

Test Report 22-1-0131901T002a-C01

Number of pages: 31 Date of Report: 2023-May-15

Testing company: cetecom advanced GmbH Applicant: BBC Bircher AG

Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150

Product: Wireless Transmission System

Model: XRF-T.2

FCC ID: TBZ-XRFT29 IC: 5904A-XRFT29

Testing has been carried out in accordance with:

FCC Regulations

Title 47 CFR, Chapter I, Subchapter A, Part 15

Subpart C Intentional Radiators

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,

and 5725-5850 MHz

ISED-Regulations

Radio Standards Specification

RSS-Gen, Issue 5

General Requirements for Compliance of Radio Apparatus

RSS-247, Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area

Network (LE-LAN) Device

Tested Technology: SRD

Test Results:
☐ The EUT complies with the requirements in respect of all parameters subject to the test.

The test results relate only to devices specified in this document

The current version of Test Report 22-1-0131901T002a-C01 replaces the test report 22-1-

0131901T002a dated 2023-Feb-10. The replaced test report is herewith invalid.

Signatures:

Dipl.-Ing. Ninovic Perez

Test Lab Manager

Authorization of test report

Timo Franke Test Manager

Responsible of test report

Table of Contents

Ta	ble of	Annex	3
1	Ge	neral information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	6
2	Ad	ministrative Data	7
	2.1	Identification of the Testing Laboratory	7
	2.2	General limits for environmental conditions	7
	2.3	Test Laboratories sub-contracted	7
	2.4	Organizational Items	7
	2.5	Applicant's details	7
	2.6	Manufacturer's details	7
	2.7	Equipment under Test (EUT)	8
	2.8	Untested Variant (VAR)	8
	2.9	Auxiliary Equipment (AE)	8
	2.10	Connected cables (CAB)	8
	2.11	Software (SW)	8
	2.12	EUT set-ups	8
	2.13	EUT operation modes	8
3	Eq	uipment under test (EUT)	9
	3.1	General Data of Main EUT as Declared by Applicant	9
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	9
	3.3	Modifications on Test sample	9
4	Me	easurements	10
	4.1	Duty-Cycle	10
	4.2	Peak output power (Sweep)	11
	4.3	Power spectral density	12
	4.4	Minimum Emission Bandwidth 6 dB	13
	4.5	Occupied Channel Bandwidth 99%	14
	4.6	Emissions in non-restricted frequency bands	15
	4.7	Radiated field strength emissions below 30 MHz	17
	4.8	Radiated field strength emissions 30 MHz – 1 GHz	21
	4.9	Radiated field strength emissions above 1 GHz	23
	4.10	Radiated Band-Edge emissions	25
	4.11	Equipment lists	27
5	Re	sults from external laboratory	29

Test Report 22-1-0131901T002a-C01

6	Opinions and interpretations	29
7	List of abbreviations	29
8	Measurement Uncertainty valid for conducted/radiated measurements	30
9	Versions of test reports (change history)	31

Table of Annex					
Annex No.	o. Contents Reference Description		Total Pages		
Annex 1	Test result diagrams	TR22-1-0131901T002a-C01_A1	19		
Annex 2	Internal photographs of EUT	Provided by applicant			
Annex 3	External photographs of EUT	TR22-1-0131901T002a-C01_A3	5		
Annex 4	Test set-up photographs	TR22-1-0131901T002a-C01_A4	6		
The listed attachments are separate documents.					

TR22-1-0131901T002a-C01 3/31

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. cetecom advanced does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced.

The testing service provided by cetecom advanced has been rendered under the current "General Terms and Conditions for cetecom advanced".

cetecom advanced will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced test report include or imply any product or service warranties from cetecom advanced, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced.

All rights and remedies regarding vendor's products and services for which cetecom advanced has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at cetecom advanced.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

