name of EUT:	Two way radio
Trade mark:	ABELL
Model/Type reference:	A560T
Listed model(s):	-
Accessories	Belt Clip
Device Category:	Portable
RF Exposure Environment:	Occupational/Controlled
Power supply:	DC 7.4V
Hardware version:	V3
Software version:	V2.06.02.007
Device Dimension:	Overall (Length x Width x Thickness):107 x 55 x 28mm Antenna(Length):90mm

Maximum SAR Value

Separation Distance:	Front-of-face:	25mm
	Body-worn:	0mm
Maximun SAR Value(1g):	Front-of-face:	3.45 W/kg
	Body-worn:	5.72 W/kg

RF Specification

Operation Frequency Range:	400~470MHz		
Rated Output Power:	<input checked="" type="checkbox"/> High Power:	4W	<input checked="" type="checkbox"/> Low Power: 1.5W
Modulation Type:	Analog:	FM	
	Digital:	4FSK	
Channel Separation:	Analog:	<input checked="" type="checkbox"/> 12.5kHz	<input type="checkbox"/> 20kHz <input type="checkbox"/> 25kHz
	Digital:	<input type="checkbox"/> 6.25kHz	<input checked="" type="checkbox"/> 12.5kHz
Antenna Type:	External		

Remark:

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.

2.3. Test frequency list

When the frequency channels required for SAR testing are not specified, the following should be applied to determine the number of required test channels. The test channels should be evenly spread across the transmission frequency band of each wireless mode.

$$N_c = \text{Round}\left\{\left[100\left(f_{\text{high}} - f_{\text{low}}\right)/f_c\right]^{0.5} \times \left(f_c/100\right)^{0.2}\right\},$$

N_c is the number of test channels, rounded to the nearest integer,
 f_{high} and f_{low} are the highest and lowest channel frequencies within the transmission band,
 f_c is the mid-band channel frequency,
all frequencies are in MHz.

Operation Frequency(MHz)		Test Frequency number
Start Frequency	Stop Frequency	
400	470	5

Modulation Type	Channel Separation	Test Channel	Test Frequency (MHz)
			TX
Analog	12.5kHz	CH1	400.0125
		CH2	417.5000
		CH3	435.0000
		CH4	452.5000
		CH5	469.9875
Digital	12.5kHz	CH1	400.0125
		CH2	417.5000
		CH3	435.0000
		CH4	452.5000
		CH5	469.9875

3. Test Environment

3.1. Test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.
Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

3.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
●	Data Acquisition Electronics DAEEx	SPEAG	DAE4	1549	2019/03/19	2020/03/18
●	E-field Probe	SPEAG	EX3DV4	3842	2019/01/30	2020/01/29
○	Universal Radio Communication Tester	R&S	CMW500	137681	2018/07/11	2019/07/10
● Tissue-equivalent liquids Validation						
○	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
●	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
●	Network analyzer	Keysight	E5071C	MY46733048	2018/09/19	2019/09/18
● System Validation						
○	System Validation Antenna	SPEAG	CLA-150	4024	2018/02/21	2021/02/20
●	System Validation Dipole	SPEAG	D450V3	1102	2018/02/23	2021/02/22
○	System Validation Dipole	SPEAG	D750V3	1180	2018/02/07	2021/02/06
○	System Validation Dipole	SPEAG	D835V2	4d238	2018/02/19	2021/02/18
○	System Validation Dipole	SPEAG	D1750V2	1164	2018/02/06	2021/02/05
○	System Validation Dipole	SPEAG	D1900V2	5d226	2018/02/22	2021/02/21
○	System Validation Dipole	SPEAG	D2450V2	1009	2018/02/05	2021/02/04
○	System Validation Dipole	SPEAG	D2600V2	1150	2018/02/05	2021/02/04
○	System Validation Dipole	SPEAG	D5GHzV2	1273	2018/02/21	2021/02/20
●	Signal Generator	R&S	SMB100A	114360	2018/08/21	2019/08/20
●	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
●	Power sensor	R&S	NRP18A	101010	2018/08/21	2019/08/20
●	Power sensor	R&S	NRP18A	101011	2018/08/21	2019/08/20
●	Power Amplifier	BONN	BLWA 0160-2M	1811887	2018/11/15	2019/11/14
●	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2018/11/15	2019/11/14
●	Attenuator	Mini-Circuits	VAT-3W2+	1819	2018/11/15	2019/11/14
●	Attenuator	Mini-Circuits	VAT-10W2+	1741	2018/11/15	2019/11/14

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix B and C.
2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justification. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of $k = 2$. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

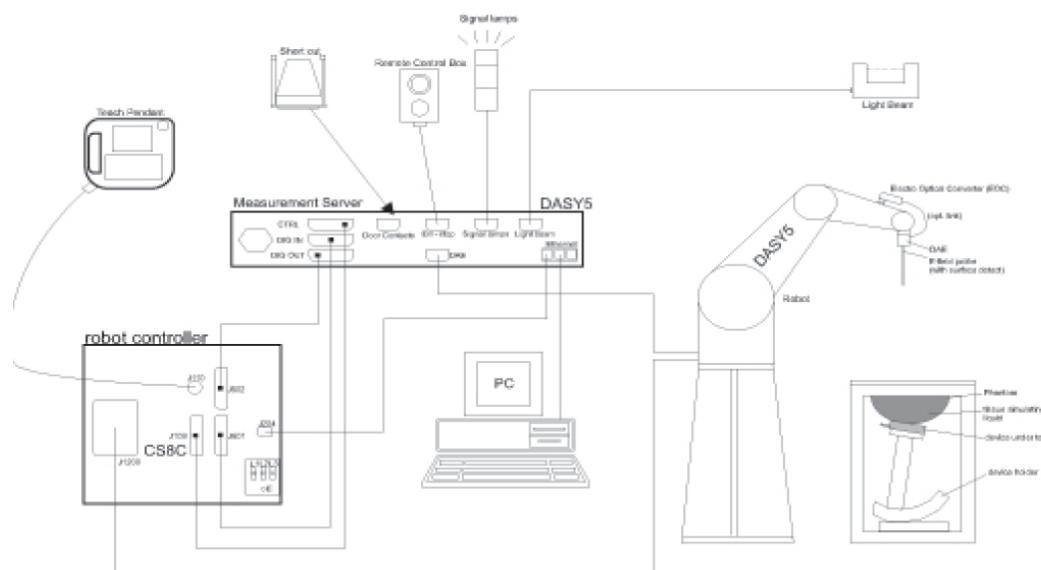
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

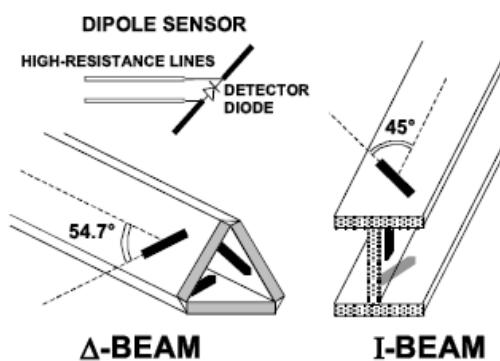
6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

● Probe Specification

Construction
Symmetrical design with triangular core
Interleaved sensors
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration
ISO/IEC 17025 calibration service available.


Frequency	10 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 10 GHz)
Directivity	± 0.1 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 10 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

● Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.

