



## Test Report

Prepared for: **Sensys Networks, Inc.**

Model: **APCC-SPP & ASENSE-RADIO**

Description: **Traffic Sensor System**

Serial Number: **20151**

FCC ID: **TDB-FLEXSPP**  
IC: **9498A-FLEXSPP**

To

**FCC Part 15.247**

Date of Issue: **June 13, 2017**

On the behalf of the applicant:

**Sensys Networks, Inc.**  
2560 Ninth St.  
Suite 219  
Berkeley, CA 94710

Attention of:

**Sebastian Lodahl, Hardware Engineer**  
Ph: (510)847-6189  
E-Mail: [slodahl@sensysnetworks.com](mailto:slodahl@sensysnetworks.com)

Prepared By  
**Compliance Testing, LLC**  
1724 S. Nevada Way  
Mesa, AZ 85204  
(480) 926-3100 phone / (480) 926-3598 fax  
[www.compliancetesting.com](http://www.compliancetesting.com)  
Project No: p1750012



**Alex Macon**  
Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing.  
All results contained herein relate only to the sample tested.



## Test Report Revision History

| Revision | Date          | Revised By | Reason for Revision                                                                                                                                                                                                                                                                  |
|----------|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0      | May 30, 2017  | Alex Macon | Original Document                                                                                                                                                                                                                                                                    |
| 2.0      | June 6, 2017  | Alex Macon | Added operational band detail to page 6<br>Updated the references on page 8<br>Updated the test procedure on page 9, 11 and 14<br>Added more detail in Annex A and page 6<br>regarding the measurement method during average<br>radiated spurs.<br>Added AC line conducted emissions |
| 3.0      | June 12, 2017 | Alex Macon | Updated 1.1310 report to show EIRP instead of<br>conducted. This was a template error.<br>Updated 15.247 to include more information under<br>additional information page 6                                                                                                          |
|          |               |            |                                                                                                                                                                                                                                                                                      |



## Table of Contents

| <u>Description</u>                                   | <u>Page</u> |
|------------------------------------------------------|-------------|
| Standard Test Conditions Engineering Practices ..... | 6           |
| Output Power .....                                   | 9           |
| Radiated Spurious Emissions .....                    | 10          |
| DTS Bandwidth .....                                  | 11          |
| Transmitter Power Spectral Density (PSD).....        | 14          |
| A/C Powerline Conducted Emission .....               | 17          |
| Test Equipment Utilized .....                        | 20          |



**ILAC / A2LA**

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to <http://www.compliancetesting.com/labscope.html> for current scope of accreditation.

Testing Certificate Number: **2152.01**



**FCC Site Reg. #349717**

**IC Site Reg. #2044A-2**

**Non-accredited tests contained in this report:**

**N/A**



**The applicant has been cautioned as to the following**

**15.21 - Information to User**

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

**15.27(a) - Special Accessories**

Equipment marked to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.



## Standard Test Conditions Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.10-2013 and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F) unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Measurement results, unless otherwise noted, are worst-case measurements.

| Environmental Conditions |              |                 |
|--------------------------|--------------|-----------------|
| Temperature (°C)         | Humidity (%) | Pressure (mbar) |
| 23.3                     | 28.9         | 967             |

### EUT Description

**Model:** APCC-SPP & ASENSE-RADIO

**Description:** Traffic Sensor System

**Firmware:** N/A

**Software:** TrafficDOT2

**Serial Number:** 20151

### Additional Information:

The EUT is a traffic sensor which is powered by POE and operates in the 2406 – 2480MHz band

The EUT incorporates DSSS O-QPSK modulation in an 802.15.4 PHY protocol.

The EUT incorporates a 5dBi ceramic patch antenna.

### EUT Operation during Tests

The manufacturer supplied software which enabled the EUT to be placed in to a test mode which transmitted high, mid and low channels with a continuous CW tone or a modulated signal with a duty cycle of around 4.256ms / 500ms.



