

# FACT Test Report for LPRU 4420 B25B66 (With LTE and NR signals)

Tested to: FCC Part 15 Subpart B / ICES 003

FCC Part 24 (Section 24.238(a)) FCC Part 27 (Section - 27.53(h))

RSS-Gen (Section 7.0) RSS-133 (Section 6.5) RSS-139 (Section 6.6) RSS-170 (Section 5.4)

**Test Result summary** 

|                           |                                       | Juit Juillial y                     |                    |                          |
|---------------------------|---------------------------------------|-------------------------------------|--------------------|--------------------------|
| FCC/ ICES/<br>RSS Section | Description                           | Specification/Method                | Pass<br>or<br>Fail | Results<br>in<br>section |
| 15.109 / 6.2              | Radiated Emissions (RE)               | FCC Part 15 / ICES 003 / ANSI C63.4 | Pass               | 3.2                      |
| 7.0                       | Receiver Emissions Limits             | RSS-Gen / ANSI C63.4                | Pass               | 3.2 , 3.3                |
| 15.107 / 6.1              | Conducted Emissions (CE) for AC Power | FCC Part 15 / ICES 003 / ANSI C63.4 | Pass               | 3.3                      |
| 27.53(h)                  | Transmitter Spurious Emissions (RE)   | FCC Part 27 / ANSI C63.26           | Pass               | 3.2                      |
| 24.238(a)                 | Out of band Emissions (RE)            | FCC Part 24 / ANSI C63.26           | Pass               | 3.2                      |
| RSS-133 / 6.5             | Transmitter unwanted Emissions        | RSS-133 / ANSI C63.26               | Pass               | 3.2                      |
| RSS-139 / 6.6             | Transmitter unwanted Emissions        | RSS-139 / ANSI C63.26               | Pass               | 3.2                      |
| RSS-170 / 5.4             | Transmitter unwanted Emissions        | RSS-170 / ANSI C63.26               | Pass               | 3.2                      |

Document number: 7169008570-TR-EMC-01-01-F15

Release date: 30 October, 2020

**Prepared for: Ericsson Canada** 



# **About this document**

This document is written and distributed by TÜV SÜD Canada Inc. Whenever TÜV SÜD is mentioned in this document it shall be taken as referring to TÜV SÜD Canada Inc.

This test report does not imply product endorsement by any government, accreditation agency, or TÜV SÜD Canada Inc. Opinions or interpretations expressed in this report, if any, are outside the scope of the accreditations of TÜV SÜD Canada Inc. Any opinions expressed do not necessarily reflect the opinions of TÜV SÜD Canada Inc, unless otherwise stated.

Throughout this document:

- text in blue font is a clickable link
- text in italics is provided as-is from the customer

The release control record, document approvals, and laboratory Accreditations are as follows.

### Release control record

This document is based on document template KG000347-TR-EMC-08-03.

| Issue | Reason for change | Date released    |
|-------|-------------------|------------------|
| 01    | initial release   | 30 October, 2020 |

### **Approvals**

| Function           | Name            | Job title               | Signature     |
|--------------------|-----------------|-------------------------|---------------|
| Technical Reviewer | Scott Drysdale  | Canada Wireless Manager | 50AD Drysdale |
| Author             | Kasi Sivaratnam | EMC Test Engineer       | s.m           |

Release date: 30 October, 2020 Page 2 of 78



#### **Accreditations**

The test facilities of TÜV SÜD Canada Inc are accredited by the American Association for Laboratory Accreditation (A2LA) to ISO/IEC 17025:2017 in accordance with the scope of accreditation outlined at the website portal.a2la.org/scopepdf/2955-19.pdf.

#### DISCLAIMER AND COPYRIGHT



A2LA Cert. No. 2955.19

This non-binding report has been prepared by TÜV SÜD Canada with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Canada. No part of this document may be reproduced without the prior written approval of TÜV SÜD Canada.

© TÜV SÜD.

#### **ACCREDITATION**

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.

The Canadian lab registration number associated with the TÜV SÜD test facilities is 24015.

#### Test lab information

TÜV SÜD Canada Inc Lab name TÜV SÜD Canada Inc Company name

Mailing or shipping address 1280 Teron Road, Ottawa, Ontario, K2K 2C1, Canada

Primary technical contact Stephen Tippet Title Lab Manager Phone 613-668-5149

#### **Customer information**

Ericsson Canada Company name

349 Terry Fox Drive, Ottawa, On, K2K 2V6, Canada Mailing address

Primary contact Denis Lalonde

Title Team Leader RA Verification

Phone 613-790-2901

E-mail Denis.lalonde@ericsson.com

Release date: 30 October, 2020 Page 3 of 78



## **Table of contents**

| About | this (      | documentdocument                                                                     | 2   |
|-------|-------------|--------------------------------------------------------------------------------------|-----|
| 1. Ex | ecuti       | ve summary                                                                           | . 9 |
| 1.1   | Com         | pliance summary                                                                      | 10  |
| 2. De | tails       | of the equipment under test                                                          | 12  |
| 2.1   | Asse        | ssed hardware                                                                        | 12  |
| 2.2   | Prod        | uct overview                                                                         | 12  |
| 2.3   | Prod        | uct port definition and EUT cable information                                        | 14  |
| 2.4   | Conf        | Figurations of the EUT                                                               | 15  |
| 2.4   | <b>l.</b> 1 | Radiated Emissions Single RAT / Single Carrier Configurations                        | 16  |
| 2.4   | 1.2         | Radiated Emissions Single RAT / Multi Carrier Configurations                         | 17  |
| 2.4   | 1.3         | Radiated Emissions Multi RAT/Multi Carrier Configuration – NR+LTE                    | 17  |
| 2.4   | 1.4         | Conducted Emissions Carrier Configuration                                            | 17  |
| 2.5   | Mod         | ifications of the EUT during testing                                                 | 18  |
| 2.6   | Inve        | ntory of the EUT and support equipments                                              | 21  |
| 3. De | taile       | d test results of Emissions                                                          | 22  |
| 3.1   | Mea         | surement instrumentation                                                             | 22  |
| 3.2   | Radi        | ated Emissions, E-field                                                              |     |
| 3.2   | 2.1         | Test specification and limits                                                        |     |
| 3.2   |             | Test procedure                                                                       |     |
| 3.2   |             | Calculation of the compliance margin                                                 |     |
| 3.2   | 2.4         | Measurement uncertainties                                                            | 26  |
| 3.2   | 2.5         | Test results of Radiated Emissions (Single RAT/Single carrier, LTE 5M, Mid channel)  |     |
| 3.2   | 2.6         | Test results of Radiated Emissions (Single RAT/Single carrier, NR 10M, Bot channel)  | 33  |
| 3.2   | 2.7         | Test results of Radiated Emissions (Single RAT/single carrier, NR 10M, Mid channel)  |     |
| 3.2   | 2.8         | Test results of Radiated Emissions (Single RAT/single carrier, NR 10M, Top channel)  |     |
| 3.2   |             | Test results of Radiated Emissions (Single RAT/Multi carrier, 2 NR 10M, Mid channel) |     |
| 3.2   |             | Test results of Radiated Emissions (Multi RAT/Carrier, L5+2NR10, Mid channel)        |     |
| 3.2   |             | Radiated Emissions test setup pictures                                               |     |
|       |             | Test equipment                                                                       |     |
|       |             | Test conclusion                                                                      |     |
|       |             | ducted Emissions on AC power leads                                                   |     |
| 3.3   |             | Test specification and limits                                                        |     |
| 3.3   |             | Test procedure                                                                       |     |
| 3.3   |             | Calculation of the compliance margin                                                 |     |
| 3.3   |             | Measurement uncertainties                                                            |     |
| 3.3   |             | Test results of CE on AC power ports                                                 |     |
| 3.3   |             | Test equipment                                                                       |     |
| 3.3   | 3.7         | Test conclusion                                                                      | 74  |



| 4. References                                                                 | 75 |
|-------------------------------------------------------------------------------|----|
| 4.1 Appendix A: Abbreviations                                                 | 76 |
|                                                                               |    |
| List of figures                                                               |    |
| Figure 1: The EUT, LPRU 4420 B25B66                                           |    |
| Figure 2: Test configuration for Emission tests                               |    |
| Figure 3: Tested carrier detail – Single RAT / Single carrier (LTE)           |    |
| Figure 4: Tested carrier detail – Single RAT / Single carrier (NR)            |    |
| Figure 5: Tested carrier detail – Single RAT / Multicarrier (NR)              |    |
| Figure 6: Tested carrier detail – MultiCarrier / Multi RAT Configuration (NR) |    |
| Figure 7: CE tested carrier detail                                            |    |
| Figure 8: Setup of Radiated Emissions                                         |    |
| Figure 9: Plot of RE at 3 m $-$ 30 to 1000 MHz (LTE 5M $-$ Middle channel)    |    |
| Figure 10: Plot of RE at 3m from 1 to 3 GHz (LTE 5M – Middle channel)         | 29 |
| Figure 11: Plot of RE at 3m from 3 to 10 GHz (LTE 5M – Middle channel)        | 30 |
| Figure 12: Plot of RE at 3m from 10 to 18 GHz (LTE 5M – Middle channel)       | 31 |
| Figure 13: Plot of RE at 1m from 18 to 26.5 GHz (LTE 5M – Middle channel)     | 32 |
| Figure 14: Plot of RE at 3 m $-$ 30 to 1000 MHz (NR 10M $-$ Bot channel)      | 34 |
| Figure 15: Plot of RE at 3m from 1 to 3 GHz (NR 10M – Bot channel)            | 35 |
| Figure 16: Plot of RE at 3m from 3 to 10 GHz (NR 10M – Bot channel)           | 36 |
| Figure 17: Plot of RE at 3m from 10 to 18 GHz (NR 10M – Bot channel)          | 37 |
| Figure 18: Plot of RE at 1m from 18 to 26.5 GHz (NR 10M – Bot channel)        | 38 |
| Figure 19: Plot of RE at 3 m – 30 to 1000 MHz (NR 10M – Mid channel)          | 40 |
| Figure 20: Plot of RE at 3m from 1 to 3 GHz (NR 10M – Mid channel)            | 41 |
| Figure 21: Plot of RE at 3m from 3 to 10 GHz (NR 10M – Mid channel)           | 42 |
| Figure 22: Plot of RE at 3m from 10 to 18 GHz (NR 10M – Mid channel)          | 43 |
| Figure 23: Plot of RE at 1m from 18 to 26.5 GHz (NR 10M – Mid channel)        | 44 |
| Figure 24: Plot of RE at 3 m – 30 to 1000 MHz (NR 10M – Top channel)          | 46 |
| Figure 25: Plot of RE at 3m from 1 to 3 GHz (NR 10M – Top channel)            | 47 |
| Figure 26: Plot of RE at 3m from 3 to 10 GHz (NR 10M – Top channel)           | 48 |
| Figure 27: Plot of RE at 3m from 3 to 10 GHz (NR 10M – Top Tx channel)        | 49 |
| Figure 28: Plot of RE at 3m from 10 to 18 GHz (NR 10M – Top channel)          |    |
| Figure 29: Plot of RE at 1m from 18 to 26.5 GHz (NR 10M – Top channel)        | 51 |
| Figure 30: Plot of RE at 3 m – 30 to 1000 MHz (2 * NR 10M – Mid channel)      |    |
| Figure 31: Plot of RE at 3m from 1 to 3 GHz (2 * NR 10M – Mid channel)        | 54 |
| Figure 32: Plot of RE at 3m from 3 to 10 GHz (2 * NR 10M – Mid channel)       |    |
| . , , , , , , , , , , , , , , , , , , ,                                       |    |



| Figure 33: Plot of RE at 3m from 10 to 18 GHz (2 * NR 10M – Mid channel)                   | 56 |
|--------------------------------------------------------------------------------------------|----|
| Figure 34: Plot of RE at 1m from 18 to 26.5 GHz (2 * NR 10M – Mid channel)                 | 57 |
| Figure 35: Plot of RE at 1m from 26.5 to 40 GHz (2 * NR 10M – Mid channel)                 | 58 |
| Figure 36: Plot of RE at 3 m – 30 to 1000 MHz (L5+2NR10 – Mid channel)                     | 60 |
| Figure 37: Plot of RE at 3m from 1 to 3 GHz (L5+2NR10 – Mid channel)                       | 61 |
| Figure 38: Plot of RE at 3m from 3 to 10 GHz (L5+2NR10, Mid channel)                       | 62 |
| Figure 39: Plot of RE at 3m from 10 to 18 GHz (L5+2NR10, Mid channel)                      | 63 |
| Figure 40: Plot of RE at 1m from 18 to 26.5 GHz (L5+2NR10, Mid channel)                    | 64 |
| Figure 41: EUT Setup for RE tests (Closeup)                                                | 65 |
| Figure 42: EUT Setup for RE tests at 30 MHz to 1 GHz                                       | 66 |
| Figure 43: EUT Setup for RE tests for above 1 GHz                                          | 67 |
| Figure 44: CE test method on AC leads for regulatory test cases                            | 70 |
| Figure 45: Plot of CE on AC port, line L1 for FCC Part 15 class B                          | 72 |
| Figure 46: Plot of CE on AC port, line L2 for FCC Part 15 class B                          | 73 |
| Figure 47: Setup for CE tests on AC power cables                                           | 74 |
|                                                                                            |    |
| List of tables                                                                             |    |
| Table 1: Summary of test results for the USA; FCC Part 15 subpart B                        | 10 |
| Table 2: Summary of test results for the USA; FCC Part 24, Section 24.238 (a)              |    |
| Table 3: Summary of test results for the USA; FCC Part 27 subpart C                        |    |
| Table 4: Summary of test results for Canada; ICES-003                                      |    |
| Table 5: Summary of test results for RSS-Gen, Section 7.0                                  |    |
| Table 6: Summary of test results for Canada, RSS-133                                       |    |
| Table 7: Summary of test results for Canada, RSS-139                                       |    |
| Table 8: Summary of test results for Canada, RSS-170                                       | 11 |
| Table 9: Assessed hardware                                                                 | 12 |
| Table 10: Product Info - LPRU 4420                                                         | 12 |
| Table 11: System port definition                                                           | 14 |
| Table 12: Inventory of the EUT (RE & CE tests)                                             | 21 |
| Table 13: RE test requirements                                                             | 23 |
| Table 14: RE limits at 10 m for Class B of FCC Part 15, ICES 003 & RSS-Gen                 | 23 |
| Table 15: Emission limits for FCC Part 24, Part 27, RSS-133, RSS-139                       | 23 |
| Table 16: Emission limits for RSS-170                                                      | 24 |
| Table 17: RE test results from 30 to 1000 MHz for FCC Part 15 (LTE 5M – Middle channel)    | 28 |
| Table 18: RE test results from 30 to 1000 MHz for FCC Part 24/27 (LTE 5M – Middle channel) | 28 |
| Table 19: RE test results from 1 to 3 GHz for FCC Part 15 (LTE 5M – Middle channel)        | 29 |



| Table 20: RE test results from 1 to 3 GHz for Part 24/27 (LTE 5M – Middle channel)            | 29 |
|-----------------------------------------------------------------------------------------------|----|
| Table 21: RE test results from 3 to 10 GHz for FCC Part 15 (LTE 5M – Middle channel)          | 30 |
| Table 22: RE test results from 3 to 10 GHz for Part 24/27 (LTE 5M – Middle channel)           | 30 |
| Table 23: RE test results from 10 to 18 GHz for FCC Part 15 (LTE 5M – Middle channel)         | 31 |
| Table 24: RE test results from 10 to 18 GHz for Part 24/27 (LTE 5M – Middle channel)          | 31 |
| Table 25: RE test results from 30 to 1000 MHz for FCC Part 15 (NR 10M – Bot channel)          | 34 |
| Table 26: RE test results from 30 to 1000 MHz for FCC Part 24/27 (NR 10M – Bot channel)       | 34 |
| Table 27: RE test results from 1 to 3 GHz for FCC Part 15 (NR 10M – Bot channel)              | 35 |
| Table 28: RE test results from 1 to 3 GHz for Part 24/27 (NR 10M – Bot channel)               | 35 |
| Table 29: RE test results from 3 to 10 GHz for FCC Part 15 (NR 10M – Bot channel)             |    |
| Table 30: RE test results from 3 to 10 GHz for Part 24/27 (NR 10M – Bot channel)              | 36 |
| Table 31: RE test results from 10 to 18 GHz for FCC Part 15 (NR 10M – Bot channel)            | 37 |
| Table 32: RE test results from 10 to 18 GHz for Part 24/27 (NR 10M – Bot channel)             |    |
| Table 33: RE test results from 30 to 1000 MHz for FCC Part 15 (NR 10M – Mid channel)          | 40 |
| Table 34: RE test results from 30 to 1000 MHz for FCC Part 24/27 (NR 10M – Mid channel)       | 40 |
| Table 35: RE test results from 1 to 3 GHz for FCC Part 15 (NR 10M – Mid channel)              | 41 |
| Table 36: RE test results from 1 to 3 GHz for Part 24/27 (NR 10M – Mid channel)               | 41 |
| Table 37: RE test results from 3 to 10 GHz for FCC Part 15 (NR 10M – Mid channel)             | 42 |
| Table 38: RE test results from 3 to 10 GHz for Part 24/27 (NR 10M – Mid channel)              |    |
| Table 39: RE test results from 10 to 18 GHz for FCC Part 15 (NR 10M – Mid channel)            | 43 |
| Table 40: RE test results from 10 to 18 GHz for Part 24/27 (NR 10M – Mid channel)             | 43 |
| Table 41: RE test results from 30 to 1000 MHz for FCC Part 15 (NR 10M – Top channel)          |    |
| Table 42: RE test results from 30 to 1000 MHz for FCC Part 24/27 (NR 10M – Top channel)       | 46 |
| Table 43: RE test results from 1 to 3 GHz for FCC Part 15 (NR 10M – Top channel)              | 47 |
| Table 44: RE test results from 1 to 3 GHz for Part 24/27 (NR 10M – Top channel)               | 47 |
| Table 45: RE test results from 3 to 10 GHz for FCC Part 15 (NR 10M – Top channel)             | 48 |
| Table 46: RE test results from 3 to 10 GHz for Part 24/27 (NR 10M – Top channel)              | 48 |
| Table 47: RE test results from 3 to 10 GHz for FCC Part 15 (NR 10M – Top Tx channel)          | 49 |
| Table 48: RE test results from 3 to 10 GHz for Part 24/27 (NR 10M – Top Tx channel)           | 49 |
| Table 49: RE test results from 10 to 18 GHz for FCC Part 15 (NR 10M – Top channel)            | 50 |
| Table 50: RE test results from 10 to 18 GHz for Part 24/27 (NR 10M – Top channel)             | 50 |
| Table 51: RE test results from 30 to 1000 MHz for FCC Part 15 (2 * NR 10M – Mid channel)      | 53 |
| Table 52: RE test results from 30 to 1000 MHz for FCC Part $24/27$ (2 * NR $10M-Mid$ channel) | 53 |
| Table 53: RE test results from 1 to 3 GHz for FCC Part 15 (2 * NR 10M – Mid channel)          | 54 |
| Table 54: RE test results from 1 to 3 GHz for Part 24/27 (2 * NR 10M – Mid channel)           | 54 |
| Table 55: RE test results from 3 to 10 GHz for FCC Part 15 (2 * NR 10M – Mid channel)         | 55 |
| Table 56: RE test results from 3 to 10 GHz for Part 24/27 (2 * NR 10M – Mid channel)          | 55 |
| Table 55: RE test results from 3 to 10 GHz for FCC Part 15 (2 * NR 10M – Mid channel)         | 55 |



| Table 57: RE test results from 10 to 18 GHz for FCC Part 15 (2 * NR 10M – Mid channel)   | 56 |
|------------------------------------------------------------------------------------------|----|
| Table 58: RE test results from 10 to 18 GHz for Part 24/27 (2 * NR 10M – Mid channel)    | 56 |
| Table 59: RE test results from 30 to 1000 MHz for FCC Part 15 (L5+2NR10, Mid channel)    | 60 |
| Table 60: RE test results from 30 to 1000 MHz for FCC Part 24/27 (L5+2NR10, Mid channel) | 60 |
| Table 61: RE test results from 1 to 3 GHz for FCC Part 15 (L5+2NR10, Mid channel)        | 61 |
| Table 62: RE test results from 1 to 3 GHz for Part 24/27 (L5+2NR10, Mid channel)         | 61 |
| Table 63: RE test results from 3 to 10 GHz for FCC Part 15 (L5+2NR10, Mid channel)       | 62 |
| Table 64: RE test results from 3 to 10 GHz for Part 24/27 (L5+2NR10, Mid channel)        | 62 |
| Table 65: RE test results from 10 to 18 GHz for FCC Part 15 (L5+2NR10, Mid channel)      | 63 |
| Table 66: RE test results from 10 to 18 GHz for Part 24/27 (L5+2NR10, Mid channel)       | 63 |
| Table 67: Test equipment used for RE                                                     | 68 |
| Table 68: CE test requirements on AC power leads                                         | 69 |
| Table 69: CE test limits on AC power leads for Class B                                   | 69 |
| Table 70: CE test results on AC port, line L1 for FCC Part 15 class B                    | 72 |
| Table 71: CE test results on AC port, line L2 for FCC Part 15 class B                    | 73 |
| Table 72: Test equipment used for CE on AC power leads                                   | 74 |

Release date: 30 October, 2020 Page 8 of 78



# 1. Executive summary

This document reports the Electromagnetic Compatibility (EMC) testing performed on the product called LPRU 4420 B25B66 for Ericsson Canada per project number 7169008570. The objective of the test activities is to evaluate compliance of the product to following EMC regulatory standards.

The LPRU 4420 B25B66 is verified to comply with the Class B Emissions requirements of these standards:

- FCC Part 15 Subpart B [5] (Class B)
- FCC Part 24 [7] (Emissions Limitations for broadband PCS equipment, Section 24.238(a))
- FCC Part 27 [8] (Digital Base Stations, Section 27.53(h))
- ICES 003 [9] (Class B)
- RSS-Gen [13] (Receiver emissions Limits, Section 7.0)
- RSS-133 [10] (Transmitter unwanted Emissions, Section 6.5)
- RSS-139 [11] (Transmitter unwanted Emissions, Section 6.6)
- RSS-170 [12] (Transmitter unwanted Emissions, Section 5.4)

Information about the test result summary and, the equipment under test (EUT) is in the sections:

- Compliance summary
- Details of the equipment under test
- Detailed test results of Emissions

Release date: 30 October, 2020 Page 9 of 78



## 1.1 Compliance summary

The test results in this report apply only to the tested components that are identified in the section Assessed hardware.

The following table summarizes the EMC test results for the test cases performed on the LPRU 4420 B25B66

Table 1: Summary of test results for the USA; FCC Part 15 subpart B

| FCC<br>Section | Description                           | Specification/Method   | Pass or Fail | Results in section |
|----------------|---------------------------------------|------------------------|--------------|--------------------|
| 15.109         | Radiated Emissions (RE)               | FCC Part 15/ANSI C63.4 | Pass         | 3.2                |
| 15.107         | Conducted Emissions (CE) for AC Power | FCC Part 15/ANSI C63.4 | Pass         | 3.3                |

Table 2: Summary of test results for the USA; FCC Part 24, Section 24.238 (a)

| FCC<br>Section | Description                                                               | Specification/Method     | Pass or<br>Fail | Results in section |
|----------------|---------------------------------------------------------------------------|--------------------------|-----------------|--------------------|
| 24.238 (a)     | Emissions Limitations for Broadband PCS equipment – Out of band emissions | FCC Part 24/ ANSI C63.26 | Pass            | 3.2                |

Table 3: Summary of test results for the USA; FCC Part 27 subpart C

| FCC<br>Section | Description         | Specification/Method     | Pass or Fail | Results in section |
|----------------|---------------------|--------------------------|--------------|--------------------|
| 27.53(h)       | AWS emission limits | FCC Part 27/ ANSI C63.26 | Pass         | 3.2                |

Table 4: Summary of test results for Canada; ICES-003

| ICES<br>Section | Description                           | Specification/Method | Pass or Fail | Results in section |
|-----------------|---------------------------------------|----------------------|--------------|--------------------|
| 6.2             | Radiated Emissions (RE)               | ICES 003/ANSI C63.4  | Pass         | 3.2                |
| 6.1             | Conducted Emissions (CE) for AC Power | ICES 003/ANSI C63.4  | Pass         | 3.3                |

Table 5: Summary of test results for RSS-Gen, Section 7.0

| RSS-Gen<br>Section | Description                           | Specification/Method                     | Pass<br>or Fail | Results in section |
|--------------------|---------------------------------------|------------------------------------------|-----------------|--------------------|
| 7.3                | Receiver Radiated Emissions           | RSS-Gen / ANSI C63.4                     | Pass            | 3.2                |
| 7.2                | Conducted Emissions (CE) for AC Power | RSS-Gen / ANSI C63.4                     | Pass            | 3.3                |
| 7.4                | Receiver Conducted Emissions          | See antenna port conducted e test report | missions ir     | n applicable       |



#### Table 6: Summary of test results for Canada, RSS-133

| RSS-133<br>Section | Description                    | Specification/Method  | Pass or Fail | Results in section |
|--------------------|--------------------------------|-----------------------|--------------|--------------------|
| 6.5                | Transmitter unwanted Emissions | RSS-133 / ANSI C63.26 | Pass         | 3.2                |

#### Table 7: Summary of test results for Canada, RSS-139

| RSS-139<br>Section | Description                    | Specification/Method  | Pass or Fail | Results in section |
|--------------------|--------------------------------|-----------------------|--------------|--------------------|
| 6.6                | Transmitter unwanted Emissions | RSS-139 / ANSI C63.26 | Pass         | 3.2                |

#### Table 8: Summary of test results for Canada, RSS-170

| RSS-170<br>Section | Description                    | Specification/Method  | Pass or Fail | Results in section |
|--------------------|--------------------------------|-----------------------|--------------|--------------------|
| 5.4                | Transmitter unwanted Emissions | RSS-170 / ANSI C63.26 | Pass         | 3.2                |

Release date: 30 October, 2020 Page 11 of 78



# 2. Details of the equipment under test

This section describes the equipment under test (EUT).

### 2.1 Assessed hardware

The following table indicates the hardware components that were assessed during this test program.

Table 9: Assessed hardware

| Hardware component                                   | Part number   |
|------------------------------------------------------|---------------|
| Low Power Radio Unit 4420 B25B66 (LPRU 4420, B25B66) | KRC 161 906/1 |

### 2.2 Product overview

The product trade name is LPRU 4420 B25B66. The LPRU 4420 product is an indoor wireless telecommunication product. It is a radio unit that provides cellular service. It can operate from AC power (100-250VAC) and DC power (-48VDC).

Figure 1: The EUT, LPRU 4420 B25B66



Table 10: Product Info - LPRU 4420

| Product data:           |                           |
|-------------------------|---------------------------|
| Product Name            | LPRU 4420 B25B66          |
| Revision:               | R1A                       |
| P/N:                    | KRC 161 906/1             |
| Nominal Voltage:        | 110VAC or -48VDC          |
| Operating Temperature:  | 0°C to +55°C              |
| Dimensions: (H x W x D) | 443 x 132 x 370mm (WxHxD) |
| Weight;                 | 13.6 kg                   |

Release date: 30 October, 2020 Page 12 of 78



| Product data:                                              |                                         |  |
|------------------------------------------------------------|-----------------------------------------|--|
| Band25: (BC1)                                              | DL: 1930 – 1995 MHz; UL: 1850 - 1915MHz |  |
| Capability sets (SC):                                      | CS16 L+NR                               |  |
| Markets:                                                   | FCC                                     |  |
| No of RF ports:                                            | 4 (1A,1B,1C,1D)                         |  |
| Output power per port:                                     | Single Carrier: 1 x 158.5mW (22dBm)     |  |
| Limitation outp power:                                     | ~22dBm                                  |  |
| IBW:                                                       | 65MHz                                   |  |
| IBW limitation:                                            | Contiguous operations only              |  |
| RAT supported                                              | NR + LTE + NBIoT IB/GB SC, MC           |  |
| supported LTE/NR BW:                                       | 5, 10, 15, 20MHz                        |  |
| Max No of carriers per port in MR:                         | 3                                       |  |
| Max no of LTE/NR per port                                  | 3                                       |  |
| Max no of GSM per port                                     | na                                      |  |
| Modulations, LTE                                           | QPSK, 16QAM, 64QAM, 256QAM              |  |
| Modulations, GSM                                           | na                                      |  |
| NB IoT IB per LTE host                                     | 1                                       |  |
| NB IoT GB per LTE host (min 10MHz)                         | 1                                       |  |
| NB IoT SA per port                                         | na                                      |  |
| NR FDD FR1                                                 | yes                                     |  |
| CIPR                                                       |                                         |  |
| Band66: (BC1)                                              | DL: 2110 - 2200MHz; UL: 1710 – 1780MHz  |  |
| Capability sets (SC):                                      | CS16 L+NR                               |  |
| Markets:                                                   | FCC                                     |  |
| No of RF ports:                                            | 4 (2A,2B,2C,2D)                         |  |
| Output power per port:                                     | Single Carrier: 1 x 158.5mW (22dBm)     |  |
| Limitation outp power:                                     | ~22dBm                                  |  |
| IBW:                                                       | 70MHz                                   |  |
| IBW limitation:                                            | Contiguous operations only              |  |
| RAT supported                                              | NR + LTE + NBIoT IB/GB SC, MC           |  |
| supported LTE BW:                                          | 5, 10, 15, 20MHz                        |  |
| Max No of carriers per port in MR:                         | 3                                       |  |
| Max no of LTE/NR per port                                  | 3                                       |  |
| Max no of GSM per port                                     | na                                      |  |
| Modulations, LTE                                           | QPSK, 16QAM, 64QAM, 256QAM              |  |
| Modulations, GSM                                           | na                                      |  |
|                                                            | 1                                       |  |
| NB IoT IB per LTE host                                     | I                                       |  |
| NB IoT IB per LTE host  NB IoT GB per LTE host (min 10MHz) | 1                                       |  |

Release date: 30 October, 2020 Page 13 of 78



| Product data: |     |
|---------------|-----|
| NR FDD FR1    | yes |
| CIPR          |     |

The Configurations of the LPRU 4420 B25B66 that were tested is shown in the section Configurations of the EUT. The EUT was tested in a tabletop setting.

## 2.3 Product port definition and EUT cable information

Table 11 identifies all the cables and ports on the EUT. The Environment of the cables is indoor.

Table 11: System port definition

| Port Name            | Port Description                    | Port Type | Interface Detail                 | Plug-Cable<br>Type                                      | Port Test setup                              |
|----------------------|-------------------------------------|-----------|----------------------------------|---------------------------------------------------------|----------------------------------------------|
| AC-IN                | 100-250VAC, 50/60 Hz                | AC Power  | AC, single phase                 | C14, AC cable                                           | 6' cable, C14,                               |
| DC-IN-A/B            | -48VDC, 3 Wire, A and B feed inputs | DC Power  | 3-wire or 2-wire                 | 3-wire, AWG-10,<br>6mm2                                 | 1 branch is<br>enough, test<br>both 2w & 3w, |
| Alarm                | External Alarm Input 1 and 2        | Signal    | 2x2pin, single ended             | AWG-?,<br>unshielded,                                   | 1 branch is enough,                          |
| Data-1/2             | CPRI -1 and -2                      | Telecom   | CPRI, 2.5/5/9.8/10.1<br>Gbs      | Optical SFP+<br>fiber (1km), No<br>support for<br>eCPRI | none                                         |
| dRDI 1-8             | IRU/DOT Interface, partly Internal  | Internal  | 5G/10GBase-T,<br>Ethernet        | RJ-45, Cat6A,<br>fixed internal<br>termination          | none                                         |
| 1A / 1B / 1C /<br>1D | RF I/O ports - Band 25              | Antenna   | to active DAS ports (Dot side-1) | 2.2-5 connector,                                        | SMA adaptor<br>used on all<br>ports,         |
| 2A / 2B / 2C /<br>2D | RF I/O ports - Band 66              | Antenna   | to active DAS ports (Dot side-2) | 2.2-5 connector,                                        | SMA adaptor<br>used on all<br>ports,         |
| MMI                  | LPRU Status LEDs                    | n/a       | n/a                              | n/a                                                     | none                                         |
| Ground               | Ground Lug (EUT front)              | Ground    | AWG-6, wire                      | Dual Hole Flag<br>Lug, AWG-6<br>(RPM777567)             | 6' Gnd cable attached                        |

Release date: 30 October, 2020 Page 14 of 78



# 2.4 Configurations of the EUT

Figure 2 shows the configuration of the EUT for Emissions test.

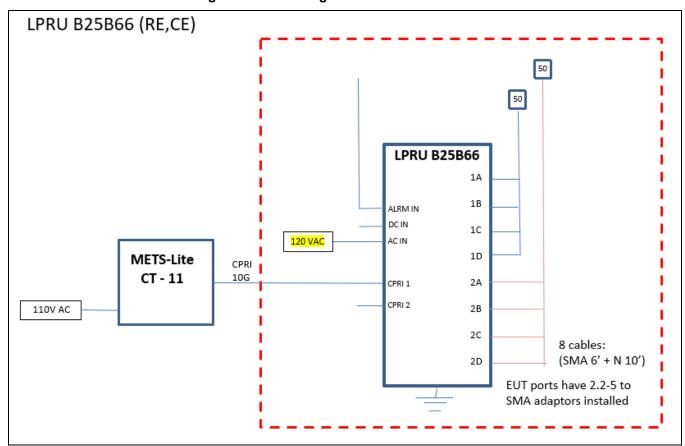



Figure 2: Test configuration for Emission tests

Release date: 30 October, 2020 Page 15 of 78



### 2.4.1 Radiated Emissions Single RAT / Single Carrier Configurations

Figure 3: Tested carrier detail - Single RAT / Single carrier (LTE)

|        | Single RAT and Single Carrier |                 |  |  |  |
|--------|-------------------------------|-----------------|--|--|--|
|        | Band 25                       | Band 66         |  |  |  |
|        | 24.10.20                      | 24.10.00        |  |  |  |
| Middle | L5, 1962.5MHz                 | L5, 2155MHz     |  |  |  |
| Middle | L10/GB, 1962.5MHz             | L10/GB, 2155MHz |  |  |  |
| Middle | L15/GB, 1962.5MHz             | L15/GB, 2155MHz |  |  |  |
| Middle | L20/GB, 1962.5MHz             | L20/GB, 2155MHz |  |  |  |

Note: Radiated Emissions measurements were compared between L5, L10/GB, L15/GB and L20/GB. L5 was found to have higher emissions than L10/GB, L15/GB and L20/GB. All plots with single LTE carrier in this report are therefore measured using LTE 5 Middle channel carrier configurations.

Figure 4: Tested carrier detail - Single RAT / Single carrier (NR)

| Single RAT and Single Carrier |                 |               |
|-------------------------------|-----------------|---------------|
|                               | Band 25         | Band 66       |
| Middle                        | NR5, 1962.5MHz  | NR5, 2155MHz  |
| Middle                        | NR10, 1962.5MHz | NR10, 2155MHz |
| Middle                        | NR15, 1962.5MHz | NR15, 2155MHz |
| Middle                        | NR20, 1962.5MHz | NR20, 2155MHz |
| Bottom                        | NR10, 1935MHz   | NR10, 2115MHz |
| Тор                           | NR10, 1990MHz   | NR10, 2175MHz |
| Тор Тх                        | NR10, 1990MHz   | NR10, 2195MHz |

Note: Radiated Emissions measurements were compared between NR5, NR10, NR15 and NR20. NR 10 was found to have higher emissions than NR 5, NR15 and NR 20. All plots with single NR carrier in this report are therefore measured using NR 10 carrier configurations.

Release date: 30 October, 2020 Page 16 of 78



### 2.4.2 Radiated Emissions Single RAT / Multi Carrier Configurations

Figure 5: Tested carrier detail - Single RAT / Multicarrier (NR)

| Single RAT and Multi Carrier |                                |                          |  |
|------------------------------|--------------------------------|--------------------------|--|
|                              | Band 25                        | Band 66                  |  |
| MC 1                         | 2NR10, 1957.5,1967.5MHz        | 2NR10, 2150,2160MHz      |  |
| MC 2                         | 3NR10, 1952.5,1962.5,1972.5MHz | 3NR10, 2145,2155,2165MHz |  |

Note: Radiated Emissions measurements were compared between MC 1 and MC 2. MC 1 was found to have higher emissions. All plots with Single RAT/Multi carrier in this report are therefore measured using MC 1 carrier configuration.

### 2.4.3 Radiated Emissions Multi RAT/Multi Carrier Configuration – NR+LTE

Figure 6: Tested carrier detail - MultiCarrier / Multi RAT Configuration (NR)

| Multi RAT & Multi Carrier |                               |                                 |  |  |
|---------------------------|-------------------------------|---------------------------------|--|--|
| Band 25 Band 66           |                               |                                 |  |  |
| MR 1                      | L5+NR10, 1957.5,1965MHz       | L5+NR10, 2150,2157.5MHz         |  |  |
| MR 2                      | 2L5+NR10, 1955,1960,1967.5MHz | 2L5+NR10, 2147.5,2152.5,2160MHz |  |  |
| MR 3                      | L5+2NR10, 1952.5,1960,1970MHz | L5+2NR10, 2145,2152.5,2162.5MHz |  |  |

Note: Radiated Emissions measurements were compared between MR 1, MR 2 and MR 3. MR 3 was found to have higher emissions than MR 1 & MR 2. All plots with Multi RAT/Multi carrier in this report are therefore measured using MR 3 Middle channel carrier configuration.

### 2.4.4 Conducted Emissions Carrier Configuration

Figure 7: CE tested carrier detail

| Multi RAT & Multi Carrier |                               |                                 |  |  |  |
|---------------------------|-------------------------------|---------------------------------|--|--|--|
|                           | Band 25 Band 66               |                                 |  |  |  |
| MR 3                      | L5+2NR10, 1952.5,1960,1970MHz | L5+2NR10, 2145,2152.5,2162.5MHz |  |  |  |

Release date: 30 October, 2020 Page 17 of 78



# 2.5 Modifications of the EUT during testing

The EUT was modified prior to testing. Following tables list the modifications made to tested EUT release R1A; as per customer.

"Each of the 2 transceivers (KRH 901 185/1) have the following modifications.

|       | Removed Parts  |                               |  |  |
|-------|----------------|-------------------------------|--|--|
| R1A7  | REP 621 103/22 | 220ohm 1% 0201 0.05W/RESISTOR |  |  |
| R27A7 | REP 621 103/22 | 220ohm 1% 0201 0.05W/RESISTOR |  |  |
| R3A7  | REP 621 103/22 | 220ohm 1% 0201 0.05W/RESISTOR |  |  |
| R52A7 | REP 621 103/22 | 220ohm 1% 0201 0.05W/RESISTOR |  |  |
| R54A7 | REP 621 103/22 | 220ohm 1% 0201 0.05W/RESISTOR |  |  |
| R7A7  | REP 621 103/22 | 220ohm 1% 0201 0.05W/RESISTOR |  |  |
| R82A7 | REP 621 103/22 | 220ohm 1% 0201 0.05W/RESISTOR |  |  |
| R84A7 | REP 621 103/22 | 220ohm 1% 0201 0.05W/RESISTOR |  |  |

|        |                   | New Parts                                |
|--------|-------------------|------------------------------------------|
| C111A7 | RJC 545 1011/16C  | 1.6pF +/-0.1pF 0201 25V HQ C0G/CAPACITOR |
| C141A7 | REP 621 103/15    | 150ohm 1% 0201 0.05W/RESISTOR            |
| C249A7 | REP 621 103/15    | 150ohm 1% 0201 0.05W/RESISTOR            |
| C251A7 | REP 621 103/15    | 150ohm 1% 0201 0.05W/RESISTOR            |
| C27A7  | REP 621 103/15    | 150ohm 1% 0201 0.05W/RESISTOR            |
| C83A7  | RJC 545 1011/16C  | 1.6pF +/-0.1pF 0201 25V HQ C0G/CAPACITOR |
| L20A7  | REG 724 5182/1PH  | 10nH 3% 0201/INDUCTOR                    |
| R103A7 | REP 621 103/15    | 150ohm 1% 0201 0.05W/RESISTOR            |
| R104A7 | REP 621 103/15    | 150ohm 1% 0201 0.05W/RESISTOR            |
| R106A7 | REP 621 103/15    | 150ohm 1% 0201 0.05W/RESISTOR            |
| R107A7 | REP 621 103/15    | 150ohm 1% 0201 0.05W/RESISTOR            |
| R94A7  | REG 724 5181/39PB | 3.9nH +/-0.1nH 0201/INDUCTOR             |
| R67A7  | REG 724 5181/39PB | 3.9nH +/-0.1nH 0201/INDUCTOR             |

Release date: 30 October, 2020 Page 18 of 78



|          | Replaced Parts (Red is the original part, green is the new part) |                                          |  |  |  |
|----------|------------------------------------------------------------------|------------------------------------------|--|--|--|
| C100A7   | REG 724 5181/2PB                                                 | 2.0nH +/-0.1nH 0201/INDUCTOR             |  |  |  |
| C100A7   | RJC 545 1011/39C                                                 | 3.9pF +/-0.1pF 0201 25V HQ C0G/CAPACITOR |  |  |  |
| C72A7    | REG 724 5181/2PB                                                 | 2.0nH +/-0.1nH 0201/INDUCTOR             |  |  |  |
| C72A7    | RJC 545 1011/39C                                                 | 3.9pF +/-0.1pF 0201 25V HQ C0G/CAPACITOR |  |  |  |
| L24A7    | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| L24A7    | REG 724 5181/29PB                                                | 2.9nH +/-0.1nH 0201/INDUCTOR             |  |  |  |
| L32A7    | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| L32A7    | REG 724 5181/29PB                                                | 2.9nH +/-0.1nH 0201/INDUCTOR             |  |  |  |
| L33A7    | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| L33A7    | REP 621 102/499                                                  | 49.9ohm 1% 0201 0.05W/RESISTOR           |  |  |  |
| L34A7    | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| L34A7    | REP 621 102/499                                                  | 49.9ohm 1% 0201 0.05W/RESISTOR           |  |  |  |
| L66A7    | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| L66A7    | REP 621 102/499                                                  | 49.9ohm 1% 0201 0.05W/RESISTOR           |  |  |  |
| L67A7    | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| L67A7    | REP 621 102/499                                                  | 49.9ohm 1% 0201 0.05W/RESISTOR           |  |  |  |
| R10A7    | REP 621 102/27                                                   | 27ohm 1% 0201 0.05W/RESISTOR             |  |  |  |
| R10A7    | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| R11TX3A9 | REG 724 6341/29B                                                 | 2.9nH ±0.1nH 0402 0.75A/INDUCTOR         |  |  |  |
| R11TX3A9 | REG 724 5181/29PB                                                | 2.9nH +/-0.1nH 0201/INDUCTOR             |  |  |  |
| R11TX4A9 | REG 724 6341/29B                                                 | 2.9nH ±0.1nH 0402 0.75A/INDUCTOR         |  |  |  |
| R11TX4A9 | REG 724 5181/29PB                                                | 2.9nH +/-0.1nH 0201/INDUCTOR             |  |  |  |
| R13TX3A9 | REP 622 001/0                                                    | 0ohm +50mohm 0402 1A/RESISTOR            |  |  |  |
| R13TX3A9 | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| R13TX4A9 | REP 622 001/0                                                    | 0ohm +50mohm 0402 1A/RESISTOR            |  |  |  |
| R13TX4A9 | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| R2A7     | REP 621 102/27                                                   | 27ohm 1% 0201 0.05W/RESISTOR             |  |  |  |
| R2A7     | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| R25TX3A9 | REP 622 001/0                                                    | 0ohm +50mohm 0402 1A/RESISTOR            |  |  |  |
| R25TX3A9 | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| R25TX4A9 | REP 622 001/0                                                    | 0ohm +50mohm 0402 1A/RESISTOR            |  |  |  |
| R25TX4A9 | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| R27TX3A9 | REP 622 001/0                                                    | 0ohm +50mohm 0402 1A/RESISTOR            |  |  |  |
| R27TX3A9 | REP 621 001/0                                                    | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |  |  |
| R27TX4A9 | REP 622 001/0                                                    | 0ohm +50mohm 0402 1A/RESISTOR            |  |  |  |



| Replaced Parts (Red is the original part, green is the new part) |                   |                                          |  |
|------------------------------------------------------------------|-------------------|------------------------------------------|--|
| R27TX4A9                                                         | REP 621 001/0     | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |
| R28TX3A9                                                         | REG 724 6341/58B  | 5.8nH ±0.1nH 0402 0.7A/INDUCTOR          |  |
| R28TX3A9                                                         | REG 724 5181/56PH | 5.6nH 3% 0201/INDUCTOR                   |  |
| R28TX4A9                                                         | REG 724 6341/58B  | 5.8nH ±0.1nH 0402 0.7A/INDUCTOR          |  |
| R28TX4A9                                                         | REG 724 5181/56PH | 5.6nH 3% 0201/INDUCTOR                   |  |
| R29TX3A9                                                         | REG 724 6342/1G   | 10nH 2% 0402 0.5A/INDUCTOR               |  |
| R29TX3A9                                                         | REG 724 5182/1PH  | 10nH 3% 0201/INDUCTOR                    |  |
| R29TX4A9                                                         | REG 724 6342/1G   | 10nH 2% 0402 0.5A/INDUCTOR               |  |
| R29TX4A9                                                         | REG 724 5182/1PH  | 10nH 3% 0201/INDUCTOR                    |  |
| R30TX3A9                                                         | REP 622 001/0     | 0ohm +50mohm 0402 1A/RESISTOR            |  |
| R30TX3A9                                                         | REP 621 001/0     | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |
| R30TX4A9                                                         | REP 622 001/0     | 0ohm +50mohm 0402 1A/RESISTOR            |  |
| R30TX4A9                                                         | REP 621 001/0     | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |
| R34TX1A9                                                         | REP 622 001/0     | 0ohm +50mohm 0402 1A/RESISTOR            |  |
| R34TX1A9                                                         | REP 621 001/0     | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |
| R34TX2A9                                                         | REP 622 001/0     | 0ohm +50mohm 0402 1A/RESISTOR            |  |
| R34TX2A9                                                         | REP 621 001/0     | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |
| R53A7                                                            | REP 621 102/27    | 27ohm 1% 0201 0.05W/RESISTOR             |  |
| R53A7                                                            | REP 621 001/0     | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |
| R66A7                                                            | RJC 545 4012/22C  | 22pF +/-5% 0201 6.3V HQ C0G/CAPACITOR    |  |
| R66A7                                                            | RJC 545 1011/51C  | 5.1pF +/-0.1pF 0201 25V HQ C0G/CAPACITOR |  |
| R74A7                                                            | REP 621 105/91    | 91Kohm 1% 0201 0.05W/RESISTOR            |  |
| R74A7                                                            | REG 724 5181/62PH | 6.2nH 3% 0201/INDUCTOR                   |  |
| R83A7                                                            | REP 621 102/27    | 27ohm 1% 0201 0.05W/RESISTOR             |  |
| R83A7                                                            | REP 621 001/0     | 0 ohm 0201 0.05W 0.5A/RESISTOR           |  |
| R93A7                                                            | RJC 545 4012/22C  | 22pF +/-5% 0201 6.3V HQ C0G/CAPACITOR    |  |
| R93A7                                                            | REG 724 5181/3PB  | 3.0nH +/-0.1nH 0201/INDUCTOR             |  |
| R96A7                                                            | REP 621 105/91    | 91Kohm 1% 0201 0.05W/RESISTOR            |  |
| R96A7                                                            | RJC 545 1010/8C   | 0.8pF +/-0.1pF 0201 25V HQ C0G/CAPACITOR |  |

Release date: 30 October, 2020 Page 20 of 78



# 2.6 Inventory of the EUT and support equipments

The following tables identifies the inventory of the EUT.

Table 12: Inventory of the EUT (RE & CE tests)

| Equipment Role Product Name     |                              | Product Number | Release          | Product Serial# |  |  |
|---------------------------------|------------------------------|----------------|------------------|-----------------|--|--|
| EUT                             | EUT LPRU 4420 B25B66         |                | R1A <sup>1</sup> | TD3F999994      |  |  |
|                                 |                              |                |                  |                 |  |  |
| AC power cable                  | Generic, 14AWG, C14 plug, 2m | -              | -                | -               |  |  |
| Optical Fiber                   | LC, SM, 20m                  | -              | -                | -               |  |  |
| RF Adaptor 2.2-5 to SMA Adaptor |                              | -              | -                | -               |  |  |
| RF Cable N-type, 10m            |                              | -              | -                | -               |  |  |
| RF Cable SMA, 2m                |                              |                |                  | -               |  |  |
| Ext Alarm Cable Custom, 4w, 5m  |                              | -              | -                | -               |  |  |
|                                 |                              |                |                  |                 |  |  |
| TEST SET                        | CT-10, DU-SIM                | -              | -                | -               |  |  |
| Software info                   |                              |                |                  |                 |  |  |
| IRU load: CXP9013268%25_R84EF   |                              |                |                  |                 |  |  |
| Table Notes                     |                              |                |                  |                 |  |  |

EUT (release R1A) was modified prior to testing. See customer provided modification detail in section 2.5.

Release date: 30 October, 2020 Page 21 of 78



# 3. Detailed test results of Emissions

Emissions from systems manifest themselves in two forms: conducted emissions on cables and radiated emissions from the entire system (i.e. electronic modules, hardware, and cables). Regulatory standards restrict these different forms of emissions generated by the system.

The temperature and humidity in the test facilities are controlled. The temperature is maintained between 20 °C and 25 °C, with a relative humidity between 30 % and 60 %. Levels are recorded and any exceptions are included in the detailed test results sections of this report.

#### 3.1 Measurement instrumentation

The measurement instrumentation conforms to the relevant standards in this report: ANSI C63.2, CISPR 16, CISPR 22, and CISPR 32. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

Release date: 30 October, 2020 Page 22 of 78



### 3.2 Radiated Emissions, E-field

This test verifies that the EUT does not produce excess amounts of E-field Radiated Emissions (RE) that could interfere with licensed radiators.

### 3.2.1 Test specification and limits

The testing requirements are as follows.

Table 13: RE test requirements

| Requirement                     | Method                              | Country of application |
|---------------------------------|-------------------------------------|------------------------|
| FCC Part 15, Subpart B          | FCC Part 15 / ANSI C63.4            | USA                    |
| FCC Part 24 (Section 24.238(a)) | ANSI C63.26                         | USA                    |
| FCC Part 27 (Section 27.53(h))  | ANSI C63.26                         | USA                    |
| ICES 003                        | FCC Part 15 / ICES 003 / ANSI C63.4 | Canada                 |
| RSS-Gen (Section 7.3)           | FCC Part 15 / ICES 003 / ANSI C63.4 | Canada                 |
| RSS-133 (Section 6.5)           | ANSI C63.26                         | Canada                 |
| RSS- 139 (Section 6.6)          | ANSI C63.26                         | Canada                 |
| RSS- 170 (Section 5.4 - 1 & 2)  | ANSI C63.26                         | Canada                 |

The limits of the RE tests are as follows.

Table 14: RE limits at 10 m for Class B of FCC Part 15, ICES 003 & RSS-Gen

| Frequency range<br>(MHz) | FCC Part 15 & ICES 003<br>(dBμV/m) | Detector   |
|--------------------------|------------------------------------|------------|
| 30 to 88                 | 29.5                               | Quasi-Peak |
| 88 to 216                | 33.0                               | Quasi-Peak |
| 216 to 960               | 35.5                               | Quasi-Peak |
| 960 to 1000              | 43.5                               | Quasi-Peak |
| 1000 to 40000            | 43.5 <sup>1</sup>                  | Average    |

Table 15: Emission limits for FCC Part 24, Part 27, RSS-133, RSS-139

| Frequency range | EIRP Limit | Calculated EIRP Limit  |  |  |
|-----------------|------------|------------------------|--|--|
| (MHz)           | (dBm)      | in dB <sub>µ</sub> V/m |  |  |
| 30 - 40000      | -13        | 82.2                   |  |  |

Release date: 30 October, 2020 Page 23 of 78



Table 16: Emission limits for RSS-170

| Frequency range<br>(MHz) | EIRP Limit<br>(dBm) | Calculated EIRP Limit in dBμV/m |
|--------------------------|---------------------|---------------------------------|
| 30 - 40000               | -13                 | 82.2                            |
| 2200 – 2290              | -100.6 dBW/4 kHz    | 48.6                            |

#### 3.2.2 Test procedure

Verifications of the test equipment and AFC were performed before the installation of the EUT in accordance with the quality assurance procedures documented in the EMC test procedures document. The test was performed according to the relevant procedures listed in Table 13.

- The EUT was placed on the turntable inside the AFC (configured for normal operation). The system and its cables were separated from the ground plane by an insulating support 10 mm in height.
- For tests between 30 MHz and 1 GHz the receive antenna (BiLog®) was placed 3 m away from the EUT. An initial scan was performed to find emissions/frequencies requiring detailed measurement. The pre-scan was performed by rotating the system 360 degrees while recording all emissions (frequency and amplitude). This procedure was repeated for antenna heights of 1 to 4 m, as well as both polarizations of the receiving antenna.
- For tests above 1 GHz the receive antenna (horn) was placed 3 m away from the EUT. Absorbing cones were placed on the floor between the antenna and the EUT. An initial scan was performed to find emissions/frequencies requiring detailed measurement. The pre-scan was performed by rotating the system 360 degrees while recording all emissions (frequency and amplitude). This procedure was repeated for antenna heights of 1 to 4 m, as well as both polarizations of the receiving antenna.
- For tests between 18 and 40 GHz the receive horn antenna was placed at a 1 m distance from the EUT with the absorbing cones placed on the floor. An initial scan was performed to find emissions/frequencies requiring detail measurement. The pre-scan was performed on all sides of the EUT, using both polarization of the receive antenna to find any system emissions.
- For all above frequency ranges, the pre-scan peak data was compared to the limits. Peaks with less than 6 dB of margin were maximized using the proper detector: the EUT was rotated in azimuth over 360 degrees to identify the direction of maximum emission, antenna height was then varied from 1 to 4 m to obtain maximum emission level.

Release date: 30 October, 2020 Page 24 of 78



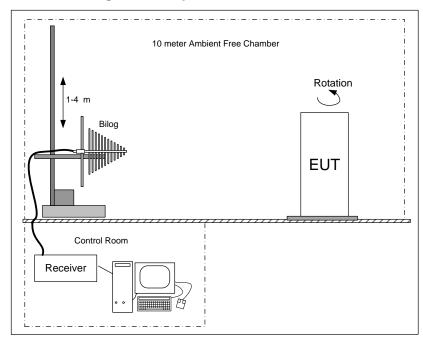



Figure 8: Setup of Radiated Emissions

### 3.2.3 Calculation of the compliance margin

The following example shows the way in which the compliance margin is calculated in the "RE Test Results" tables.

The rows in these tables are defined as follows.

Meter Reading  $(dB\mu V)$  = Voltage measured using the spectrum analyzer with the proper detector

Correction (dB) = Cumulative gain or loss of pre-amplifier and cables used in the

measurement path (dB) + Antenna Factor (dB)

Level  $(dB\mu V/m) =$  Corrected value or field strength, that is, the parameter of interest that is

compared to the limit

Margin (dB) = Level with respect to the appropriate limit (a negative Margin indicates

that the Level is below the limit and that the measurement is a Pass)

The values in the Level row are calculated as follows: Level = Meter Reading + Correction (dB)

The values in the Margin row are calculated as follows: Margin = Level - Limit

Release date: 30 October, 2020 Page 25 of 78



#### 3.2.4 Measurement uncertainties

The expanded measurement instrumentation uncertainty with a 95 % level of confidence, calculated according to the method described in CISPR 16 is:

- $\pm$  3.8 dB between 30 MHz and 1 GHz
- $\pm 4.7$  dB between 1 GHz and 10 GHz
- $\pm 4.8$  dB between 10 GHz and 18 GHz
- $\pm 4.6$  dB between 18 GHz and 26.5 GHz
- $\pm 4.8$  dB between 26.5 GHz and 40 GHz

Release date: 30 October, 2020 Page 26 of 78



# 3.2.5 Test results of Radiated Emissions (Single RAT/Single carrier, LTE 5M, Mid channel)

Test location: 10-meter Ambient Free Chamber (AFC)

Date tested: 7 October, 2020 Tested by: Krupal Patel

Test configurations are identified in the section Configurations of the EUT.

For the following test results that have supporting data tables, negative margin values indicate a pass.

Release date: 30 October, 2020 Page 27 of 78



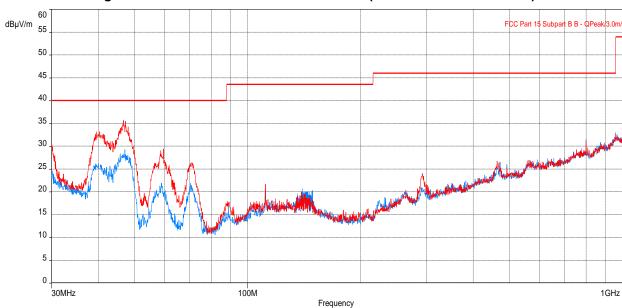



Figure 9: Plot of RE at 3 m - 30 to1000 MHz (LTE 5M - Middle channel)

Table 17: RE test results from 30 to 1000 MHz for FCC Part 15 (LTE 5M - Middle channel)

| Frequency<br>(MHz) | Level<br>Quasi Peak<br>(dBµV/m) | Limit<br>Quasi-peak<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|---------------------------------|---------------------------------|------------------------------------------|---------------|------------------|--------------|-----------------|
| 40.28408333        | 30.74                           | 40.00                           | -9.26                                    | 1.00          | 278.25           | Vertical     | -7.65           |
| 46.62750608        | 33.04                           | 40.00                           | -6.96                                    | 1.17          | 283.00           | Vertical     | -11.05          |
| 47.09347436        | 26.38                           | 40.00                           | -13.62                                   | 1.98          | 163.25           | Horizontal   | -11.32          |
| 799.9944518        | 32.88                           | 46.02                           | -13.14                                   | 1.66          | 304.50           | Horizontal   | 4.29            |

Table 18: RE test results from 30 to 1000 MHz for FCC Part 24/27 (LTE 5M – Middle channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|----------------|---------------|------------------|--------------|-----------------|
| 40.28408333        | 30.74             | 82.2                      | -51.46         | 1.00          | 278.25           | Vertical     | -7.65           |
| 46.62750608        | 33.04             | 82.2                      | -49.16         | 1.17          | 283.00           | Vertical     | -11.05          |
| 47.09347436        | 26.38             | 82.2                      | -55.82         | 1.98          | 163.25           | Horizontal   | -11.32          |
| 799.9944518        | 32.88             | 82.2                      | -49.32         | 1.66          | 304.50           | Horizontal   | 4.29            |

Note: In the table/Plot above, no emissions exceed the Part 24/Part 27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/Part 27, see antenna port conducted emissions in applicable test report.



dBµV/m 100 80 FCC Part 15 Subpart B B - Average/3.0m 40 20 1GHz Frequency 3GHz

Figure 10: Plot of RE at 3m from 1 to 3 GHz (LTE 5M – Middle channel)

Note: Peaks above the limit are leakage of the EUT's fundamentals from the 50-ohm terminations.

Table 19: RE test results from 1 to 3 GHz for FCC Part 15 (LTE 5M - Middle channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth<br>(degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|----------------------|--------------|-----------------|
| 2179.142308        | 39.19                        | 53.96                        | -14.77                                   | 1.00          | 4.00                 | Horizontal   | 4.30            |
| 2179.1417          | 39.16                        | 53.96                        | -14.80                                   | 4.00          | 0.00                 | Vertical     | 4.30            |
| 2346.538815        | 40.35                        | 53.96                        | -13.61                                   | 4.00          | 75.75                | Horizontal   | 4.38            |

Table 20: RE test results from 1 to 3 GHz for Part 24/27 (LTE 5M - Middle channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|-----------------|
| 2179.142308        | 39.19             | 82.2                      | -43.01            | 1.00          | 4.00              | Horizontal   | 4.30            |
| 2179.1417          | 39.16             | 82.2                      | -43.04            | 4.00          | 0.00              | Vertical     | 4.30            |
| 2346.538815        | 40.35             | 82.2                      | -41.85            | 4.00          | 75.75             | Horizontal   | 4.38            |

Note: In the table/Plot above, no emissions exceed the Part 24/Part 27 radiated spurious emissions limit when converted to dBuV/m, except for the fundamentals. For final spurious emissions measurements to FCC Part 24/Part 27, see antenna port conducted emissions in applicable test report.

Release date: 30 October, 2020 Page 29 of 78



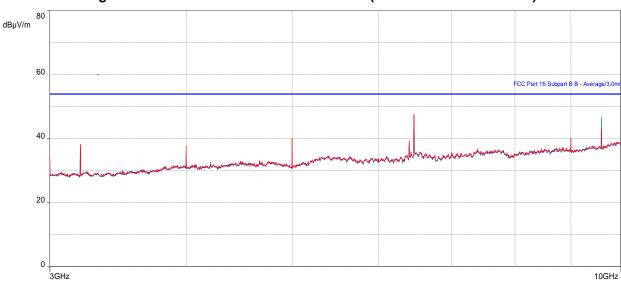



Figure 11: Plot of RE at 3m from 3 to 10 GHz (LTE 5M – Middle channel)

Table 21: RE test results from 3 to 10 GHz for FCC Part 15 (LTE 5M - Middle channel)

Frequency

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 6465.004808        | 30.98                        | 53.96                        | -22.98                                   | 4.00          | 362.00            | Vertical     | 0.33            |
| 9599.93529         | 43.11                        | 53.96                        | -10.85                                   | 4.00          | 333.50            | Vertical     | 5.81            |
| 6466.5708          | 31.20                        | 53.96                        | -22.76                                   | 2.56          | 68.75             | Horizontal   | 0.37            |
| 9599.93529         | 48.30                        | 53.96                        | -5.66                                    | 3.96          | 18.00             | Horizontal   | 5.81            |

Table 22: RE test results from 3 to 10 GHz for Part 24/27 (LTE 5M - Middle channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 6465.004808        | 30.98             | 82.2                      | -51.22            | 4.00          | 362.00            | Vertical     | 0.33               |
| 9599.93529         | 43.11             | 82.2                      | -39.09            | 4.00          | 333.50            | Vertical     | 5.81               |
| 6466.5708          | 31.20             | 82.2                      | -51.0             | 2.56          | 68.75             | Horizontal   | 0.37               |
| 9599.93529         | 48.30             | 82.2                      | -33.9             | 3.96          | 18.00             | Horizontal   | 5.81               |

Note: In the table/Plot above, no emissions exceed the Part 24/Part 27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/Part 27, see antenna port conducted emissions in applicable test report.





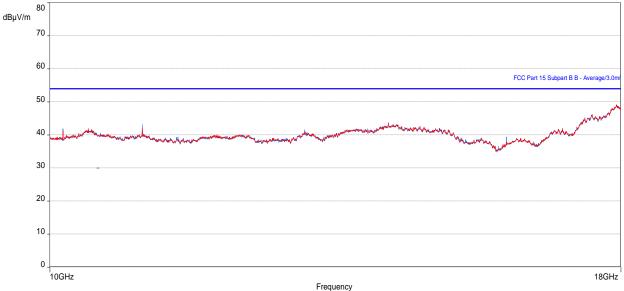



Table 23: RE test results from 10 to 18 GHz for FCC Part 15 (LTE 5M - Middle channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 10999.92531        | 40.95                        | 53.96                        | -13.01                                   | 1.00          | 33.50             | Horizontal   | 8.52            |
| 10999.92628        | 41.66                        | 53.96                        | -12.30                                   | 2.97          | 326.50            | Vertical     | 8.52            |
| 14168.76474        | 39.63                        | 53.96                        | -14.33                                   | 1.00          | -2.00             | Vertical     | 12.80           |
| 14289.96476        | 39.71                        | 53.96                        | -14.25                                   | 1.00          | 75.75             | Horizontal   | 13.10           |

Table 24: RE test results from 10 to 18 GHz for Part 24/27 (LTE 5M - Middle channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|-----------------|
| 10999.92531        | 40.95             | 82.2                      | -41.25            | 1.00          | 33.50             | Horizontal   | 8.52            |
| 10999.92628        | 41.66             | 82.2                      | -40.54            | 2.97          | 326.50            | Vertical     | 8.52            |
| 14168.76474        | 39.63             | 82.2                      | -42.57            | 1.00          | -2.00             | Vertical     | 12.80           |
| 14289.96476        | 39.71             | 82.2                      | -42.49            | 1.00          | 75.75             | Horizontal   | 13.10           |

Note: In the table/Plot above, no emissions exceed the Part 24/Part 27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/Part 27, see antenna port conducted emissions in applicable test report.





Figure 13: Plot of RE at 1m from 18 to 26.5 GHz (LTE 5M - Middle channel)

Note 1: In the plot above No Emissions exceeds the FCC Part 15/ICES 003 limit.

Note 2: In the plot above, no emissions exceed the Part 24/27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/27, see antenna port conducted emissions in applicable test report.

Frequency

Release date: 30 October, 2020 Page 32 of 78



# 3.2.6 Test results of Radiated Emissions (Single RAT/Single carrier, NR 10M, Bot channel)

Test location: 10-meter Ambient Free Chamber (AFC)

Date tested: 8 October, 2020 Tested by: Krupal Patel

Test configurations are identified in the section Configurations of the EUT.

For the following test results that have supporting data tables, negative margin values indicate a pass.

Release date: 30 October, 2020 Page 33 of 78



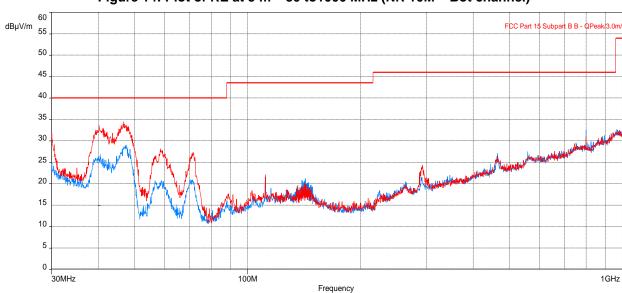



Figure 14: Plot of RE at 3 m - 30 to 1000 MHz (NR 10M - Bot channel)

Table 25: RE test results from 30 to 1000 MHz for FCC Part 15 (NR 10M - Bot channel)

| Frequency<br>(MHz) | Level<br>Quasi Peak<br>(dBµV/m) | Limit<br>Quasi-peak<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (deg) | Polarization | Correction<br>(dB) |
|--------------------|---------------------------------|---------------------------------|------------------------------------------|---------------|---------------|--------------|--------------------|
| 40.25559649        | 30.83                           | 40.00                           | -9.17                                    | 1.00          | 284.00        | Vertical     | -7.64              |
| 46.53623751        | 33.04                           | 40.00                           | -6.96                                    | 1.20          | 284.00        | Vertical     | -11.00             |
| 58.69761572        | 26.23                           | 40.00                           | -13.77                                   | 2.05          | 4.75          | Vertical     | -15.31             |
| 799.9944518        | 32.97                           | 46.02                           | -13.05                                   | 1.83          | 305.75        | Horizontal   | 4.29               |

Table 26: RE test results from 30 to 1000 MHz for FCC Part 24/27 (NR 10M - Bot channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|----------------|---------------|------------------|--------------|-----------------|
| 40.25559649        | 30.83             | 82.2                      | -51.37         | 1.00          | 284.00           | Vertical     | -7.64           |
| 46.53623751        | 33.04             | 82.2                      | -49.16         | 1.20          | 284.00           | Vertical     | -11.00          |
| 58.69761572        | 26.23             | 82.2                      | -55.97         | 2.05          | 4.75             | Vertical     | -15.31          |
| 799.9944518        | 32.97             | 82.2                      | -49.23         | 1.83          | 305.75           | Horizontal   | 4.29            |

Note: In the table/Plot above, no emissions exceed the Part 24/Part 27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/Part 27, see antenna port conducted emissions in applicable test report.



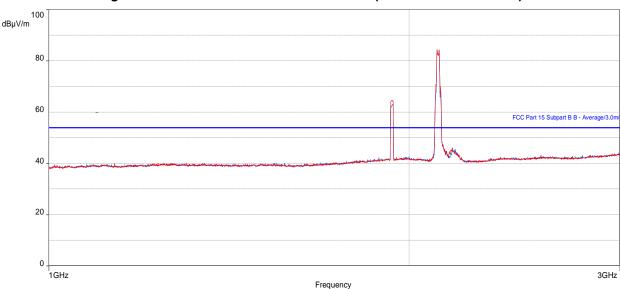



Figure 15: Plot of RE at 3m from 1 to 3 GHz (NR 10M – Bot channel)

Note: Peaks above the limit are leakage of the EUT's fundamentals from the 50-ohm terminations.

Table 27: RE test results from 1 to 3 GHz for FCC Part 15 (NR 10M - Bot channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 2174.082018        | 43.70                        | 53.96                        | -10.26                                   | 4.00          | 61.50             | Vertical     | 4.31            |
| 2180.81471         | 43.17                        | 53.96                        | -10.79                                   | 4.00          | 75.75             | Horizontal   | 4.30            |
| 2975.470833        | 39.86                        | 53.96                        | -14.10                                   | 1.00          | 117.50            | Horizontal   | 6.44            |

Table 28: RE test results from 1 to 3 GHz for Part 24/27 (NR 10M - Bot channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 2174.082018        | 43.70             | 82.2                      | -38.5             | 4.00          | 61.50             | Vertical     | 4.31               |
| 2180.81471         | 43.17             | 82.2                      | -39.03            | 4.00          | 75.75             | Horizontal   | 4.30               |
| 2975.470833        | 39.86             | 82.2                      | -42.34            | 1.00          | 117.50            | Horizontal   | 6.44               |

Note: In the table/Plot above, no emissions exceed the Part 24/Part 27 radiated spurious emissions limit when converted to dBuV/m, except for the fundamentals. For final spurious emissions measurements to FCC Part 24/Part 27, see antenna port conducted emissions in applicable test report.

Release date: 30 October, 2020 Page 35 of 78






Figure 16: Plot of RE at 3m from 3 to 10 GHz (NR 10M – Bot channel)

Table 29: RE test results from 3 to 10 GHz for FCC Part 15 (NR 10M - Bot channel)

Frequency

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 4999.965705        | 36.61                        | 53.96                        | -17.35                                   | 1.80          | -2.00             | Vertical     | -2.30           |
| 8999.93971         | 41.41                        | 53.96                        | -12.55                                   | 2.28          | 342.00            | Horizontal   | 4.29            |
| 9599.93529         | 45.36                        | 53.96                        | -8.60                                    | 3.95          | 18.25             | Horizontal   | 5.81            |
| 9599.93529         | 40.92                        | 53.96                        | -13.04                                   | 1.00          | 335.00            | Vertical     | 5.81            |

Table 30: RE test results from 3 to 10 GHz for Part 24/27 (NR 10M - Bot channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 4999.965705        | 36.61             | 53.96                     | -17.35            | 1.80          | -2.00             | Vertical     | -2.30              |
| 8999.93971         | 41.41             | 53.96                     | -12.55            | 2.28          | 342.00            | Horizontal   | 4.29               |
| 9599.93529         | 45.36             | 53.96                     | -8.60             | 3.95          | 18.25             | Horizontal   | 5.81               |
| 9599.93529         | 40.92             | 53.96                     | -13.04            | 1.00          | 335.00            | Vertical     | 5.81               |

Note: In the table/Plot above, no emissions exceed the Part 24/Part 27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/Part 27, see antenna port conducted emissions in applicable test report.

18GHz

10GHz



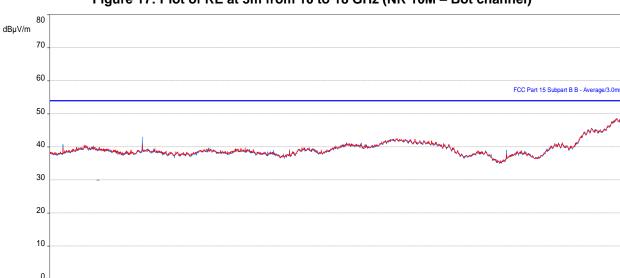



Figure 17: Plot of RE at 3m from 10 to 18 GHz (NR 10M – Bot channel)

Table 31: RE test results from 10 to 18 GHz for FCC Part 15 (NR 10M - Bot channel)

Frequency

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 10999.92531        | 40.49                        | 53.96                        | -13.47                                   | 1.87          | 40.75             | Horizontal   | 8.52            |
| 10999.92531        | 39.03                        | 53.96                        | -14.93                                   | 1.00          | 10.00             | Vertical     | 8.52            |
| 14293.45322        | 39.02                        | 53.96                        | -14.94                                   | 4.00          | 2.50              | Horizontal   | 13.09           |
| 14300.75896        | 39.12                        | 53.96                        | -14.84                                   | 4.00          | 357.50            | Vertical     | 13.06           |

Table 32: RE test results from 10 to 18 GHz for Part 24/27 (NR 10M - Bot channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 10999.92531        | 40.49             | 82.2                      | -41.71            | 1.87          | 40.75             | Horizontal   | 8.52               |
| 10999.92531        | 39.03             | 82.2                      | -43.17            | 1.00          | 10.00             | Vertical     | 8.52               |
| 14293.45322        | 39.02             | 82.2                      | -43.18            | 4.00          | 2.50              | Horizontal   | 13.09              |
| 14300.75896        | 39.12             | 82.2                      | -43.08            | 4.00          | 357.50            | Vertical     | 13.06              |



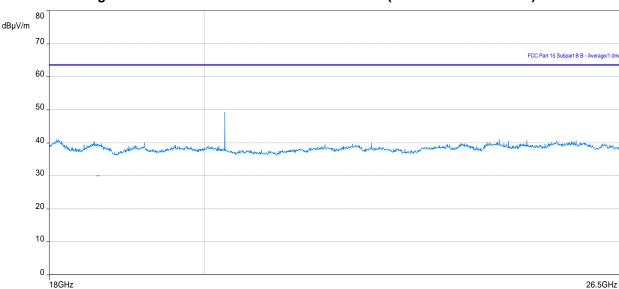



Figure 18: Plot of RE at 1m from 18 to 26.5 GHz (NR 10M – Bot channel)

Note 1: In the plot above No Emissions exceeds the FCC Part 15/ICES 003 limit.

Note 2: In the plot above, no emissions exceed the Part 24/27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/27, see antenna port conducted emissions in applicable test report.

Frequency

Release date: 30 October, 2020 Page 38 of 78



# 3.2.7 Test results of Radiated Emissions (Single RAT/single carrier, NR 10M, Mid channel)

Test location: 10-meter Ambient Free Chamber (AFC)

Date tested: 8 October, 2020

Tested by: Krupal Patel

Test configurations are identified in the section Configurations of the EUT.

For the following test results that have supporting data tables, negative margin values indicate a pass.

Release date: 30 October, 2020 Page 39 of 78



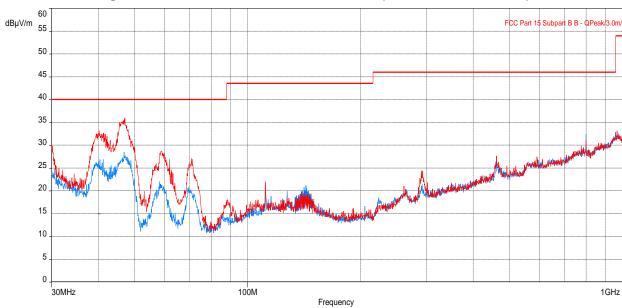



Figure 19: Plot of RE at 3 m - 30 to 1000 MHz (NR 10M - Mid channel)

Table 33: RE test results from 30 to 1000 MHz for FCC Part 15 (NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>Quasi Peak<br>(dBµV/m) | Limit<br>Quasi-peak<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction<br>(dB) |
|--------------------|---------------------------------|---------------------------------|------------------------------------------|---------------|------------------|--------------|--------------------|
| 40.17253879        | 30.81                           | 40.00                           | -9.19                                    | 1.00          | 283.00           | Vertical     | -7.59              |
| 47.06258367        | 32.67                           | 40.00                           | -7.33                                    | 1.23          | 283.00           | Vertical     | -11.30             |
| 59.05873044        | 26.27                           | 40.00                           | -13.73                                   | 2.10          | 24.00            | Vertical     | -15.34             |
| 799.9946121        | 33.02                           | 46.02                           | -13.00                                   | 1.67          | 304.75           | Horizontal   | 4.29               |

Table 34: RE test results from 30 to 1000 MHz for FCC Part 24/27 (NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|----------------|---------------|------------------|--------------|-----------------|
| 40.17253879        | 30.81             | 82.2                      | -51.39         | 1.00          | 283.00           | Vertical     | -7.59           |
| 47.06258367        | 32.67             | 82.2                      | -49.53         | 1.23          | 283.00           | Vertical     | -11.30          |
| 59.05873044        | 26.27             | 82.2                      | -55.93         | 2.10          | 24.00            | Vertical     | -15.34          |
| 799.9946121        | 33.02             | 82.2                      | -49.18         | 1.67          | 304.75           | Horizontal   | 4.29            |



dBµV/m 100 80 FCC Part 15 Subpart B B - Average/3.0m 20 1GHz Frequency

Figure 20: Plot of RE at 3m from 1 to 3 GHz (NR 10M – Mid channel)

Note: Peaks above the limit are leakage of the EUT's fundamentals from the 50-ohm terminations.

Table 35: RE test results from 1 to 3 GHz for FCC Part 15 (NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 2000.463495        | 41.07                        | 53.96                        | -12.89                                   | 4.00          | 61.50             | Vertical     | 4.55            |
| 2948.94391         | 39.25                        | 53.96                        | -14.71                                   | 1.00          | 359.75            | Vertical     | 6.11            |
| 963.254454         | 39.75                        | 53.96                        | -14.21                                   | 3.82          | 359.75            | Horizontal   | 6.29            |

Table 36: RE test results from 1 to 3 GHz for Part 24/27 (NR 10M – Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 2000.463495        | 41.07             | 53.96                     | -12.89            | 4.00          | 61.50             | Vertical     | 4.55               |
| 2948.94391         | 39.25             | 53.96                     | -14.71            | 1.00          | 359.75            | Vertical     | 6.11               |
| 2963.254454        | 39.75             | 53.96                     | -14.21            | 3.82          | 359.75            | Horizontal   | 6.29               |



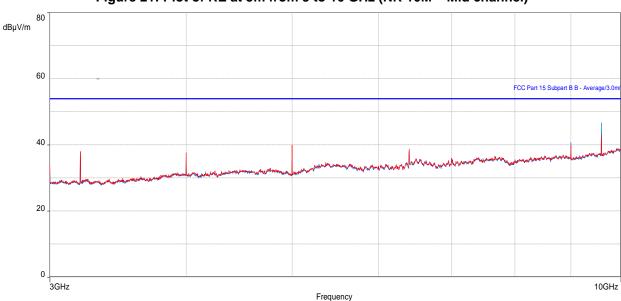



Figure 21: Plot of RE at 3m from 3 to 10 GHz (NR 10M – Mid channel)

Table 37: RE test results from 3 to 10 GHz for FCC Part 15 (NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 4999.965705        | 40.48                        | 53.96                        | -13.48                                   | 2.01          | 333.50            | Vertical     | -2.30           |
| 8999.93971         | 40.11                        | 53.96                        | -13.85                                   | 1.94          | 4.25              | Horizontal   | 4.29            |
| 9599.93529         | 48.27                        | 53.96                        | -5.69                                    | 3.11          | 11.00             | Horizontal   | 5.81            |
| 9599.93529         | 42.91                        | 53.96                        | -11.05                                   | 4.00          | 334.75            | Vertical     | 5.81            |

Table 38: RE test results from 3 to 10 GHz for Part 24/27 (NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|-----------------|
| 4999.965705        | 40.48             | 82.2                      | -41.72            | 2.01          | 333.50            | Vertical     | -2.30           |
| 8999.93971         | 40.11             | 82.2                      | -42.09            | 1.94          | 4.25              | Horizontal   | 4.29            |
| 9599.93529         | 48.27             | 82.2                      | -33.93            | 3.11          | 11.00             | Horizontal   | 5.81            |
| 9599.93529         | 42.91             | 82.2                      | -39.29            | 4.00          | 334.75            | Vertical     | 5.81            |

18GHz

10GHz



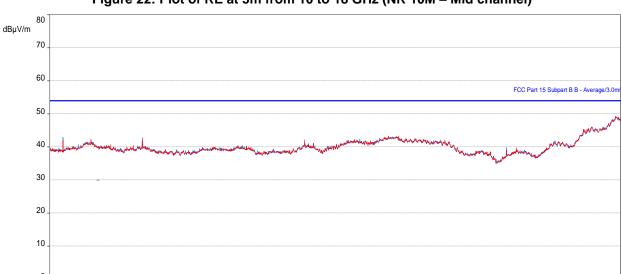



Figure 22: Plot of RE at 3m from 10 to 18 GHz (NR 10M - Mid channel)

Table 39: RE test results from 10 to 18 GHz for FCC Part 15 (NR 10M - Mid channel)

Frequency

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 10137.53172        | 40.92                        | 53.96                        | -13.04                                   | 1.00          | 26.25             | Horizontal   | 8.52            |
| 10999.92628        | 42.53                        | 53.96                        | -11.43                                   | 1.87          | 41.00             | Horizontal   | 8.52            |
| 10999.92691        | 41.36                        | 53.96                        | -12.60                                   | 2.21          | 342.50            | Vertical     | 8.52            |
| 14172.30704        | 39.88                        | 53.96                        | -14.08                                   | 1.00          | 17.75             | Horizontal   | 12.74           |

Table 40: RE test results from 10 to 18 GHz for Part 24/27 (NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|-----------------|
| 10137.53172        | 40.92             | 82.2                      | -41.28            | 1.00          | 26.25             | Horizontal   | 8.52            |
| 10999.92628        | 42.53             | 82.2                      | -39.67            | 1.87          | 41.00             | Horizontal   | 8.52            |
| 0999.92691         | 41.36             | 82.2                      | -40.84            | 2.21          | 342.50            | Vertical     | 8.52            |
| 14172.30704        | 39.88             | 82.2                      | -42.32            | 1.00          | 17.75             | Horizontal   | 12.74           |



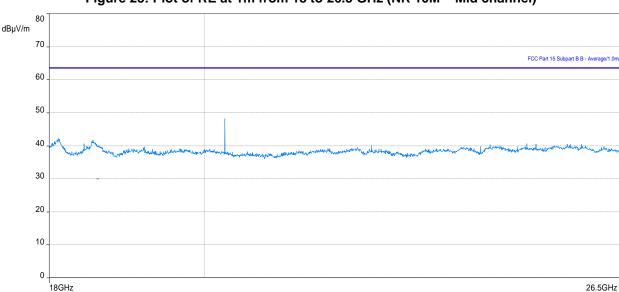



Figure 23: Plot of RE at 1m from 18 to 26.5 GHz (NR 10M – Mid channel)

Note 1: In the plot above No Emissions exceeds the FCC Part 15/ICES 003 limit.

Note 2: In the plot above, no emissions exceed the Part 24/27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/27, see antenna port conducted emissions in applicable test report.

Frequency

Release date: 30 October, 2020 Page 44 of 78



# 3.2.8 Test results of Radiated Emissions (Single RAT/single carrier, NR 10M, Top channel)

Test location: 10-meter Ambient Free Chamber (AFC)

Date tested: 8 October, 2020

Tested by: Krupal Patel

Test configurations are identified in the section Configurations of the EUT.

For the following test results that have supporting data tables, negative margin values indicate a pass.

Release date: 30 October, 2020 Page 45 of 78



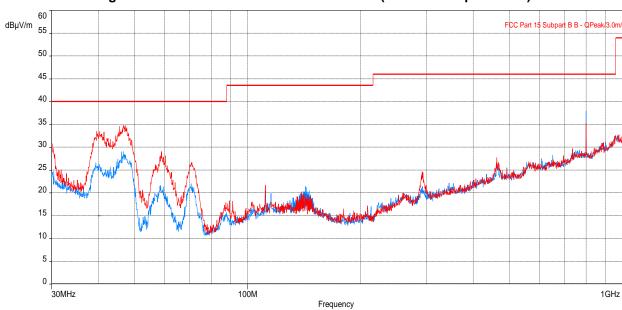



Figure 24: Plot of RE at 3 m - 30 to1000 MHz (NR 10M - Top channel)

Table 41: RE test results from 30 to 1000 MHz for FCC Part 15 (NR 10M - Top channel)

| Frequency<br>(MHz) | Level<br>Quasi Peak<br>(dBµV/m) | Limit<br>Quasi-peak<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|---------------------------------|---------------------------------|------------------------------------------|---------------|------------------|--------------|-----------------|
| 40.14946187        | 30.87                           | 40.00                           | -9.13                                    | 1.00          | 283.00           | Vertical     | -7.57           |
| 46.63503813        | 33.12                           | 40.00                           | -6.88                                    | 1.00          | 283.25           | Vertical     | -11.05          |
| 799.9946121        | 37.84                           | 46.02                           | -8.18                                    | 1.93          | 305.75           | Horizontal   | 4.29            |
| 799.9946121        | 35.72                           | 46.02                           | -10.30                                   | 1.80          | 357.50           | Vertical     | 4.29            |

Table 42: RE test results from 30 to 1000 MHz for FCC Part 24/27 (NR 10M - Top channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|----------------|---------------|------------------|--------------|-----------------|
| 40.14946187        | 30.87             | 82.2                      | -51.33         | 1.00          | 283.00           | Vertical     | -7.57           |
| 46.63503813        | 33.12             | 82.2                      | -49.08         | 1.00          | 283.25           | Vertical     | -11.05          |
| 799.9946121        | 37.84             | 82.2                      | -44.36         | 1.93          | 305.75           | Horizontal   | 4.29            |
| 799.9946121        | 35.72             | 82.2                      | -46.48         | 1.80          | 357.50           | Vertical     | 4.29            |



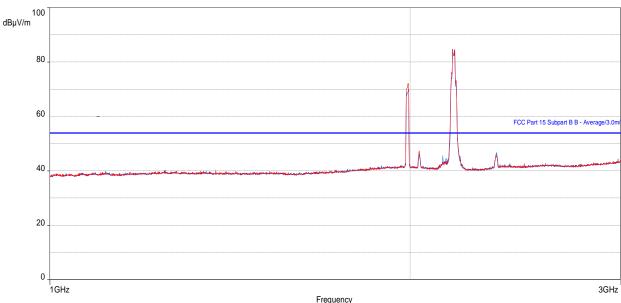



Figure 25: Plot of RE at 3m from 1 to 3 GHz (NR 10M – Top channel)

Note: Peaks above the limit are leakage of the EUT's fundamentals from the 50-ohm terminations.

Table 43: RE test results from 1 to 3 GHz for FCC Part 15 (NR 10M - Top channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 2034.858687        | 45.01                        | 53.96                        | -8.95                                    | 4.00          | 62.25             | Vertical     | 4.53            |
| 2036.108654        | 42.88                        | 53.96                        | -11.08                                   | 4.00          | 76.75             | Horizontal   | 4.53            |
| 2361.94811         | 43.32                        | 53.96                        | -10.64                                   | 4.00          | 76.50             | Horizontal   | 4.50            |

Table 44: RE test results from 1 to 3 GHz for Part 24/27 (NR 10M – Top channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|-----------------|
| 2034.858687        | 45.01             | 82.2                      | -37.19            | 4.00          | 62.25             | Vertical     | 4.53            |
| 2036.108654        | 42.88             | 82.2                      | -39.32            | 4.00          | 76.75             | Horizontal   | 4.53            |
| 2361.94811         | 43.32             | 82.2                      | -38.88            | 4.00          | 76.50             | Horizontal   | 4.50            |



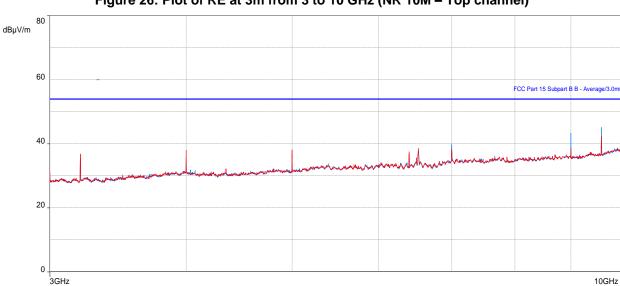



Figure 26: Plot of RE at 3m from 3 to 10 GHz (NR 10M – Top channel)

Table 45: RE test results from 3 to 10 GHz for FCC Part 15 (NR 10M - Top channel)

Frequency

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 4999.966633        | 33.42                        | 53.96                        | -20.54                                   | 1.01          | 12.25             | Horizontal   | -2.30           |
| 6526.355482        | 30.75                        | 53.96                        | -23.21                                   | 1.00          | 321.50            | Vertical     | 0.55            |
| 8999.93971         | 42.13                        | 53.96                        | -11.83                                   | 2.28          | 343.00            | Horizontal   | 4.29            |
| 9599.93529         | 45.61                        | 53.96                        | -8.35                                    | 3.95          | 19.00             | Horizontal   | 5.81            |

Table 46: RE test results from 3 to 10 GHz for Part 24/27 (NR 10M - Top channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|----------------|---------------|-------------------|--------------|-----------------|
| 4999.966633        | 33.42             | 82.2                      | -48.78         | 1.01          | 12.25             | Horizontal   | -2.30           |
| 6526.355482        | 30.75             | 82.2                      | -51.45         | 1.00          | 321.50            | Vertical     | 0.55            |
| 8999.93971         | 42.13             | 82.2                      | -40.07         | 2.28          | 343.00            | Horizontal   | 4.29            |
| 9599.93529         | 45.61             | 82.2                      | -36.59         | 3.95          | 19.00             | Horizontal   | 5.81            |



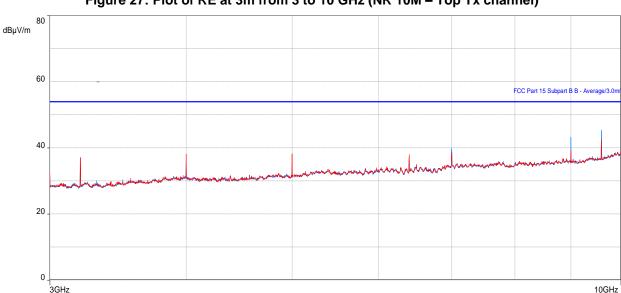



Figure 27: Plot of RE at 3m from 3 to 10 GHz (NR 10M – Top Tx channel)

Table 47: RE test results from 3 to 10 GHz for FCC Part 15 (NR 10M - Top Tx channel)


Frequency

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 3999.972723        | 35.01                        | 53.96                        | -18.95                                   | 2.01          | 328.75            | Horizontal   | -3.74           |
| 4999.965705        | 36.65                        | 53.96                        | -17.31                                   | 1.59          | -2.00             | Vertical     | -2.30           |
| 8999.93971         | 41.56                        | 53.96                        | -12.40                                   | 2.28          | 342.00            | Horizontal   | 4.29            |
| 9599.93529         | 45.27                        | 53.96                        | -8.69                                    | 3.95          | 18.00             | Horizontal   | 5.81            |

Table 48: RE test results from 3 to 10 GHz for Part 24/27 (NR 10M - Top Tx channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 3999.972723        | 35.01             | 82.2                      | -47.19            | 2.01          | 328.75            | Horizontal   | -3.74              |
| 4999.965705        | 36.65             | 82.2                      | -45.55            | 1.59          | -2.00             | Vertical     | -2.30              |
| 8999.93971         | 41.56             | 82.2                      | -40.64            | 2.28          | 342.00            | Horizontal   | 4.29               |
| 9599.93529         | 45.27             | 82.2                      | -36.93            | 3.95          | 18.00             | Horizontal   | 5.81               |





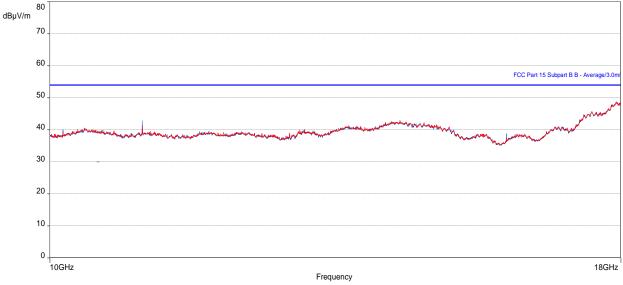



Table 49: RE test results from 10 to 18 GHz for FCC Part 15 (NR 10M - Top channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 10999.92468        | 40.61                        | 53.96                        | -13.35                                   | 1.87          | 40.75             | Horizontal   | 8.52            |
| 10999.92468        | 39.70                        | 53.96                        | -14.26                                   | 1.00          | 9.50              | Vertical     | 8.52            |
| 14290.23814        | 39.10                        | 53.96                        | -14.86                                   | 4.00          | 357.00            | Horizontal   | 13.10           |
| 14338.90418        | 39.10                        | 53.96                        | -14.86                                   | 4.00          | 360.00            | Vertical     | 13.61           |

Table 50: RE test results from 10 to 18 GHz for Part 24/27 (NR 10M - Top channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 10999.92468        | 40.61             | 82.2                      | -41.59            | 1.87          | 40.75             | Horizontal   | 8.52               |
| 10999.92468        | 39.70             | 82.2                      | -42.50            | 1.00          | 9.50              | Vertical     | 8.52               |
| 4290.23814         | 39.10             | 82.2                      | -43.10            | 4.00          | 357.00            | Horizontal   | 13.10              |
| 14338.90418        | 39.10             | 82.2                      | -43.10            | 4.00          | 360.00            | Vertical     | 13.61              |



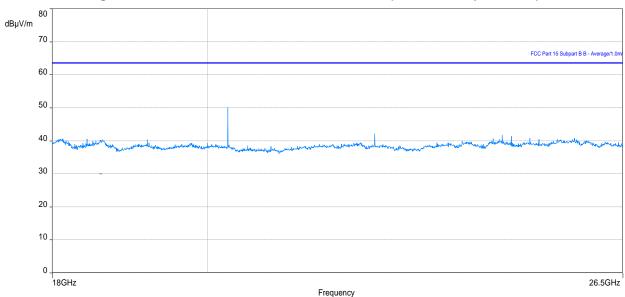



Figure 29: Plot of RE at 1m from 18 to 26.5 GHz (NR 10M – Top channel)

Note 1: In the plot above No Emissions exceeds the FCC Part 15/ICES 003 limit.

Note 2: In the plot above, no emissions exceed the Part 24/27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/27, see antenna port conducted emissions in applicable test report.

Release date: 30 October, 2020 Page 51 of 78



# 3.2.9 Test results of Radiated Emissions (Single RAT/Multi carrier, 2 NR 10M, Mid channel)

Test location: 10-meter Ambient Free Chamber (AFC)

Date tested: 13 October, 2020

Tested by: Krupal Patel

Test configurations are identified in the section Configurations of the EUT.

For the following test results that have supporting data tables, negative margin values indicate a pass.

Release date: 30 October, 2020 Page 52 of 78



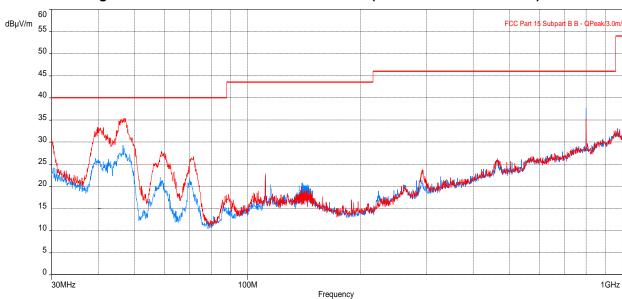



Figure 30: Plot of RE at 3 m - 30 to1000 MHz (2 \* NR 10M - Mid channel)

Table 51: RE test results from 30 to 1000 MHz for FCC Part 15 (2 \* NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>Quasi Peak<br>(dBµV/m) | Limit<br>Quasi-peak<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction<br>(dB) |
|--------------------|---------------------------------|---------------------------------|------------------------------------------|---------------|------------------|--------------|--------------------|
| 39.72560223        | 30.85                           | 40.00                           | -9.15                                    | 1.00          | 268.50           | Vertical     | -7.32              |
| 46.95741059        | 32.88                           | 40.00                           | -7.12                                    | 1.30          | 283.00           | Vertical     | -11.25             |
| 58.80339103        | 26.25                           | 40.00                           | -13.75                                   | 2.10          | 0.00             | Vertical     | -15.32             |
| 799.9946538        | 38.14                           | 46.02                           | -7.88                                    | 1.87          | 304.50           | Horizontal   | 4.29               |

Table 52: RE test results from 30 to 1000 MHz for FCC Part 24/27 (2 \* NR 10M – Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|----------------|---------------|------------------|--------------|-----------------|
| 39.72560223        | 30.85             | 82.2                      | -51.35         | 1.00          | 268.50           | Vertical     | -7.32           |
| 46.95741059        | 32.88             | 82.2                      | -49.32         | 1.30          | 283.00           | Vertical     | -11.25          |
| 58.80339103        | 26.25             | 82.2                      | -55.95         | 2.10          | 0.00             | Vertical     | -15.32          |
| 799.9946538        | 38.14             | 82.2                      | -44.06         | 1.87          | 304.50           | Horizontal   | 4.29            |



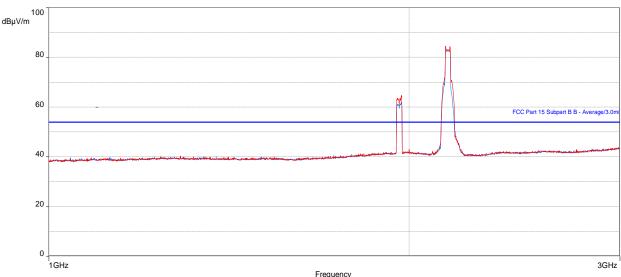



Figure 31: Plot of RE at 3m from 1 to 3 GHz (2 \* NR 10M – Mid channel)

Note: Peaks above the limit are leakage of the EUT's fundamentals from the 50-ohm terminations.

Table 53: RE test results from 1 to 3 GHz for FCC Part 15 (2 \* NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 1999.987179        | 40.24                        | 53.96                        | -13.72                                   | 3.41          | 55.00             | Horizontal   | 4.55            |
| 1999.986251        | 38.75                        | 53.96                        | -15.21                                   | 4.00          | 76.50             | Vertical     | 4.55            |
| 2948.068623        | 39.62                        | 53.96                        | -14.34                                   | 1.00          | 110.25            | Horizontal   | 6.10            |
| 2957.187787        | 39.13                        | 53.96                        | -14.83                                   | 1.00          | 328.75            | Vertical     | 6.22            |

Table 54: RE test results from 1 to 3 GHz for Part 24/27 (2 \* NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP Limit<br>(dBµV/m) | Margin to (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|------------------------|----------------|---------------|-------------------|--------------|-----------------|
| 1999.987179        | 40.24             | 82.2                   | -41.96         | 3.41          | 55.00             | Horizontal   | 4.55            |
| 1999.986251        | 38.75             | 82.2                   | -43.45         | 4.00          | 76.50             | Vertical     | 4.55            |
| 2948.068623        | 39.62             | 82.2                   | -42.58         | 1.00          | 110.25            | Horizontal   | 6.10            |
| 2957.187787        | 39.13             | 82.2                   | -43.07         | 1.00          | 328.75            | Vertical     | 6.22            |

10GHz

3GHz



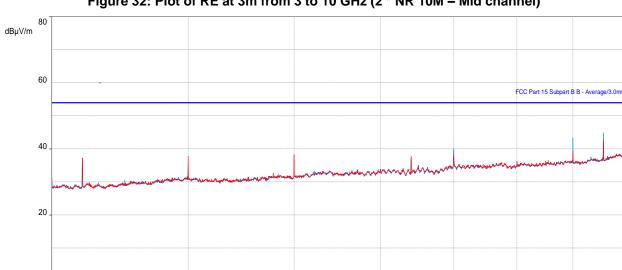



Figure 32: Plot of RE at 3m from 3 to 10 GHz (2 \* NR 10M – Mid channel)

Table 55: RE test results from 3 to 10 GHz for FCC Part 15 (2 \* NR 10M - Mid channel)

Frequency

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 4999.965705        | 36.78                        | 53.96                        | -17.18                                   | 1.80          | -2.00             | Vertical     | -2.30           |
| 8999.939136        | 41.65                        | 53.96                        | -12.31                                   | 2.07          | 342.00            | Horizontal   | 4.29            |
| 9599.93529         | 45.35                        | 53.96                        | -8.61                                    | 3.95          | 18.00             | Horizontal   | 5.81            |
| 9599.93529         | 40.97                        | 53.96                        | -12.99                                   | 1.00          | 334.75            | Vertical     | 5.81            |

Table 56: RE test results from 3 to 10 GHz for Part 24/27 (2 \* NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|-----------------|
| 4999.965705        | 36.78             | 82.2                      | -45.42            | 1.80          | -2.00             | Vertical     | -2.30           |
| 8999.939136        | 41.65             | 82.2                      | -40.55            | 2.07          | 342.00            | Horizontal   | 4.29            |
| 9599.93529         | 45.35             | 82.2                      | -36.85            | 3.95          | 18.00             | Horizontal   | 5.81            |
| 9599.93529         | 40.97             | 82.2                      | -41.23            | 1.00          | 334.75            | Vertical     | 5.81            |





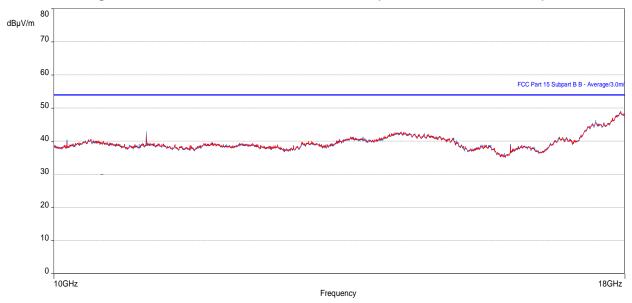



Table 57: RE test results from 10 to 18 GHz for FCC Part 15 (2 \* NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|--------------------|
| 10999.92468        | 40.67                        | 53.96                        | -13.29                                   | 1.87          | 40.75             | Horizontal   | 8.52               |
| 10999.92468        | 39.68                        | 53.96                        | -14.28                                   | 1.00          | 9.50              | Vertical     | 8.52               |
| 14289.86056        | 39.01                        | 53.96                        | -14.95                                   | 1.00          | 24.00             | Horizontal   | 13.10              |
| 14300.09776        | 39.22                        | 53.96                        | -14.74                                   | 4.00          | 342.75            | Vertical     | 13.06              |

Table 58: RE test results from 10 to 18 GHz for Part 24/27 (2 \* NR 10M - Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 10999.92468        | 40.67             | 82.2                      | -41.53            | 1.87          | 40.75             | Horizontal   | 8.52               |
| 10999.92468        | 39.68             | 82.2                      | -42.52            | 1.00          | 9.50              | Vertical     | 8.52               |
| 14289.86056        | 39.01             | 82.2                      | -43.19            | 1.00          | 24.00             | Horizontal   | 13.10              |
| 14300.09776        | 39.22             | 82.2                      | -42.98            | 4.00          | 342.75            | Vertical     | 13.06              |



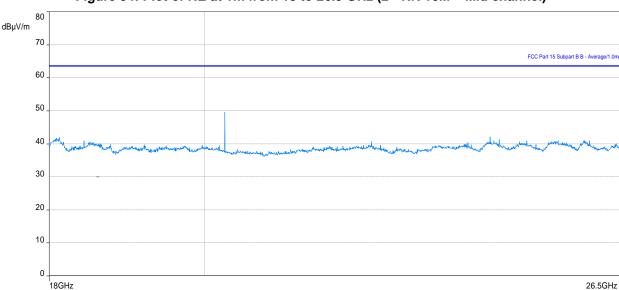



Figure 34: Plot of RE at 1m from 18 to 26.5 GHz (2 \* NR 10M - Mid channel)

Note 1: In the plot above No Emissions exceeds the FCC Part 15/ICES 003 limit.

Note 2: In the plot above, no emissions exceed the Part 24/27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/27, see antenna port conducted emissions in applicable test report.

Frequency

Release date: 30 October, 2020 Page 57 of 78

26.5GHz



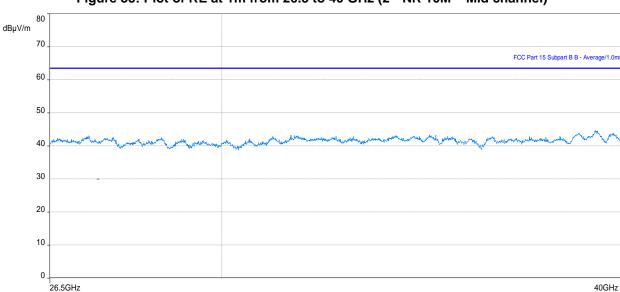



Figure 35: Plot of RE at 1m from 26.5 to 40 GHz (2 \* NR 10M - Mid channel)

Note 1: In the plot above No Emissions exceeds the FCC Part 15/ICES 003 limit.

Note 2: In the plot above, no emissions exceed the Part 24/27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/27, see antenna port conducted emissions in applicable test report.

Frequency

Release date: 30 October, 2020 Page 58 of 78



#### 3.2.10 Test results of Radiated Emissions (Multi RAT/Carrier, L5+2NR10, Mid channel)

Test location: 10-meter Ambient Free Chamber (AFC)

Date tested: 13 October, 2020

Tested by: Krupal Patel

Test configurations are identified in the section Configurations of the EUT.

For the following test results that have supporting data tables, negative margin values indicate a pass.

Release date: 30 October, 2020 Page 59 of 78



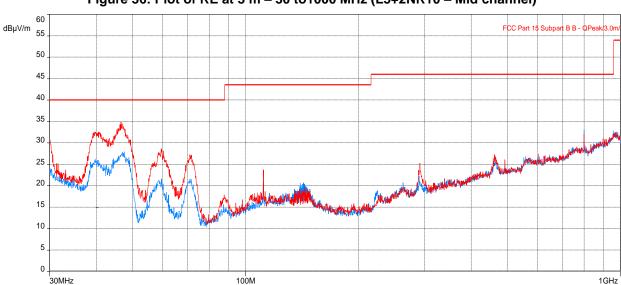



Figure 36: Plot of RE at 3 m - 30 to1000 MHz (L5+2NR10 - Mid channel)

Table 59: RE test results from 30 to 1000 MHz for FCC Part 15 (L5+2NR10, Mid channel)

Frequency

| Frequency<br>(MHz) | Level<br>Quasi Peak<br>(dBµV/m) | Limit<br>Quasi-peak<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|---------------------------------|---------------------------------|------------------------------------------|---------------|------------------|--------------|-----------------|
| 40.68999326        | 30.14                           | 40.00                           | -9.86                                    | 1.00          | 278.00           | Vertical     | -7.89           |
| 46.52012821        | 32.78                           | 40.00                           | -7.22                                    | 1.20          | 276.75           | Vertical     | -10.99          |
| 47.21703813        | 26.03                           | 40.00                           | -13.97                                   | 1.93          | 167.75           | Horizontal   | -11.37          |
| 799.9946538        | 33.08                           | 46.02                           | -12.94                                   | 1.68          | 298.25           | Horizontal   | 4.29            |

Table 60: RE test results from 30 to 1000 MHz for FCC Part 24/27 (L5+2NR10, Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to (dB) | Height<br>(m) | Azimuth<br>(deg) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|----------------|---------------|------------------|--------------|-----------------|
| 40.68999326        | 30.14             | 82.2                      | -52.06         | 1.00          | 278.00           | Vertical     | -7.89           |
| 46.52012821        | 32.78             | 82.2                      | -49.42         | 1.20          | 276.75           | Vertical     | -10.99          |
| 47.21703813        | 26.03             | 82.2                      | -56.17         | 1.93          | 167.75           | Horizontal   | -11.37          |
| 799.9946538        | 33.08             | 82.2                      | -49.12         | 1.68          | 298.25           | Horizontal   | 4.29            |



dBµV/m 100 80 FCC Part 15 Subpart B B - Average/3.0m 40 20 1GHz Frequency 3GHz

Figure 37: Plot of RE at 3m from 1 to 3 GHz (L5+2NR10 - Mid channel)

Note: Peaks above the limit are leakage of the EUT's fundamentals from the 50-ohm terminations.

Table 61: RE test results from 1 to 3 GHz for FCC Part 15 (L5+2NR10, Mid channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|--------------------|
| 1999.985577        | 38.61                        | 53.96                        | -15.35                                   | 4.00          | 328.75            | Horizontal   | 4.55               |
| 2002.299967        | 42.37                        | 53.96                        | -11.59                                   | 4.00          | 61.50             | Vertical     | 4.54               |
| 2942.453559        | 39.57                        | 53.96                        | -14.39                                   | 1.00          | 103.25            | Horizontal   | 6.06               |
| 2959.200608        | 39.32                        | 53.96                        | -14.64                                   | 1.00          | 360.00            | Vertical     | 6.24               |

Table 62: RE test results from 1 to 3 GHz for Part 24/27 (L5+2NR10, Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP Limit<br>(dBµV/m) | Margin to<br>(dB) | Height (m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|------------------------|-------------------|------------|-------------------|--------------|-----------------|
| 1999.985577        | 38.61             | 82.2                   | -43.59            | 4.00       | 328.75            | Horizontal   | 4.55            |
| 2002.299967        | 42.37             | 82.2                   | -39.83            | 4.00       | 61.50             | Vertical     | 4.54            |
| 2942.453559        | 39.57             | 82.2                   | -42.63            | 1.00       | 103.25            | Horizontal   | 6.06            |
| 2959.200608        | 39.32             | 82.2                   | -42.88            | 1.00       | 360.00            | Vertical     | 6.24            |

10GHz

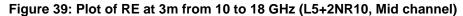
3GHz





Figure 38: Plot of RE at 3m from 3 to 10 GHz (L5+2NR10, Mid channel)

Table 63: RE test results from 3 to 10 GHz for FCC Part 15 (L5+2NR10, Mid channel)


Frequency

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 3199.977918        | 35.91                        | 53.96                        | -18.05                                   | 2.10          | 31.00             | Horizontal   | -6.27           |
| 4999.965705        | 40.44                        | 53.96                        | -13.52                                   | 2.01          | 333.75            | Vertical     | -2.30           |
| 8999.93971         | 39.07                        | 53.96                        | -14.89                                   | 1.00          | 0.00              | Horizontal   | 4.29            |
| 9599.93529         | 48.09                        | 53.96                        | -5.87                                    | 3.96          | 12.00             | Horizontal   | 5.81            |

Table 64: RE test results from 3 to 10 GHz for Part 24/27 (L5+2NR10, Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction<br>(dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|--------------------|
| 3199.977918        | 35.91             | 82.2                      | -46.29            | 2.10          | 31.00             | Horizontal   | -6.27              |
| 4999.965705        | 40.44             | 82.2                      | -41.76            | 2.01          | 333.75            | Vertical     | -2.30              |
| 8999.93971         | 39.07             | 82.2                      | -43.13            | 1.00          | 0.00              | Horizontal   | 4.29               |
| 9599.93529         | 48.09             | 82.2                      | -34.11            | 3.96          | 12.00             | Horizontal   | 5.81               |





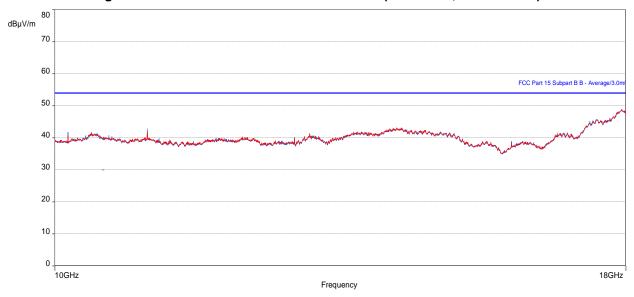



Table 65: RE test results from 10 to 18 GHz for FCC Part 15 (L5+2NR10, Mid channel)

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV/m) | Limit<br>Average<br>(dBµV/m) | Margin to<br>FCC part 15<br>Class B (dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|------------------------------|------------------------------|------------------------------------------|---------------|-------------------|--------------|-----------------|
| 10420.71729        | 37.70                        | 53.96                        | -16.26                                   | 3.82          | 0.00              | Horizontal   | 10.43           |
| 10999.92691        | 42.07                        | 53.96                        | -11.89                                   | 1.80          | 41.00             | Horizontal   | 8.52            |
| 14216.24774        | 39.54                        | 53.96                        | -14.42                                   | 1.00          | -0.25             | Vertical     | 12.67           |
| 14288.41604        | 39.72                        | 53.96                        | -14.24                                   | 4.00          | 359.75            | Horizontal   | 13.09           |

Table 66: RE test results from 10 to 18 GHz for Part 24/27 (L5+2NR10, Mid channel)

| Frequency<br>(MHz) | Level<br>(dBµV/m) | EIRP<br>Limit<br>(dBµV/m) | Margin to<br>(dB) | Height<br>(m) | Azimuth (degrees) | Polarization | Correction (dB) |
|--------------------|-------------------|---------------------------|-------------------|---------------|-------------------|--------------|-----------------|
| 10420.71729        | 37.70             | 82.2                      | -44.5             | 3.82          | 0.00              | Horizontal   | 10.43           |
| 10999.92691        | 42.07             | 82.2                      | -40.13            | 1.80          | 41.00             | Horizontal   | 8.52            |
| 14216.24774        | 39.54             | 82.2                      | -42.66            | 1.00          | -0.25             | Vertical     | 12.67           |
| 14288.41604        | 39.72             | 82.2                      | -42.48            | 4.00          | 359.75            | Horizontal   | 13.09           |

26.5GHz

18GHz





Figure 40: Plot of RE at 1m from 18 to 26.5 GHz (L5+2NR10, Mid channel)

Note 1: In the plot above No Emissions exceeds the FCC Part 15/ICES 003 limit.

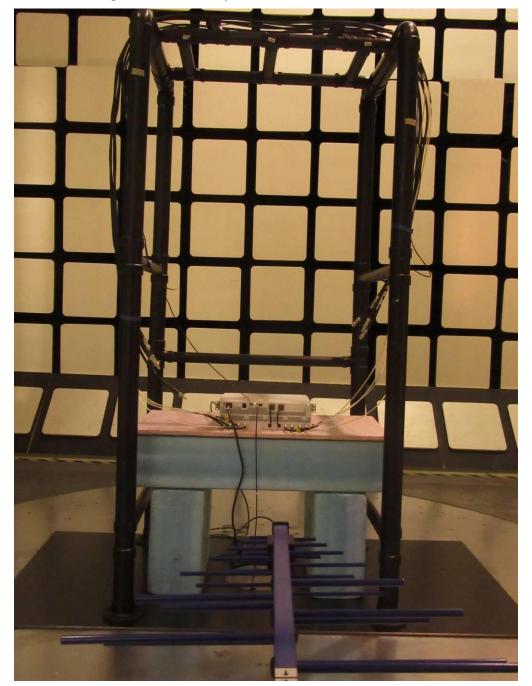
Note 2: In the plot above, no emissions exceed the Part 24/27 radiated spurious emissions limit when converted to dBuV/m. For final spurious emissions measurements to FCC Part 24/27, see antenna port conducted emissions in applicable test report.

Frequency

Release date: 30 October, 2020 Page 64 of 78



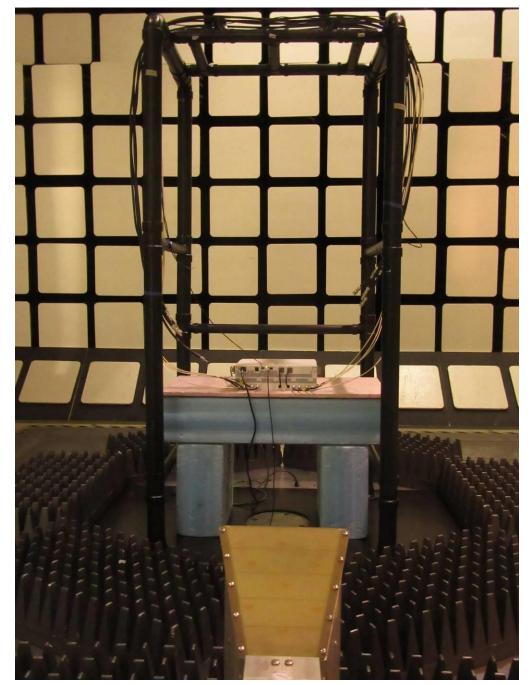
## 3.2.11 Radiated Emissions test setup pictures


Figure 41: EUT Setup for RE tests (Closeup)



Release date: 30 October, 2020 Page 65 of 78








Release date: 30 October, 2020 Page 66 of 78







Release date: 30 October, 2020 Page 67 of 78



## 3.2.12 Test equipment

The equipment used for E-field RE testing was as follows.

Table 67: Test equipment used for RE

| Description Make             |                         | Model number               | Asset ID  | Calibr. date | Calibr. due  |
|------------------------------|-------------------------|----------------------------|-----------|--------------|--------------|
| EMC Automation Software      | Nexio V3.18             | BAT-EMC                    | F0163649  | Not required |              |
| Bilog Antenna                | Teseq                   | 6111D                      | SSG013955 | 2019-12-03   | 2020-12-03   |
| Double Ridged Horn Antenna   | Emco                    | 3115                       | SSG012508 | 2020-05-11   | 2021-05-11   |
| Horn Antenna (18 - 26.5 GHz) | Emco                    | 3160-09                    | SSG012292 | 2019-08-26   | 2021-08-26   |
| Horn Antenna (26.5 - 40 GHz) | Emco                    | 3160-10                    | SSG012294 | 2019-08-26   | 2021-08-26   |
| EMI Receiver                 | Rohde & Schwarz         | ESU26                      | SSG013729 | 2020-03-19   | 2021-03-19   |
| EMI Receiver                 | Rohde & Schwarz         | ESU40                      | SSG013672 | 2019-10-08   | 2021-01-08   |
| Coaxial Cable                | Huber & Suhner          | 106A                       | SSG013841 | 2020-01-06   | 2021-01-06   |
| Coaxial Cable                | Huber & Suhner          | 106A                       | SSG012711 | 2020-01-06   | 2021-01-06   |
| Coaxial Cable                | Huber & Suhner          | 104PEA                     | SSG012041 | 2020-01-06   | 2021-01-06   |
| Coaxial Cable                | Huber & Suhner          | ST18/Nm/Nm/36              | SSG012785 | 2020-01-06   | 2021-01-06   |
| Coaxial Cable                | Micro-Coax              | UFA 210B-1-<br>1500-504504 | SSG012376 | 2020-01-02   | 2021-01-02   |
| Coaxial Cable                | Huber & Suhner          | 101 PEA, Sucoflex          | SSG012290 | 2018-11-13   | 2020-11-13   |
| RF Amplifier                 | Hewlett Packard         | 8447D                      | SSG013045 | 2020-01-08   | 2021-01-08   |
| Pre-Amplifier                | BNR                     | LNA                        | SSG012360 | 2019-09-26   | 2020-12-26   |
| Power Supply                 | Hewlett Packard         | 6216A                      | SSG013063 | not required | not required |
| Power Supply                 | Lambda                  | LPD-421A-FM                | SSG013085 | not required | not required |
| RF Filter: High Pass         | Microwave Circuits inc. | H3G02G1                    | SSG012728 | 2020-01-06   | 2021-01-06   |
| Attenuator                   | Narda                   | N/A                        | SSG013687 | 2020-01-06   | 2021-01-06   |
| Attenuator                   | Narda                   | 768-10                     | SSG012714 | 2019-01-04   | 2021-01-05   |

#### 3.2.13 Test conclusion

The LPRU 4420 B25B66 has passed the E-field Radiated Emission (RE) tests with respect to the standards/sections listed in section Executive summary.

Release date: 30 October, 2020 Page 68 of 78



## 3.3 Conducted Emissions on AC power leads

This test verifies the EUT does not produce excessive Conducted Emissions (CE) on the AC main power leads.

#### 3.3.1 Test specification and limits

The test requirements are as follows.

Table 68: CE test requirements on AC power leads

| Requirement            | Method                   | Country of application |
|------------------------|--------------------------|------------------------|
| FCC Part 15, Subpart B | FCC Part 15 / ANSI C63.4 | USA                    |
| ICES 003               | FCC Part 15 / ANSI C63.4 | Canada                 |
| RSS-Gen (Section 7.2)  | FCC Part 15 / ANSI C63.4 | Canada                 |

The limits of the CE tests on AC power leads are as follows.

Table 69: CE test limits on AC power leads for Class B

| Frequency range<br>(MHz) | FCC Part 15<br>Average (dBμV) | FCC Part 15<br>Quasi-peak (dBμV) |
|--------------------------|-------------------------------|----------------------------------|
| 0.15 to 0.5              | 56 to 46                      | 66 to 56                         |
| 0.5 to 5                 | 46                            | 56                               |
| 5 to 30                  | 50                            | 60                               |

#### 3.3.2 Test procedure

Verifications of the test equipment were performed before the installation of the EUT in accordance with the quality assurance procedures documented in the EMC test procedures document. The test was performed by the relevant procedures listed in Table 68.

Figure 44 shows the test method for regulatory CE measurements on AC Leads.

Release date: 30 October, 2020 Page 69 of 78



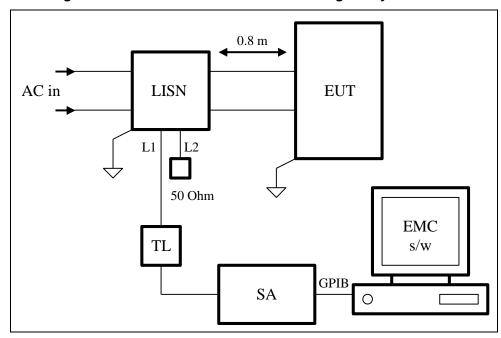



Figure 44: CE test method on AC leads for regulatory test cases

- The EUT was arranged and connected according to its normal mode of operation on a metallic ground plane. The EUT and all cables were insulated from the ground plane which extended by at least 0.5 m beyond the boundaries of the EUT.
- The LISNs were bonded to the ground plane; the distance between the boundary of the EUT and the closest surface of the LISN was 0.8 m. The mains cable between the EUT and the LISNs was 1 m long, or if more than 1 m, the excess cable was folded to form a non-inductive bundle, not exceeding 0.4 m in length. The safety ground connection of the EUT, if present, was connected to the reference ground plane.
- Conducted Emissions were measured by connecting the spectrum analyzer input, through the transient limiter, to the LISN outputs, L1 and L2 (the unused LISN output was terminated with a coaxial 50-Ohm termination).
- For each lead, a pre-scan was taken over the frequency range of the requirement, using peak detection on the spectrum analyzer. The pre-scan data was then compared to the specification limits. Frequencies close to the limit lines were measured using a QP and/or an AVG detector as required.

#### 3.3.3 Calculation of the compliance margin

The compliance margin is computed in a similar way as for RE (see section Calculation of the compliance margin).

Release date: 30 October, 2020 Page 70 of 78



#### 3.3.4 Measurement uncertainties

The expanded measurement instrumentation uncertainty, with a 95 % level of confidence, calculated according to the method described in CISPR 16 is:  $\pm$  2.8 dB on CISPR 22 AC power leads conducted emissions.

#### 3.3.5 Test results of CE on AC power ports

Test location: Ground Plane

Date tested: 16 October, 2020

Tested by: Kasi Sivaratnam

Test configurations are identified in the section Configurations of the EUT.

For the following test results that have supporting data tables, negative margin values indicate a pass.

Black/Orange trace = Peak scan, Blue trace = Average scan

Release date: 30 October, 2020 Page 71 of 78



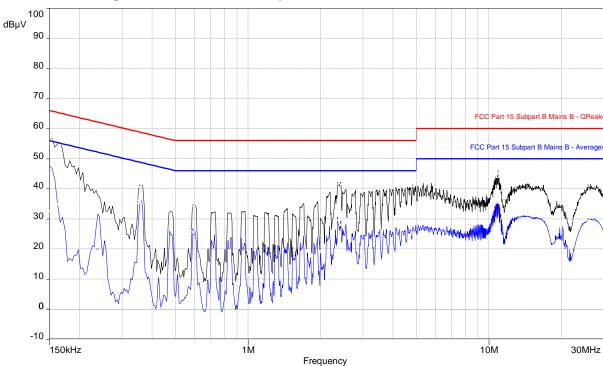



Figure 45: Plot of CE on AC port, line L1 for FCC Part 15 class B

Table 70: CE test results on AC port, line L1 for FCC Part 15 class B

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV) | Level<br>Quasi-peak<br>(dBµV) | Margin to<br>Average<br>Class B (dB) | Margin to<br>Quasi-peak<br>Class B (dB) | Limit<br>Average<br>(dBµV) | Limit<br>Quasi-peak<br>(dBµV) | Correction<br>(dB) |
|--------------------|----------------------------|-------------------------------|--------------------------------------|-----------------------------------------|----------------------------|-------------------------------|--------------------|
| 0.149644           | 32.56                      | 35.49                         | -23.44                               | -30.51                                  | 56.00                      | 66.00                         | 9.91               |
| 0.161698           | 34.81                      | 47.96                         | -20.55                               | -17.40                                  | 55.36                      | 65.36                         | 9.91               |
| 0.354702           | 35.59                      | 40.44                         | -13.28                               | -18.43                                  | 48.87                      | 58.87                         | 9.98               |
| 0.595764           | 25.58                      | 33.50                         | -20.42                               | -22.50                                  | 46.00                      | 56.00                         | 10.01              |
| 2.355062           | 29.58                      | 40.81                         | -16.42                               | -15.19                                  | 46.00                      | 56.00                         | 10.04              |
| 2.422904           | 27.98                      | 40.09                         | -18.02                               | -15.91                                  | 46.00                      | 56.00                         | 10.04              |
| 4.817276           | 25.17                      | 36.39                         | -20.83                               | -19.61                                  | 46.00                      | 56.00                         | 10.11              |
| 10.856934          | 35.56                      | 40.58                         | -14.44                               | -19.42                                  | 50.00                      | 60.00                         | 10.25              |
| 10.949082          | 35.71                      | 40.54                         | -14.29                               | -19.46                                  | 50.00                      | 60.00                         | 10.25              |
| 25.850378          | 29.33                      | 34.75                         | -20.67                               | -25.25                                  | 50.00                      | 60.00                         | 10.54              |



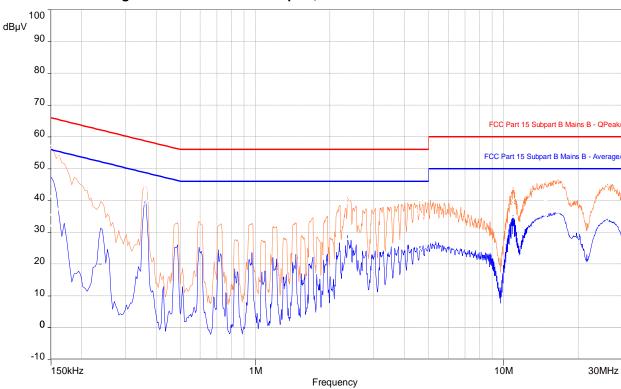



Figure 46: Plot of CE on AC port, line L2 for FCC Part 15 class B

Table 71: CE test results on AC port, line L2 for FCC Part 15 class B

| Frequency<br>(MHz) | Level<br>Average<br>(dBµV) | Level<br>Quasi-peak<br>(dBµV) | Margin to<br>Average<br>Class B (dB) | Margin to<br>Quasi-peak<br>Class B (dB) | Limit<br>Average<br>(dBµV) | Limit<br>Quasi-peak<br>(dBµV) | Correction<br>(dB) |
|--------------------|----------------------------|-------------------------------|--------------------------------------|-----------------------------------------|----------------------------|-------------------------------|--------------------|
| 0.149478           | 32.05                      | 35.55                         | -23.95                               | -30.45                                  | 56.00                      | 66.00                         | 9.99               |
| 0.160452           | 37.19                      | 48.07                         | -18.17                               | -17.29                                  | 55.36                      | 65.36                         | 9.99               |
| 0.360592           | 39.38                      | 43.49                         | -9.30                                | -15.19                                  | 48.68                      | 58.68                         | 9.99               |
| 2.354158           | 27.86                      | 39.32                         | -18.14                               | -16.68                                  | 46.00                      | 56.00                         | 10.04              |
| 4.59184            | 24.55                      | 36.23                         | -21.45                               | -19.77                                  | 46.00                      | 56.00                         | 10.09              |
| 4.854054           | 25.38                      | 34.45                         | -20.62                               | -21.55                                  | 46.00                      | 56.00                         | 10.10              |
| 10.948394          | 34.80                      | 39.92                         | -15.20                               | -20.08                                  | 50.00                      | 60.00                         | 10.24              |
| 14.796844          | 34.86                      | 40.22                         | -15.14                               | -19.78                                  | 50.00                      | 60.00                         | 10.34              |
| 16.575854          | 35.58                      | 40.95                         | -14.42                               | -19.05                                  | 50.00                      | 60.00                         | 10.38              |
| 26.250342          | 33.47                      | 39.00                         | -16.53                               | -21.00                                  | 50.00                      | 60.00                         | 10.52              |



Figure 47: Setup for CE tests on AC power cables



#### 3.3.6 Test equipment

The equipment used for CE testing was as follows.

Table 72: Test equipment used for CE on AC power leads

| Description                             | Make            | Model number | Asset ID  | Calibr. date | Calibr. due  |
|-----------------------------------------|-----------------|--------------|-----------|--------------|--------------|
| EMC Automation Software                 | Nexio V3.18     | BAT-EMC      | F0163649  | Not required | Not required |
| EMI Receiver                            | Rohde & Schwarz | ESCI         | SSG013727 | 2019-09-12   | 2020-12-12   |
| Coaxial Cable                           | Huber & Suhner  | 104PEA       | SSG013080 | 2020-01-06   | 2021-01-06   |
| Line Impedance Stabilization<br>Network | Teseq           | NNB 51       | SSG013880 | 2020-08-11   | 2021-08-11   |

#### 3.3.7 Test conclusion

The LPRU 4420 B25B66 has passed the Conducted Emissions (CE) test on AC power leads with respect to class B limit of FCC Part 15 Subpart B, ICES-003 and RSS-Gen.



## 4. References

The documents, regulations, and standards that are referenced throughout this test report are listed alphabetically as follows.

- 1. ANSI C63.2-2009, American National Standards Institute for Electromagnetic Noise and Field Strength Instrumentation, 10 Hz to 40 GHz Specifications.
- 2. ANSI C63.4-2014, American National Standards Institute for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- 3. CISPR 16 Publications (all parts and sections), Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods Part 1: Radio Disturbance and Immunity Measuring Apparatus.
- 4. CISPR 22 (2008, +IS 1, + IS 2, + IS 3: 2012), Information technology equipment Radio disturbance characteristics Limits and methods of measurement.
- 5. FCC Rules for Radio Frequency Devices, Title 47 of the Code of Federal Regulations, Part 2, U.S. Federal Communications Commission.
- 6. FCC Rules for Radio Frequency Devices, Title 47 of the Code of Federal Regulations, Part 15 Radio Frequency Devices, U.S. Federal Communications Commission.
- 7. FCC Rules for Radio Frequency Devices, Title 47 of the Code of Federal Regulations, Part 24 PERSONAL COMMUNICATIONS SERVICES, U.S. Federal Communications Commission.
- 8. FCC Rules for Radio Frequency Devices, Title 47 of the Code of Federal Regulations, Part 27 Miscellaneous Wireless Communications Services, U.S. Federal Communications Commission.
- 9. ICES-003 Issue 6 (2016), Spectrum Management and Telecommunications, Interference-Causing Equipment Standard: Information Technology Equipment (ITE) Limits and methods of measurement.
- 10. Radio Standards Specification RSS-133, issue 6 (January 2018), 2 GHz Personal Communication Services, Ministry of Industry, Government of Canada.
- 11. Radio Standards Specification RSS-139, issue 3 (July 2015), Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710 1780 MHz and 2110-2180 MHz. Ministry of Industry, Government of Canada.
- 12. Radio Standards Specification RSS-170, issue 3 (July 2015), Mobile Earth Stations (MESs) and Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Saterllite Service (MSS) Bands. Ministry of Industry, Government of Canada.
- 13. RSS-Gen General Requirements for Compliance of Radio Apparatus, Issue 5 (March 2019); Ministry of Industry, Government of Canada.

Release date: 30 October, 2020 Page 75 of 78



# 4.1 Appendix A: Abbreviations

The abbreviations of terms used in this document are as follows.

| Term   | Definition                                                                                                                   |
|--------|------------------------------------------------------------------------------------------------------------------------------|
| A      | 6 dB Coaxial Attenuator (Conducted Immunity)                                                                                 |
| AAN    | Asymmetric Artificial Network (ISN)                                                                                          |
| AE     | Auxiliary equipment                                                                                                          |
| AFC    | Ambient Free Chamber                                                                                                         |
| ANSI   | American National Standards Institute                                                                                        |
| AVG    | Average detector                                                                                                             |
| BiLog  | Biconical Log-Periodic Hybrid antenna (a registered trademark of Schaffner-Chase EMC Limited, 1993)                          |
| CDN    | Coupling-decoupling Network                                                                                                  |
| CE     | Conducted Emissions                                                                                                          |
| CISPR  | Comité International Spécial Perturbation Radioélectrique (International Special Committee on Radio Interference)            |
| CSA    | Canadian Standards Association                                                                                               |
| DN/P   | Decoupling / Protection Network                                                                                              |
| EMC    | Electromagnetic Compatibility                                                                                                |
| EMI    | Electromagnetic Interference                                                                                                 |
| ETSI   | European Telecommunications Standards Institute                                                                              |
| EUT    | equipment under test                                                                                                         |
| GND    | Ground                                                                                                                       |
| HCP    | Horizontal Coupling Plane                                                                                                    |
| HME    | Harmonics Measurement Equipment                                                                                              |
| HV     | High Voltage                                                                                                                 |
| HVP    | High Voltage Probe                                                                                                           |
| h/w    | hardware                                                                                                                     |
| IC     | Industry Canada                                                                                                              |
| ICES   | Canadian Specification: ICES-003, Issue 3, "Spectrum Management: Interference-causing equipment standard (Digital Apparatus) |
| IEC    | International Electro Technical Association                                                                                  |
| ISN    | Impedance Stabilization Network                                                                                              |
| LISN   | Line Impedance Stabilization Network                                                                                         |
| ms     | millisecond, unless otherwise specified                                                                                      |
| NA, na | not applicable                                                                                                               |

Release date: 30 October, 2020 Page 76 of 78



| Term | Definition                                                      |
|------|-----------------------------------------------------------------|
| PA   | Broadband Power Amplifier                                       |
| PK   | Peak Detector                                                   |
| PS   | Power Supply                                                    |
| QP   | Quasi-peak Detector                                             |
| QPA  | Quasi-peak Adapter (for the Spectrum Analyzer)                  |
| R    | 100-ohm Injection Resistor (Conducted Immunity)                 |
| RBW  | Resolution Bandwidth                                            |
| RE   | Radiated Emissions                                              |
| RF   | Radio-Frequency                                                 |
| RI   | Radiated Immunity                                               |
| RMS  | Root-mean-square                                                |
| s/w  | software                                                        |
| SA   | Spectrum Analyzer, the CISPR 16, ANSI C63.2 Compliant EMI meter |
| STP  | Shielded Twisted Pair                                           |
| Т    | 50-ohm Coaxial Termination (Conducted Emissions / Immunity)     |
| TL   | Transient Limiter                                               |
| UFA  | Uniform field Area                                              |
| VBW  | Video Bandwidth                                                 |

Release date: 30 October, 2020 Page 77 of 78



# TÜV SÜD Canada Inc EMC Test Report

**End of Document**