

FCC PART 15.407 ISEDC RSS-247, ISSUE 2, FEBRUARY 2017 TEST REPORT

For

Roku, Inc.

150 Winchester Circle,

Los Gatos, CA 95032, USA

FCC ID: TC2-RCB16 IC: 5959A-RCB16

Report Type: Model: Original Report RC-AL4 Frank Wang Frank Wang **Prepared By:** Test Engineer **Report Number:** R1706268-407 **Report Date:** 2017-08-08 Jin Yang **Reviewed By:** RF Engineer Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GE	NERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) OBJECTIVE RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY MEASUREMENT UNCERTAINTY TEST FACILITY REGISTRATIONS TEST FACILITY ACCREDITATIONS	
2	SYS	TEM TEST CONFIGURATION	9
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	JUSTIFICATION EUT EXERCISE SOFTWARE DUTY CYCLE CORRECTION FACTOR EQUIPMENT MODIFICATIONS LOCAL SUPPORT EQUIPMENT SUPPORT EQUIPMENT INTERFACE PORTS AND CABLING	9 10 11
3	SUN	MMARY OF TEST RESULTS	12
4	FCC	C §2.1093, §15.407(F) & ISEDC RSS-102 - RF EXPOSURE	13
	4.1	APPLICABLE STANDARD	
	4.2	RF EXPOSURE EVALUATION RESULTS.	
5	FCC	C §15.203 & ISEDC RSS-GEN §8.3 - ANTENNA REQUIREMENTS	16
	5.1	APPLICABLE STANDARDS	
	5.2	Antenna List	16
6	FCC	C §15.209, §15.407(B) & ISEDC RSS-247 §6.2 - SPURIOUS RADIATED EMISSIONS	17
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	APPLICABLE STANDARD TEST SETUP TEST PROCEDURE CORRECTED AMPLITUDE AND MARGIN CALCULATION TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS. SUMMARY OF TEST RESULTS RADIATED EMISSIONS TEST RESULT DATA	
7	FCC	C §15.407(E) & ISEDC RSS-247 §6.2 - 6 DB, 26 DB, AND 99% OCCUPIED BANDWIDTH	24
	7.1 7.2 7.3 7.4 7.5	APPLICABLE STANDARDS MEASUREMENT PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS. TEST RESULTS	24 24 24
8	FCC	C §407(A) & ISEDC RSS-247 §6.2 - OUTPUT POWER	30
	8.1 8.2 8.3	APPLICABLE STANDARDS	31 31
	8.4 8.5	TEST ENVIRONMENTAL CONDITIONS. TEST RESULTS	

9 FC	CC §15.407(A) & ISEDC RSS-247 §6.2 - POWER SPECTRAL DENSITY	33
9.1	APPLICABLE STANDARDS	33
9.2	MEASUREMENT PROCEDURE	
9.3	TEST EQUIPMENT LIST AND DETAILS	34
9.4	TEST ENVIRONMENTAL CONDITIONS.	35
9.5	TEST RESULTS	
	CC §15.407(B) & ISEDC RSS-247 §6.2 - OUT OF BAND EMISSIONS	
10.1	APPLICABLE STANDARDS	
10.2	MEASUREMENT PROCEDURE	40
10.3	TEST EQUIPMENT LIST AND DETAILS	
10.4	TEST ENVIRONMENTAL CONDITIONS	
10.5	TEST RESULTS	41
11 AN	NNEX A (INFORMATIVE) - A2LA ELECTRICAL TESTING CERTIFICATE	47

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	R1706268-407	Original Report	2017-08-08	

1 General Description

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of Roku, Inc., and their product model: RC-AL4, FCC ID: TC2-RCB16, IC: 5959A-RCB16 or the "EUT" as referred to in this report.

1.2 Objective

This report is prepared on behalf of Roku, Inc in accordance with FCC CFR47 §15.407 and ISEDC RSS-247 Issue 2, February 2017.

The objective is to determine compliance with FCC Part 15.407 and ISEDC RSS-247 rules for Output Power, Antenna Requirements, AC Line Conducted Emissions, Emission Bandwidth, Power spectral density, Conducted and Radiated Spurious Emissions.

1.3 Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment DTS with FCC ID: TC2-REB16, IC: 5959A-RCB16 FCC Part 15, Subpart C, Equipment DTS with FCC ID: TC2-R1016, IC: 5959A-R1016 FCC Part 15, Subpart E, Equipment NII with FCC ID: TC2-R1016, IC: 5959A-R1016

1.4 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz, and FCC KDB 789033 D02 General UNII Test Procedure New Rules v01r04.

1.5 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Parameter	Measurement uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.57 dB
Power Spectral Density, conducted	±1.48dB
Unwanted Emissions, conducted	±1.57dB
All emissions, radiated	±4.0 dB
AC power line Conducted Emission	±2.0 dB
Temperature	±2 ° C
Humidity	±5 %
DC and low frequency voltages	±1.0 %
Time	±2 %
Duty Cycle	±3 %

Test Facility Registrations

BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

1.7 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3279.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficienct Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.03) to certify

- For the USA (Federal Communications Commission):
 - All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4; 1-
 - 2-All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
 - 3-All Telephone Terminal Equipment within FCC Scope C.
- For the Canada (Industry Canada):
 - All Scope 1-Licence-Exempt Radio Frequency Devices;
 - 2 All Scope 2-Licensed Personal Mobile Radio Services;
 - 3 All Scope 3-Licensed General Mobile and Fixed Radio Services;
 - 4 All Scope 4-Licensed Maritime and Aviation Radio Services;
 - 5 All Scope 5-Licensed Fixed Microwave Radio Services
 - All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.
- For Singapore (Info-Communications Development Authority (IDA)):
 - All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2

- 2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2
- For the Hong Kong Special Administrative Region:
 - 1 All Radio Equipment, per KHCA 10XX-series Specifications;
 - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
 - 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.
- For Japan:
 - MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 Terminal Equipment for the Purpose of Calls;
 - All Scope A2 Other Terminal Equipment
 - 2 Radio Law (Radio Equipment):
 - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes and Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
- For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
- Canada: (Industry Canada IC) Foreign Certification Body FCB APEC Tel MRA -Phase I and Phase II;
- Chinese Taipei (Republic of China Taiwan):

- o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
- o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2004/108/EC US-EU EMC and Telecom MRA CAB
 - Radio and Teleterminal Equipment (RandTTE) Directive 1995/5/EC
 US -EU EMC and Telecom MRA CAB
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA) APEC Tel MRA -Phase I and Phase II
- Israel US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Development Authority IDA) APEC Tel MRA -Phase I and Phase II;
- Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
 - o ENERGY STAR Recognized Test Laboratory US EPA
 - Telecommunications Certification Body (TCB) US FCC;
- Vietnam: APEC Tel MRA -Phase I;

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013 and FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case data rates are determined by measuring the average power, peak power and PPSD across all data rates bandwidths, and modulations.

