

198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological Development District, Guangzhou, China 510663

Telephone: +86 (0) 20 82155555

Fax: +86 (0) 20 82075059

Email: ee.guangzhou@sgs.com

FEDERAL COMMUNICATIONS COMMISSION

Registration number: 282399

Report No.: GZEM140200070401

Page: 1 of 17

FCC ID: TAPMC-C13S501-2

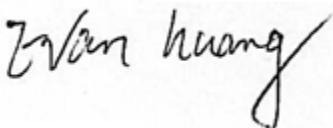
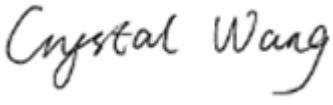
TEST REPORT

Application No.:	GZEM1402000704HS
FCC ID:	TAPMC-C13S501-2
Applicant:	Guangdong MD Consumer Electric Manufacturing Co., Ltd
Product Name:	Induction cooker
Product Description:	Induction cooker
Model No.:	MC-C13S501-2, MC-C13S501-2A, MC-ESH13C-2, MC-ESH13C-2A *
*	Please refer to section 3 of this report for more details.
Standards:	FCC CFR 47 PART 18: 2013
Date of Receipt:	2014-02-26
Date of Test:	2014-03-05 to 2014-03-17
Date of Issue:	2014-03-27
Test Result :	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Richard Li
Manager



The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

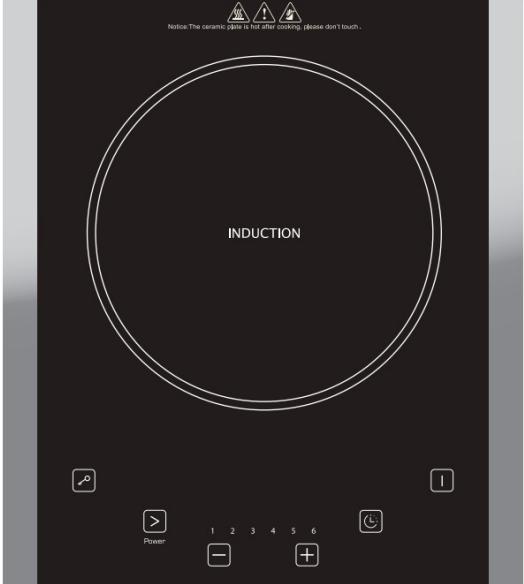
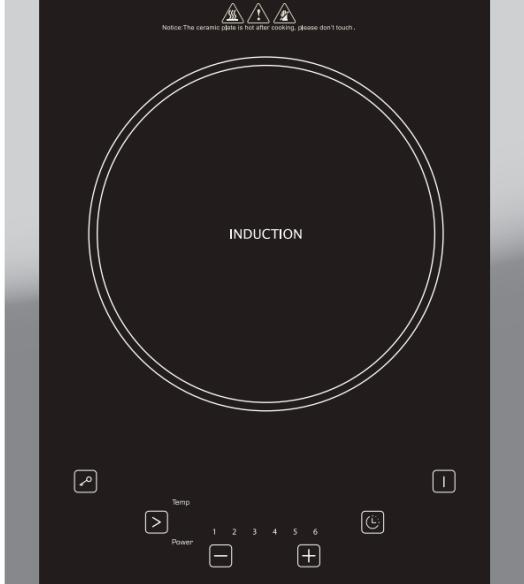
2 Version

