

FCC PART 15.407

TEST REPORT

For

Roku Inc.

150 Winchester Circle,
Los Gatos, CA 95032, USA

FCC ID: TC2-RC1025

Report Type: Original Report	Model: RC-RR
Prepared By: <u>Test Engineer</u>	
Report Number: <u>R1807234-407</u>	
Report Date: <u>2018-09-17</u>	
Reviewed By: <u>Test Engineer</u> Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “*” (b)(2)

TABLE OF CONTENTS

1 GENERAL DESCRIPTION.....	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	5
1.2 OBJECTIVE.....	5
1.3 RELATED SUBMITTAL(S)/GRANT(S)	5
1.4 TEST METHODOLOGY	5
1.5 MEASUREMENT UNCERTAINTY	5
1.6 TEST FACILITY REGISTRATIONS	6
1.7 TEST FACILITY ACCREDITATIONS.....	6
2 EUT TEST CONFIGURATION.....	9
2.1 JUSTIFICATION	9
2.2 EUT EXERCISE SOFTWARE.....	9
2.3 DUTY CYCLE CORRECTION FACTOR.....	9
2.4 EQUIPMENT MODIFICATIONS	12
2.5 LOCAL SUPPORT EQUIPMENT	12
2.6 SUPPORT EQUIPMENT	12
2.7 INTERFACE PORTS AND CABLING	12
3 SUMMARY OF TEST RESULTS	13
4 FCC §2.1093, §15.407(F) - RF EXPOSURE.....	14
4.1 APPLICABLE STANDARDS	14
4.2 RF EXPOSURE EVALUATION RESULTS.....	15
5 FCC §15.203 - ANTENNA REQUIREMENTS	16
5.1 APPLICABLE STANDARDS	16
5.2 ANTENNA LIST	16
6 FCC §15.209 & §15.407(B) - SPURIOUS RADIATED EMISSIONS.....	17
6.1 APPLICABLE STANDARD	17
6.2 TEST SETUP	19
6.3 TEST PROCEDURE	19
6.4 CORRECTED AMPLITUDE AND MARGIN CALCULATION	19
6.5 TEST EQUIPMENT LIST AND DETAILS	20
6.6 TEST ENVIRONMENTAL CONDITIONS.....	20
6.7 SUMMARY OF TEST RESULTS.....	21
6.8 RADIATED EMISSIONS TEST RESULT DATA	22
7 FCC §15.407(E) - 6 DB, 26 DB, AND 99% OCCUPIED BANDWIDTH	27
7.1 APPLICABLE STANDARDS	27
7.2 MEASUREMENT PROCEDURE	27
7.3 TEST EQUIPMENT LIST AND DETAILS	27
7.4 TEST ENVIRONMENTAL CONDITIONS.....	27
7.5 TEST RESULTS	28
8 FCC §407(A) - OUTPUT POWER	29
8.1 APPLICABLE STANDARDS	29
8.2 MEASUREMENT PROCEDURE	29
8.3 TEST EQUIPMENT LIST AND DETAILS	29
8.4 TEST ENVIRONMENTAL CONDITIONS.....	30
8.5 TEST RESULTS	30
9 FCC §15.407(A) - POWER SPECTRAL DENSITY	31

9.1	APPLICABLE STANDARDS	31
9.2	MEASUREMENT PROCEDURE	31
9.3	TEST EQUIPMENT LIST AND DETAILS	31
9.4	TEST ENVIRONMENTAL CONDITIONS.....	32
9.5	TEST RESULTS	32
10	FCC §15.407(B) - OUT OF BAND EMISSIONS.....	33
10.1	APPLICABLE STANDARDS	33
10.2	MEASUREMENT PROCEDURE	33
10.3	TEST EQUIPMENT LIST AND DETAILS	34
10.4	TEST ENVIRONMENTAL CONDITIONS.....	34
10.5	TEST RESULTS	34
11	APPENDIX	35
12	ANNEX A (INFORMATIVE) - A2LA ELECTRICAL TESTING CERTIFICATE	36

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1807234-407	Original Report	2018-09-17

1 General Description

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of Roku, Inc., and their product model: RC-RR, FCC ID: TC2-RC1025, or the “EUT” as referred to in this report.

1.2 Objective

This report is prepared on behalf of *Roku Inc.* in accordance with FCC CFR47 §15.407.

The objective is to determine compliance with FCC Part 15.407 rules for Output Power, Antenna Requirements, AC Line Conducted Emissions, Emission Bandwidth, Power spectral density, and Radiated Spurious Emissions.

1.3 Related Submittal(s)/Grant(s)

FCC 15.247 Report: R1807234-247

1.4 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz, and FCC KDB 789033 D02 General UNII Test Procedure New Rules v02r01.

1.5 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Parameter	Measurement uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.57 dB
Power Spectral Density, conducted	±1.48dB
Unwanted Emissions, conducted	±1.57dB
All emissions, radiated	±4.0 dB
AC power line Conducted Emission	±2.0 dB
Temperature	±2 ° C
Humidity	±5 %
DC and low frequency voltages	±1.0 %
Time	±2 %
Duty Cycle	±3 %

1.6 Test Facility Registrations

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

1.7 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3279.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.03) to certify

- For the USA (Federal Communications Commission):

- 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
- 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- 3- All Telephone Terminal Equipment within FCC Scope C.

- For the Canada (Industry Canada):

- 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
- 2 All Scope 2-Licensed Personal Mobile Radio Services;
- 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
- 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
- 5 All Scope 5-Licensed Fixed Microwave Radio Services
- 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.