2.2 EUT Exercise Software

The test firmware used was the TeraTerm serial terminal and setup commands provided by Roku Inc., the software is compliant with the standard requirements being tested against.

Please refer to the following power setting table.

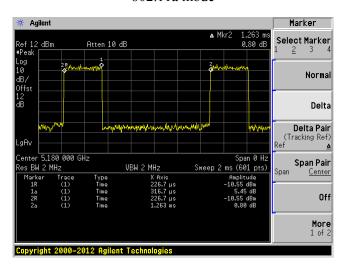
Modulation	Channel	Frequency (MHz)	Power Setting
	36	5180	Spl 10
	40	5200	Spl 10
002 11-	48	5240	Spl 6
802.11a	149	5745	Spl 10
	157	5785	Spl 10
	165	5825	Spl 10

^{*}Data rates tested: 802.11a mode: 6 Mbps

2.3 Duty Cycle Correction Factor

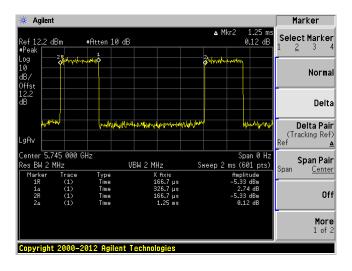
According to KDB 789033 D02 General UNII Test Procedures New Rules v01r04 section B:

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.


Frequency Band	Radio Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
5.2 GHz Band	802.11a	0.3167	1.263	25.07	6.01
5.8 GHz Band	802.11a	0.3267	1.25	26.14	5.83

Note: Duty Cycle Correction Factor = 10*log(1/duty cycle)

Please refer to the following plots.


5.2 GHz

802.11a mode

5.8 GHz

802.11a mode

2.4 Equipment Modifications

N/A

Local Support Equipment

Manufacturer	Manufacturer Description	
Dell	RF/Adaptivity Laptop	Latitude E7450

Support Equipment

Manufacturer	Description	Model
Atmel	Debug/Programmer Board	-

Interface Ports and Cabling

Cable Description	Length (m)	То	From
RF Cable Assembly (WFL-WFL) 70mm ultra	< 1 m	EUT	PSA
Standard USB Adapter	< 1m	Laptop	EUT
Ribbon Cable	< 1m	EUT	Dubug/Programmer Board

3 Summary of Test Results

FCC and ISEDC Rules	Description of Test	Result
FCC §2.1093, §15.407(f), ISEDC RSS-102	RF Exposure	Compliant
FCC §15.203 ISEDC RSS-Gen §8.3	Antenna Requirement	Compliant
FCC §15.207 ISEDC RSS-Gen §8.8	AC Power Line Conducted Emissions	N/A*
FCC §2.1053, §15.205, §15.209, 15.407(b) ISEDC RSS-247 §6.2, §8.9 & §8.10	Spurious Radiated Emissions	Compliant
FCC §15.407(e) ISEDC RSS-Gen §6.2	Emission Bandwidth	Compliant
FCC §15.407(a) ISEDC RSS-247 §6.2	Output Power	Compliant
FCC §2.1051, §15.407(b) ISEDC RSS-247 §6.2	Band Edges	Compliant
FCC §15.407(a) ISEDC RSS-247 §6.2	Power Spectral Density	Compliant
FCC §2.1051, §15.407(b) ISEDC RSS-247 §6.2		

Note: Because the EUT uses AA batteries, AC Power Line Conducted Emissions test is not required.

FCC §2.1093, §15.407(f) & ISEDC RSS-102 - RF Exposure

4.1 **Applicable Standard**

According to FCC KDB 447498 D01 General RF Exposure Guidance v05r02 Section 4.3.1, Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition, listed below, is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The minimum test separation distance is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander (see 5) of section 4.1). To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, typically in the SAR measurement or SAR analysis report, according to the required published RF exposure KDB procedures. When no other RF exposure testing or reporting is required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for the SAR test exclusion. When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT two-way radios, handsets, laptops & tablets etc.

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]. $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

- 2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B:
 - a) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and $\leq 6 \text{ GHz}$
- 3) At frequencies below 100 MHz, the following may be considered for SAR test exclusion, and as illustrated in Appendix C:
 - a) The power threshold at the corresponding test separation distance at 100 MHz in step 2) is multiplied by $[1 + \log(100/f(MHz))]$ for test separation distances > 50 mm and < 200 mm
 - b) The power threshold determined by the equation in a) for 50 mm and 100 MHz is multiplied by ½ for test separation distances < 50 mm
 - c) SAR measurement procedures are not established below 100 MHz. When SAR test exclusion cannot be applied, a KDB inquiry is required to determine SAR evaluation requirements for any test results to be acceptable.

According to ISED RSS-102 Issue 5 §2.5.1,

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance

	Exemption Limits (mW)				
Frequency (MHz)	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm
≤ 300	71	101	132	162	193
450	52	70	88	106	123
835	17	30	42	55	67
1900	7	10	18	34	60
2450	4	7	15	30	52
3500	2	6	16	32	55
5800	1	6	15	27	41

	Exemption Limits (mW)					
Frequency (MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥ 50 mm	
≤ 300	223	254	284	315	345	
450	141	159	177	195	213	
835	80	92	105	117	130	
1900	99	153	225	316	431	
2450	83	123	173	235	309	
3500	86	124	170	225	290	
5800	56	71	85	97	106	

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limbworn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required. For medical implants devices, the exemption limit for routine evaluation is set at 1 mW.