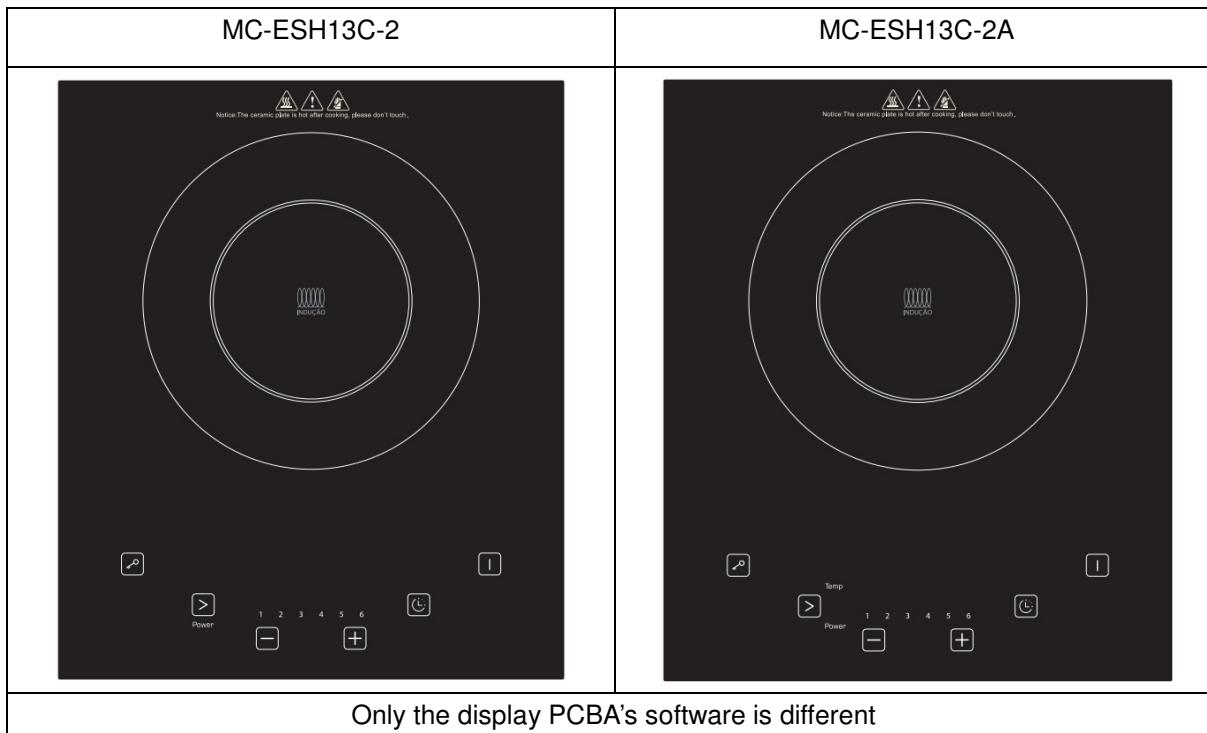
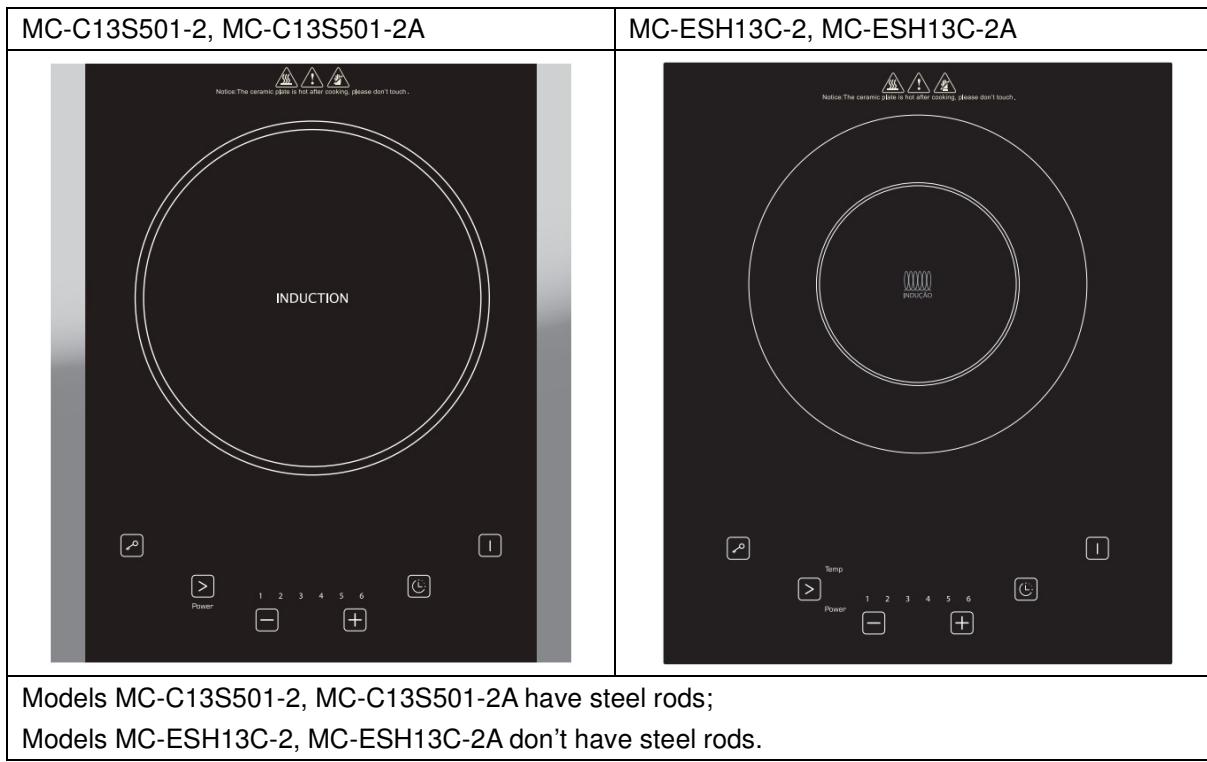
Revision Record				
Version	Chapter	Date	Modifier	Remark
00		2014-03-27		Original

Authorized for issue by:			
Tested By	 (Evan Huang) / Project Engineer		2014-03-05 to 2014-03-17
Prepared By	 (Millie Li) / Clerk		2014-03-25
Checked By	 (Crystal Wang) / Reviewer		2014-03-27

3 Test Summary

Electromagnetic Interference (EMI)				
Test	Test Requirement	Test Method	Class / Severity	Result
Conducted Emission (9 kHz to 30 MHz)	FCC PART 18: 2013	FCC OST/ MP-5:1986	18.307(a)	PASS
Radiated Emission (9 kHz to 30 MHz)	FCC PART 18: 2013	FCC OST/ MP-5:1986	18.305(b)	PASS



Remark :



EUT: In this whole report EUT means Equipment Under Test.