TR22-1-0131901T002a-C01 4/31

1.3 Summary of Test Results

The EUT integrates a BLE transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference Clause FCC ⊠	Reference Clause ISED ⊠	Page	Remark	Result
Duty-Cycle	§15.35(c)	RSS-Gen Issue 5, §8.2	10		N/A
Minimum Emission Bandwidth 6 dB	§15.247 5.2(a)	RSS-247, §5.2(a)	13		PASSED
		RSS-Gen Issue 5,: §6.7			
Occupied Channel Bandwidth 99%	2.1049(h)	RSS-Gen Issue 5, §6.7	14		PASSED
Peak output power (Sweep)	§15.247(b)(3)	RSS-247, §5.4(d)	11		PASSED
Transmitter Peak output power radiated	§15.247(b)(4)(c)(i)	RSS-247, §5.4(d)			N/A
Emissions in non-restricted frequency bands	§15.247(d)	RSS-247, §5.5	16		PASSED
Radiated Band-Edge emissions	§15.205(b)	RSS-Gen: Issue 5	26		PASSED
	§15.247(d)	§8.9, §8.10			
		RSS-247, §5.5			
Power spectral density	§15.247(e)	RSS-247, §5.2(b)	12		PASSED
Radiated field strength emissions below 30	§15.205(a)	RSS-Gen: Issue 5	20		PASSED
MHz	§15.209(a)	§8.9 Table 6			
Radiated field strength emissions 30 MHz – 1	§15.209	RSS-Gen: Issue 5	22		PASSED
GHz	§15.247(d)	§8.9 Table 5			
		RSS-247, §5.5			
Radiated field strength emissions above 1 GHz	§15.209(a)	RSS-Gen: Issue 5:	24		PASSED
	§15.247(d)	§8.9 Table 5+7			
		RSS-247, §5.5			
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5:			N/A
		§8.8 Table 4			

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

N/A Test case does not apply to the test object.

NP The test was not performed by the cetecom advanced laboratory.

Decision Rule: cetecom advanced GmbH follows ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule).

TR22-1-0131901T002a-C01 5/31

1.4 Summary of Test Methods

Test case	Test method
Duty-Cycle	ANSI C63.10:2013, §11.6(b)
Minimum Emission Bandwidth 6 dB	ANSI C63.10:2013, §6.9.2, §11.8
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9.3
Peak output power (Sweep)	ANSI C63.10:2013, §11.9
Power spectral density	ANSI C63.10:2013, §11.10
Emissions in non-restricted frequency bands	ANSI C63.10:2013, §11.11, §6.10.5
Radiated Band-Edge emissions	ANSI C63.10-2013; "Marker-Delta method", §6.10.5, §11.13
Transmitter Peak output power radiated	Result calculated with measured conducted RF-power value and
	stated/measured antenna gain for band of interest
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, §6.5
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, §6.6
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 §6.2

And reference also to Test methods in KDB558074

TR22-1-0131901T002a-C01 6/31

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name: cetecom advanced GmbH

Address: Im Teelbruch 116 45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Ninovic Perez

Accreditation scope: DAkkS Webpage: FCC ISED

IC Lab company No. / CAB ID: 3462D / DE0005

Test location: Im Teelbruch 116; 45219 Essen

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:

2.4 Organizational Items

Responsible test manager: Dipl.-Ing. Christian Lorenz

Receipt of EUT: 2022-Dec-16

Date(s) of test: 2023-Jan-02 to 2023-Jan-19

Version of template: 22.0901

2.5 Applicant's details

Contact Person:

Applicant's name: BBC Bircher AG

Address: Wiesengasse 20 8222 Beringen

Switzerland

Milos Kostic

Contact Person's Email: milos.kostic@bircher.com

2.6 Manufacturer's details

Manufacturer's name:	BBC Bircher Technologies(Suzhou) Co., Ltd
Address:	Room 316, Building B, Yuda Shengbo Technology Park, No. 10 Fangjing
	Road, Suzhou Industrial Park
	215021 Suzhou Jiangsu Province

TR22-1-0131901T002a-C01 7/31

2.7 Equipment under Test (EUT)

EUT	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							
EUT 1	22-1-01319S16_C01	Wireless Transmission System	XRF-T.2	XRF-T.2.9	n/a	401179B	1.6.2400.2555
EUT 2	22-1-01319S15_C01	Wireless Transmission System	XRF-T.2	XRF-T.2.9	n/a	401179B	1.6.2400.2555

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

١	VAR	Sample No.	Product	Model	Туре	SN	HW	SW
ſ	No.*)							

^{*)} The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.10 Connected cables (CAB)

САВ	Sample No.	Cable Type	Connectors / Details	Length
No.*)				
CAB 1	22-1-01319S12_C01	Power Cable	DC powersupply	20 cm
CAB 2	22-1-01319S33_C01	Cable	U.FL to SMA	15 cm

^{*)} CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				

^{*)} SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
Set. 1	EUT 1 + CAB 1	Used for Radiated measurements
Set. 2	EUT 2 + CAB 1 + CAB 2	Used for Conducted measurements.