- For Singapore (Info-Communications Development Authority (IDA)):

- 1 All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2

2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2

- For the Hong Kong Special Administrative Region:

- 1 All Radio Equipment, per KHCA 10XX-series Specifications;
- 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
- 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.

- For Japan:

- 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 - Terminal Equipment for the Purpose of Calls;
 - All Scope A2 - Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
 - All Scope B1 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
 - For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) – APEC Tel MRA -Phase I;

- Canada: (Innovation, Science and Economic development Canada - ISEDC) Foreign Certification Body – FCB – APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China – Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority – OFTA) APEC Tel MRA -Phase I & Phase II
- Israel – US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications - Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority - IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI - Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
 - o ENERGY STAR Recognized Test Laboratory – US EPA
 - o Telecommunications Certification Body (TCB) – US FCC;
 - o Nationally Recognized Test Laboratory (NRTL) – US OSHA
- Vietnam: APEC Tel MRA -Phase I;

2 EUT Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013 and FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case data rates are determined by measuring the average power, peak power and PPSD across all data rates bandwidths, and modulations.

2.2 EUT Exercise Software

The test firmware used was Tera Term, provided by *Roku Inc.*, the software is compliant with the standard requirements being tested against.

Modulation	Frequency (MHz)	Power Setting
802.11a	5180	Max
	5200	Max
	5240	Max
	5745	Max
	5785	Max
	5825	Max

Data Rates Tested:

802.11a mode: 6Mbps

2.3 Duty Cycle Correction Factor

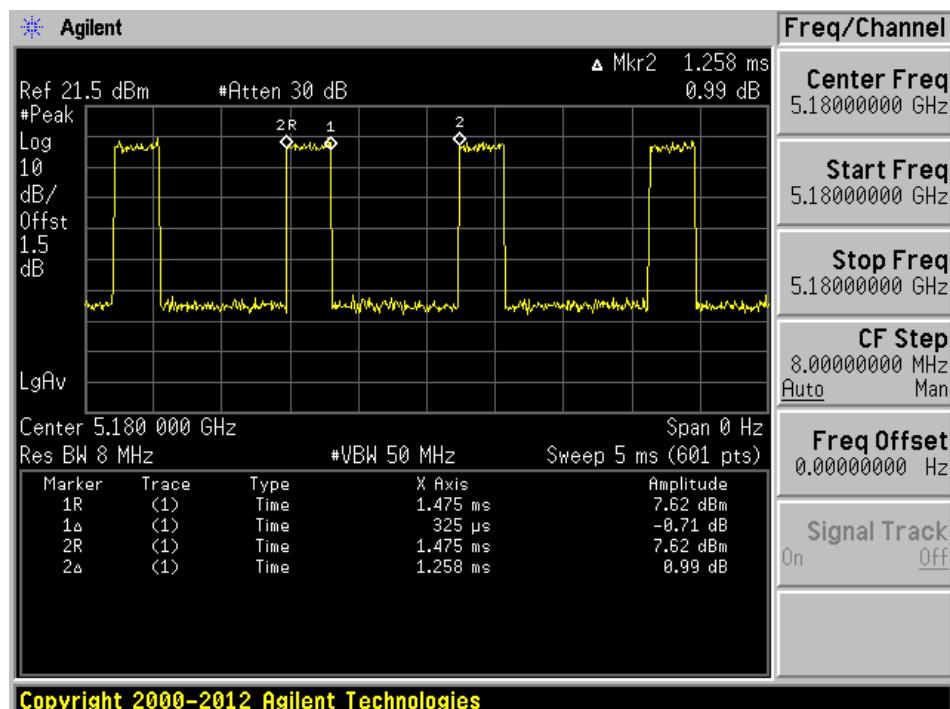
According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 section B:

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.

5.2 GHz Results

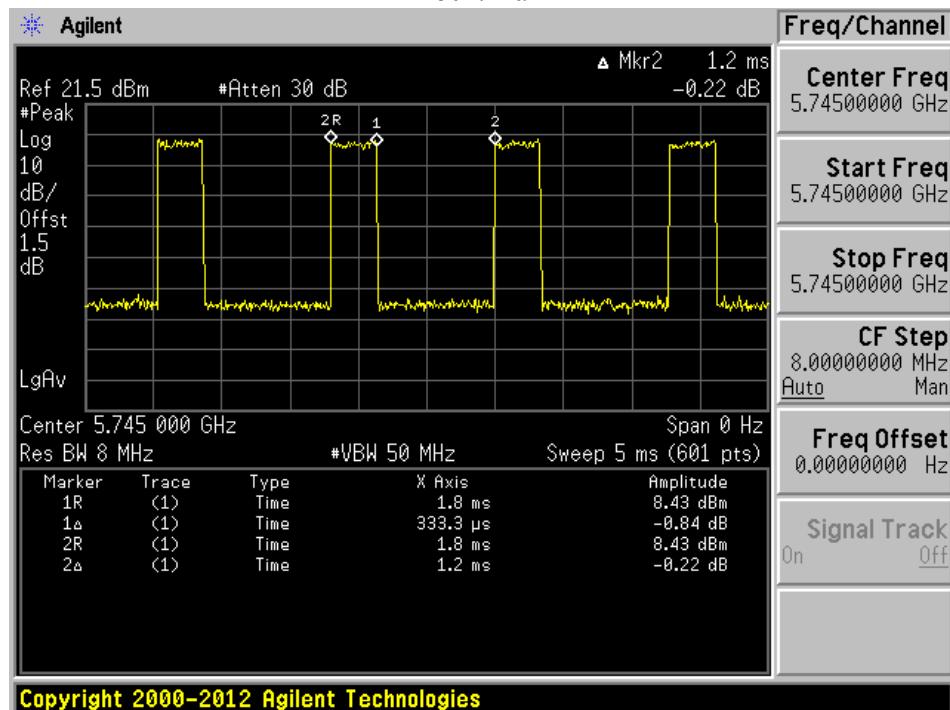
Radio Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
802.11a	0.325	1.258	25.83	5.879

5.8 GHz Results


Radio Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
802.11a	0.333	1.200	27.78	5.563

Note: Duty Cycle Correction Factor = $10 \log(1/\text{duty cycle})$

Please refer to the following plots.