• Model No.: MC-C13S501-2, MC-C13S501-2A, MC-ESH13C-2, MC-ESH13C-2A

According to the declaration of the applicant, the electrical circuit design, layout, components used and internal wiring were identical for all models, with only difference being the below shown:

1. The difference of MC-C13S501-2, MC-C13S501-2A

MC-C13S501-2	MC-C13S501-2A
Only the display PCBA's software is different	

2. The difference of MC-ESH13C-2, MC-ESH13C-2A:

3. The difference of MC-C13S501-2, MC-C13S501-2A, MC-ESH13C-2, MC-ESH13C-2A

Therefore only one model MC-C13S501-2 was tested in this report.

4 Contents

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENTS	5
5 GENERAL INFORMATION	6
5.1 Client Information	6
5.2 General Description of E.U.T.	6
5.1 Details of E.U.T.	6
5.2 Description of Support Units	6
5.3 Deviation from Standards	6
5.4 General Test Climate During Testing	6
5.5 Abnormalities from Standard Conditions	6
5.6 Test Location	6
5.7 Test Facility	7
6 EQUIPMENT USED DURING TEST	8
7 EMISSION TEST RESULTS	10
7.1 Conducted Emissions, 9 kHz to 30 MHz.....	10
7.2 Radiated Emissions, 9 kHz to 30 MHz.....	14

5 General Information

5.1 Client Information

Applicant: Guangdong MD Consumer Electric Manufacturing Co., Ltd
Address of Applicant: 19 Sanle Road, Beijiao, Shunde, Foshan, Guangdong 528311 P.R China

5.2 General Description of E.U.T.

Product Name: Induction cooker
Product Description: Induction cooker
Model No.: MC-C13S501-2

5.1 Details of E.U.T.

Rated Supply (Voltage): AC 120V 60Hz
Power Cable: 1.2m x 2 wires unscreened AC mains cable

5.2 Description of Support Units

The EUT has been tested with a boiler with water as load (the boiler supplied by applicant).

5.3 Deviation from Standards

None.

5.4 General Test Climate During Testing

Temperature: 15-30 °C Humidity: 30~70 %RH Atmospheric Pressure: 860-1060 mbar

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory,
198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District,
Guangzhou, China 510663

Tel: +86 20 82155555 Fax: +86 20 82075059

No tests were sub-contracted.

5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **NVLAP (Lab Code: 200611-0)**

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

- **ACMA**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

- **SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO**

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

- **CNAS (Lab Code: L0167)**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

- **FCC (Registration No.: 282399)**

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

- **Industry Canada (Registration No.: 4620B-1)**

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

- **VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)**

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

- **CBTL (Lab Code: TL129)**

SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01:2006-10 and Rules of procedure IECEE 02:2006-10, and the relevant IECEE CB-Scheme Operational documents.

6 Equipment Used during Test

Conducted Emission						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Due date (YYYY-MM-DD)	Calibration Interval
EMC0306	Shielding Room	Zhong Yu	8 x 3 x 3.8 m ³	N/A	N/A	N/A
EMC0118	Two-line v-netwok	R&S	ENV216	100359	2015-03-03	1Y
EMC0102	LISN	SCHAFFNER CHASE	MN2050D/1	1421	2014-08-31	1Y
EMC2046	Artificial Mains Network (LISN)	AFJ Instruments	LT32C	S.N.320311201 50	2015-03-03	1Y
EMC0506	EMI Test Receiver	Rohde & Schwarz	ESCS30	100085	2015-03-03	1Y
EMC0107	Coaxial Cable	SGS	2m	N/A	2014-07-25	2Y
EMC0106	Voltage Probe	SGS	N/A	N/A	N/A	1Y
EMC0120	8 Line ISN	Fischer Custom Communications	FCC-TLISN-T8- 02	20550	2014-08-31	1Y
EMC0121	4 Line ISN	Fischer Custom Communications	FCC-TLISN-T4- 02	20549	2014-08-31	1Y
EMC0122	2 Line ISN	Fischer Custom Communications	FCC-TLISN-T2- 02	20548	2014-08-31	1Y
EMC2047	CDN	Elektronik- Feinmechanik	L-801:AF2	2793	2014-11-11	3Y
EMC2048	CDN	Elektronik- Feinmechanik	L-801:M2/M3	2738	2014-11-11	3Y
EMC2062	6dB Attenuator	HP	8491A	24487	2015-01-04	1Y
EMC167	Conical metal housing	SGS-EMC	N/A	N/A	2016-02-16	2Y