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
Op. 1	TX_mod	EUT continously transmitting a modulated carrier at 921.5 MHz

^{*)} EUT operating mode no. is used to simplify the test report.

TR22-1-0131901T002a-C01 8/31

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	\square for normal use \boxtimes Special version for test execution		
Power supply	☐ AC Mains -		
	□ DC Mains	3 V DC via banana Connector	
	□ Battery	-	
Operational conditions	T _{nom} = +21 °C	T _{min} = -20 °C	T _{max} = +60 °C
EUT sample type	Production		
Weight	0.060 kg		
Size [LxWxH]	12.0 cm x 5.0 cm x 2.5 cm		
Interfaces/Ports			
For further details refer Applicants Declaration & following technical documents			
For further details regarding radio parameters, please refer to Bluetooth Core Specification			

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	902 MHz – 928 MHz			
Number of Channels	1 at 921.5 MHz			
(USA/Canada -bands)	1 at 921.5 IVID2			
Nominal Channel Bandwidth	~600 kHz (measured)			
Type of Modulation Data Rate	☐ GFSK 1 Mbit / s		☐ GFSK 2 Mbit / s	
Type of Modulation Data Rate	☐ GFSK 500 kbit / s		⊠ GFSK 100 kbit /	S
	☐ a/n/ac mode			
	□ b/g/n mode			
Other wireless options	☐ Bluetooth EDR (not tested within this report)			
	☐ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)			
	⊠ None			
Max. Conducted Output Power	8.18 dBm			
EIRP Power	8.18dBm + 0.01dBi = 8.19 d	lBm		
Antenna Type	Wire antenna			
Antenna Gain	0.01dBi			
FCC label attached	No			
Test firmware / software and storage EUT				
location	101			
For further details refer Applicants Declara	ation & following technical	documents		
Description of Reference Document (supp	lied by applicant)	Version		Total Pages
408622_B.pdf (Wire antenna details)	_	В		1
ExpertSystem_XRF_DE.pdf		n/a		4

3.3 Modifications on Test sample

Additions/deviations or exclusions

TR22-1-0131901T002a-C01 9/31

4 Measurements

4.1 Duty-Cycle

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

The necessary duty-cycle correction factor is determined on nominal conditions on middle channel only. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions. The Duty-Cycle was constant, means without variations.

Formula to calculate Duty-Cycle:

Duty cycle calculations:	Duty such factors DC	Regarding power: $10*log(^1\!/_{\chi})$ dB
$x = \frac{TX_{ON}}{(TX_{ON} + TX_{OFF})}$	Duty cycle factor: DC=	Regarding field strength: $20*log(1/\chi)$ dB

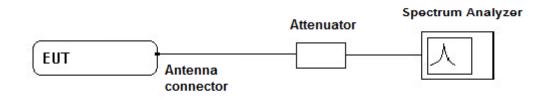
☐ The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar

☑ No correction necessary: Duty-Cycle > 98%

4.1.1 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

TR22-1-0131901T002a-C01 10/31



4.2 Peak output power (Sweep)

4.2.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to power meter (3) or spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Test method	Maximum peak conducted output power(RBW = DTS-bandwidth of the
	signal)
Remarks	

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate

4.2.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

4.2.3 Limit

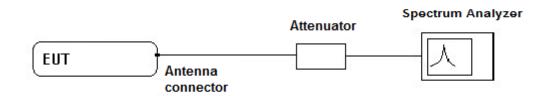
Frequency Range [MHz]	Limit [W]	Limit [dBm]	Detector	RBW / VBW [MHz]
902 – 928	1	30	MaxPeak	3 / 10

4.2.4 Result

Diagram	Mode	Frequency [MHz]	Max Peak Power [dBm]	Result
D003	Op. 1 / Set. 2	921.7	8.18	PASSED

Remark: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1

TR22-1-0131901T002a-C01 11/31



4.3 Power spectral density

4.3.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Test method	PKPSD-Method
Remarks	

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

4.3.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.3.3 Limit

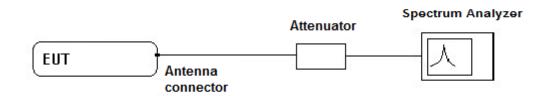
Limit [dBm] @ 3 kHz	Detector [MaxHold]	RBW / VBW [kHz]
≤ 8	Peak	3 / 10

4.3.4 Result

Diagram	Mode	Frequency [MHz]	PSD [dBm]	Result
D004	Op.1 / Set. 2	921.66	4.27	PASSED