The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

4.2 RF Exposure Evaluation Results

Customer declares the minimum separation distance between antenna and user is 10 mm.

FCC:

The highest time average conducted power report was 5.23 dBm (3.33 mW) at 5785 MHz in 802.11a mode. And average power 7.83 dBm (6.07 mW) e.i.r.p.

Based on the [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR.

(6.07/10)* $\sqrt{5.785} = 1.46$ which is less than 7.5

ISED:

The Exemption Limits on 5 GHz signal at separation distance of 10 mm is 15 mW for extremity condition. The maximum e.i.r.p power in the report was 5.23+2.6=7.83 dBm (6.07 mW) at 5785 MHz in 802.11a mode. The maximum e.i.r.p power is lower than the ISED exemption limit.

Conclusion:

The maximum average output power is lower than both FCC and ISED SAR Exemption limit. Thus, SAR was exempted for this device.

5 FCC §15.203 & ISEDC RSS-Gen §8.3 - Antenna Requirements

5.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to ISEDC RSS-Gen §8.3: Transmitter Antenna

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the license-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

License-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotopically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the license-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of license-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. ⁹ When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

5.2 Antenna List

The antennas used by the EUT are permanent attached antennas.

Antenna usage	Frequency Range (MHz)	Maximum Antenna Gain (dBi)
Wi-Fi	5150	1.7
Wi-Fi	5850	2.6

6 FCC §15.209, §15.407(b) & ISEDC RSS-247 §6.2 - Spurious Radiated Emissions

6.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 – 16.423	960 – 1240	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	1300 - 1427	5. 35 – 5. 46
2.1735 - 2.1905	25.5 - 25.67	1435 - 1626.5	7.25 - 7.75
4.125 - 4.128	37.5 - 38.25	1645.5 – 1646.5	8.025 - 8.5
4.17725 - 4.17775	73 - 74.6	1660 - 1710	9.0 - 9.2
4.20725 - 4.20775	74.8 - 75.2	1718.8 - 1722.2	9.3 - 9.5
6.215 - 6.218	108 - 121.94	2200 - 2300	10.6 - 12.7
6.26775 - 6.26825	123 - 138	2310 - 2390	13.25 - 13.4
6.31175 - 6.31225	149.9 - 150.05	2483.5 - 2500	14.47 - 14.5
8.291 - 8.294	156.52475 – 156.52525	2690 - 2900	15.35 - 16.2
8.362 - 8.366	156.7 – 156.9	3260 - 3267	17.7 - 21.4
8.37625 - 8.38675	162.0125 -167.17	3.332 - 3.339	22.01 - 23.12
8.41425 - 8.41475	167.72 - 173.2	3 3458 – 3 358	23.6 - 24.0
12.29 - 12.293	240 - 285	3.600 - 4.400	31.2 - 31.8
12.51975 – 12.52025	322 - 335.4		36.43 - 36.5
12.57675 – 12.57725	399.9 - 410		Above 38.6
13.36 – 13.41	608 - 614		

As per FCC §15.209: The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 Note 1	3
88 - 216	150 Note 1	3
216 - 960	200 Note 1	3
Above 960	500	3

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC Part 15.407 (b)

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall noet exceed an e.i.r.p. of -27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.

As per ISEDC RSS-247 §6.2

For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, any unwanted emissions that fall into the band 5250- 5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz. Otherwise, the transmission is considered as intentional and the devices shall implement dynamic frequency selection (DFS) and transmitter power control (TPC) as per the requirements for the band 5250-5350 MHz

For devices with both operating frequencies and channel bandwidths contained within the band 5250-5350 MHz, the device shall comply with the following:

- 1. All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. if the equipment is intended for outdoor use: or
- 2. All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and any emissions within the band 5150-5250 MHz shall meet the power spectral density limits of Section 6.2.1. The device shall be labelled "for indoor use only."

For devices with operating frequencies in the band 5250-5350 MHz but having a channel bandwidth that overlaps the band 5150-5250 MHz, the devices' unwanted emission shall not exceed -27 dBm/MHz e.i.r.p. outside the band 5150-5350 MHz and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device shall be labelled "for indoor use only."

For transmitters operating in the band 5470-5725 MHz, emissions outside the band shall not exceed -27 dBm/MHz e.i.r.p.

For the band 5725-5850 MHz, emissions at frequencies from the band edges to 10 MHz above or below the band edges shall not exceed -17 dBm/MHz e.i.r.p. For emissions at frequencies more than 10 MHz above or below the band edges, the emissions power shall not exceed -27 dBm/MHz.

6.2 **Test Setup**

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15.407 and ISEDC RSS-247 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

Test Procedure 6.3

For the radiated emissions test, the EUT host, and all support equipment power cords were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter or 1.5 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 3MHz / Sweep = 100ms
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

6.4 **Corrected Amplitude and Margin Calculation**

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit for Class A. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

Report Number: R1706268-407

6.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde and Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100338	2016-02-04	2 years
Agilent	Analyzer, Spectrum	E4446A	US44300386	2017-04-20	1 year
Sunol Sciences	System Controller	SC99V	011003-1	N/R	N/A
Sunol Sciences	Antenna, Biconi-Log	JB1	A013105-3	2015-07-11	26 months
EMCO	Antenna, Horn	3115	9511-4627	2016-01-28	2 years
Agilent	Pre-Amplifier	8447D	2944A06639	2017-06-15	1 year
IW	AOBOR Hi frequency Co AX Cable	DC 1531	KPS- 1501A3960KPS	2016-08-05	1 year
-	SMA cable	-	C0002	Each time ¹	N/A
-	N-Type Cable	-	C00012	Each time ¹	N/A
-	N-Type Cable	-	C00014	Each time ¹	N/A
Agilent	Pre-Amplifier	8449B	3147A00400	2017-06-15	1 year
Sunol Sciences	Antenna, Horn	DRH-118	A052704	2017-03-27	2 years
A.R.A.	Antenna, Horn	DRG-118/A	1132	2015-09-21	2 years
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R