RE in Chamber						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Due date (YYYY-MM-DD)	Calibration Interval
EMC0525	Compact Semi-Anechoic Chamber	ChangZhou ZhongYu	N/A	N/A	2014-08-30	2Y
EMC0522	EMI Test Receiver	Rohde & Schwarz	ESIB26	100283	2014-05-06	1Y
EMC0056	EMI Test Receiver	Rohde & Schwarz	ESCI	100236	2015-03-03	1Y
EMC0528	RI High frequency Cable	SGS	20 m	N/A	2014-05-09	1Y
EMC2025	Trilog Broadband Antenna 30-3000MHz	SCHWARZBECK MESS-ELEKTRONIK	VULB 9163	9163-450	2016-08-31	3Y
EMC0524	Bi-log Type Antenna	Schaffner -Chase	CBL6112B	2966	2016-08-31	3Y
EMC0519	Bilog Type Antenna	Schaffner -Chase	CBL6143	5070	2014-06-02	2Y
EMC2026	Horn Antenna 1-18GHz	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120D	9120D-841	2016-08-31	3Y
EMC0518	Horn Antenna	Rohde & Schwarz	HF906	100096	2014-07-01	2Y
EMC0521	1-26.5 GHz Pre-Amplifier	Agilent	8449B	3008A01649	2015-03-03	1Y
EMC2065	Amplifier	HP	8447F	N/A	2014-08-31	1Y
EMC2063	1-26GHz Pre Amplifier	Compliance Direction System Inc.	PAP-1G26-48	6279.628	2014-07-29	1Y
EMC0075	310N Amplifier	Sonama	310N	272683	2015-03-03	1Y
EMC0523	Active Loop Antenna	EMCO	6502	42963	2014-04-07	2Y
EMC2041	Broad-Band Horn Antenna (14)15-26.5(40)GHz	SCHWARZBECK MESS-ELEKTRONI	BBHA 9170	9170-375	2014-06-01	3Y
EMC2069	2.4GHz filter	Micro-Tronics	BRM 50702	149	2014-06-05	1Y
EMC0530	10m Semi-Anechoic Chamber	ETS	N/A	N/A	2014-04-27	2Y
EMC2041	Broad-Band Horn Antenna(14)15-26.5(40)GHz	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9170	9170-375	2014-06-11	3Y

General used equipment						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Due date (YYYY-MM-DD)	Calibration Interval
EMC0006	DMM	Fluke	73	70681569	2014-09-13	1Y
EMC0007	DMM	Fluke	73	70671122	2014-09-13	1Y