Remark: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1

TR22-1-0131901T002a-C01 12 / 31



4.4 Minimum Emission Bandwidth 6 dB

4.4.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

4.4.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.4.3 Limit

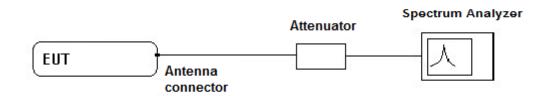
Limit [kHz]	Detector [MaxHold]	RBW / VBW [kHz]	
≥ 500	MaxPeak	100 / 300	

4.4.4 Result

Diagram	Mode	Frequency [MHz]	6 dB bandwidth [kHz]	Result
D002	Op. 1 / Set. 2	921.32	544.1	PASSED

Remark: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1 $\,$

TR22-1-0131901T002a-C01 13 / 31



4.5 Occupied Channel Bandwidth 99%

4.5.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

4.5.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.5.3 Limit

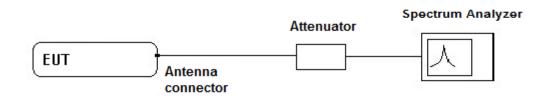
When the occupied bandwidth limit is not stated in the applicable reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

4.5.4 Result

Diagram	Mode	Frequency [MHz]	99% Occupied bandwidth [kHz]
D001	Op. 1 / Set. 2	921.52	612.38

Remark: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1

TR22-1-0131901T002a-C01 14/31



4.6 Emissions in non-restricted frequency bands

4.6.1 Description of the general conducted test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

The measurements were performed with the RBW set to 100 kHz & maximum carrier level was indicated with MAX-Hold positive peak detector using markers. Then a frequency line was set 20 or 30 dB below this measured maximum carrier level.

Then using RBW 100 kHz & spectrum analyzer span from 150 kHz to 10 GHz in three steps spurious emissions were measured with MAX-Hold positive peak detector.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

4.6.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

TR22-1-0131901T002a-C01 15/31

4.6.3 Limit

Frequency Range [MHz]	Limit [dBc]		
0.15 – 10000	-20 / -30		

4.6.4 **Result**

Reference level

Diagram	Mode	Max Peak [dBm]	
D005_1	Op. 1 / Set. 2	8.16	

Maximum Level Peak [dBc]

Diagram	Mode	Frequency range [MHz]	Maximum level [dBm]	Result
D005_2	Op. 1 / Set. 2	0.150 - 30	-62.79 @ 523.00 kHz	PASSED
D005_3	Op. 1 / Set. 2 30 – 1000		-61.08 @ 973.33 MHz	PASSED
D005_4	Op. 1 / Set. 2	1000 – 5000	-60.07 @ 3.210 GHz	PASSED
D005_5	Op. 1 / Set. 2	5000 – 10000	-57.06 @ 7.498 GHz	PASSED

Remark1: every RF-Port tested separatelly in case on MIMO device

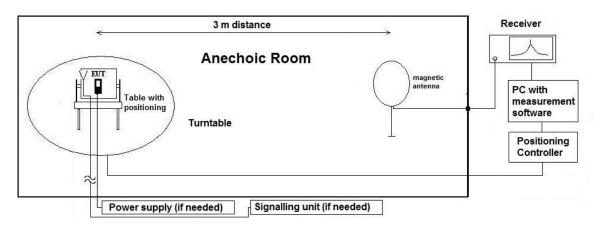
Remark2: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1

Band-Edge

Diagram	Mode	Lower Band-Edge Pk [dBm]	Upper Band-Edge Pk [dBm]	Result
D005_6	Op. 1 / Set. 2	-64.61	-63.60	PASSED

Remark: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1

TR22-1-0131901T002a-C01 16/31


4.7 Radiated field strength emissions below 30 MHz

4.7.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

TR22-1-0131901T002a-C01 17 / 31

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \hspace{1cm} AF = Antenna \ factor$