The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard’s method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard’s method for extrapolation.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		$\leq 2 \text{ GHz: } \leq 15 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 12 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 12 \text{ mm}$ $4 - 6 \text{ GHz: } \leq 10 \text{ mm}$
		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$		$\leq 2 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz: } \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \leq 4 \text{ mm}^*$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	$\leq 5 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 4 \text{ mm}$ $4 - 5 \text{ GHz: } \leq 3 \text{ mm}$ $5 - 6 \text{ GHz: } \leq 2 \text{ mm}$
	graded grid	$\Delta z_{\text{Zoom}}(1):$ between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$
		$\Delta z_{\text{Zoom}}(n>1):$ between subsequent points	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1) \text{ mm}$
Minimum zoom scan volume	x, y, z	$\geq 30 \text{ mm}$	$3 - 4 \text{ GHz: } \geq 28 \text{ mm}$ $4 - 5 \text{ GHz: } \geq 25 \text{ mm}$ $5 - 6 \text{ GHz: } \geq 22 \text{ mm}$
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.			
* When zoom scan is required and the <i>reported</i> SAR from the <i>area scan based 1-g SAR estimation</i> procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcp <i>i</i>
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

V_i: compensated signal of channel (*i* = x, y, z)

U_i: input signal of channel (*i* = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcp_i: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

V_i: compensated signal of channel (*i* = x, y, z)

Norm_i: sensor sensitivity of channel (*i* = x, y, z),
[mV/(V/m)²] for E-field Probes

ConvF: sensitivity enhancement in solution

a_{ij}: sensor sensitivity factors for H-field probes

f: carrier frequency [GHz]

E_i: electric field strength of channel *i* in V/m

H_i: magnetic field strength of channel *i* in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

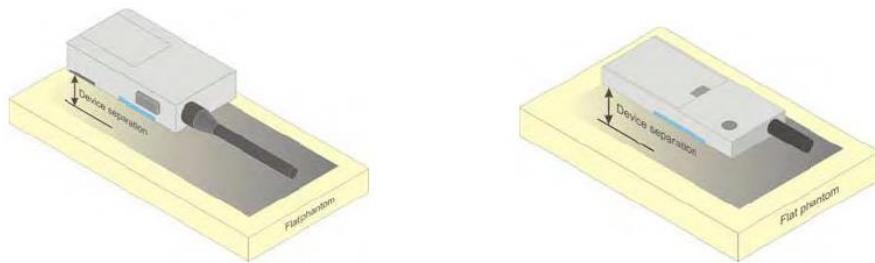
The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in mW/g

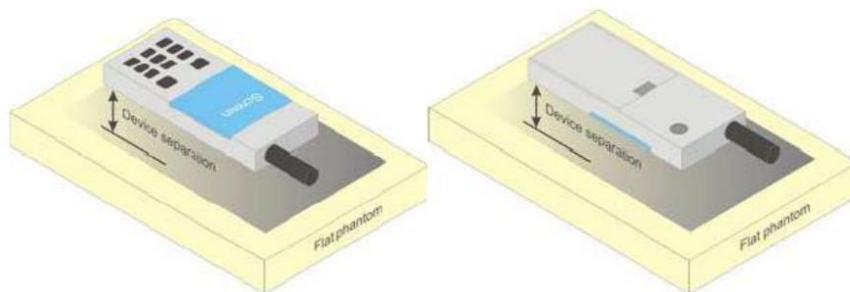
Etot: total field strength in V/m

σ : conductivity in [mho/m] or [Siemens/m]


ρ : equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. **Position of the wireless device in relation to the phantom**


8.1. Front-of-face

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

8.2. Body Position

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

9. Dielectric Property Measurements & System Check

9.1. Tissue Dielectric Parameters

It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664 D01.

Targets for tissue simulating liquid

Tissue dielectric parameters for head and body				
Target Frequency (MHz)		Head		Body
		ϵ_r	σ (s/m)	ϵ_r
	450	43.5	0.87	56.7
				0.94

CheckResult:

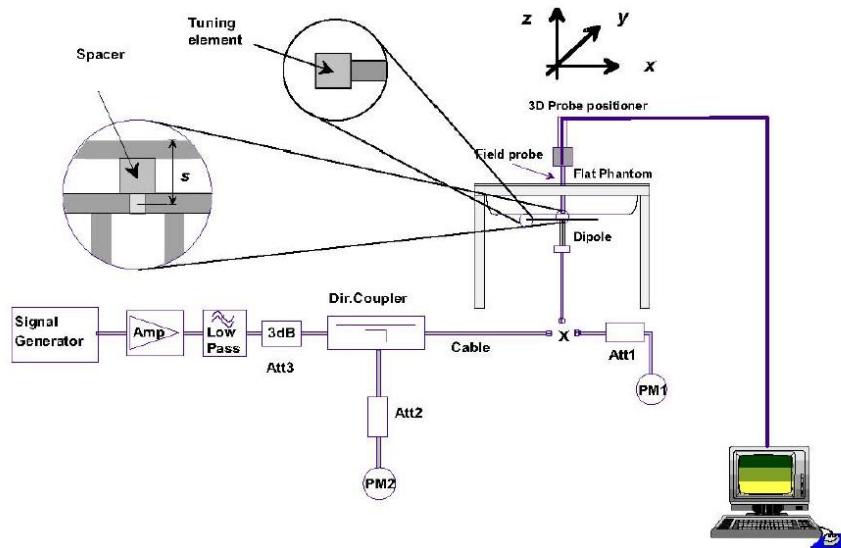
Dielectric performance of Head tissue simulating liquid								
Frequency (MHz)	ϵ_r		σ (s/m)		Delta (ϵ_r)	Delta (σ)	Limit	Temp (°C)
	Target	Measured	Target	Measured				
450	43.50	44.49	0.87	0.86	2.28%	-1.26%	±5%	22.5
								2019-07-02

Dielectric performance of Body tissue simulating liquid								
Frequency (MHz)	ϵ_r		σ (s/m)		Delta (ϵ_r)	Delta (σ)	Limit	Temp (°C)
	Target	Measured	Target	Measured				
450	56.70	56.11	0.94	0.96	-1.05%	2.23%	±5%	22.5
								2019-07-02

9.2. SAR System Validation

Per FCC KDB 865664 D02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.


Test Date	Probe S/N	Calibration Point		Dielectric Parameters		CW Validation			Modulation Validation		
				Conductivity	Permittivity	Sensitivity	Probe linearity	Probe Isotropy	Modulation type	Duty factor	PAR
2019-04-01	3842	Head	450	0.88	43.15	PASS	PASS	PASS	FM	PASS	PASS
2019-04-01	3842	Body	450	0.95	56.95	PASS	PASS	PASS	FM	PASS	PASS

9.3. SAR System Check

The purpose of the system check is to verify that the system operates within its specifications at the device test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

System Performance Check Setup

Photo of Dipole Setup

Check Result:

Head											
Frequency (MHz)	1g SAR			10g SAR			Delta (1g)	Delta (10g)	Limit	Temp (°C)	Date
	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW					
450	4.48	4.64	1.16	3.00	3.09	0.77	3.57%	3.07%	±10%	22.5	2019-07-02

Body											
Frequency (MHz)	1g SAR			10g SAR			Delta (1g)	Delta (10g)	Limit	Temp (°C)	Date
	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW					
450	4.47	4.88	1.22	3.01	3.30	0.83	9.17%	9.77%	±10%	22.5	2019-07-02

Note:

1. the graph results see follow.

Plots of System Performance Check

SystemPerformanceCheck-Head 450MHz

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1102

Date: 2019-07-02

Communication System: UID 0, A-CW (0); Frequency: 450 MHz

Medium parameters used: $f = 450$ MHz; $\sigma = 0.859$ S/m; $\epsilon_r = 44.492$; $\rho = 1000$ kg/m³

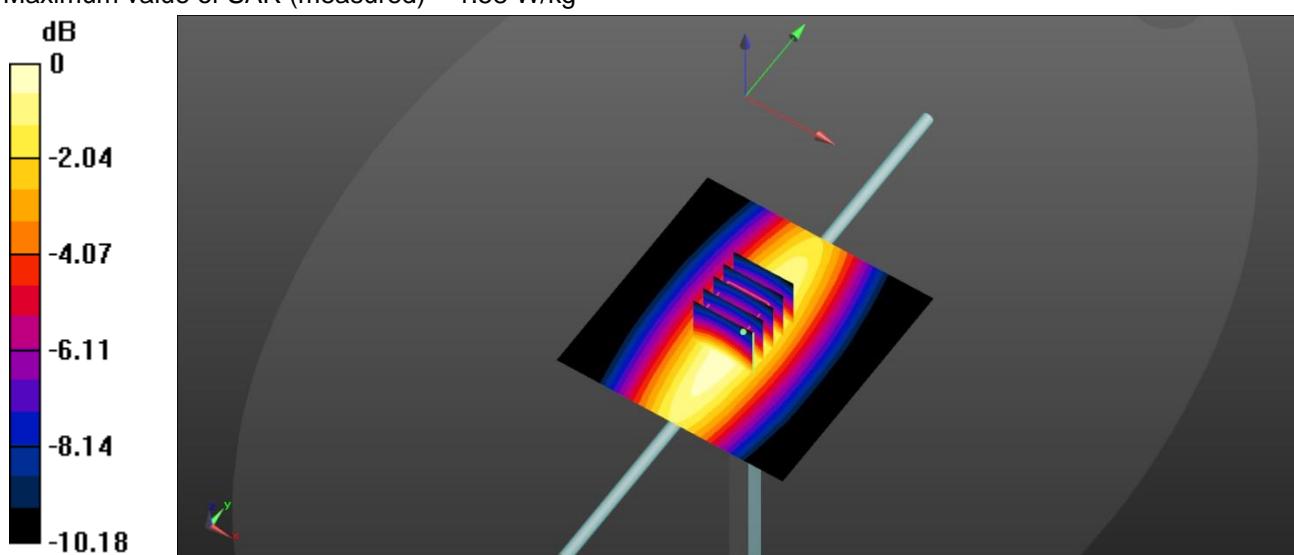
Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 – SN3842; ConvF(10.3, 10.3, 10.3); Calibrated: 1/30/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Head/d=15mm, Pin=250mW/Area Scan (81x81x1): Interpolated grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 1.60 W/kg