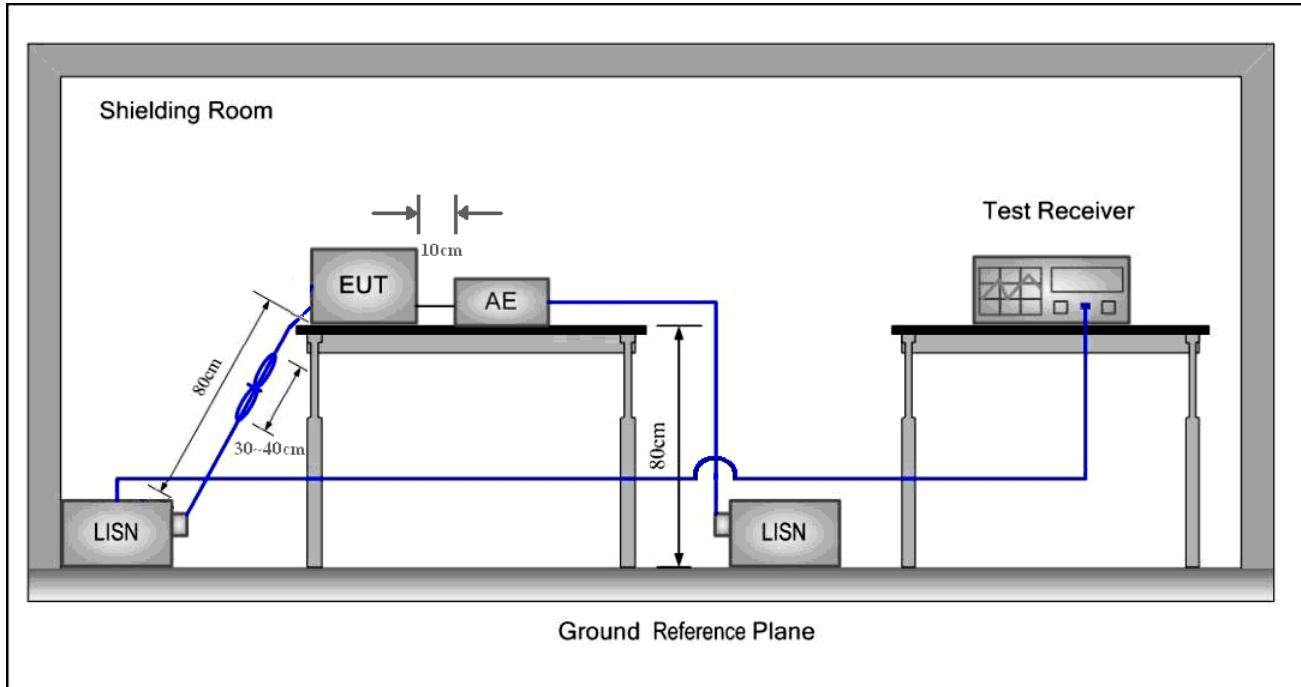
7 Emission Test Results

7.1 Conducted Emissions, 9 kHz to 30 MHz

Test Requirement: FCC Part 18
Test Method: FCC OST/ MP-5
Test Date: 2014-03-05
Power Supply: AC 120V 60Hz
Frequency Range: 9 kHz to 30 MHz
Detector: Peak for pre-scan, Quasi-Peak and Average for the final result.
(200 Hz Resolution Bandwidth for 9 kHz to 150 kHz,
9 kHz Resolution Bandwidth for 150 kHz to 30 MHz)

Limit:

Frequency range MHz	AC mains terminals	
	Quasi-peak	Average
0.009 to 0.05	110	—
0.05 to 0.15	90 to 80 [*]	—
0.15 to 0.5	66 to 56 [*]	56 to 46 [*]
0.5 to 5	56	46
5 to 30	60	50


Note1: The limit decreases linearly with the logarithm of the frequency in the range 0.05 MHz to 0.5 MHz.

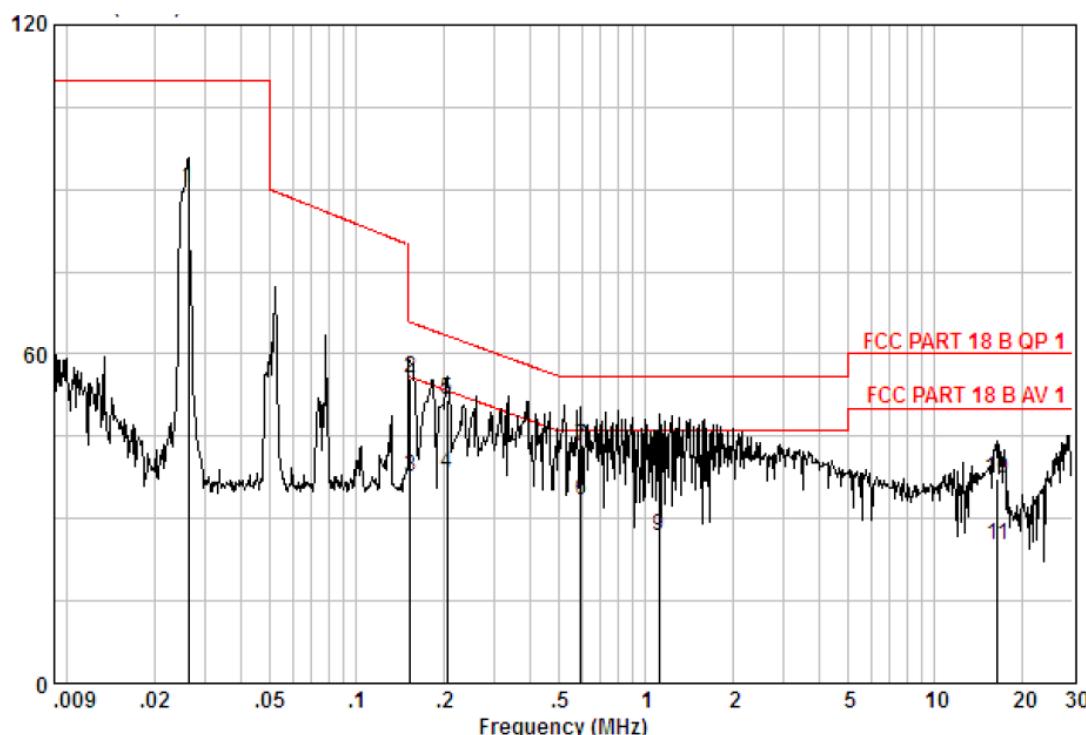
Note2: The lower limit is applicable at the transition frequency.

7.1.1 E.U.T. Operation

EUT Operation: Test the EUT in heating mode with max power.

7.1.2 Test Setup and Procedure

1. The mains terminal disturbance voltage test was conducted in a shielded room.
2. The EUT was connected to nominal power supply through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
3. The tabletop EUT was placed upon a non-metallic table 1 m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


7.1.3 Measurement Data

Pre-scan was performed with peak detected on both live and neutral cable. Quasi-peak & average measurements were performed at the frequencies which maximum peak emission level was detected.

Please see the attached Quasi-peak and Average test results.