C_L = Cable loss

 $M = L_T - E_C \qquad \qquad D_F = Distance correction factor (if used)$

 E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.7.2 Sample calculation

dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.7.3 Measurement Location

Test site	120901 - SAC - Radiated Emission <1GHz
-----------	--

TR22-1-0131901T002a-C01 18 / 31

4.7.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
nange	[11.12/11.12]	[]	[m]	[m]	(dmeas <	bigger dnear-	accord.
			[iii]	[,,,]	Dnear-field)	field)	Formula
	_				-		
	9	33333.33	5305.17		fullfilled	not fullfilled	-80.00
	10	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33		fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55		fullfilled	not fullfilled	-80.00
	40	7500.00	1193.66		fullfilled	not fullfilled	-80.00
	50	6000.00	954.93		fullfilled	not fullfilled	-80.00
	60	5000.00	795.78		fullfilled	not fullfilled	-80.00
	70	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
kHz	80	3750.00	596.83		fullfilled	not fullfilled	-80.00
	90	3333.33	530.52	-	fullfilled	not fullfilled	-80.00
KHZ	100	3000.00	477.47		fullfilled	not fullfilled	-80.00
	125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200	1500.00	238.73		fullfilled	fullfilled	-78.02
	300	1000.00	159.16		fullfilled	fullfilled	-74.49
	400	750.00	119.37		fullfilled	fullfilled	-72.00
	490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49		fullfilled	not fullfilled	-40.00
	600	500.00	79.58		fullfilled	not fullfilled	-40.00
	700	428.57	68.21	-	fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87		fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled	fullfilled	-30.06
	6.00	50.00	7.96		fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31	1	fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.04
	10.60	28.30	4.50		fullfilled	fullfilled	-23.53
MHz	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
IVITZ	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52	1	fullfilled	fullfilled	-21.39
	15.00	20.00	3.18	1	fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65	1	not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39	1	not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27	1	not fullfilled	fullfilled	-20.00
-	23.00	13.04	2.08	1	not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91	1	not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77	1	not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65	1	not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59	1	not fullfilled	fullfilled	-20.00

TR22-1-0131901T002a-C01 19 / 31

4.7.5 Limit

	Radiated emissions limits, (3 meters)								
Frequency Range [MHz]	Limit [μV/m]	Limit [dBμV/m] *	Distance [m]	Detector	RBW [kHz]				
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2				
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2				
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2				
0.15 - 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9				
0.49 – 1.705	24000 / f [kHz]	87.6 – 20Log(f) (kHz)	30	Quasi peak	9				
1.705 - 30	30	29.5	30	Quasi peak	9				

^{*}Remark: In Canada same limits apply, just unit reference is different

4.7.6 **Result**

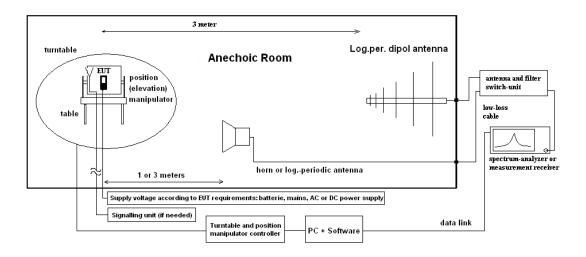
Diagram	Mode	Maximum Level [dBμV/m]	Result
		Frequency Range 0.009 – 30 MHz	
2.01a	Op. 1 / Set. 1 / standing ²⁾	24.642 @ 24.64 MHz ¹⁾	PASSED

Remark: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1

Remark1: noise level

Remark2: only worst case EUT position tested. See chapter 4.10 for more information

TR22-1-0131901T002a-C01 20/31



4.8 Radiated field strength emissions 30 MHz - 1 GHz

4.8.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

TR22-1-0131901T002a-C01 21/31

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \quad \mbox{(1)} \label{eq:ec}$ $AF = \mbox{Antenna factor}$ $C_L = \mbox{Cable loss}$

 $M = L_T - E_C$ (2) $D_F = Distance correction factor (if used)$

E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.8.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35	58.05	

Remark: This calculation is based on an example value at 800.4 MHz

4.8.3 Measurement Location

Test site 120901 - SAC - Radiated Emission <1G
--

4.8.4 Limit

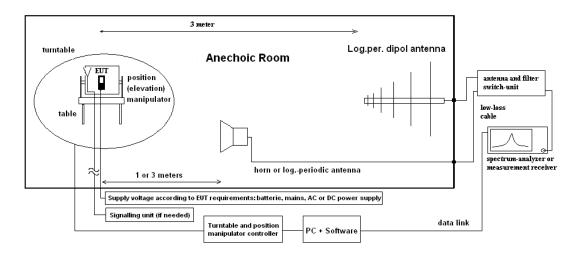
Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]			
30 - 88	100	40.0	Quasi peak	100 / 300			
88 - 216	150	43.5	Quasi peak	100 / 300			
216 - 960	200	46.0	Quasi peak	100 / 300			
960 - 1000	500	54.0	Quasi peak	100 / 300			