5.2 GHz

802.11a

5.8 GHz

802.11a

2.4 Equipment Modifications

N/A

2.5 Local Support Equipment

Manufacturer	Description	Model	Serial Number
Dell	Laptop	Latitude E6410	3CKRAQ1

2.6 Support Equipment

Manufacturer	Description	Model
Roku	Debug Board	Unknown

2.7 Interface Ports and Cabling

Cable Description	Length (m)	To	From
USB 2.0 A-Male to B-Male	2 m	Laptop	EUT
RF Cable	< 1 m	EUT	PSA

3 Summary of Test Results

FCC Rules	Description of Test	Result
§2.1093, §15.407(f),	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207	AC Power Line Conducted Emissions	Note ¹
§2.1053, §15.205, §15.209, 15.407(b)	Spurious Radiated Emissions	Compliant
§15.407(e)	Emission Bandwidth	Compliant
§407(a)	Output Power	Compliant
§2.1051, §15.407(b)	Band Edges	Compliant
§15.407(a)	Power Spectral Density	Compliant
§2.1051, §15.407(b)	Spurious Emissions at Antenna Terminals	Compliant

Note 1: AC Line Conducted Emissions not required since EUT is powered by batteries.

4 FCC §2.1093, §15.407(f) - RF Exposure

4.1 Applicable Standards

According to FCC KDB 447498 D01 General RF Exposure Guidance v05r02 Section 4.3.1, Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition, listed below, is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The minimum test separation distance is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander (see 5) of section 4.1). To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, typically in the SAR measurement or SAR analysis report, according to the required published RF exposure KDB procedures. When no other RF exposure testing or reporting is required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for the SAR test exclusion. When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT two-way radios, handsets, laptops & tablets etc.

- 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, where}$$

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

- 2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B:

- [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) · ($f(\text{MHz})/150$)] mW, at 100 MHz to 1500 MHz
- [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) · 10] mW at > 1500 MHz and ≤ 6 GHz

- 3) At frequencies below 100 MHz, the following may be considered for SAR test exclusion, and as illustrated in Appendix C:

- The power threshold at the corresponding test separation distance at 100 MHz in step 2) is multiplied by $[1 + \log(100/f(\text{MHz}))]$ for test separation distances > 50 mm and < 200 mm
- The power threshold determined by the equation in a) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$ for test separation distances ≤ 50 mm

- c) SAR measurement procedures are not established below 100 MHz. When SAR test exclusion cannot be applied, a KDB inquiry is required to determine SAR evaluation requirements for any test results to be acceptable.

4.2 RF Exposure Evaluation Results

Customer declares the minimum separation distance between antenna and user (hand) is 10 mm.

FCC:

The maximum conducted power in the report was 6.20 dBm (4.17 mW) at 5240 MHz in 802.11a mode.

Based on the $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

$$(4.17/10) * \sqrt{5.24} = 0.955 \text{ which is less than 7.5}$$

Conclusion:

The maximum output power is lower than both FCC SAR Exemption limit. Thus, SAR was exempted for this device.

5 FCC §15.203 - Antenna Requirements

5.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.407 (a) (ii), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2 Antenna List

The antennas used by the EUT are permanent attached antennas.

Antenna usage	Band of Operation (MHz)	Maximum Antenna Gain (dBi)
Wi-Fi	2400-2500	2.4
Wi-Fi	4900-6000	2.4

Note: EUT can only operate using SISO.

6 FCC §15.209 & §15.407(b) - Spurious Radiated Emissions

6.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 – 0.110	16.42 – 16.423	960 – 1240	4.5 – 5.15
0.495 – 0.505	16.69475 – 16.69525	1300 – 1427	5.35 – 5.46
2.1735 – 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 – 7.75
4.125 – 4.128	37.5 – 38.25	1645.5 – 1646.5	8.025 – 8.5
4.17725 – 4.17775	73 – 74.6	1660 – 1710	9.0 – 9.2
4.20725 – 4.20775	74.8 – 75.2	1718.8 – 1722.2	9.3 – 9.5
6.215 – 6.218	108 – 121.94	2200 – 2300	10.6 – 12.7
6.26775 – 6.26825	123 – 138	2310 – 2390	13.25 – 13.4
6.31175 – 6.31225	149.9 – 150.05	2483.5 – 2500	14.47 – 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 – 2900	15.35 – 16.2
8.362 – 8.366	156.7 – 156.9	3260 – 3267	17.7 – 21.4
8.37625 – 8.38675	162.0125 – 167.17	3.332 – 3.339	22.01 – 23.12
8.41425 – 8.41475	167.72 – 173.2	3.3458 – 3.358	23.6 – 24.0
12.29 – 12.293	240 – 285	3.600 – 4.400	31.2 – 31.8
12.51975 – 12.52025	322 – 335.4		36.43 – 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 – 614		