Live line:

Peak Scan

Quasi-peak and Average measurement:

Freq	Read Level	Cable Loss	LISN Factor	Level	Limit		Over Limit	Remark
					Line	Line		
MHz	dB μ V	dB	dB	dB μ V	dB μ V	dB		
0.026	80.88	0.00	9.30	90.18	110.00	-19.82	QP	
0.154	46.01	0.07	9.48	55.57	65.79	-10.22	QP	
0.154	27.96	0.07	9.48	37.52	55.79	-18.27	AVERAGE	
0.206	28.59	0.12	9.50	38.21	53.36	-15.15	AVERAGE	
0.206	42.00	0.12	9.50	51.62	63.36	-11.74	QP	
0.598	23.57	0.07	9.55	33.19	46.00	-12.81	AVERAGE	
0.598	33.51	0.07	9.55	43.13	56.00	-12.87	QP	
1.114	32.50	0.05	9.56	42.11	56.00	-13.89	QP	
1.114	17.20	0.05	9.56	26.81	46.00	-19.19	AVERAGE	
16.460	27.15	0.38	9.77	37.30	60.00	-22.70	QP	
16.460	14.94	0.38	9.77	25.09	50.00	-24.91	AVERAGE	

Level = Read Level + Cable Loss + LISN Factor.

Neutral line:

Peak Scan

Quasi-peak and Average measurement:

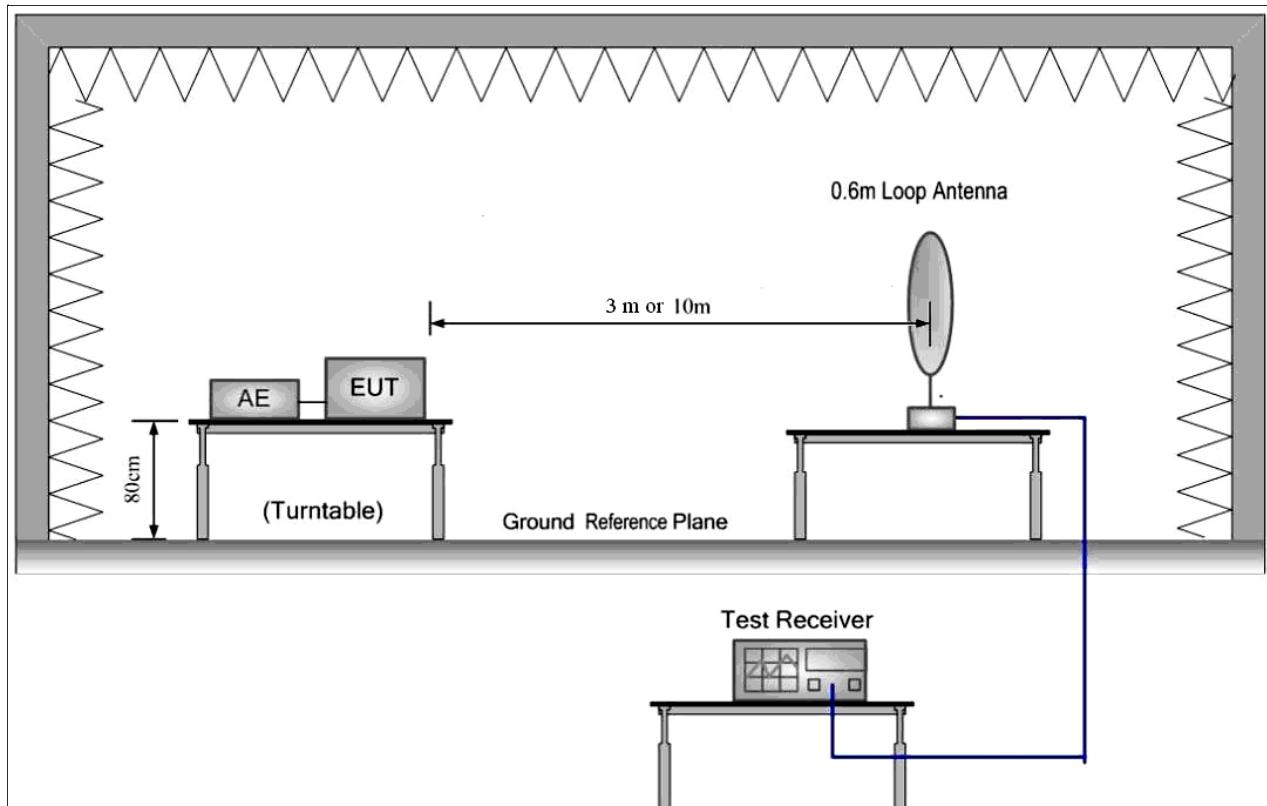
Freq MHz	Read Level dBµV	Cable Loss dB	LISN Factor dB	Level dBµV	Limit Line dBµV	Over Limit dB	Remark
	dBµV	dB	dB		dBµV	dB	dB
0.025	86.51	0.00	9.30	95.81	110.00	-14.19	QP
0.154	21.82	0.07	9.51	31.40	55.79	-24.38	AVERAGE
0.154	41.93	0.07	9.51	51.51	65.79	-14.27	QP
0.209	24.87	0.12	9.53	34.52	53.23	-18.71	AVERAGE
0.209	41.22	0.12	9.53	50.87	63.23	-12.36	QP
0.257	22.28	0.11	9.52	31.91	51.54	-19.63	AVERAGE
0.257	38.82	0.11	9.52	48.45	61.54	-13.09	QP
0.858	33.64	0.05	9.59	43.28	56.00	-12.72	QP
0.858	16.06	0.05	9.59	25.70	46.00	-20.30	AVERAGE
1.487	33.20	0.05	9.60	42.85	56.00	-13.15	QP
1.487	20.72	0.05	9.60	30.37	46.00	-15.63	AVERAGE

Level = Read Level + Cable Loss + LISN Factor.