4.8.5 **Result**

Diagram	Mode	Maximum Level [dBμV/m]	Result
		Frequency Range 30 – 1000 MHz	
3.01a	Op. 1/ Set. 1 / Standing	35.075 @ 799.7 MHz	PASSED
3.01b	Op. 1 / Set. 1 / lying	35.493 @ 799.8 MHz	PASSED

Remark: for more information and graphical plot see annex A1 $TR22-1-0131901T002a-C01_A1$ Remark1: band-stop filter for 902 MHz - 928 MHz used to prevent an overload at the EMI receiver

TR22-1-0131901T002a-C01 22 / 31



4.9 Radiated field strength emissions above 1 GHz

4.9.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

TR22-1-0131901T002a-C01 23 / 31

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A$ (1) $E_C = E_C$ Electrical field – corrected value

E_R = Receiver reading

 $M = L_T - E_C$ (2) M = Margin

 $L_T = Limit$

 A_F = Antenna factor

C_L = Cable loss

 D_F = Distance correction factor (if used) G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.9.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss + Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
29.37	41.20		24.28	16.92	46.3	CableLoss and PreAmp data in one data correction file

Remark: This calculation is based on an example value at 10 GHz

4.9.3 Measurement Location

Test site 1 – 10 GHz 120904 - FAC1 - Radiated Emissions

4.9.4 Limit

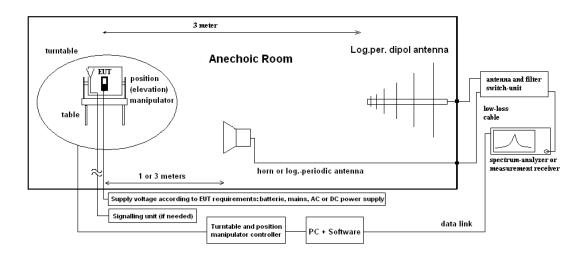
Radiated emissions limits, (3 meters)						
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]		
Above 1000	500	54	Average	1000 / 3000		
Above 1000	5000	74	Peak	1000 / 3000		

4.9.5 Result

Diagram	Mode	Maximum Level [dBμV/m]	Result
		Frequency Range 1 – 10 GHz	
4.01	Op. 1 / Set. 1	53.462 (PK) @ 4.608 GHz ¹⁾	PASSED
		43.926 (AV) @ 4.607 GHz ¹⁾	

Remark: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1

Remark1: emission which is closest to the limit and is not noise


TR22-1-0131901T002a-C01 24/31

4.10 Radiated Band-Edge emissions

4.10.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

For uncritical results where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For critical results a Marker-Delta marker method was used for showing compliance to restricted bands. The method consists of three independent steps:

- 1. Step: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. Step: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. .Step: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

4.10.2 Measurement Location

Test site 120901 - SAC - Radiated Emission <1G

TR22-1-0131901T002a-C01 25 / 31

4.10.3 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Pk Limit [dBμV/m]	Detector	RBW / VBW [kHz]
902 – 928	-20	89.11	Peak	100 / 300

4.10.4 Result

Non-restricted bands near-by

Diagram	Mode	Pk [dBc]	Result
9.01a	Op. 1/ Set. 1 / standing	$108.33 \text{ dB}\mu\text{V/m}^{2)} - ^46 \text{ dB}\mu\text{V/m}^{3)} > 20 \text{ dBc}$	PASSED
9.01b	Op. 1/ Set. 1 / lying	106.96 dBμV/m ²⁾ – ~46 dBμV/m ³⁾ > 20 dBc	PASSED

Remark: for more information and graphical plot see annex A1 TR22-1-0131901T002a-C01_A1

Remark1: radiated max peak level used to determine standing/lying worst case position