Compliance Testing, LLC

Testing since 1963

**Accessories:**

| Qty | Description         | Manufacturer    | Model      | S/N          |
|-----|---------------------|-----------------|------------|--------------|
| 1   | POE Device          | Sensys Networks | APCC       | 558          |
| 2   | Traffic Flow Sensor | Sensys Networks | VSN240-F-2 | 83902, 83561 |

**Cables:**

| Qty | Description | Length (M) | Shielding Y/N | Shielded Hood Y/N | Ferrite Y/N |
|-----|-------------|------------|---------------|-------------------|-------------|
| 2   | Ethernet    | <3m        | N             | N                 | N           |

**Modifications:** None

**15.203: Antenna Requirement:**

The antenna is permanently attached to the EUT

The antenna uses a unique coupling

The EUT must be professionally installed

The antenna requirement does not apply



## Test Summary

| FCC 15.247 Specification        | RSS-247 Specification | Test Name                          | Pass, Fail, N/A | Comments                                                                |
|---------------------------------|-----------------------|------------------------------------|-----------------|-------------------------------------------------------------------------|
| 15.247(b)                       | 5.4                   | Peak Output Power                  | Pass            |                                                                         |
| 15.247(d)                       | 5.5                   | Conducted Spurious Emissions       | N/A             | The EUT does not incorporate a temporary or permanent antenna connector |
| 15.247(d),<br>15.209(a), 15.205 | 5.5                   | Radiated Spurious Emissions        | Pass            |                                                                         |
| 15.247(d),<br>15.209(a), 15.205 | 5.5                   | Emissions At Band Edges            | Pass            |                                                                         |
| 15.247(a)(2)                    | RSS-GEN               | Occupied Bandwidth                 | Pass            |                                                                         |
| 15.247(e)                       | 5.4                   | Transmitter Power Spectral Density | Pass            |                                                                         |
| 15.207                          | RSS-GEN               | A/C Powerline Conducted Emissions  | Pass            |                                                                         |

| References                | Description                                                                                                                       |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| CFR47, Part 15, Subpart B | Unintentional Radiators                                                                                                           |
| CFR47, Part 15, Subpart C | Intentional Radiators                                                                                                             |
| ANSI C63.10-2013          | American National standard for testing Unlicensed Wireless Devices                                                                |
| ANSI C63.4-2014           | Method and Measurements of Radio-Noise Emissions from low-Voltage Electrical and Electronic Equipment in the range 9kHz to 40GHz. |
| ISO/IEC 17025:2005        | General requirements for the Competence of Testing and Calibrations Laboratories                                                  |
| KDB 558074 D01 v04        | Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247                     |



**Output Power**

**Engineer:** Alex Macon

**Test Date:** 5/20/17

**Test Procedure**

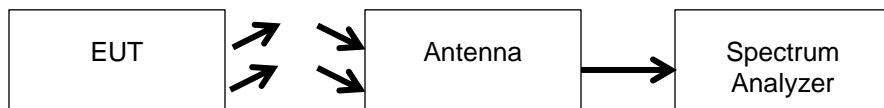
The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. A spectrum analyzer was used to verify that the EUT met the requirements for Output Power. The EUT was tested by rotating it 360° with the antennas in both the vertical and horizontal orientation and was raised from 1 to 4 meters to ensure the TX signal levels were maximized.

The Spectrum Analyzer was set to the following:

RBW =  $\geq$  DTS bandwidth

VBW  $\geq$  3 x RBW

Peak Detector


Trace mode = max hold

Sweep = auto

Span  $\geq$  3 x RBW

The EUT was set to continuous transmit on the lowest, middle and highest frequencies at the maximum power level. The RF output power was measured using the spectrum analyzer's channel power function

**Test Setup**



**Transmitter Output Power**

| Tuned Frequency (MHz) | Measured Value (dBm) | Antenna Gain (dBi) | Value at Antenna Port (dBm) | Specification Limit | Result |
|-----------------------|----------------------|--------------------|-----------------------------|---------------------|--------|
| 2406                  | 5.131                | 5.5                | -0.369                      | 1 W (30 dBm)        | Pass   |
| 2440                  | 6.136                | 5.5                | 0.636                       | 1 W (30 dBm)        | Pass   |
| 2480                  | 6.283                | 5.5                | 0.783                       | 1 W (30 dBm)        | Pass   |

As per KDB 558074 D01 v04, the formula  $E = \text{EIRP} - 20\log D + 104.8$  was utilized to convert the measured radiated field strength into power measurements.