7.2 Radiated Emissions, 9 kHz to 30 MHz

Test Requirement: FCC Part 18
Test Method: FCC OST/ MP-5
Power Supply: AC 120V 60Hz
Test Date: 2014-03-17
Frequency Range: 9 kHz to 30 MHz
Measurement Distance: 10 m
Detector: Peak for pre-scan, Average for the final result
(200 Hz Resolution Bandwidth for 9 kHz to 150 kHz
9 kHz Resolution Bandwidth for 150 kHz to 30 MHz)

Limit:


Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
Induction cooking ranges	Below 90 kHz	Any	1,500	430
	On or above 90 kHz	Any	300	430

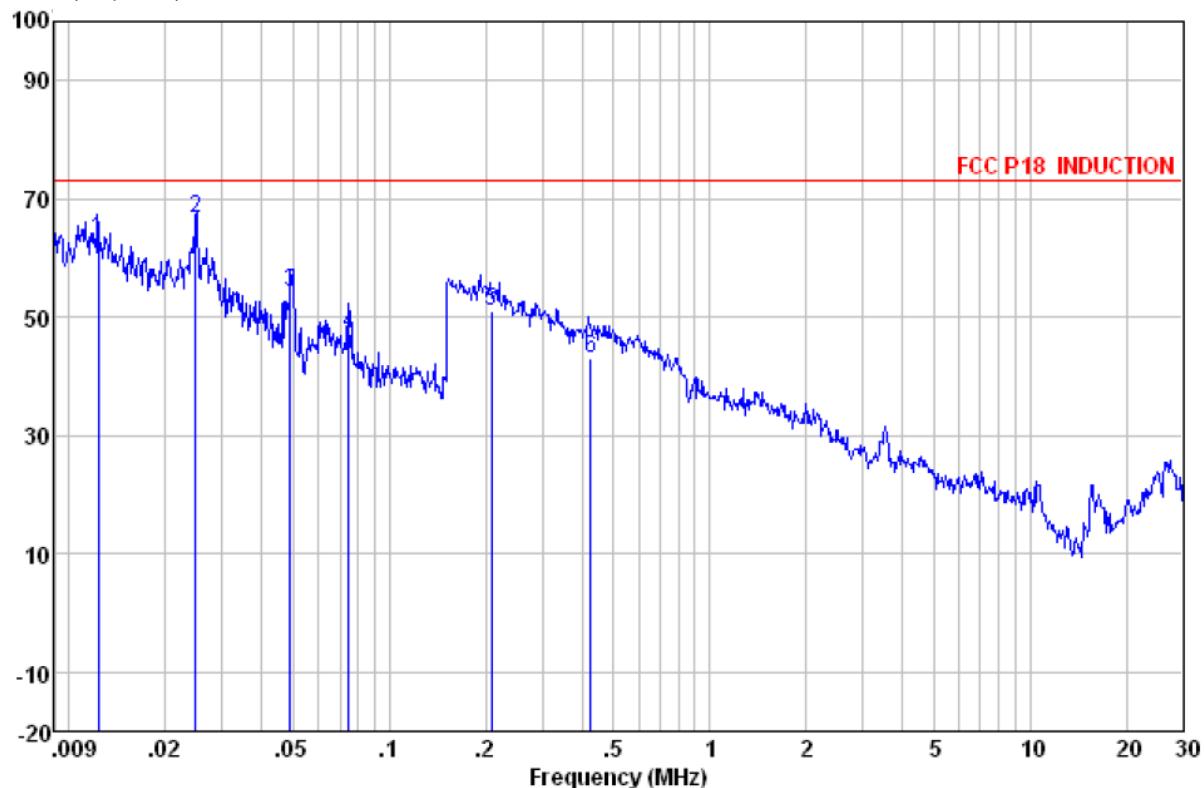
For Induction cooking ranges and the operating frequency is below 90 kHz, the field strength limit is 1,500 μ V/m@30m,
i.e. $20\lg(1500)+20\lg(30/10)=63.52+9.54=73.06\text{dBuV/m}$ @ 10m
distance.

7.2.1 E.U.T. Operation

EUT Operation: Test the EUT in heating mode with max power.

7.2.2 Test Setup and Procedure

1. The magnetic emissions test was conducted in a semi-anechoic chamber.
2. The EUT was connected to AC power source through a mains power outlet which was bonded to the ground reference plane; The mains cables shall drape to the ground reference plane.
3. The tabletop EUT was placed upon a non-metallic table 1 m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
4. Before final measurements of magnetic emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emission spectrum signature data plots of the EUT.