Remark2: carrier level Remark3: noise level

TR22-1-0131901T002a-C01 26/31

4.11 Equipment lists

ID.	Description	Manufacturar	Cauble	ChaoliTura	Look Charle	Interval	Nova-Charle
ID	Description 120901 - SAC - Radiated Emission <1GHz	Manufacturer	SerNo	CheckType calchk	Last Check cal: 2015-Jul-21	Interval cal: 10Y	Next Check cal: 2025-Jul-21
	120301 - 2MC - Maniared EMISSIOU < TOHS			саіспк	cal: 2015-Jul-21 chk: 2021-Jul-27	chk: 12M	cal: 2025-Jul-21 chk: 2022-Jul-27
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glottertal	81650455	cal	cal: 2022-May-18	cal: 24M	cal: 2024-May-18
20442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	cal: 2022-Jun-15	cal: 36M	cal: 2025-Jun-15
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
20885	Power Supply EA3632A	Memmingen Agilent Technologies Deutschland GmbH	75305850		cal: -	eal	eal
20005	Power Supply EA3632A	Agrient rechnologies Deutschland Gribh	75305650	cnn	chk: -	cal: - chk: -	cal: - chk: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH /	879824/13	cal	cal: 2022-Jul-04	cal: 24M	cal: 2024-Jul-04
	·	Memmingen	·				
	120904 - FAC1 - Radiated Emissions			chk			
					chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20254	High Pass Filter 5HC 2600/12750-1.5KK	Trilithic	23042	chk			
					chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D- 100M4G-35-10P	Miteq Inc.	379418	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20291	High Pass Filter WHJ 2200-4EE	Wainwright Instruments GmbH	14	chk	CHK: 2022-Juli-50	CIIK. 12IVI	CIIK: 2025-JUII-30
20231	riigii rass riitei Wiii 2200-4EE	wallwright instruments dilibit	14	CIIK	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20338	Pre-Amplifier 100MHz - 26GHz JS4-00102600-	Miteq Inc.	838697	chk			
	38-5P	· ·			chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20439	Ultrabroadband-Antenna HL562	Rohde & Schwarz Messgerätebau GmbH	100248	calchk	cal: 2017-Mar-10	cal: 72M	cal: 2023-Mar-10
						chk: 12M	
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-	Miteq Inc.	1244554	chk			
	02501800-25-10P				chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20489	Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH /	100030	cal	cal: 2022-Jul-20	cal: 12M	cal: 2023-Jul-20
20549	Log. Per. Antenna HL025	Memmingen Rohde & Schwarz Messgerätebau GmbH	1000060	calchk	cal: 2021-Aug-18	cal: 36M	cal: 2024-Aug-18
20343	Log. Per. Antenna neo23	Konde & Schwarz Wessgeratebau Ghibh	1000000	Calclik	Cal. 2021-Aug-18	chk: 12M	Cai. 2024-Aug-18
20558	Fully Anechoic Chamber 1	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cal: -
	,				chk: -	chk: -	chk: -
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	сри			
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	cal	cal: 2021-May-20	cal: 24M	cal: 2023-May-20
20720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20868	High Pass Filter AFH-07000	AtlanTecRF	16071300004	chk	chk: 2021-Jun-11	chk: 12M	chk: 2022-Jun-11
	120910 - Radio Laboratory 1 (TS 8997)			chk	CNK: 2021-Jun-11	CNK: 12IVI	CNK: 2022-JUN-11
	120310 - Radio Eaboratory 1 (13 8337)			CIIK	chk: 2022-Mar-16	chk: 12M	chk: 2023-Mar-16
20559	Vector Signal Generator SMU200A	Rohde & Schwarz Messgerätebau GmbH /	103736	cal	cal: 2021-May-20	cal: 24M	cal: 2023-May-20
		Memmingen			,		,
20691	Open Switch and control Platform OSP120	Rohde & Schwarz Messgerätebau GmbH	101056	cal	cal: 2020-May-13	cal: 36M	cal: 2023-May-13
20805	Open Switch and control Platform OSP	Rohde & Schwarz Messgerätebau GmbH	101264	cal	cal: 2020-May-13	cal: 36M	cal: 2023-May-13
	B157WX 40GHz 8Port Switch						
20866	Signal Analyzer FSV3030	Rohde & Schwarz Messgerätebau GmbH /	101247	cal	cal: 2022-Jun-20	cal: 12M	cal: 2023-Jun-20
20871	NRP-Z81	Memmingen Rohde & Schwarz Messgerätebau GmbH /	104631	cal	cal: 2022-May-16	cal: 12M	cal: 2023-May-16
208/1	NRP-281	Memmingen	104031	Cal	Cal: 2022-IVIAY-16	Cdl: 12IVI	Cal. 2025-Way-16
20872	NRX Power Meter	Rohde & Schwarz Messgerätebau GmbH /	101831	cal	cal: 2022-May-17	cal: 24M	cal: 2024-May-17
		Memmingen			,		
20904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH / Reiskirchen-	58226223240010	cal	cal: 2022-Nov-29	cal: 24M	cal: 2024-Nov-29
		Lindenstruth					
	120911 - Radio Laboratory 2			cnn	cal: -	cal: -	cal: -
			1		chk: -	chk: -	chk: -
20431	Near-Field Probe Set Model 7405	EMCO Elektronik GmbH	9305-2457	сри			
20457	Power Supply EA-3013 S	EA Elektro-Automatik GmbH & Co. KG	9624680	cpu	1 0		,
20468	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	90090455	cal	cal: 2021-Jun-01	cal: 36M	cal: 2024-Jun-01
20632	Thermocouple Data Logger HH806AWE	Omega Engineering Inc. / Stamford	080248	chk		chk: 12M	
20904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH	58226223240010	cal	cal: 2022-Nov-29	cnk: 12M cal: 24M	cal: 2024-Nov-29
	Ciminatic Chamber CimileEvent C/1000/708/5	**CI33 OHIWEILLECHIIK UIIIDIT	J022U22324UU1U	Ldi	cai. 2022-NOV-29	car. Z4IVI	cai. 2024-190V-29