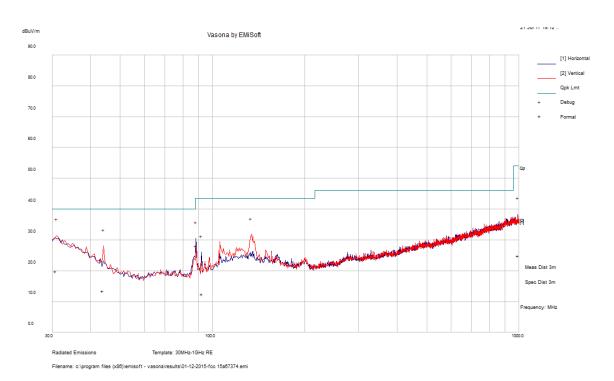
Note¹: cables and attenuators included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

6.6 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Frank Wang 2017-07-17 to 2017-07-20 in 5m chamber 3.


6.7 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Part 15.407 and RSS-247</u> standards' radiated emissions limits, and had the worst margin of:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Mode, Channel
-6.95	10400	Horizontal	802.11a mode, 5200 MHz

Radiated Emissions Test Result Data 6.8

1) 30 MHz – 1 GHz

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Comments (PK/QP/Ave.)
30.80825	19.89	203	V	284	40	-20.11	QP
133.844	25.28	100	V	97	43.5	-18.22	QP
43.833	13.5	115	V	23	40	-26.5	QP
88.45	28.1	190	Н	15	43.5	-15.4	QP
990.873	24.89	114	Н	324	54	-29.11	QP
92.25375	12.49	126	Н	344	43.5	-31.01	QP

2) 1–40 GHz

5150 - 5250 MHz

802.11a mode

E	S.A.	Turntable	T	est Antei	ına	Cable	Pre-	Cord.	FCC/IS	SEDC	C
Frequency (MHz)	Keauing		Height	Polarity		Loss	Amp.	Reading		Margin	Comments (PK/Ave.)
(WIIIZ)	(dBµV)	(degrees)	(cm)	(H/V)	(dB/m)	(dB)	(dB)	(dBµV/m)	$(dB\mu V/m)$	(dB)	(I K/Ave.)
	Low Channel 5180 MHz										
5180	50.25	180	100	Н	33.61	6.88	0.00	90.74	1	-	PK
5180	42.08	180	100	Н	33.61	6.88	0.00	82.57	-	-	AV
5180	49.68	170	100	V	33.61	6.88	0.00	90.17	-	-	PK
5180	38.91	170	100	V	33.61	6.88	0.00	79.40	-	-	AV
5150	51.31	171	100	Н	33.61	6.88	38.54	53.26	74.00	-20.74	PK
5150	36.88	171	100	Н	33.61	6.88	38.54	38.83	54.00	-15.17	AV
5150	49.39	200	100	V	33.61	6.88	38.54	51.34	74.00	-22.66	PK
5150	35.64	200	100	V	33.61	6.88	38.54	37.59	54.00	-16.41	AV
10360	46.57	200	100	Н	38.25	14.04	38.33	60.53	74.00	-13.47	PK
10360	33.27	200	100	Н	38.25	14.04	38.33	47.23	54.00	-6.77	AV
15540	44.29	0	100	Н	39.41	16.11	36.99	62.82	74.00	-11.18	PK
15540	32.55	0	100	Н	39.41	16.11	36.99	51.08	54.00	-2.92	AV
					Middle Cl	hannel 520	00 MHz				
5200	50.20	208	146	Н	33.61	6.88	0.00	90.69	1	-	PK
5200	39.78	208	146	Н	33.61	6.88	0.00	80.27	1	-	AV
5200	49.56	179	169	V	33.61	6.88	0.00	90.05	-	-	PK
5200	39.18	179	169	V	33.61	6.88	0.00	79.67	-	-	AV
10400	45.82	0	100	Н	38.25	14.04	38.21	59.90	68.26	-8.36	PK
10400	33.46	0	100	Н	38.25	14.04	38.21	47.54	54.00	-6.46	AV
15600	44.55	0	100	Н	39.41	16.11	36.99	63.08	74.00	-10.92	PK
15600	32.34	0	100	Н	39.41	16.11	36.99	50.87	54.00	-3.13	AV
					High Ch	annel 5240) MHz				
5240	51.72	175	216	Н	33.61	8.35	0.00	93.68	1	-	PK
5240	41.06	175	216	Н	33.61	8.35	0.00	83.02	-	-	AV
5240	50.45	172	214	V	33.61	8.35	0.00	92.41	-	-	PK
5240	40.80	172	214	V	33.61	8.35	0.00	82.76	1	-	AV
10480	46.57	0	100	Н	38.33	14.04	38.21	60.73	74.00	-13.27	PK
10480	34.18	0	100	Н	38.33	14.04	38.21	48.34	54.00	-5.66	AV
15720	44.05	0	100	Н	38.91	16.11	38.99	60.08	74.00	-13.92	PK
15720	32.99	0	100	Н	38.91	16.11	38.99	49.02	54.00	-4.98	AV