## Radiated Spurious Emissions

Engineer: Alex Macon

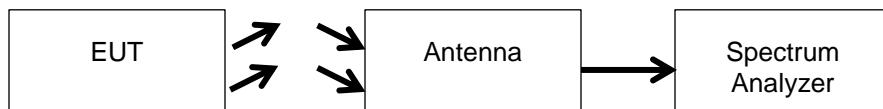
Test Date: 5/20/17

### Test Procedure Radiated Spurious Emissions: 30 – 1000 MHz

The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Emissions. The EUT was tested by rotating it 360° with the antennas in both the vertical and horizontal orientation and was raised from 1 to 4 meters to ensure the TX signal levels were maximized.

All emissions from 30 MHz to 1 GHz were examined.

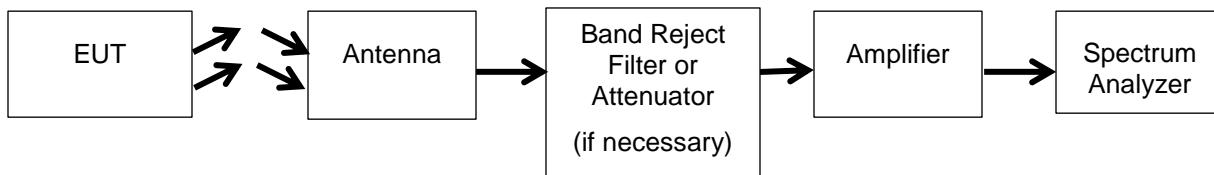
Measured Level includes antenna and receiver cable correction factors.


Correction factors were input into the spectrum analyzer before recording "Measured Level".

RBW = 100 KHz

VBW = 300 KHz

Detector – Quasi Peak


#### Test Setup



### Test Procedure for Radiated Spurious Emissions above 1 GHz

The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Emissions. The EUT was tested by rotating it 360° with the antennas in both the vertical and horizontal orientation and was raised from 1 to 4 meters to ensure the TX signal levels were maximized. Emissions were investigated up to the 10<sup>th</sup> harmonic. Only noise floor was observed past 10 GHz.

#### Test Setup



See Annex A for Test Data



## DTS Bandwidth

**Engineer:** Alex Macon

**Test Date:** 5/20/17

### Test Procedure

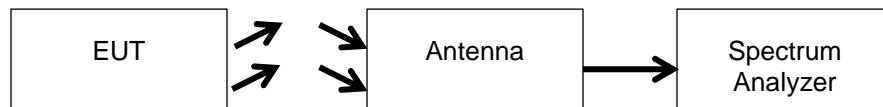
The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. A spectrum analyzer was used to verify that the EUT met the requirements for DTS Bandwidth. The EUT was tested by rotating it 360° with the antennas in both the vertical and horizontal orientation and was raised from 1 to 4 meters to ensure the TX signal levels were maximized.

The Spectrum Analyzer was set to the following:

RBW = 100 kHz

VBW  $\geq$  3 x RBW

Peak Detector


Trace mode = max hold

Sweep = auto couple

Span = 1.5 x EBW

The EUT was set to transmit at the lowest, middle and highest channels of the band at the maximum power levels. The maximum width of the emission that was determined by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that were attenuated by 6db and this value was used to determine the width of the carrier. Alternatively the spectrum analyzer's automatic bandwidth capability was used.

### Test Setup



### 6 dB Occupied Bandwidth Summary

| Frequency (MHz) | Measured Bandwidth (MHz) | Specification Limit (kHz) | Result |
|-----------------|--------------------------|---------------------------|--------|
| 2406            | 1.393                    | $\geq$ 500                | Pass   |
| 2440            | 1.282                    | $\geq$ 500                | Pass   |
| 2480            | 1.563                    | $\geq$ 500                | Pass   |

