

RF Exposure Evaluation Declaration

Product Name: IP-STB

Model No. : 3600X

IC : 20842-3600X

Applicant: Roku Inc.

Address : 12980 Saratoga Ave, Suite D Saratoga, CA 95070

Date of Receipt: Dec. 25, 2015

Issued Date : Jan.19, 2016

Report No. : 15C2073R-RF-CA-P20V01

Report Version: V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Jan. 19, 2016

Report No.: 15C2073R-RF-CA-P20V01

Product Name : IP-STB
Applicant : Roku Inc.

Address : 12980 Saratoga Ave, Suite D Saratoga, CA 95070

Manufacturer : Ambit Mircosystems (Shanghai) LTD.

Address : 1925, Nanle Road, Songjiang Export Processing Zone,

Shanghai, China 201613

Model No. : 3600X

IC : 5959A-RCB8

EUT Voltage :: DC 5V Brand Name : Roku

Applicable Standard : RSS-102: Issue 5, 2015

Test Result : Complied

Performed Location : Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,

215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

IC Lab Code: 4075B

Documented By :

(Senior Adm. Specialist: Alice Ni)

Reviewed By :

(Senior Engineer: Frank He)

Approved By :

Harry Then

(Engineering Manager : Harry Zhao)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://www.quietek.com/english/about/certificates.aspx?bval=5
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/index_en.aspx

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
15C2073R-RF-CA-P20V01	V1.0	Initial Issued Report	Jan. 19, 2016

1. RF Exposure Evaluation

1.1. Limits

According to RSS 102 Issue 5: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in RSS 102 Clause 4

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Period (minutes)
$0.003 - 10^{21}$	83	90	17/	Instantaneous*
0.1-10	2	0.73/ f		6**
1.1-10	$87/f^{0.5}$	1112	(2)	6**
10-20	27.46	0.0728	2	6
20-48	$58.07/f^{0.25}$	$0.1540/f^{0.25}$	$8.944/f^{0.5}$	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	$6.67 \times 10^{-5} f$	616000/ f ^{1.2}

Note: *f* is frequency in MHz.

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 0.535 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product		IP-STB
Test Item	:	RF Exposure Evaluation
Test Site		AC-6

Antenna Gain:

Antenna List

Antenna No.	Manufacturer	Model No.	Peak Gain	Directional Gain
Antenna 1	TDK-EPC	ANT016008LCD2442MA1	2.38dBi for 2.4GHz	
	Corporation		5.54dBi for 5GHz	5.39dBi for 2.4GHz
Antenna 2	TDK-EPC	ANT016008LCD2442MA1	2.38dBi for 2.4GHz	8.55dBi for 5GHz
	Corporation		5.54dBi for 5GHz	

Not: Directional gain = GANT + 10 log(NANT) dBi

Note: 1: The EUT has two WIFI antennas, and each port has same gain, they transmit signals are correlated with each other.

- (1) 2.4G WIFI Directional gain for Calculation is:Directional gain = Gant + Array Gain≈5.39dBi
- (2) 5G WIFI Directional gain for Calculation is: Directional gain = Gant + Array Gain≈8.55dBi

• Output Power into Antenna & RF Exposure Evaluation Distance:

Standlone modes

2.4GHz:

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)
802.11b	2412 - 2462	21.85	2.38	0.052690
802.11g	2412 - 2462	21.74	2.38	0.051372
802.11n(20MHz)	2412 - 2462	21.95	2.38	0.053918
802.11n(40MHz)	2422 - 2452	24.61	5.39	0.198944

5GHz:

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)
902 110	5180 - 5240	16.48	5.54	0.031676
802.11a	5745 - 5825	15.95	5.54	0.028037
802.11n(20MHz)	5180 - 5240	17.49	8.55	0.079934
	5745 - 5825	17.52	8.55	0.080488
802.11n(40MHz)	5190 - 5230	19.39	8.55	0.123803
	5755 - 5795	15.83	8.55	0.054542

Simultaneous transmission:

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)
802.11n(40MHz)	2422 - 2452	24.61	5.39	0.198944
802.11n(40MHz)	5190 - 5230	19.39	8.55	0.123803
	0.322747			

So according to transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$ and the power density limit according to RSS 102 Issue 5, the limit is 0.535 mW/cm²

Safety Distance Calculation Formula:

The power flux:

$$S = \frac{P^*G_{(\theta,\phi)}}{4^*\pi^*r^2}$$

So safety distance as following:

$$r = \sqrt{\frac{P*G}{4*\pi*S}}$$

P = input power of the antenna

G = antenna gain relative to an isotropic antenna

 θ , Φ = elevation and azimuth angles.

r = distance from the antenna to the point of investigation

Test Mode	Frequency Range (MHz)	Maximum EIRP (dBm)	Limit of Power Density S(mW/cm²)	Safety Distance r(cm)
802.11n(40MHz)	2422 - 2452	30.00	0.535	45.52
802.11n(40MHz)	5190 - 5230	27.94	0.883	15.53

Note: The safety distance is 15.53cm for the router without any other radio equipment.

_____ The End