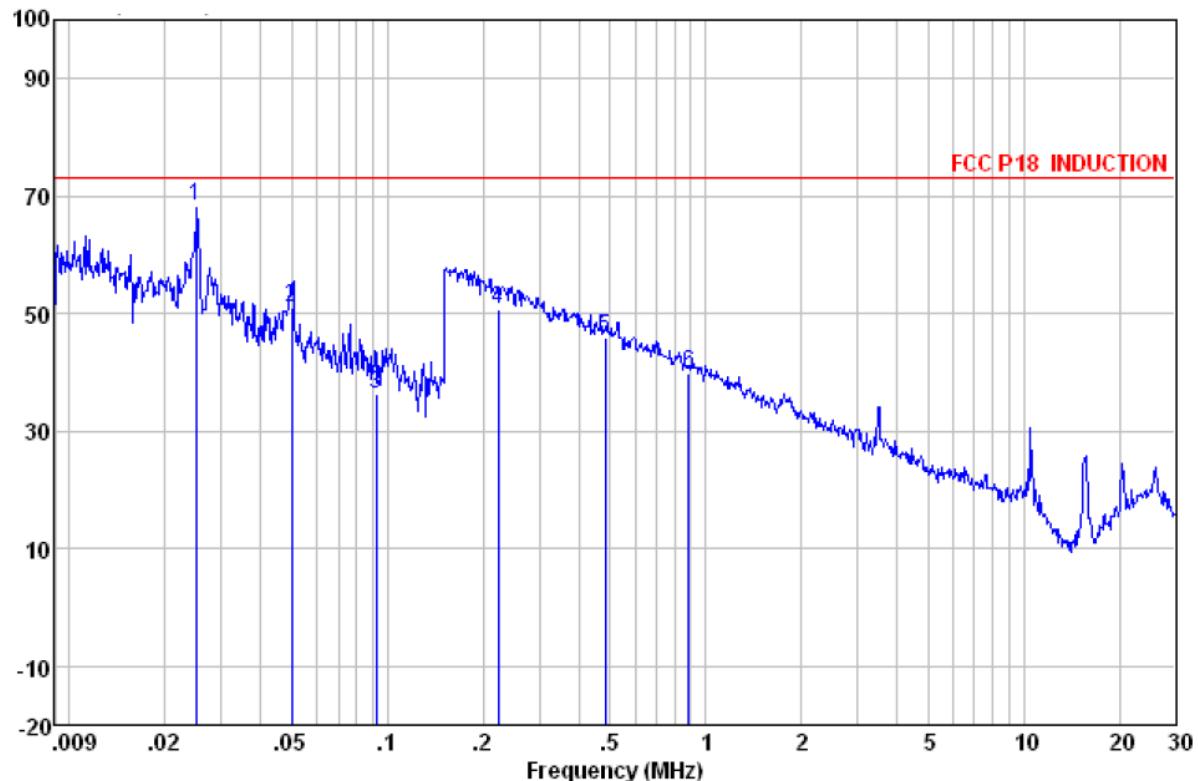

The frequencies of maximum emission were determined in the final magnetic emissions measurement. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. At each frequency, the EUT was rotated 360°, the antenna was supported in the vertical plane and be rotatable about a vertical axis. The antenna height was set at around 2 m above the ground reference plane.

7.2.3 Measurement Data

Vertical:

Peak scan

Level (dB μ V/m)


Average measurement

Freq	Read	Antenna	Cable	Preamp	Limit	Over	Over	
	Level	Factor	Loss	Factor				Remark
MHz	dB μ V	dB/m	dB	dB	dB μ V/m	dB μ V/m	dB	
0.012	72.31	21.63	0.00	30.76	63.18	73.06	-9.88	Average
0.025	80.24	17.20	0.00	30.78	66.66	73.06	-6.40	Average
0.049	71.39	13.53	0.00	30.81	54.11	73.06	-18.95	Average
0.075	64.08	13.80	0.00	30.82	47.06	73.06	-26.00	Average
0.208	68.40	13.46	0.13	30.83	51.16	73.06	-21.90	Average
0.424	60.45	13.40	0.04	30.84	43.05	73.06	-30.01	Average

Level = Read Level + Antenna Factor + Cable Loss – Preamp Factor.

Horizontal:

Peak scan

Level (dB μ V/m)

Average measurement

Freq	Read	Antenna	Cable	Preamp	Limit	Over	Over	
	Level	Factor	Loss	Factor				Remark
MHz	dB μ V	dB/m	dB	dB	dB μ V/m	dB μ V/m	dB	
0.025	81.97	17.17	0.00	30.78	68.36	73.06	-4.70	Average
0.050	68.28	13.50	0.00	30.81	50.97	73.06	-22.09	Average
0.092	53.31	13.72	0.00	30.82	36.21	73.06	-36.85	Average
0.224	68.00	13.43	0.12	30.83	50.72	73.06	-22.34	Average
0.483	63.30	13.40	0.05	30.84	45.91	73.06	-27.15	Average
0.888	57.24	13.56	0.05	30.86	39.99	73.06	-33.07	Average

Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor.

--End of Report--