### 99% Bandwidth Summary

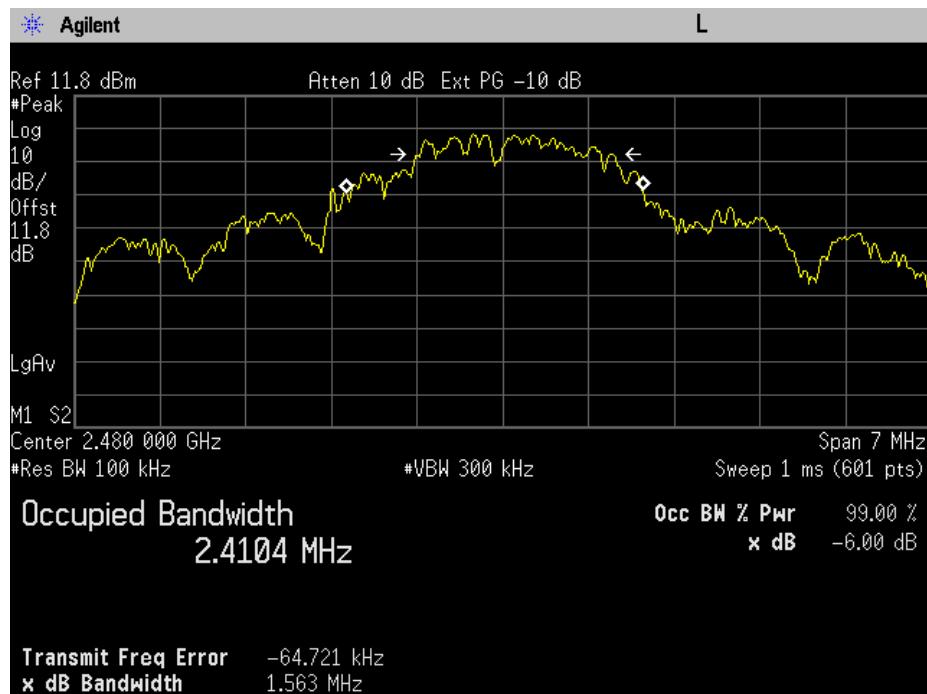
| Frequency (MHz) | Measured Bandwidth (MHz) | Result |
|-----------------|--------------------------|--------|
| 2406            | 2.334                    | Pass   |
| 2440            | 2.394                    | Pass   |
| 2480            | 2.410                    | Pass   |



### Low channel Occupied Bandwidth



### Mid channel Occupied Bandwidth






Compliance Testing, LLC

Testing since 1963

### High channel Occupied Bandwidth





## Transmitter Power Spectral Density (PSD)

Engineer: Alex Macon

Test Date: 5/20/17

### Test Procedure

The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. A spectrum analyzer was used to verify that the EUT met the requirements for Transmitter Power Spectral Density. The EUT was tested by rotating it 360° with the antennas in both the vertical and horizontal orientation and was raised from 1 to 4 meters to ensure the TX signal levels were maximized. The Spectrum Analyzer was set to the following:

DTS channel center frequency

Span 1.5 x DTS bandwidth

RBW = 3 kHz ≤ RBW ≤ 100 kHz

VBW ≥ 3 x RBW

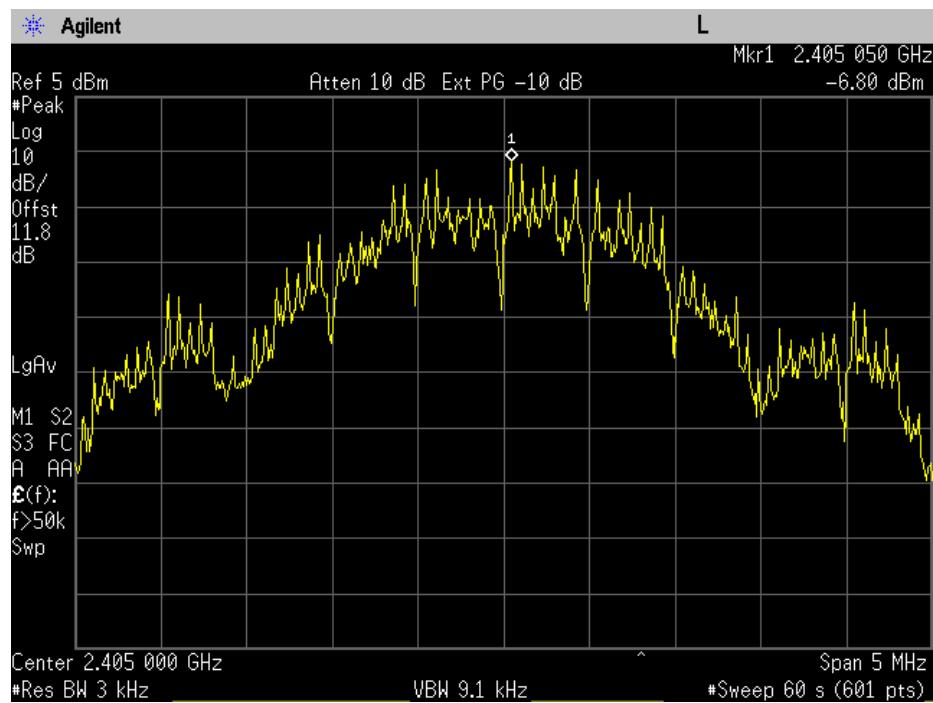

Peak Detector

Sweep time = auto couple

Trace mode = max hold

The EUT was set to transmit at the lowest, middle and highest channels of the band at the maximum power levels. Once the trace has stabilize the peak marker was used to determine the peak power spectral density.

### Test Setup

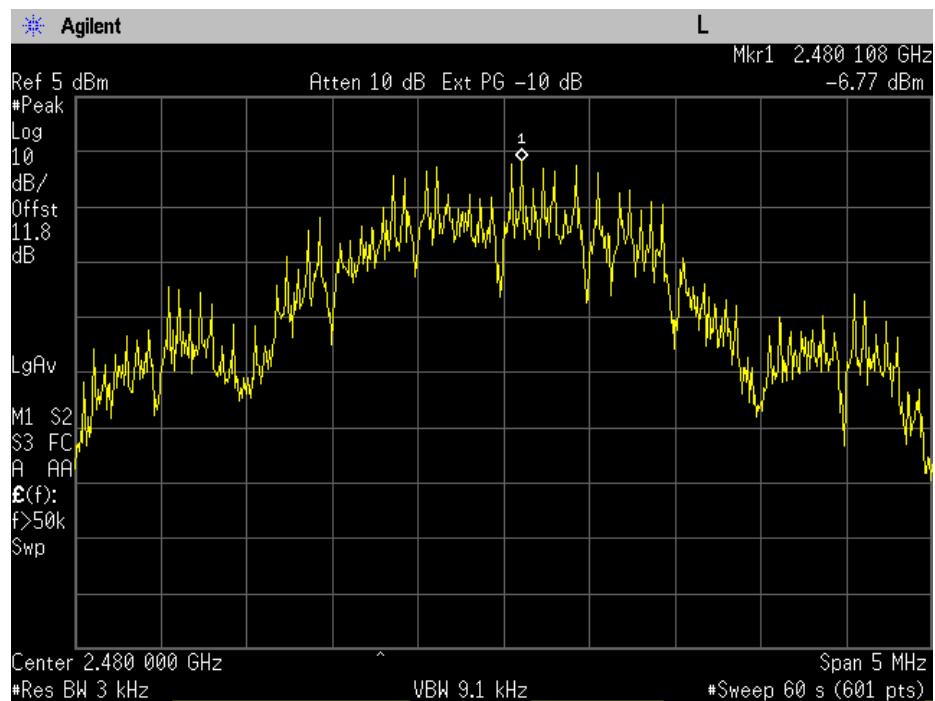



### PSD Summary

| Frequency (MHz) | Measured Data (dBm) | Specification Limit (dBm) | Result |
|-----------------|---------------------|---------------------------|--------|
| 2405            | -6.80               | 8                         | Pass   |
| 2440            | -8.75               | 8                         | Pass   |
| 2480            | -6.77               | 8                         | Pass   |