Head/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 44.31 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.773 W/kg

Maximum value of SAR (measured) = 1.58 W/kg

System Performance Check-Body 450MHz

DUT: Dipole 450 MHz; Type: D450V3; Serial: 1102

Date: 2019-07-02

Communication System: UID 0, A-CW (0); Frequency: 450 MHz

Medium parameters used: $f = 450$ MHz; $\sigma = 0.961$ S/m; $\epsilon_r = 56.106$; $\rho = 1000$ kg/m³

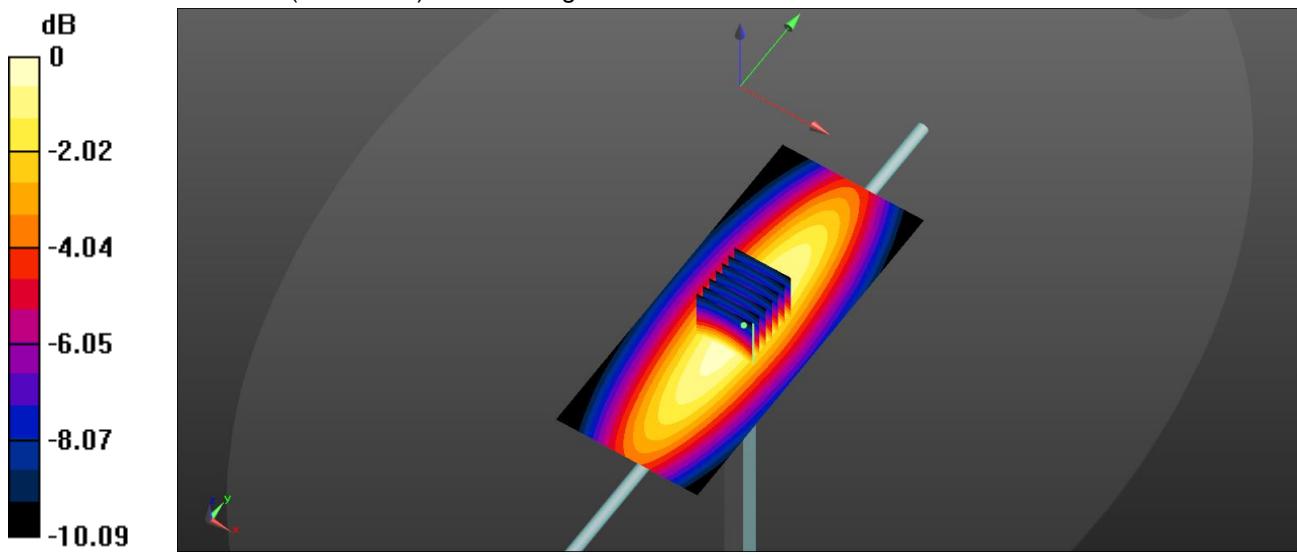
Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 – SN3842; ConvF(10.39, 10.39, 10.39); Calibrated: 1/30/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Head/d=15mm, Pin=250mW/Area Scan (51x121x1): Interpolated grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 1.67 W/kg


Head/d=15mm, Pin=250mW /Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 42.66 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.03 W/kg

SAR(1 g) = 1.22 W/kg; SAR(10 g) = 0.826 W/kg

Maximum value of SAR (measured) = 1.72 W/kg

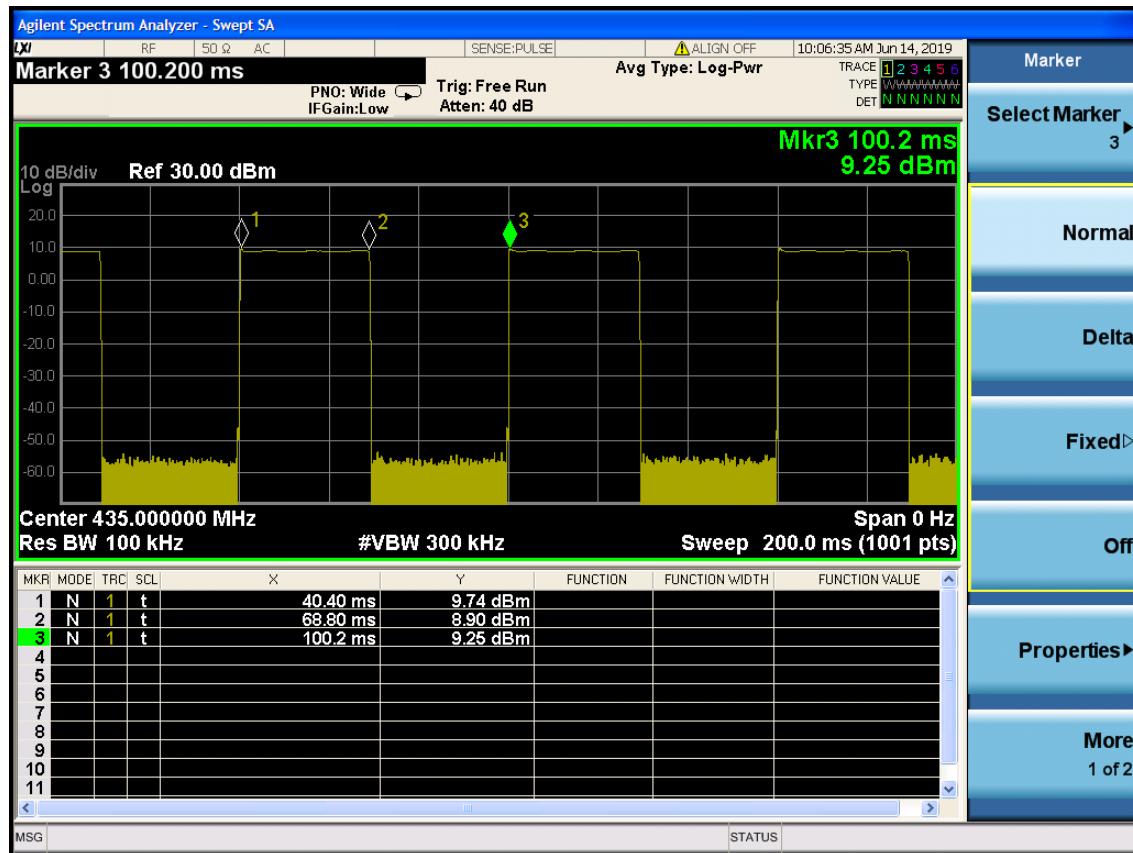
10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

Type Exposure	Limit (W/kg)	
	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment
Spatial Average SAR (whole body)	0.08	0.4
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0
Spatial Peak SAR (10g for limb)	4.0	20.0

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).


11. Conducted Power Measurement Results

PMR				
Mode	Channel Separation	Frequency		Conducted Power (dBm)
		Channel	MHz	
Analog	12.5KHz	CH1	400.0125	35.39
		CH2	417.5000	35.42
		CH3	435.0000	35.58
		CH4	452.5000	35.65
		CH5	469.9875	35.38
Digital	12.5KHz	CH1	400.0125	35.70
		CH2	417.5000	35.74
		CH3	435.0000	35.85
		CH4	452.5000	35.90
		CH5	469.9875	35.82

Duty Factor Measured Results

Mode	Type	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
Digital	4FSK	28.4	59.8	47.49%	2.1056

Duty Cycle plot

12. Maximum Tune-up Limit

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01.