As per FCC §15.209: The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 Note 1	3
88 - 216	150 Note 1	3
216 - 960	200 Note 1	3
Above 960	500	3

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC Part 15.407 (b)

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

6.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15.407 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

6.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter or 1.5 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$\text{RBW} = 100 \text{ kHz} / \text{VBW} = 300 \text{ kHz} / \text{Sweep} = \text{Auto}$$

Above 1000 MHz:

- (1) Peak: $\text{RBW} = 1\text{MHz} / \text{VBW} = 3\text{MHz} / \text{Sweep} = 100 \text{ ms}$
- (2) Average: $\text{RBW} = 1\text{MHz} / \text{VBW} = 1 / T / \text{Sweep} = \text{Auto}$

6.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$\text{CA} = \text{Ai} + \text{AF} + \text{CL} - \text{Atten} - \text{Ga}$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit for Class A. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

6.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde and Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100337	2017-07-15	2 years
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
Sunol Sciences	System Controller	SC99V	011003-1	N/R	N/A
Sunol Sciences	Antenna, Biconi-Log	JB1	A013105-3	2018-02-26	2 years
Wisewave	Antenna, Horn	ARH-4223-02	10555-01	2018-02-14	2 years
Wisewave	Antenna, Horn	ARH-2823-02	10555-02	2017-12-15	2 years
IW	AOBOR Hi frequency Co AX Cable	DC 1531	KPS-1501A3960K PS	2018-01-11	1 year
-	SMA cable	-	C00011	Each time ¹	N/A
-	N-Type Cable	-	C00012	Each time ¹	N/A
-	N-Type Cable	-	C00014	Each time ¹	N/A
HP	Pre-Amplifier	8449B	3147A00400	2018-02-02	1 year
Agilent	Amplifier, Pre	8447D	2944A10187	2018-04-02	1 year
AH Systems	18-40GHz Pre-Amplifier	PAM-1840VH	170	2018-03-17	1 year
Sunol Sciences	Antenna, Horn	DRH-118	A052704	2017-03-27	2 years
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R

Note¹: cables included in the test set-up will be checked each time before testing.

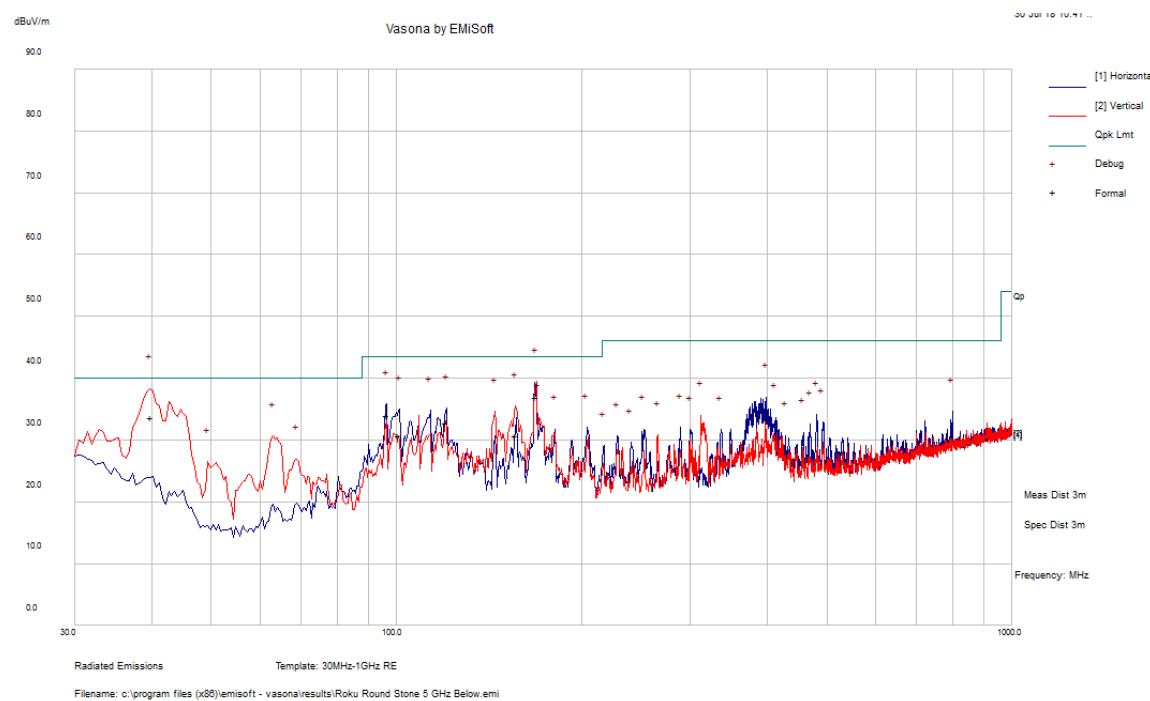
Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

6.6 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Vincent Licata 2018-07-27 to 2018-08-10 in 5m chamber 3.