### Low Channel PSD




### Mid Channel PSD



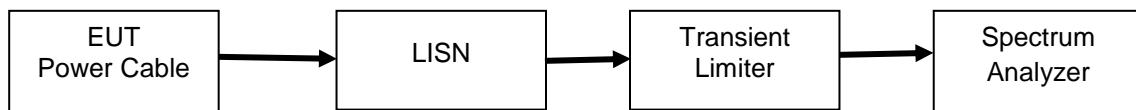


### High Channel PSD





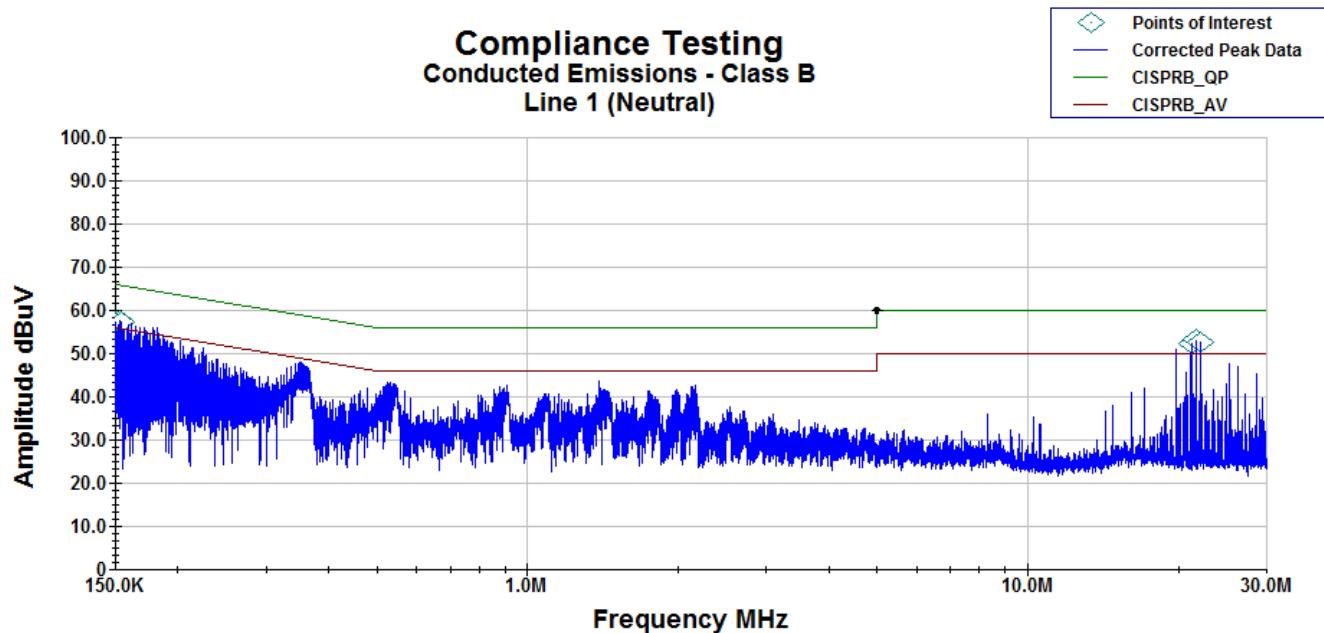
**A/C Powerline Conducted Emission**


**Engineer:** Alex Macon

**Test Date:** 5/25/17

**Test Procedure**

The EUT power cable was connected to a LISN and the monitored output of the LISN was connected to a transient limiter, which then connected directly to a spectrum analyzer. The conducted emissions from 150 kHz to 30 MHz were measured and compared to the specification limits.