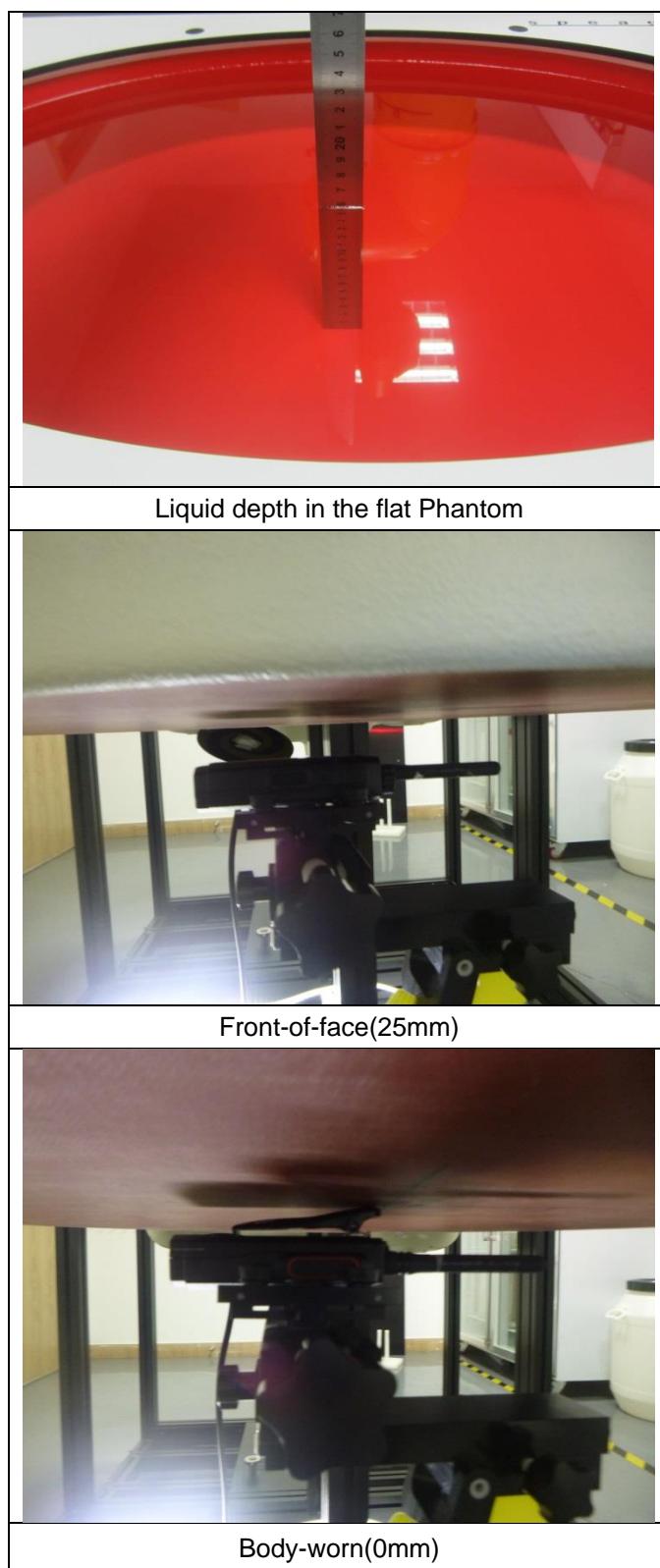
PMR			
Mode	Channel Separation (KHz)	Operation Frequency Range (MHz)	Maximum tune-up power (dBm)
Analog	12.5	400~470	36.02
Digital			36.02

13. SAR Measurement Results

Front-of-face											
Mode	Channel Separation	Frequency		Conducted Power (dBm)	Tune-up limit (dBm)	Tune-up scaling factor	Power Drift(dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	50% Duty factor SAR (W/kg)	Test Plot
		CH	MHz								
Analog	12.5KHz	CH1	400.0125	35.39	36.02	1.16	-	-	-	-	-
		CH2	417.5000	35.42	36.02	1.15	-	-	-	-	-
		CH3	435.0000	35.58	36.02	1.11	-	-	-	-	-
		CH4	452.5000	35.65	36.02	1.09	-0.12	6.33	6.89	3.45	1
		CH5	469.9875	35.38	36.02	1.16	-	-	-	-	-
Digital	12.5KHz	CH1	400.0125	35.70	36.02	1.08	-	-	-	-	-
		CH2	417.5000	35.74	36.02	1.07	-	-	-	-	-
		CH3	435.0000	35.85	36.02	1.04	-	-	-	-	-
		CH4	452.5000	35.90	36.02	1.03	-0.19	4.62	4.75	2.37	2
		CH5	469.9875	35.82	36.02	1.05	-	-	-	-	-

Note:

1. *Batteries are fully charged at the beginning of the SAR measurements.*
2. *The Body-worn SAR evaluation was performed with the Leather Case body-worn accessory attached to the DUT and touching the outer surface of the planar phantom.*
3. *When the SAR for all antennas tested using the default battery is ≤ 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.*
4. *When the SAR of an antenna tested on the highest output power using the default battery is > 3.5 W/Kg and ≤ 4.0 W/Kg (50% PTT duty factor), testing of the immediately adjacent channel(s) is not necessary, but testing of other required channels may still be required.*


Body-worn (Rear)										
Mode	Channel Separation	Frequency		Conducted Power (dBm)	Tune-up limit (dBm)	Tune-up scaling factor	Power Drift(dB)	Measured SAR(1g)	Report SAR(1g)	50% Duty factor SAR
		CH	MHz					(W/kg)	(W/kg)	(W/kg)
Analog	12.5KHz	CH1	400.0125	35.39	36.02	1.16	-0.18	5.67	6.56	3.28
		CH2	417.5000	35.42	36.02	1.15	-0.17	8.88	10.20	5.10
		CH3	435.0000	35.58	36.02	1.11	-0.16	10.10	11.18	5.59
		CH4	452.5000	35.65	36.02	1.09	0.18	10.50	11.43	5.72
		CH5	469.9875	35.38	36.02	1.16	-0.16	9.62	11.15	5.57
Digital	12.5KHz	CH1	400.0125	35.70	36.02	1.08	-	-	-	-
		CH2	417.5000	35.74	36.02	1.07	-	-	-	-
		CH3	435.0000	35.85	36.02	1.04	-	-	-	-
		CH4	452.5000	35.90	36.02	1.03	-0.14	6.57	6.75	3.38
		CH5	469.9875	35.82	36.02	1.05	-	-	-	-

Note:

1. *Batteries are fully charged at the beginning of the SAR measurements.*
2. *The Body-worn SAR evaluation was performed with the Leather Case body-worn accessory attached to the DUT and touching the outer surface of the planar phantom.*
3. *When the SAR for all antennas tested using the default battery is ≤ 3.5 W/kg (50% PTT duty factor), testing of all other required channels is not necessary.*
4. *When the SAR of an antenna tested on the highest output power using the default battery is > 3.5 W/Kg and ≤ 4.0 W/Kg (50% PTT duty factor), testing of the immediately adjacent channel(s) is not necessary, but testing of other required channels may still be required.*

SAR Test Data Plots to the Appendix A.

14. Test Setup Photos

15. External and Internal Photos of the EUT

Please refer to the test report No.: CHTEW19070018

-----End of Report-----

Test Laboratory: Huatongwei International Inspection Co., Ltd.,SAR Lab

Date: 7/2/2019

Analog-Front of face

Communication System: UID 0, Analog (0); Frequency: 417.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 417.5$ MHz; $\sigma = 0.922$ S/m; $\epsilon_r = 56.396$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.0°C; Liquid Temperature: 21.8°C;

DASY Configuration:

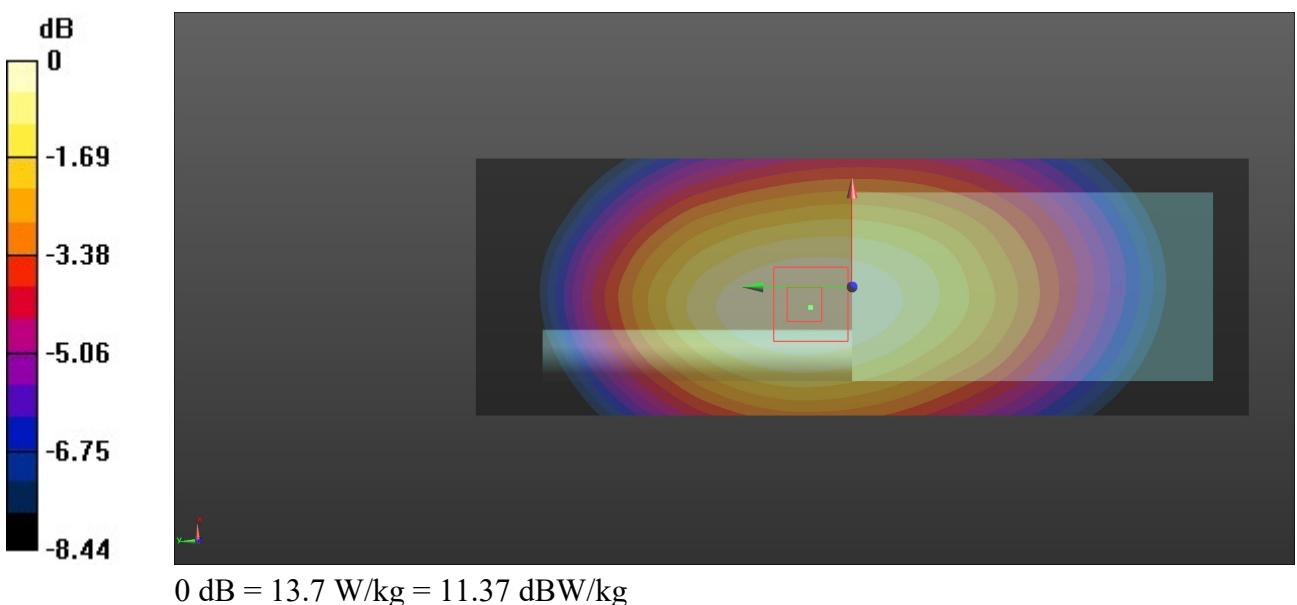
- Probe: EX3DV4 - SN3842; ConvF(10.39, 10.39, 10.39) @ 417.5 MHz; Calibrated: 1/30/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 4/Area Scan (51x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 14.1 W/kg

Front/CH 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 122.9 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 6.33 W/kg; SAR(10 g) = 4.68 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 13.7 W/kg

Test Laboratory: Huatongwei International Inspection Co., Ltd.,SAR Lab

Date: 7/2/2019

Digital-Front of face

Communication System: UID 0, Digital (0); Frequency: 452.5 MHz; Duty Cycle: 1:2.1056

Medium parameters used (interpolated): $f = 452.5$ MHz; $\sigma = 0.963$ S/m; $\epsilon_r = 56.09$; $\rho = 1000$ kg/m³

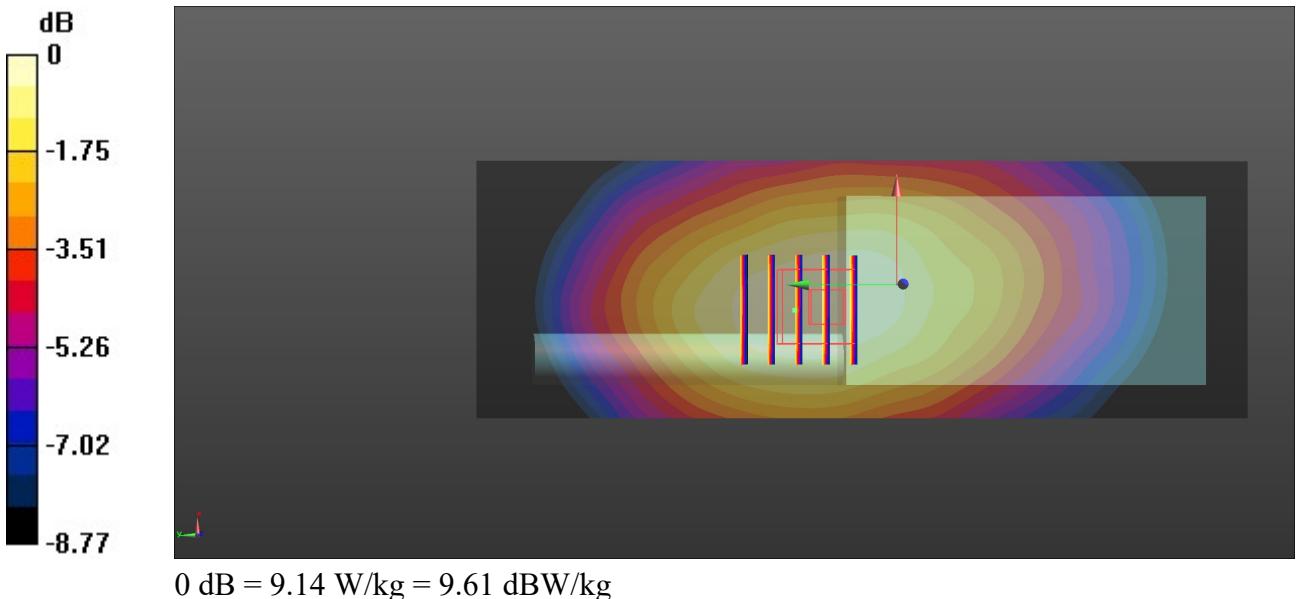
Phantom section: Flat Section

Ambient Temperature: 22.2°C; Liquid Temperature: 21.9°C;

DASY Configuration:

- Probe: EX3DV4 - SN3842; ConvF(10.39, 10.39, 10.39) @ 452.5 MHz; Calibrated: 1/30/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 4/Area Scan (51x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 9.34 W/kg


Front/CH 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 101.8 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 10.7 W/kg

SAR(1 g) = 4.62 W/kg; SAR(10 g) = 3.84 W/kg

Maximum value of SAR (measured) = 9.14 W/kg

Test Laboratory: Huatongwei International Inspection Co., Ltd.,SAR Lab

Date: 7/2/2019

Analog-Body

Communication System: UID 0, Analog (0); Frequency: 452.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 452.5$ MHz; $\sigma = 0.963$ S/m; $\epsilon_r = 56.09$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.1°C; Liquid Temperature: 21.8°C;

DASY Configuration:

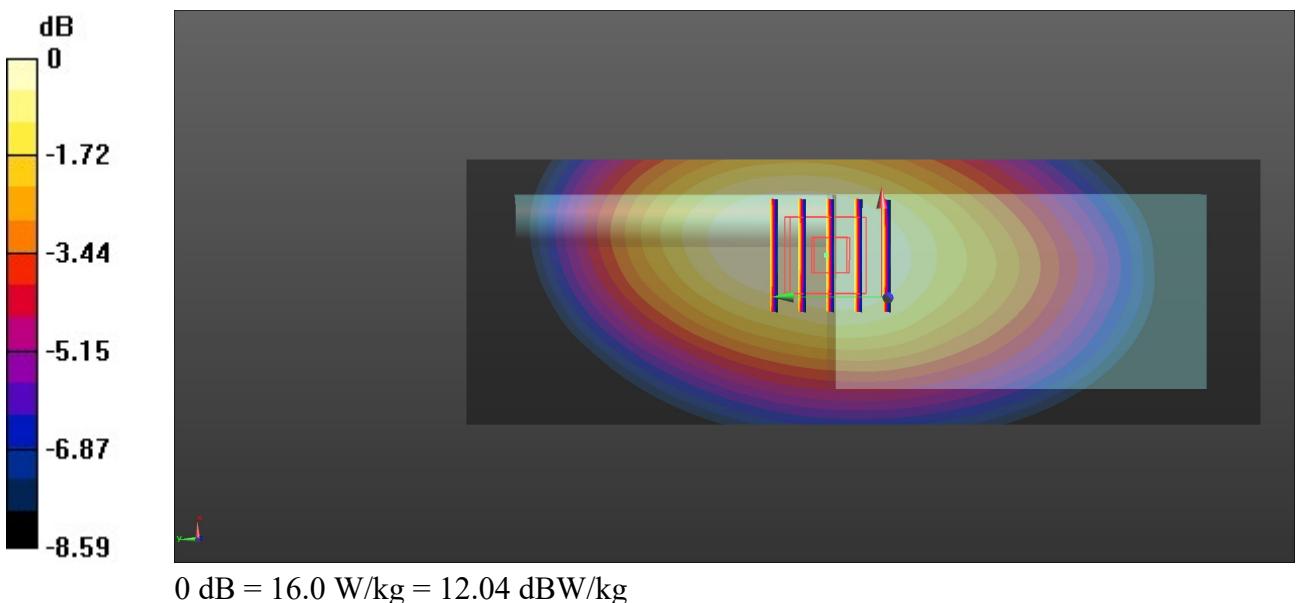
- Probe: EX3DV4 - SN3842; ConvF(10.39, 10.39, 10.39) @ 452.5 MHz; Calibrated: 1/30/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 4/Area Scan (51x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 14.5 W/kg

Rear/CH 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm=


Reference Value = 137.7 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 6.78 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 14.6 W/kg

Test Laboratory: Huatongwei International Inspection Co., Ltd.,SAR Lab

Date: 7/2/2019

Digital-Body

Communication System: UID 0, Digital (0); Frequency: 452.5 MHz; Duty Cycle: 1:2.1056

Medium parameters used (interpolated): $f = 452.5$ MHz; $\sigma = 0.963$ S/m; $\epsilon_r = 56.09$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temperature: 22.2°C; Liquid Temperature: 22.0°C;

DASY Configuration:

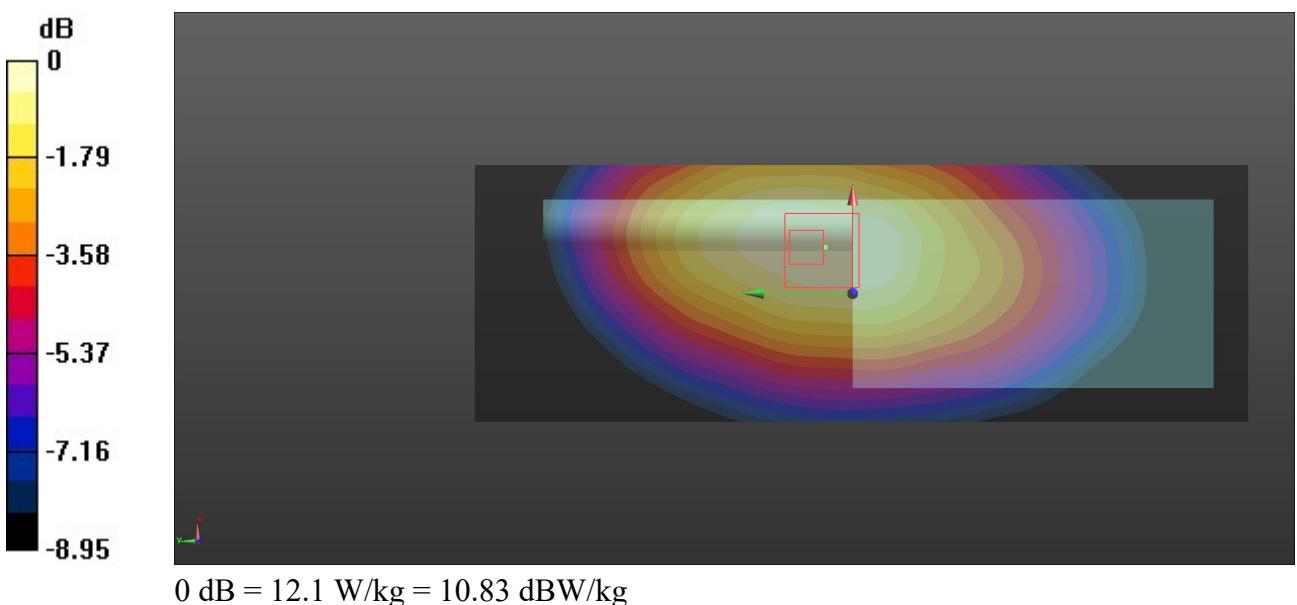
- Probe: EX3DV4 - SN3842; ConvF(10.39, 10.39, 10.39) @ 452.5 MHz; Calibrated: 1/30/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 4/Area Scan (51x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 12.2 W/kg

Rear/CH 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 109.3 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 14.0 W/kg

SAR(1 g) = 6.57 W/kg; SAR(10 g) = 4.46 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 12.1 W/kg

1.1. DAE4 Calibration Certificate

Client : HTW

Certificate No: Z19-60066

CALIBRATION CERTIFICATE

Object DAE4 - SN: 1549

Calibration Procedure(s) FF-Z11-002-01
 Calibration Procedure for the Data Acquisition Electronics (DAE4)

Calibration date: March 19, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	20-Jun-18 (CTTL, No.J18X05034)	June-19

Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature
Reviewed by:	Name Lin Hao	Function SAR Test Engineer	Signature
Approved by:	Name Qi Dianyuan	Function SAR Project Leader	Signature

Issued: March 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com Http://www.chinatl.cn

Glossary:

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100\ldots+300\text{ mV}$
Low Range: 1LSB = 61nV , full range = $-1\ldots+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$406.354 \pm 0.15\% \text{ (k=2)}$	$406.056 \pm 0.15\% \text{ (k=2)}$	$406.182 \pm 0.15\% \text{ (k=2)}$
Low Range	$3.98644 \pm 0.7\% \text{ (k=2)}$	$3.99365 \pm 0.7\% \text{ (k=2)}$	$3.99469 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$18^\circ \pm 1^\circ$
---	------------------------

1.2. Probe Calibration Certificate-3842

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client

CIQ (Auden)

Certificate No: **EX3-3842_Jan19**

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3842

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v7
 Calibration procedure for dosimetric E-field probes

Calibration date:

January 30, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Name Katja Pokovic	Function Technical Manager	Signature

Issued: February 1, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not affect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCP_{x,y,z}$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z$: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the *NORMx* (no uncertainty required).

EX3DV4 – SN:3842

January 30, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.34	0.51	0.41	$\pm 10.1\%$
DCP (mV) ^B	104.3	98.1	102.3	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB/μV	C	D dB	VR mV	Max dev.	Unc^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	147.5	$\pm 2.5\%$	$\pm 4.7\%$
		Y	0.0	0.0	1.0		159.1		
		Y	0.0	0.0	1.0		147.1		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3842

January 30, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	59.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

EX3DV4- SN:3842

January 30, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.88	11.88	11.88	0.00	1.00	± 13.3 %
450	43.5	0.87	10.30	10.30	10.30	0.13	1.20	± 13.3 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3842

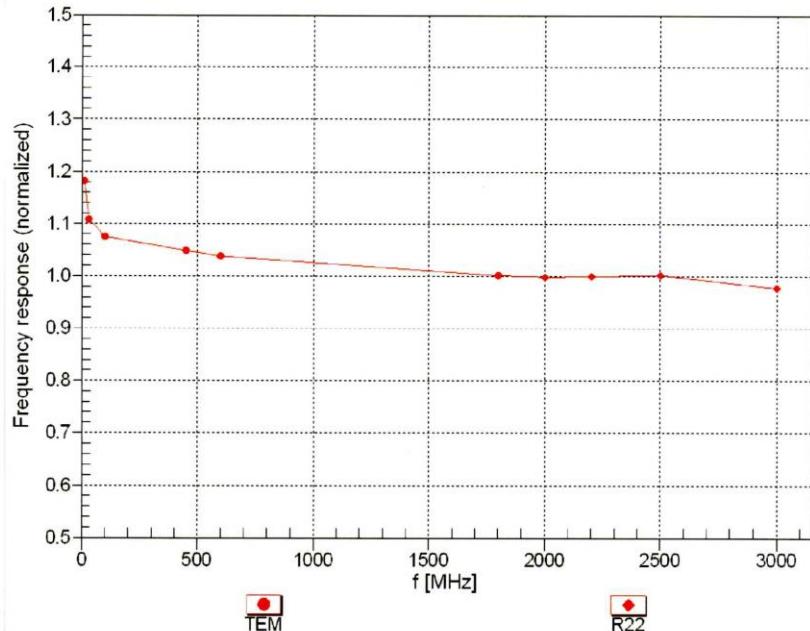
January 30, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.13	11.13	11.13	0.00	1.00	± 13.3 %
450	56.7	0.94	10.39	10.39	10.39	0.06	1.20	± 13.3 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

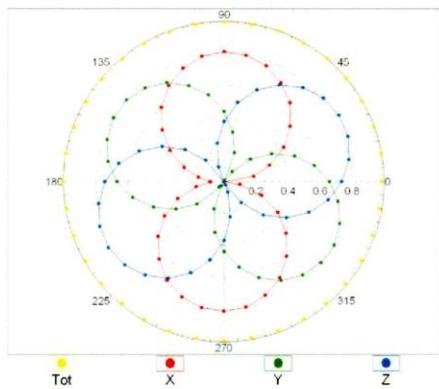

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

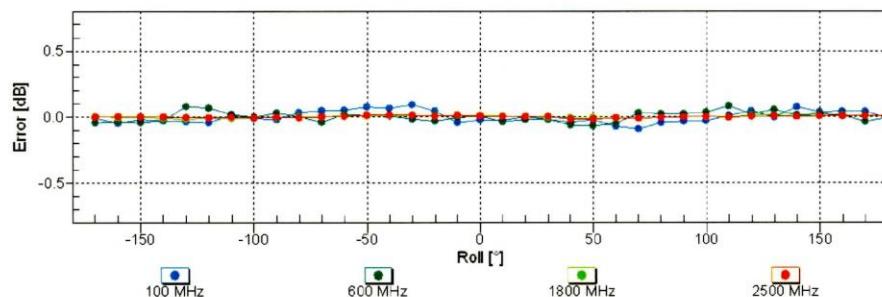
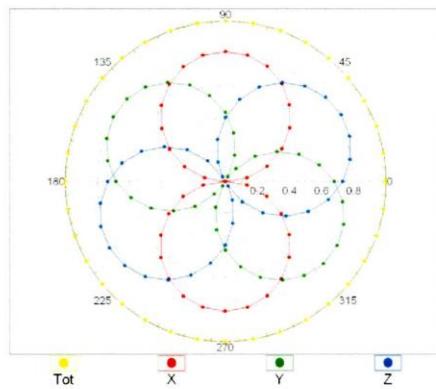
EX3DV4- SN:3842

January 30, 2019

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

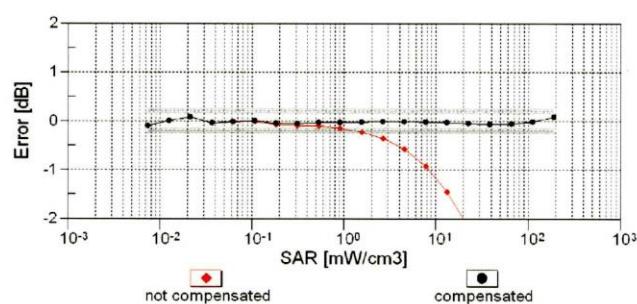
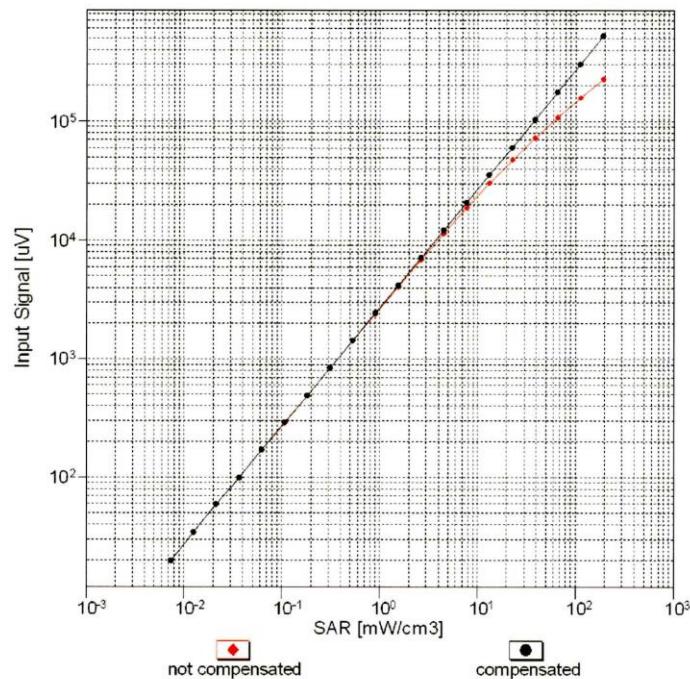
EX3DV4– SN:3842



January 30, 2019

Receiving Pattern (ϕ), $\theta = 0^\circ$

$f=600$ MHz, TEM

$f=1800$ MHz, R22

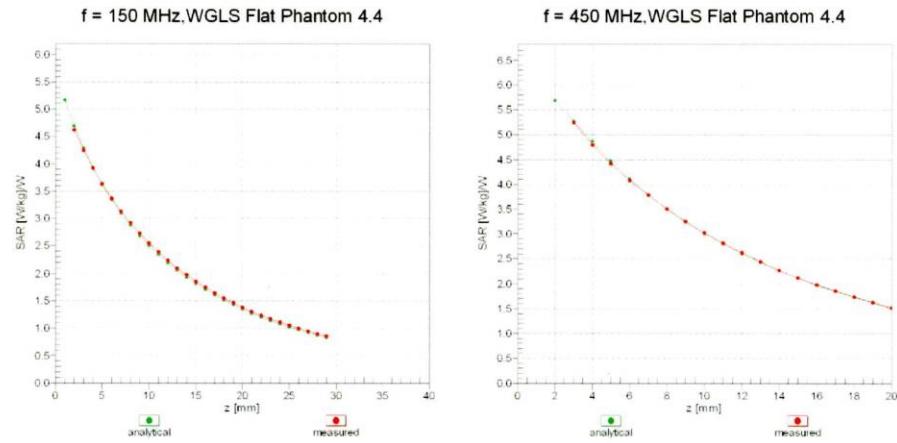



Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

EX3DV4- SN:3842

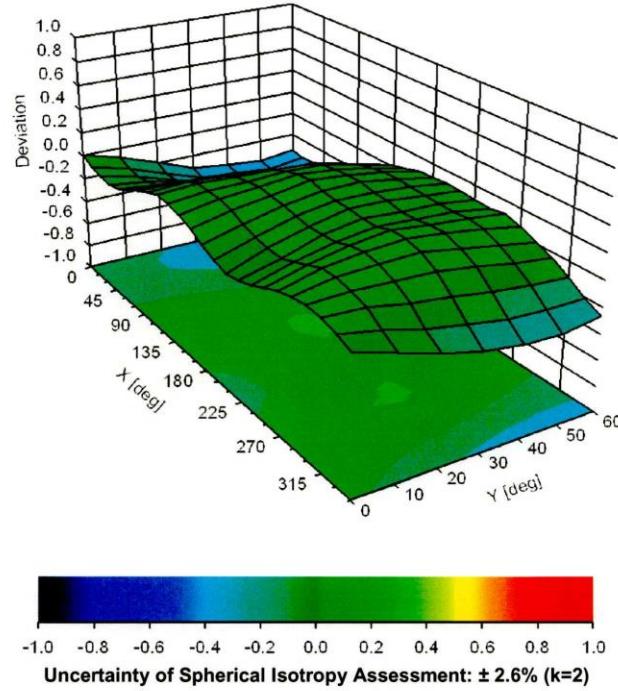
January 30, 2019

Dynamic Range f(SAR_{head})
(TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

EX3DV4– SN:3842


January 30, 2019

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

Certificate No: EX3-3842_Jan19

Page 10 of 10

1.1. D450V3 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client CCIC-HTW (Auden)

Certificate No: D450V3-1102_Feb18

CALIBRATION CERTIFICATE

Object D450V3 - SN:1102

Calibration procedure(s) QA CAL-15.v8
Calibration procedure for dipole validation kits below 700 MHz

Calibration date: February 23, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5277 (20x)	07-Apr-17 (No. 217-02526)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3877	30-Dec-17 (No. EX3-3877_Dec17)	Dec-18
DAE4	SN: 654	24-Jul-17 (No. DAE4-654_Jul17)	Jul-18

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (No. 217-02285/02284)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (No. 217-02285)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (No. 217-02284)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: February 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.7 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.48 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.749 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.00 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.0 ± 6 %	0.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.47 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.749 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.01 W/kg ± 17.6 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	59.6 Ω - 0.2 $j\Omega$
Return Loss	- 21.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	55.1 Ω - 6.9 $j\Omega$
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.348 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 05, 2017

DASY5 Validation Report for Head TSL

Date: 23.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1102

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: $f = 450$ MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 43.7$; $\rho = 1000$ kg/m³

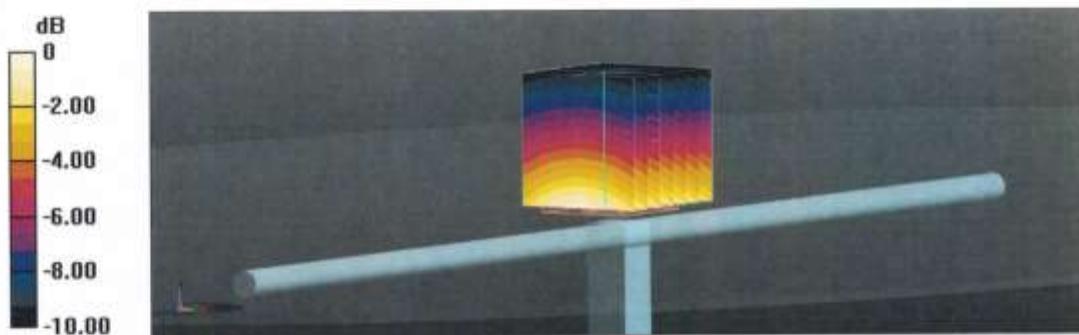
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

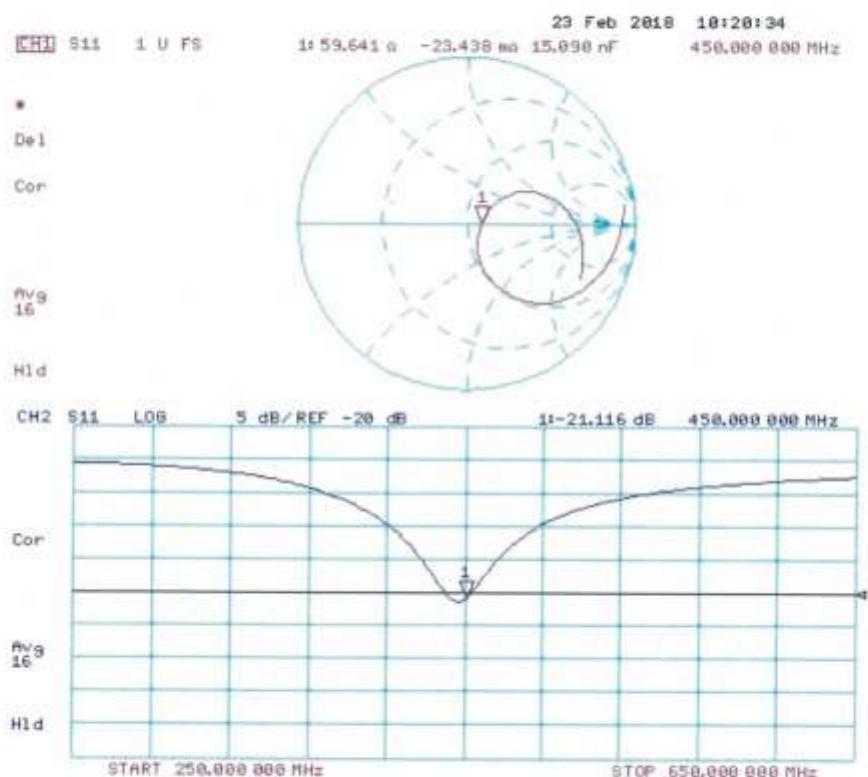
- Probe: EX3DV4 - SN3877; ConvF(10.5, 10.5, 10.5); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 43.13 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.73 W/kg


SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.749 W/kg

Maximum value of SAR (measured) = 1.51 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1102

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: $f = 450$ MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 56$; $\rho = 1000$ kg/m³

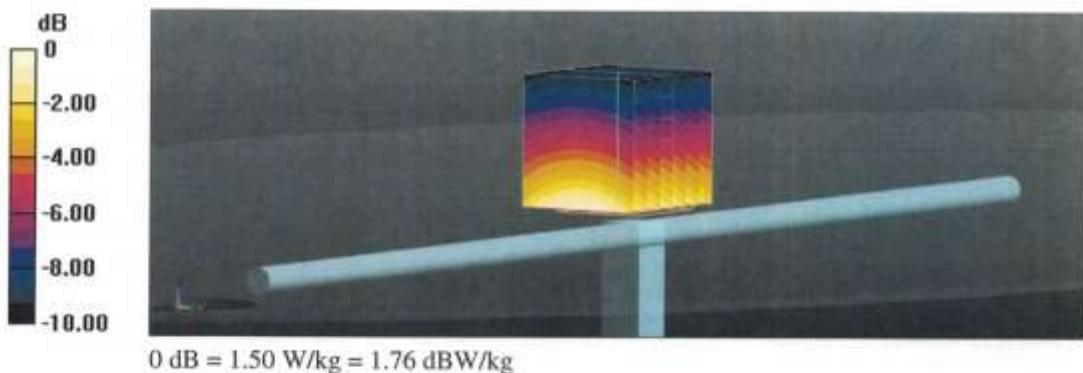
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

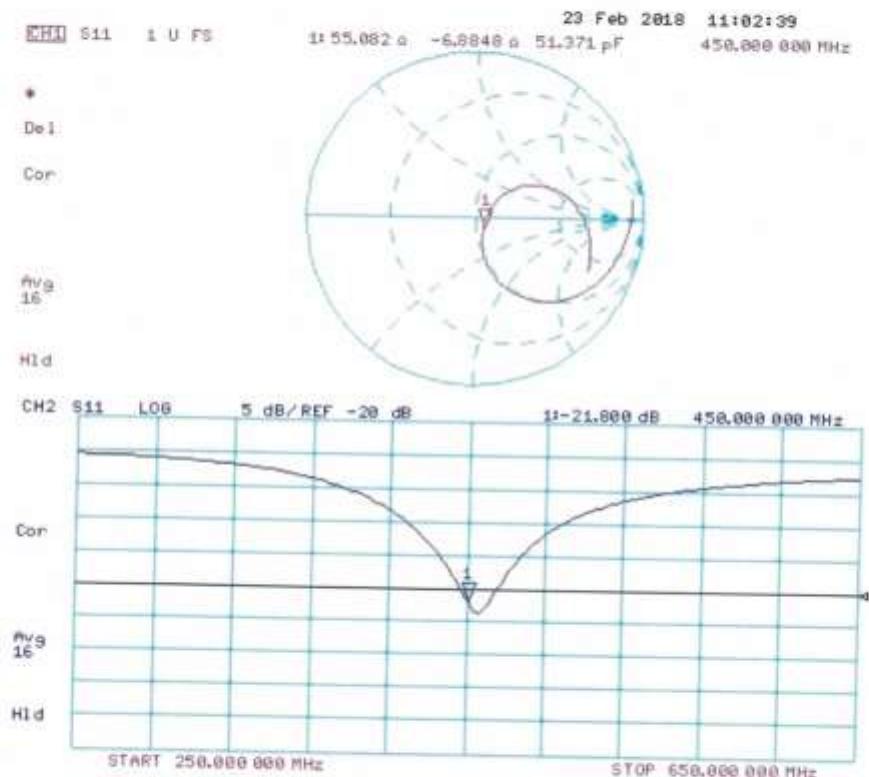
DASY52 Configuration:

- Probe: EX3DV4 - SN3877; ConvF(10.8, 10.8, 10.8); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.23 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.749 W/kg

Maximum value of SAR (measured) = 1.50 W/kg

Impedance Measurement Plot for Body TSL

Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head						
Date of measurement	Return-loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary impedance (ohm)	Delta (ohm)
2018-02-23	-21.1		59.6		-0.2	
2019-02-15	-21.8	-3.32	59.1	0.5	-0.8	0.6

Body						
Date of measurement	Return-loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary impedance (ohm)	Delta (ohm)
2018-02-23	-21.8		55.1		-6.9	
2019-02-15	-22.3	-2.29	55.7	0.6	-6.2	0.8

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5ohm of prior calibration. Therefore the verification result should support extended calibration.