6.7 Summary of Test Results


According to the data hereinafter, the EUT complied with the FCC Part 15.407 standards' radiated emissions limits, and had the worst margin of:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Mode, Channel
-1.43	10360	Horizontal	a mode, 5180 MHz

6.8 Radiated Emissions Test Result Data

1) 30 MHz – 1 GHz Worst Case, Measured at 3 meters

5.2 GHz Wi-Fi, a mode (5240 MHz)

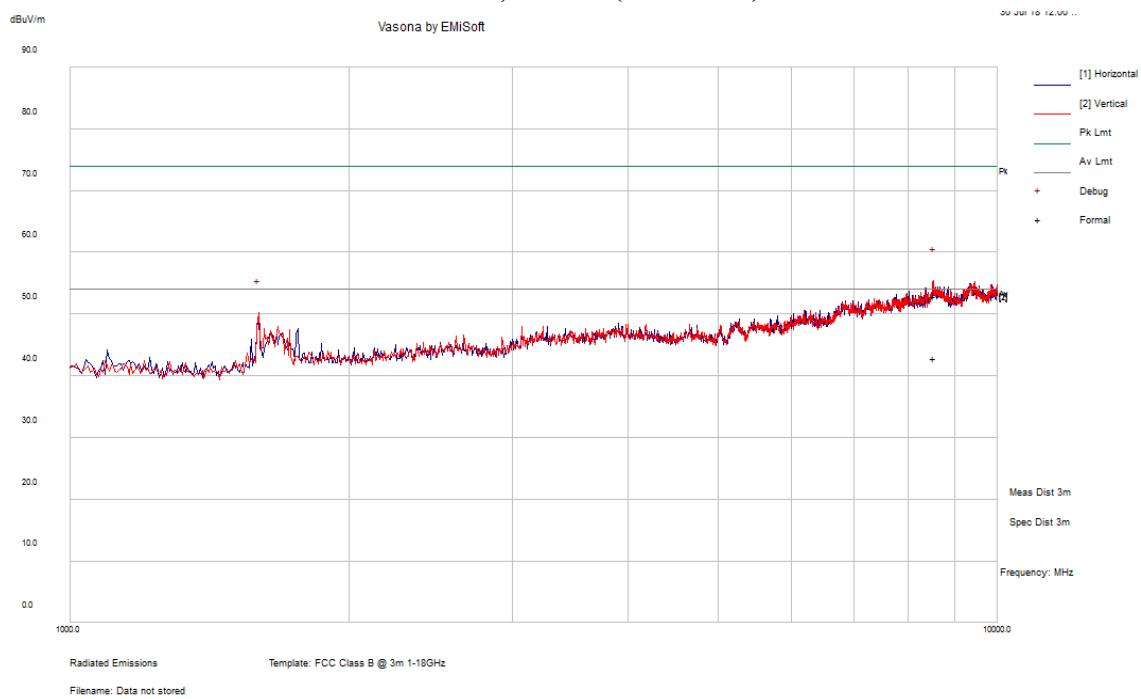
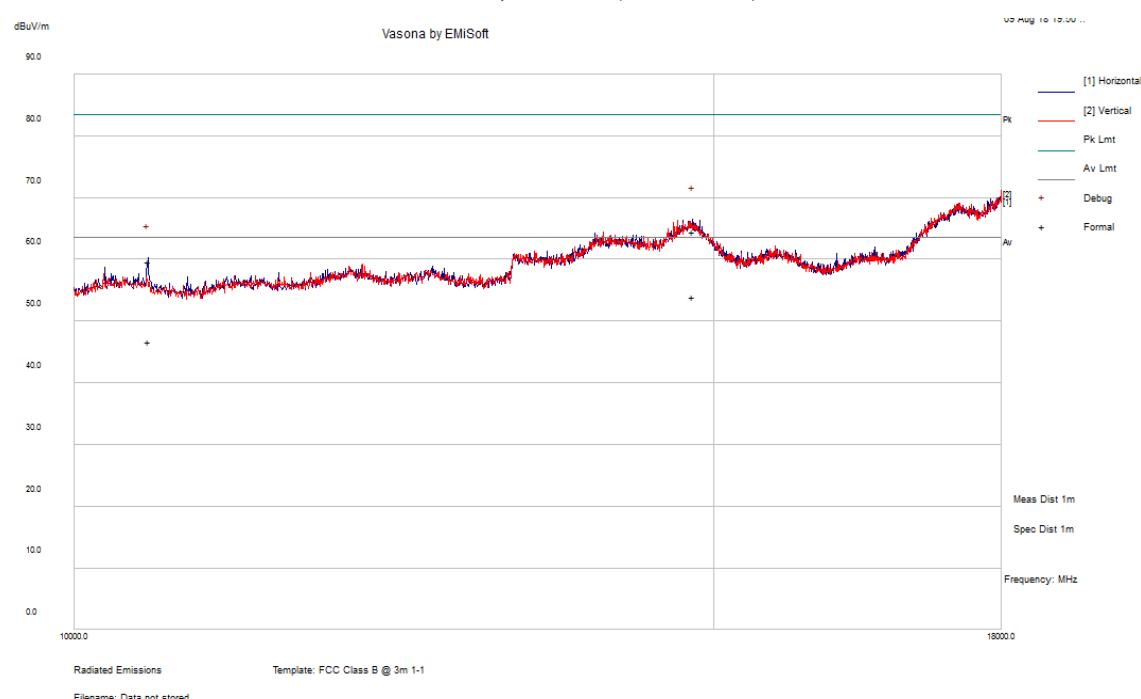
Frequency (MHz)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Comment
39.9055	33.64	105	V	340	40	-6.36	QP
168.7488	37.01	100	V	226	43.5	-6.49	QP
96.42975	34.03	285	H	71	43.5	-9.47	QP
156.1848	30.7	120	V	212	43.5	-12.8	QP
120.4645	32.86	291	H	89	43.5	-10.64	QP
101.0558	30.71	206	H	260	43.5	-12.79	QP