4.11.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration

TR22-1-0131901T002a-C01 27 / 31

Test Report 22-1-0131901T002a-C01

calchk	Calibration plus intermediate Verification
chk	Verification
cpu	Verification before usage

TR22-1-0131901T002a-C01 28 / 31

5	Results from e	kternal laboratory	
No	one	-]
6	Opinions and i	nterpretations	
No	one	-]
7	List of abbrevia	ations	
No	one	-	٦

TR22-1-0131901T002a-C01 29/31

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Issue No.	Measurement type	Reference	Frequency range of measurement Start [MHz] Stop [MHz]	Calculated Uncertainty based on confidence level of 95.54%	Remarks
1	Magnetic field strength	FCC15/18/22/ 24/27/90, ISED	0.009 30	4.86	Magnetic loop antenna, Pre-amp on
2	RF-Output power (eirp) Unwanted emissions (eirp) [dB]	FCC15/18 / ISED	30 100 30 100 100 1000 100 1000 100 1000 100 18000 18000 33000 33000 50000 40000 75000 75000 140000 140000 225000 225000 325000 500000	4.57 4.91 4.02 4.26 4.36 5.23 4.92 4.17 4.69 4.06 4.17 5.49 6.22 7.04 8.84	without Pre-Amp with PreAmp with PreAmp with PreAmp with PreAmp without Pre-Amp without Pre-Amp with PreAmp Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna) Set-up Isand (WR-19), non-waveguide antenna Set-up U-Band (WR-19), non-waveguide antenna External Mixer set-up V-Band (WR-15) External Mixer set-up W-Band (WR-6) External Mixer set-up G-Band (WR-8) External Mixer set-up G-Band (WR-8) External Mixer set-up (WR-3) External Mixer set-up (WR-2.2)
3	Radiated Blocking [dB]	EN303883	1000 18000 18000 33000 33000 50000 50000 75000 75000 110000	2.85 4.66 3.48 3.73 4.26	Typical set-up with microwave generator and antenna, value for 7GHz calculated Typical set-up with microwave generator and antenna WR-22 set-up WR-15 set-up WR-6 set-up
4	Frequency Error / UWB+FMCW [kHz] Frequency Error / NFC	EN303883 FCC 15	40000 77000 6000 7000	276.19 33.92	calculated for 77 GHz (FMCW) carrier calculated for 6.5GHz UWB Ch.5
	[Hz]	FCC 15	11.00 14.00	20.76	calculated for 13.56MHz NFC carrier
5	TS 8997 conducted Parameters	FCC15/18 / ISED	30 6000 30 6000 30 6000 0.009 30 2.4 2.48 5.18 5.825 5.18 5.625 30 6000 30 6000 30 6000	1.11 1.20 1.20 1.20 2.56 1.95 ppm 7.180 ppm 1.099 ppm 0.11561µs 1.85 1.62	Power measurement with Fast-sampling-detector Power measurement with Spectrum-Analyzer Power Spectrum-Density measurement Conducted Spurious emissions: Conducted Spurious emissions: Bandwidth / 2-Marker Method for 2.4GHz ISM Bandwidth / 2-Marker Method for 5GHz WLAN Frequency (Marker method) for 5GHz WLAN B Medium-Utilization factor / Timing Blocking-Level of companion device Blocking-Generator level
6	Conducted emissions	EN303883 FCC 15	0.009 30	3.57	

TR22-1-0131901T002a-C01 30 / 31

9 Versions of test reports (change history)

Version	Applied changes	Date of release	
	Initial release		
C01	FCC/IC-ID correction	2023-May-15	
601	Antenna gain added, EIRP recalculated	2023 May 13	

End Of Test Report

TR22-1-0131901T002a-C01 31/31