5725 - 5850 MHz

802.11a mode

E	S.A.	Turntable	To	est Anteni	na	Cable	Pre-	Cord.	FCC/IS	SEDC	C
Frequency (MHz)	Keading	Azimuth		Polarity	Factor	Loss	Amp.	Reading	Limit	Margin	Comments (PK/Ave.)
(IVIIIZ)	(dBµV)	(degrees)	(cm)	(H/V)	(dB/m)	(dB)	(dB)	(dBµV/m)	$(dB\mu V/m)$	(dB)	(TIE/TIVE.)
					Low Chan	nel 5745]	MHz				
5745	46.43	72	300	Н	33.89	8.87	0.00	89.19	-	-	PK
5745	35.11	72	300	Н	33.89	8.87	0.00	77.87	-	-	AV
5745	44.85	186	300	V	33.89	8.87	0.00	87.61	-	-	PK
5745	33.92	186	300	V	33.89	8.87	0.00	76.68	-	-	AV
5725	56.11	72	300	Н	33.89	8.87	38.33	60.54	68.20	-7.66	PK
5725	54.89	186	300	Н	33.89	8.87	38.33	59.32	68.20	-8.88	PK
11490	47.43	191	200	Н	38.96	14.95	37.80	63.54	74.00	-10.46	PK
11490	34.99	191	200	Н	38.96	14.95	37.80	51.10	54.00	-2.90	AV
				N	Iiddle Cha	nnel 5785	MHz				
5785	44.56	156	100	Н	33.86	8.88	0.00	87.30	-	-	PK
5785	32.42	156	100	Н	33.86	8.88	0.00	75.16	-	-	AV
5785	44.34	178	235	V	33.86	8.88	0.00	87.08	-	-	PK
5785	33.76	178	235	V	33.86	8.88	0.00	76.50	-	-	AV
11570	48.87	206	229	Н	39.10	14.95	37.80	65.12	74.00	-8.88	PK
11570	35.65	206	229	Н	39.10	14.95	37.80	51.90	54.00	-2.10	AV
				1	High Chan	nel 5825	MHz				
5825	43.78	240	224	Н	33.86	8.88	0.00	86.52	-	-	PK
5825	30.96	240	224	Н	33.86	8.88	0.00	73.70	-	-	AV
5825	43.25	301	250	V	33.86	8.88	0.00	85.99	-	-	PK
5825	31.76	301	250	V	33.86	8.88	0.00	74.50	-	-	AV
5850	46.09	0	100	Н	34.22	10.24	38.33	52.22	68.20	-15.98	PK
5850	46.15	0	100	Н	34.22	10.24	38.33	52.28	68.20	-15.92	AV
11650	45.48	0	100	Н	39.33	14.95	37.80	61.96	74.00	-12.04	PK
11650	33.72	0	100	Н	39.33	14.95	37.80	50.20	54.00	-3.80	AV

Note 1: Any emissions above 12 GHz are emissions from the noise floor.

Note 2: Duty Cycle Correction Factor has been added to the measurements.

7 FCC §15.407(e) & ISEDC RSS-247 §6.2 - 6 dB, 26 dB, and 99% Occupied Bandwidth

7.1 Applicable Standards

As per FCC §15.407(e) and ISEDC RSS-247 6.2.4(1): for equipment operating in the band 5725 – 5850 MHz, the minimum 6 dB bandwidth of U-NII devices shall be 500 kHz.

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 or 26 dB from the reference level. Record the frequency difference as the minimum emission or emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

7.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2017-04-20	1 year
Rohde & Schwarz	Signal Analyzer	FSQ26	200749	2017-06-08	2 years
-	10 dB attenuator	-	-	Each time ¹	N/A
-	RF cable	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

7.4 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Frank Wang on 2017-07-18 at RF site.

7.5 Test Results

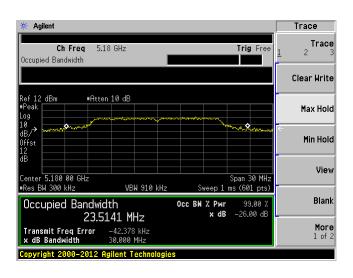
Please refer to the following tables and plots.

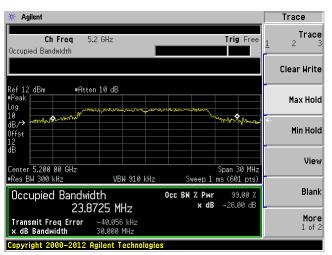
5150 - 5250 MHz

Channel	Frequency (MHz)	99% OBW (kHz)	26 dB OBW (kHz)				
	802.11 a mode						
36	5180	23514.1	45673				
40	5200	23872.5	46731				
48	5240	19409.6	38942				

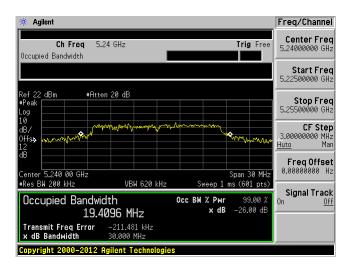
5725 - 5850 MHz

Channel	Frequency (MHz)	99% OBW (kHz)	6 dB OBW (kHz)	6 dB OBW Limit (kHz)	
	802.11 a mode				
149	5745	17691.4	15461	500	
157	5785	18129.9	16443	500	
165	5825	18120.7	15766	500	


5150 - 5250 MHz

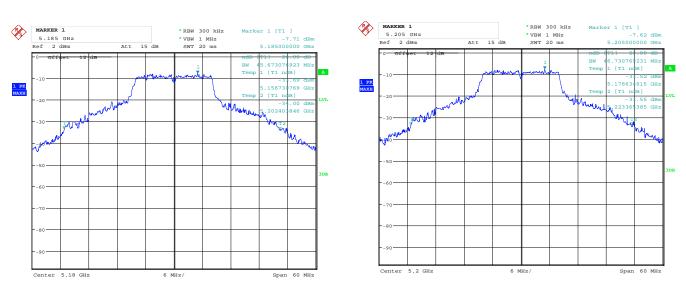

99% Emission Bandwidth

802.11a mode


5180 MHz

5200 MHz

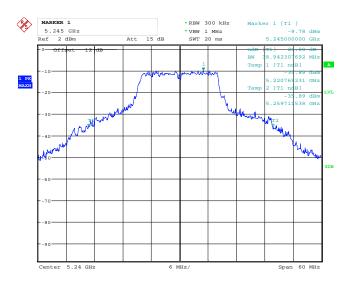
5240 MHz



26 dB Emission Bandwidth

802.11a mode

5180 MHz

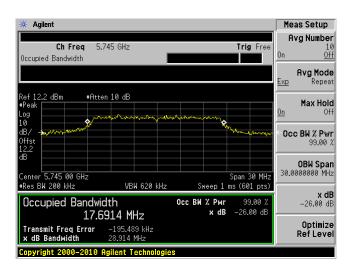

5200 MHz

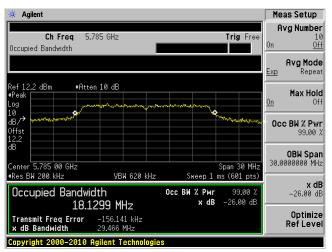
Date: 10.AUG.2017 23:08:10

Date: 10.AUG.2017 23:07:17

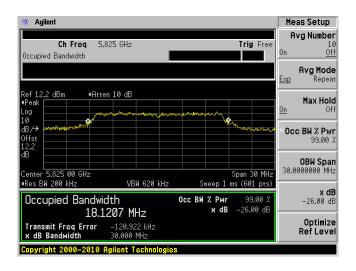
5240 MHz

Date: 10.AUG.2017 23:08:56


5725 - 5850 MHz

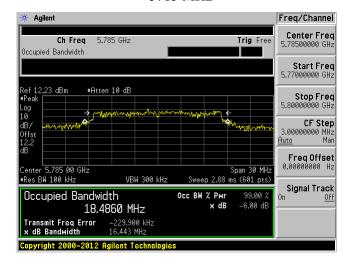

99% Emission Bandwidth

802.11a mode


5745 MHz

5785 MHz

5825 MHz


6 dB Emission Bandwidth

802.11a mode

5745 MHz

Freq/Channel Center Freq 5.74500000 GHz Ch Freq 5.745 GHz Trig Free Occupied Bandwidth Start Freq 5.73000000 GHz Ref 12.23 dBm #Peak #Atten 10 dB Stop Freq 5.76000000 GHz **CF Step** 3.000000000 MHz <u>Auto</u> Man <u>Auto</u> Freq Offset 0.00000000 Hz Center 5.745 00 GHz #Res BW 100 kHz VBW 300 kHz Sweep 2.88 ms (601 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -6.00 dB 17.4786 MHz Transmit Freq Error -201.308 kHz x dB Bandwidth 15.461 MHz Copyright 2000-2012 Agilent Technolog

5785 MHz

5825 MHz

8 FCC §407(a) & ISEDC RSS-247 §6.2 - Output Power

8.1 Applicable Standards

According to FCC §15.407(a):

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to ISEDC RSS-247 §6.2.1 for frequency band 5150-5250 MHz:

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

According to ISEDC RSS-247 §6.2.2 for frequency band 5250-5350 MHz:

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

According to ISEDC RSS-247 §6.2.3 for frequency band 5470-5600 MHz and 5650-5725 MHz:

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

According to ISEDC RSS-247 §6.2.4 for frequency band 5725-5850 MHz:

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

8.2 Measurement Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a power meter.

8.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
ETS- Lingerin	Power Sensor	7002-006	160097	2016-12-05	2 years
-	RF Cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

8.4 Test Environmental Conditions

Temperature:	23° C	
Relative Humidity:	42 %	
ATM Pressure:	102.7 KPa	

The testing was performed by Frank Wang on 2017-07-20 in RF site.

8.5 Test Results

5150 - 5250 MHz

FCC Results

Frequency (MHz)	Conducted Average Output Power (dBm)	FCC Limit (dBm)
	802.11a	
5180	3.27	24
5200	3.39	24
5240	-0.22	24

ISED Results

Modulation	Frequency (MHz)	Conducted Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	ISEDC Limit (dBm)
	5180	3.27	1.7	4.97	23
802.11a	5200	3.39	1.7	5.09	23
	5240	-0.22	1.7	1.48	22.88

5725 - 5850 MHz

Frequency (MHz)	Conducted Average Output Power (dBm)	FCC/ ISED Limit (dBm)
	802.11a	
5745	4.28	30
5785	5.23	30
5825	4.87	30

Note: Duty cycle correction factor has already been added to the measurements.

9 FCC §15.407(a) & ISEDC RSS-247 §6.2 - Power Spectral Density

9.1 Applicable Standards

According to FCC §15.407(a):

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to ISEDC RSS-247 §6.2.1 for frequency band 5150-5250 MHz:

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

According to ISEDC RSS-247 §6.2.2 for frequency band 5250-5350 MHz:

The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10}B$, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

According to ISEDC RSS-247 §6.2.3 for frequency band 5470-5600 MHz and 5650-5725 MHz:

The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10}B$, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

According to ISEDC RSS-247 §6.2.4 for frequency band 5725-5850 MHz:

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

9.2 Measurement Procedure

- (i) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set $VBW \ge 3$ MHz.
- (iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.
- (vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- (viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- (ix) Compute power by integrating the spectrum across the 26 dB EBW of the signal using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges. If the spectrum analyzer does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW of the spectrum.

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2017-02-24	1 year
-	RF Cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. *Statement of Traceability: BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Frank Wang on 2017-07-18 at RF site.

9.5 Test Results

5150 - 5250 MHz

FCC Results:

Frequency (MHz)	Measured PSD (dBm/MHz)	Corrected PSD (dBm/MHz)	FCC Limit (dBm/MHz)			
	802.11a					
5180	-14.217	-8.207	11			
5200	-14.354	-8.344	11			
5240	-16.351	-10.341	11			

ISEDC Results:

Frequency (MHz)	PSD (dBm/MHz)	Corrected PSD (dBm/MHz)	EIRP PSD (dBm/MHz)	ISED Limit (dBm/MHz)
		802.11a		
5180	-14.217	-8.207	-6.507	10
5200	-14.354	-8.344	-6.644	10
5240	-16.351	-10.341	-8.641	10

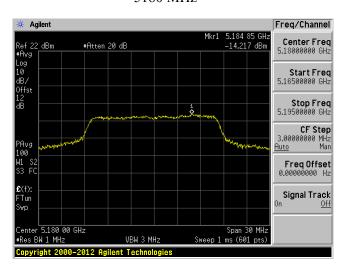
5725 - 5850 MHz

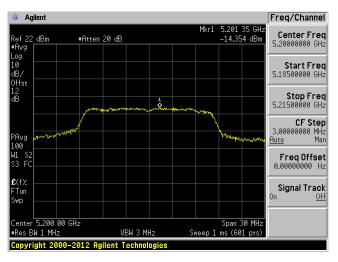
Frequency (MHz)	Measured PSD (dBm/100 kHz)	Corrected PSD (dBm/500 kHz)	FCC/ ISED Limit (dBm/500 kHz)			
	802.11a					
5745	-20.662	-7.842	30			
5785	-19.379	-6.559	30			
5825	-20.092	-7.272	30			

Corrected PSD (dBm/MHz) = PSD (dBm/MHz) + Duty Cycle Correction (dB)

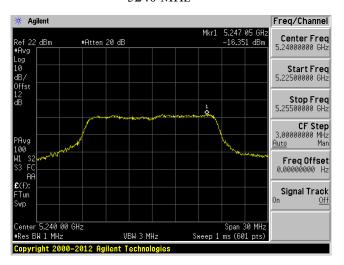
Note: For the 5725-5850 MHz band, the Corrected PSD (dBm/500 kHz) is equal to:

Correct PSD (dBm/500 kHz) = PSD (dBm/100 kHz) + Duty Cycle Correction (dB) + 10*log(500 kHz/100 kHz)


Please refer to the following plots.

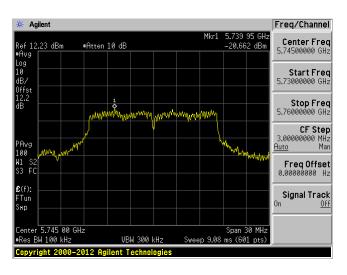

5150 - 5250 MHz

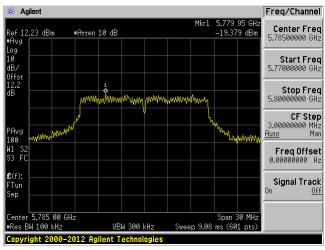
802.11a mode


5180 MHz

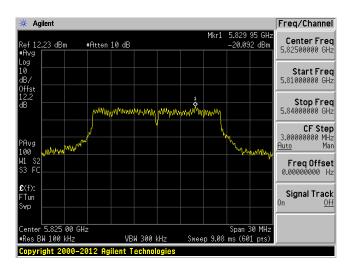
5200 MHz

5240 MHz




5725 - 5850 MHz

802.11a mode


5745 MHz

5785 MHz

5825 MHz

10 FCC §15.407(b) & ISEDC RSS-247 §6.2 - Out of Band Emissions

10.1 Applicable Standards

According to FCC §15.407(b):

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

The provisions of §15.205 apply to intentional radiators operating under this section.

According to ISEDC RSS-247 §6.2.1 for devices operatinging in the frequency band 5150-5250 MHz:

For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, any unwanted emissions that fall into the band 5250-5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz. Otherwise, the transmission is considered as intentional and the devices shall implement dynamic frequency selection (DFS) and transmitter power control (TPC) as per the requirements for the band 5250-5350 MHz.

According to ISEDC RSS-247 §6.2.2 for devices operatinging in the frequency band 5250-5350 MHz:

For devices with both operating frequencies and channel bandwidths contained within the band 5250-5350 MHz, the device shall comply with the following:

- 1. All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. if the equipment is intended for outdoor use; or
- 2. All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and any emissions within the band 5150-5250 MHz shall meet the power spectral density limits of Section 6.2.1. The device shall be labelled "for indoor use only."

For devices with operating frequencies in the band 5250-5350 MHz but having a channel bandwidth that overlaps the band 5150-5250 MHz, the devices' unwanted emission shall not exceed -27 dBm/MHz e.i.r.p. outside the band 5150-5350 MHz and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device shall be labelled "for indoor use only."

According to ISEDC RSS-247 §6.2.3 for devices operatinging in the frequency band 5470-5600 MHz and 5650-5725 MHz. Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p.

According to ISEDC RSS-247 §6.2.4 for devices operatinging in the frequency band 5725-5850 MHz: For the band 5725-5850 MHz, emissions at frequencies from the band edges to 10 MHz above or below the band edges shall not exceed -17 dBm/MHz e.i.r.p.

For emissions at frequencies more than 10 MHz above or below the band edges, the emissions power shall not exceed -27 dBm/MHz.

10.2 Measurement Procedure

Add a correction factor (antenna gain+ Attenuator loss+cable loss) to the offset of the spectrum analyzer. Integration Method

- 1. For peak emissions measurements, follow the procedures described in section H)5), "Procedures for Peak Unwanted Emissions Measurements above 1000 MHz", except for the following changes:
- Set RBW = 100 kHz
- Set VBW = 3RBW
- Perform a band-power integration across the 1 MHz bandwidth in which the band-edge emission level is to be measured. CAUTION: You must ensure that the spectrum analyzer or EMI receiver is set for peak-detection and max-hold for this measurement.
- 2. For average emissions measurements, follow the procedures described in section H)6), "Procedures for Average Unwanted Emissions Measurements above 1000 MHz", except for the following changes:
- Set RBW = 100 kHz
- Set VBW = 3RBW
- Perform a band-power integration across the 1 MHz bandwidth in which the band-edge emission level is to be measured.

10.3 Test Equipment List and Details

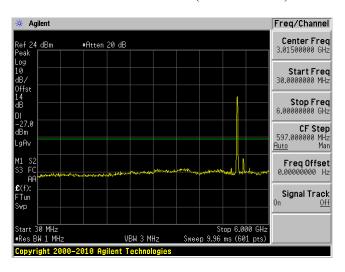
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2017-02-24	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

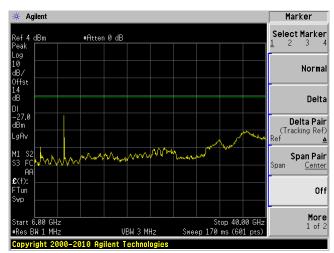
10.4 Test Environmental Conditions

Temperature:	22-24° C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

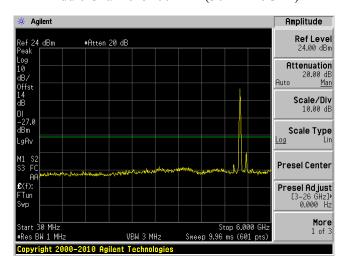
The testing was performed by Frank Wang on 2017-07-18 at RF site.

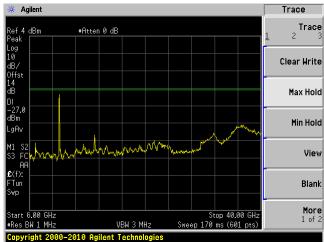

10.5 Test Results

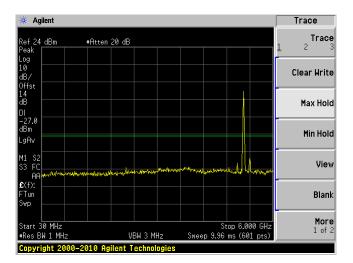
Please refer to the following plots

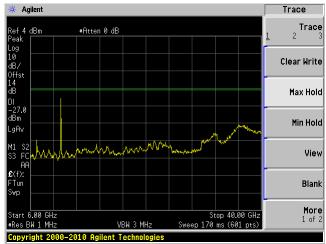

5150 - 5250 MHz

802.11a mode

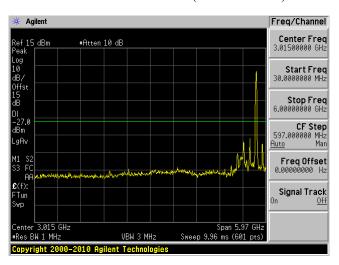

Low Channel 5180MHz (30MHz-6GHz)

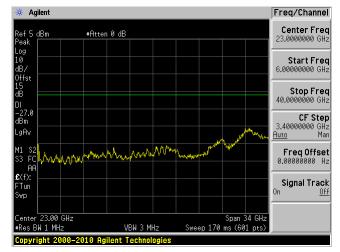

Low Channel 5180 MHz (6-40GHz)


Middle Channel 5200MHz (30MHz-6GHz)

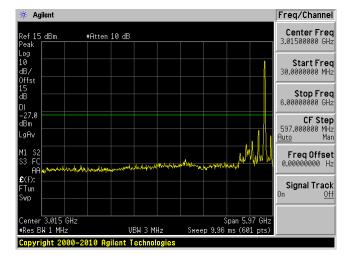

Middle Channel 5200 MHz (6-40GHz)

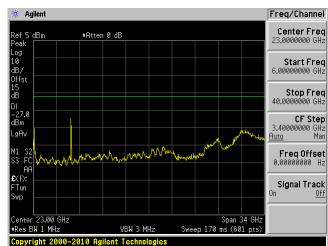
High Channel 5240MHz (30MHz-6GHz)


High Channel 5240 MHz (6-40GHz)

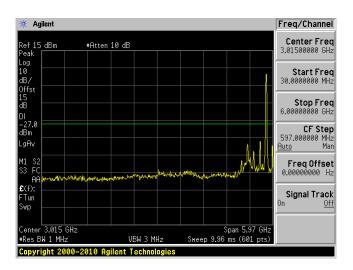

5725 - 5850 MHz

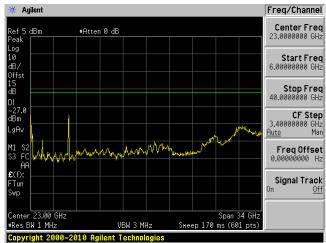
802.11a mode


Low Channel 5745 MHz (30MHz-6GHz)


Low Channel 5745 MHz (6-40GHz)

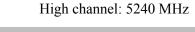
Middle Channel 5785 MHz (30MHz-6GHz)

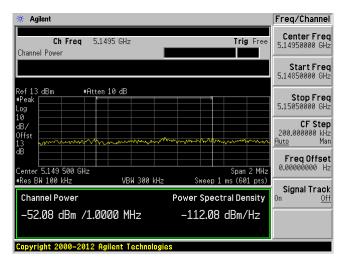


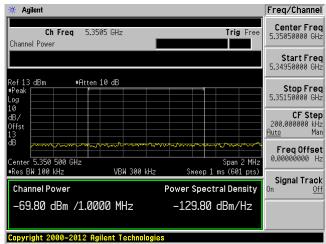

Middle Channel 5785 MHz (6-40GHz)

High Channel 5825 MHz (30MHz-6GHz)

High Channel 5825 MHz (6-40GHz)


Note: The result is e.i.r.p and the antenna gain has been considered in the offset during the testing.


Band Edge Emissions


5150 - 5250 MHz

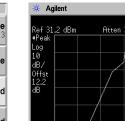
802.11a mode

Low Channel: 5180 MHz

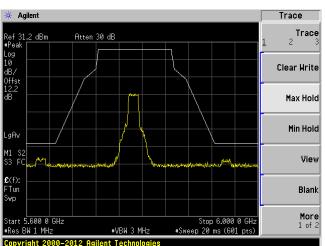
Note: The result is e.i.r.p and the antenna gain has been considered in the offset during the testing.

5725 - 5850 MHz

Emission MASK

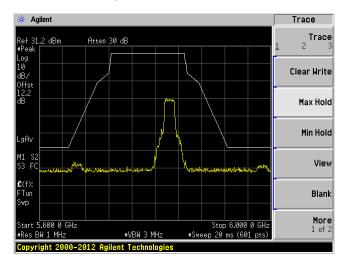

Atten 30 dB

802.11a mode


Low Channel: 5745 MHz

#VBW 3 MHz

Stop 6.000 0 GHz #Sweep 20 ms (601 pts)



Middle Channel: 5785 MHz

High Channel: 5825 MHz

Note: There is 2.6 dBi antenna gain for 5.8 GHz signals, but the signals will be still within the mask limit even if the antenna gain is added.

11 Annex A (Informative) - A2LA Electrical Testing Certificate

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of A2LA R222 - Specific Requirements - EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 30th day of August 2016.

Senior Director of Quality & Communications For the Accreditation Council Certificate Number 3297.02

Valid to September 30, 2018

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

--- END OF REPORT ---