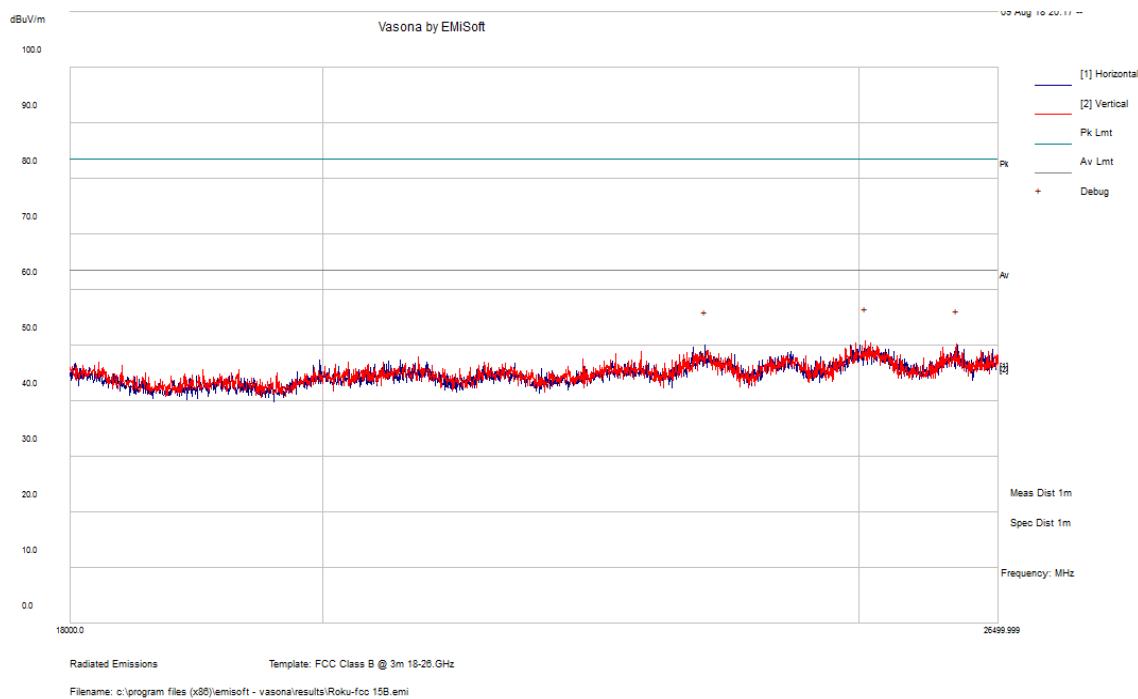
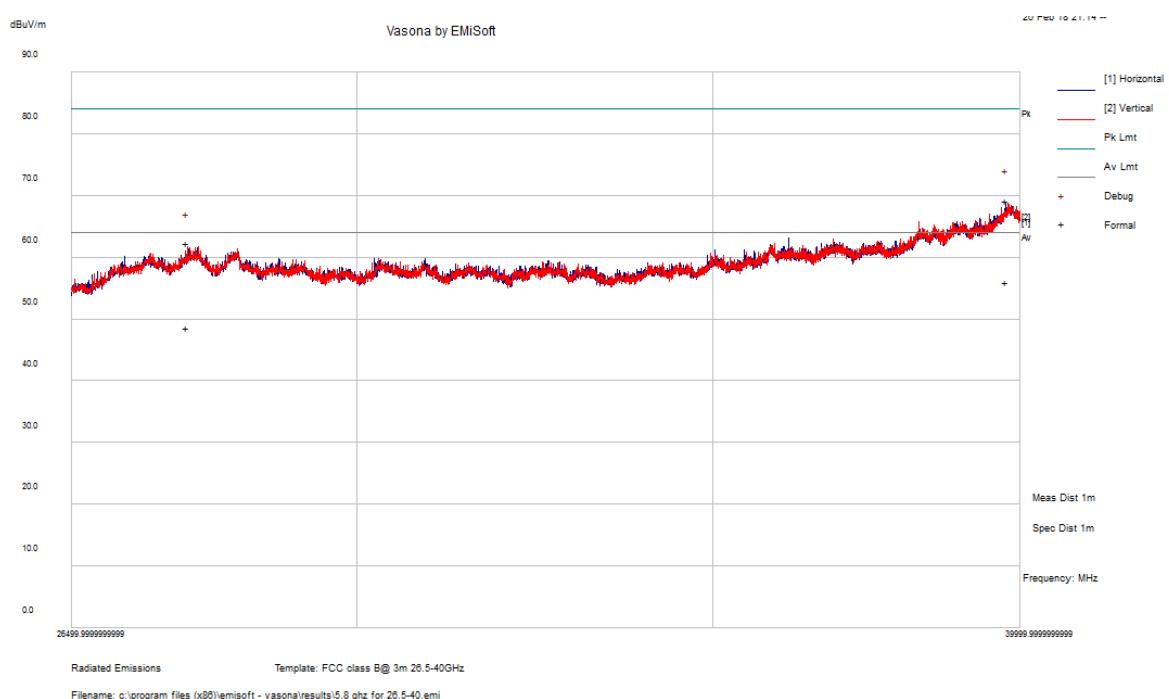
2) 1-40 GHz