**Test Setup**





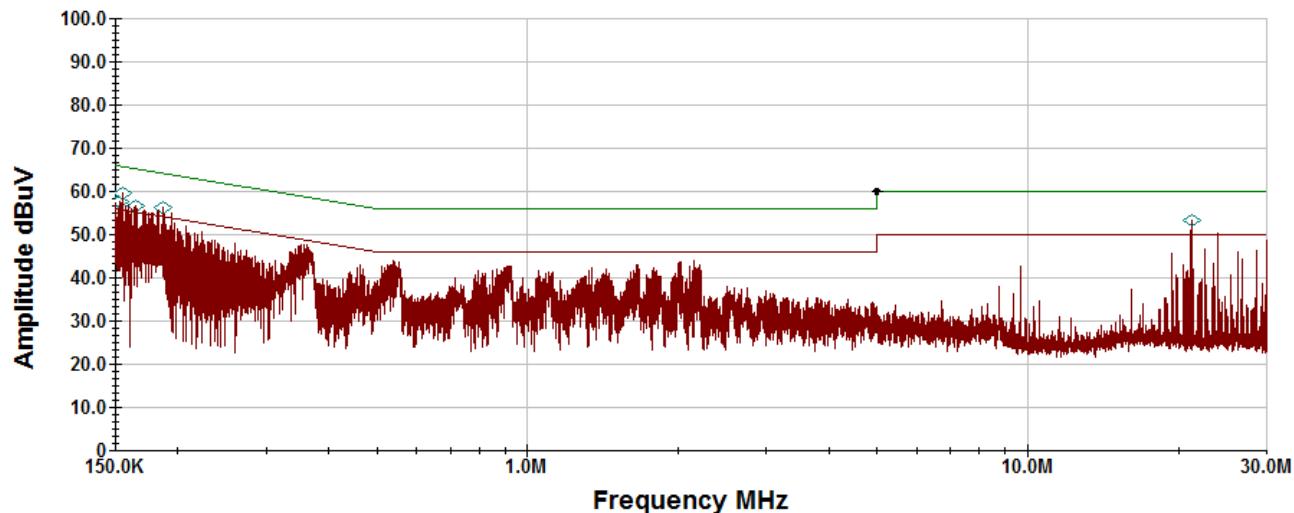
## Conducted Emission Test Results

### Line 1 Peak Plot



Operator: AM

EN55022 Class B\_p1750012.til


Job #: p1750012

### Line 2 Peak Plot

**Compliance Testing**  
Conducted Emissions - Class B  
Line 2 (Phase)

Legend:

- Points of Interest
- Corrected Peak Data
- CISPRB\_QP
- CISPRB\_AV



Operator: AM

EN55022 Class B\_p1750012.til

Job #: p1750012



## Line 1 Neutral Avg Detector

| Frequency  | Measured Value (dBuV) | LISN Correction Factor (dB) | Cable Loss (dB) | Transient Limiter (dB) | Final Data (dBuV) | Limit (dBuV) | Avg Margin (dB) |
|------------|-----------------------|-----------------------------|-----------------|------------------------|-------------------|--------------|-----------------|
| 150.48 KHz | 14.05                 | 0.3                         | 0.02            | 10.2                   | 24.57             | 55.986       | -31.42          |
| 152.23 KHz | 13.28                 | 0.28                        | 0.02            | 10.2                   | 23.77             | 55.936       | -32.16          |
| 154.0 KHz  | 13.6                  | 0.26                        | 0.02            | 10.2                   | 24.08             | 55.886       | -31.81          |
| 21.198 MHz | 12.93                 | 0.1                         | 0.22            | 10.3                   | 23.55             | 50           | -26.45          |
| 21.656 MHz | 13.68                 | 0.1                         | 0.22            | 10.3                   | 24.30             | 50           | -25.70          |
| 22.12 MHz  | 11.85                 | 0.1                         | 0.22            | 10.3                   | 22.47             | 50           | -27.53          |

## Line 2 Phase Avg Detector

| Frequency  | Measured Value (dBuV) | LISN Correction Factor (dB) | Cable Loss (dB) | Transient Limiter (dB) | Final Data (dBuV) | Limit (dBuV) | Avg Margin (dB) |
|------------|-----------------------|-----------------------------|-----------------|------------------------|-------------------|--------------|-----------------|
| 151.2 KHz  | 14.25                 | 0.29                        | 0.02            | 10.2                   | 24.76             | 55.966       | -31.21          |
| 152.68 KHz | 14.39                 | 0.27                        | 0.02            | 10.2                   | 24.89             | 55.923       | -31.04          |
| 153.03 KHz | 14.46                 | 0.27                        | 0.02            | 10.2                   | 24.95             | 55.913       | -30.97          |
| 154.23 KHz | 14.24                 | 0.26                        | 0.02            | 10.2                   | 24.72             | 55.879       | -31.16          |
| 168.1 KHz  | 16.08                 | 0.2                         | 0.02            | 10.119                 | 26.42             | 55.483       | -29.06          |
| 21.197 MHz | 13.33                 | 0.1                         | 0.22            | 10.3                   | 23.95             | 50           | -26.05          |