5150 - 5250 MHz

802.11a mode

Frequency (MHz)	S.A. Reading (dB μ V)	Turntable Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC		Comments (PK/Ave.)
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
Low Channel 5180 MHz											
5180	48.13	143	124	H	33.59	8.53	0.00	90.25	-	-	PK
5180	40.03	143	124	H	33.59	8.53	0.00	82.15	-	-	AV
5180	44.01	311	100	V	33.59	8.53	0.00	86.13	-	-	PK
5180	36.60	311	100	V	33.59	8.53	0.00	78.72	-	-	AV
5150	45.62	0	100	H	33.53	9.71	33.15	55.70	74.00	-18.3	PK
5150	34.86	0	100	H	33.53	9.71	33.15	44.94	54.00	-9.06	AV
5150	45.54	0	100	V	33.53	9.71	33.15	55.62	74.00	-18.4	PK
5150	34.77	0	100	V	33.53	9.71	33.15	44.85	54.00	-9.15	AV
10360	44.27	0	100	H	38.15	14.55	32.88	64.09	74.00	-9.91	PK
10360	32.75	0	100	H	38.15	14.55	32.88	52.57	54.00	-1.43	AV
Middle Channel 5200 MHz											
5200	48.04	142	128	H	33.59	8.53	0.00	90.16	-	-	PK
5200	39.97	142	128	H	33.59	8.53	0.00	82.09	-	-	AV
5200	44.09	313	100	V	33.59	8.53	0.00	86.21	-	-	PK
5200	36.78	313	100	V	33.59	8.53	0.00	78.90	-	-	AV
10400	44.32	0	100	H	38.20	14.55	32.88	64.19	74.00	-9.81	PK
10400	32.61	0	100	H	38.20	14.55	32.88	52.48	54.00	-1.52	AV
High Channel 5240 MHz											
5240	47.50	142	167	H	33.62	8.53		89.65	-	-	PK
5240	39.76	142	167	H	33.62	8.53	0.00	81.91	-	-	AV
5240	43.95	300	100	V	33.62	8.53	0.00	86.10	-	-	PK
5240	36.50	300	100	V	33.62	8.53	0.00	78.65	-	-	AV
5350	45.75	0	100	H	33.76	9.81	33.22	56.09	74.00	-17.9	PK
5350	35.07	0	100	H	33.76	9.81	33.22	45.41	54.00	-8.59	AV
5350	45.85	0	100	V	33.76	9.81	33.22	56.19	74.00	-17.8	PK
5350	34.96	0	100	V	33.76	9.81	33.22	45.30	54.00	-8.70	AV
10480	44.54	0	100	H	38.26	14.59	32.88	64.51	74.00	-9.49	PK
10480	32.42	0	100	H	38.26	14.59	32.88	52.39	54.00	-1.61	AV



5725 - 5850 MHz



802.11a mode

Frequency (MHz)	S.A. Reading (dB μ V)	Turntable Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC		Comments (PK/Ave.)
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
Low Channel 5745 MHz											
5745	45.75	207	293	H	34.07	9.00	0.00	88.82	-	-	PK
5745	37.26	207	293	H	34.07	9.00	0.00	80.33	-	-	AV
5745	45.51	214	100	V	34.07	9.00	0.00	88.58	-	-	PK
5745	37.14	214	100	V	34.07	9.00	0.00	80.21	-	-	AV
5725	49.80	207	293	H	34.02	10.22	33.22	60.83	68.26	-7.43	PK
5725	49.49	214	100	V	34.02	10.22	33.22	60.52	68.26	-7.74	PK
11490	42.85	0	100	H	38.45	15.68	32.75	64.23	74.00	-9.78	PK
11490	30.88	0	100	H	38.45	15.68	32.75	52.26	54.00	-1.75	AV
Middle Channel 5785 MHz											
5785	46.19	157	297	H	34.17	9.10	0.00	89.46	-	-	PK
5785	37.54	157	297	H	34.17	9.10	0.00	80.81	-	-	AV
5785	45.75	212	100	V	34.17	9.10	0.00	89.02	-	-	PK
5785	37.36	212	100	V	34.17	9.10	0.00	80.63	-	-	AV
11570	43.40	0	100	H	38.46	15.69	32.75	64.80	74.00	-9.20	PK
11570	30.07	0	100	H	38.46	15.69	32.75	51.47	54.00	-2.53	AV
High Channel 5825 MHz											
5825	45.62	148	126	H	34.24	9.10	0.00	88.96	-	-	PK
5825	37.19	148	126	H	34.24	9.10	0.00	80.53	-	-	AV
5825	45.44	212	100	V	34.24	9.10	0.00	88.78	-	-	PK
5825	37.05	212	100	V	34.24	9.10	0.00	80.39	-	-	AV
5850	43.83	148	126	H	34.24	10.36	33.22	55.21	68.26	-13.1	PK
5850	43.75	212	100	V	34.24	10.36	33.22	55.13	68.26	-13.1	PK
11650	42.69	0	100	H	38.60	15.69	32.75	64.23	74.00	-9.77	PK
11650	30.32	0	100	H	38.60	15.69	32.75	51.86	54.00	-2.14	AV

Note 1: Any emissions above 12 GHz are emissions from the noise floor.

Note 2: The worst-case modulations were used to show compliance.

1-10 GHz**5.2 GHz Wi-Fi, a mode (5240 MHz)****10-18 GHz****5.2 GHz Wi-Fi, a mode (5240 MHz)**

18-26.5 GHz**5.2 GHz Wi-Fi, a mode (5240 MHz)****26.5-40 GHz****5.2 GHz Wi-Fi, a mode (5240 MHz)**

7 FCC §15.407(e) - 6 dB, 26 dB, and 99% Occupied Bandwidth

7.1 Applicable Standards

As per FCC §15.407(e): for equipment operating in the band 5725 – 5850 MHz, the minimum 6 dB bandwidth of U-NII devices shall be 500 kHz.

7.2 Measurement Procedure

The measurements are based on FCC KDB 789033 D02 General U-NII Test Procedures New Rules v02r01: C. Bandwidth Measurement.

7.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A

Note¹: cable included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

7.4 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Vincent Licata on 2018-07-27 in RF site.

7.5 Test Results

Please refer to the following table

5150 - 5250 MHz

Channel	Frequency (MHz)	99% OBW (MHz)	26 dB OBW (MHz)
802.11a mode			
36	5180	17.42	27.80
40	5200	17.64	27.91
48	5240	18.36	29.81

5725 - 5850 MHz

Channel	Frequency (MHz)	99% OBW (MHz)	6 dB OBW (MHz)	6 dB OBW Limit (kHz)
802.11a mode				
149	5745	17.96	16.34	≥500
157	5785	17.50	16.35	≥500
165	5825	17.30	16.39	≥500

Please refer to Annex E for plots.

8 FCC §407(a) - Output Power

8.1 Applicable Standards

According to FCC §15.407(a):

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

8.2 Measurement Procedure

The measurements are based on FCC KDB 789033 D02 General U-NII Test Procedures New Rules v02r01: E. Maximum Conducted Output Power.

8.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
ETS- Lindgren	Power Sensor	7002-006	160097	2016-12-05	2 years
-	RF cable	-	-	Each time ¹	N/A

Note¹: cable included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

8.4 Test Environmental Conditions

Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

The testing was performed by Vincent Licata on 2018-07-27 in RF site.

8.5 Test Results

5150 - 5250 MHz

Frequency (MHz)	Mode	Total Conducted Average Power (dBm)	Limit (dBm)
5180	802.11a	5.08	24.00
5200	802.11a	5.84	24.00
5240	802.11a	6.20	24.00

5745 - 5825 MHz

Frequency (MHz)	Mode	Total Conducted Average Power (dBm)	Limit (dBm)
5745	802.11a	5.80	30.00
5785	802.11a	5.97	30.00
5825	802.11a	5.45	30.00

Note: Duty Cycle correction factor already accounted for.

9 FCC §15.407(a) - Power Spectral Density

9.1 Applicable Standards

According to FCC §15.407(a):

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

9.2 Measurement Procedure

The measurements are based on FCC KDB 789033 D02 General U-NII Test Procedures New Rules v02r01: F. Maximum Power Spectral Density (PSD).

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A

Note¹: cable included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

9.4 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Vincent Licata on 2018-07-27 in RF site.

9.5 Test Results

5150 - 5250 MHz

Frequency (MHz)	Mode	Conducted Average Power (dBm/MHz)	DC Correction (dB)	Total (dBm/MHz)	Limit (dBm/MHz)
5180	802.11a	-11.655	5.879	-5.776	10.00
5200	802.11a	-10.630	5.879	-4.751	10.00
5240	802.11a	-9.502	5.879	-3.623	10.00

5745 - 5825 MHz

Frequency (MHz)	Mode	Total Conducted Power (dBm / 100 kHz)	Correction Factor	DC Correction (dB)	Total (dBm/ 500 kHz)	Limit (dBm/500 kHz)
5745	802.11a	-19.264	6.9897	5.563	-6.7113	30.00
5785	802.11a	-19.318	6.9897	5.563	-6.7653	30.00
5825	802.11a	-20.313	6.9897	5.563	-7.7603	30.00

Note: For the 5725-5850 MHz band, the Corrected PSD (dBm/500 kHz) is equal to:

Correct PSD (dBm/500 kHz) = PSD (dBm/100 kHz) + Duty Cycle Correction (dB) + 10*log(500 kHz/100 kHz)

Note: Duty Cycle correction factor already accounted for.

Please refer to Annex G for plots.

10 FCC §15.407(b) - Out of Band Emissions

10.1 Applicable Standards

According to FCC §15.407(b):

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

The provisions of §15.205 apply to intentional radiators operating under this section.

10.2 Measurement Procedure

Add a correction factor (antenna gain+ Attenuator loss+cable loss) to the offset of the spectrum analyzer.
Integration Method

1. For peak emissions measurements, follow the procedures described in section H)5), “Procedures for Peak Unwanted Emissions Measurements above 1000 MHz”, except for the following changes:
 - Set RBW = 100 kHz
 - Set VBW = 3RBW
 - Perform a band-power integration across the 1 MHz bandwidth in which the band-edge emission level is to be measured. CAUTION: You must ensure that the spectrum analyzer or EMI receiver is set for peak-detection and max-hold for this measurement.
2. For average emissions measurements, follow the procedures described in section H)6), “Procedures for Average Unwanted Emissions Measurements above 1000 MHz”, except for the following changes:
 - Set RBW = 100 kHz
 - Set VBW = 3RBW
 - Perform a band-power integration across the 1 MHz bandwidth in which the band-edge emission level is to be measured.

10.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A

Note¹: cable included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

10.4 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Vincent Licata on 2018-07-27 in RF site.

10.5 Test Results

Compliant

Please refer to Annex H and F for plots.

11 Appendix

Please see attachments:

Annex E – Occupied Bandwidth
Annex F – Spurious Emissions at Antenna Port
Annex G – Power Spectral Density
Annex H – Band Edge

12 Annex A (Informative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the Electrical field. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 30th day of August 2016.

President and CEO
For the Accreditation Council
Certificate Number 3297.02
Valid to September 30, 2018
Revised November 14, 2016

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

----- END OF REPORT -----