## Line 1 Neutral QP Detector

| Frequency  | Measured Value (dBuV) | LISN Correction Factor (dB) | Cable Loss (dB) | Transient Limiter (dB) | Final Data (dBuV) | Limit (dBuV) | QP Margin (dB) |
|------------|-----------------------|-----------------------------|-----------------|------------------------|-------------------|--------------|----------------|
| 150.48 KHz | 37.6                  | 0.295                       | 0.02            | 10.2                   | 48.12             | 65.986       | -17.87         |
| 152.23 KHz | 37.22                 | 0.278                       | 0.02            | 10.2                   | 47.72             | 65.936       | -18.22         |
| 154.0 KHz  | 39.72                 | 0.26                        | 0.02            | 10.2                   | 50.20             | 65.886       | -15.69         |
| 21.198 MHz | 41.24                 | 0.1                         | 0.22            | 10.3                   | 51.86             | 60           | -8.14          |
| 21.656 MHz | 41.23                 | 0.1                         | 0.22            | 10.3                   | 51.85             | 60           | -8.15          |
| 22.12 MHz  | 39.23                 | 0.1                         | 0.22            | 10.3                   | 49.85             | 60           | -10.15         |

## Line 2 Phase QP Detector

| Frequency  | Measured Value (dBuV) | LISN Correction Factor (dB) | Cable Loss (dB) | Transient Limiter (dB) | Final Data (dBuV) | Limit (dBuV) | QP Margin (dB) |
|------------|-----------------------|-----------------------------|-----------------|------------------------|-------------------|--------------|----------------|
| 151.2 KHz  | 37.62                 | 0.29                        | 0.02            | 10.2                   | 48.13             | 65.966       | -17.84         |
| 152.68 KHz | 37.50                 | 0.27                        | 0.02            | 10.2                   | 47.99             | 65.923       | -17.93         |
| 153.03 KHz | 37.86                 | 0.27                        | 0.02            | 10.2                   | 48.35             | 65.913       | -17.56         |
| 154.23 KHz | 37.52                 | 0.26                        | 0.02            | 10.2                   | 48.00             | 65.879       | -17.88         |
| 168.1 KHz  | 36.51                 | 0.2                         | 0.02            | 10.119                 | 46.85             | 65.483       | -18.63         |
| 21.197 MHz | 42.67                 | 0.1                         | 0.22            | 10.3                   | 53.29             | 60           | -6.71          |



**Compliance Testing, LLC**

Testing since 1963

### Test Equipment Utilized

| Description                   | Manufacturer | Model #                       | CT Asset # | Last Cal Date | Cal Due Date |
|-------------------------------|--------------|-------------------------------|------------|---------------|--------------|
| Horn Antenna                  | ARA          | DRG-118/A                     | i00271     | 6/16/16       | 6/16/18      |
| Horn Antenna, Amplified       | ARA          | MWH-1826/B                    | i00273     | 4/22/15       | 4/22/18      |
| Humidity / Temp Meter         | Newport      | IBTHX-W-5                     | i00282     | 5/26/16       | 5/26/17      |
| Spectrum Analyzer             | Agilent      | E4407B                        | i00331     | 10/19/16      | 10/19/17     |
| Bi-Log Antenna                | Schaffner    | CBL 6111D                     | i00349     | 8/3/16        | 8/3/18       |
| EMI Analyzer                  | Agilent      | E7405A                        | i00379     | 2/22/17       | 2/22/18      |
| 3 Meter Semi-Anechoic Chamber | Panashield   | 3 Meter Semi-Anechoic Chamber | i00428     | 8/15/16       | 8/15/19      |
| PSA Spectrum Analyzer         | Agilent      | E4445A                        | i00471     | 8/30/16       | 8/30/17      |
| Preamplifier                  | Miteq        | AFS44 00101 400 23-10P-44     | i00509     | N/A           | N/A          |

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT