
l	l	l <u>-</u>	l	l	1 .	I .	l l	
eFDD 26 256QAM	mid	6	1.4	17.21	1	1	12.79	12.79
eFDD 26 256QAM	high	1	1.4	17.43	1	1	12.57	12.57
eFDD 26 256QAM	high	6	1.4	17.06	1	1	12.94	12.94
eFDD 26 QPSK	low	1	3	24.43	1	1	5.57	5.57
eFDD 26 QPSK	low	15	3	23.14	1	1	6.86	6.86
eFDD 26 QPSK	mid	1	3	24.40	1	1	5.60	5.60
eFDD 26 QPSK	mid	15	3	23.08	1	1	6.92	6.92
eFDD 26 QPSK	high	1	3	24.38	1	1	5.62	5.62
eFDD 26 QPSK	high	15	3	23.05	1	1	6.95	6.95
eFDD 26 16QAM	low	1	3	23.53	1	1	6.47	6.47
eFDD 26 16QAM	low	15	3	20.06	1	1	9.94	9.94
eFDD 26 16QAM	mid	1	3	23.48	1	1	6.52	6.52
eFDD 26 16QAM	mid	15	3	21.02	1	1	8.98	8.98
eFDD 26 16QAM	high	1	3	23.45	1	1	6.55	6.55
eFDD 26 16QAM	high	15	3	21.04	1	1	8.96	8.96
eFDD 26 64QAM	low	1	3	22.26	1	1	7.74	7.74
eFDD 26 64QAM	low	15	3	20.82	1	1	9.18	9.18
eFDD 26 64QAM	mid	1	3	21.32	1	1	8.68	8.68
eFDD 26 64QAM	mid	15	3	20.77	1	1	9.23	9.23
eFDD 26 64QAM	high	1	3	22.22	1	1	7.78	7.78
eFDD 26 64QAM	high	15	3	20.75	1	1	9.25	9.25
eFDD 26 256QAM	low	1	3	18.10	1	1	11.90	11.90
eFDD 26 256QAM	low	15	3	17.85	1	1	12.15	12.15
eFDD 26 256QAM	mid	1	3	18.04	1	1	11.96	11.96
eFDD 26 256QAM	mid	15	3	17.79	1	1	12.21	12.21
eFDD 26 256QAM	high	1	3	17.83	1	1	12.17	12.17
eFDD 26 256QAM	high	15	3	17.72	1	1	12.28	12.28
eFDD 26 QPSK	low	1	5	24.36	1	1	5.64	5.64
eFDD 26 QPSK	low	12	5	23.12	1	1	6.88	6.88
eFDD 26 QPSK	low	25	5	23.11	1	1	6.89	6.89
eFDD 26 QPSK	mid	1	5	24.45	1	1	5.55	5.55
eFDD 26 QPSK	mid	12	5	23.06	1	1	6.94	6.94
eFDD 26 QPSK	mid	25	5	23.07	1	1	6.93	6.93
eFDD 26 QPSK	high	1	5	24.33	1	1	5.67	5.67
eFDD 26 QPSK	high	12	5	23.04	1	1	6.96	6.96
eFDD 26 QPSK	high	25	5	23.00	1	1	7.00	7.00
eFDD 26 16QAM	low	1	5	23.56	1	1	6.44	6.44
eFDD 26 16QAM	low	25	5	22.08	1	1	7.92	7.92
eFDD 26 16QAM	mid	1	5	23.34	1	1	6.66	6.66
eFDD 26 16QAM	mid	25	5	22.01	1	1	7.99	7.99
eFDD 26 16QAM	high	1	5	23.45	1	1	6.55	6.55
eFDD 26 16QAM	high	25	5	22.00	1	1	8.00	8.00
eFDD 26 64QAM	low	1	5	22.22	1	1	7.78	7.78
eFDD 26 64QAM	low	25	5	20.81	1	1	9.19	9.19
eFDD 26 64QAM	mid	1	5	22.26	1	1	7.74	7.74
eFDD 26 64QAM	mid	25	5	20.77	1	1	9.23	9.23
eFDD 26 64QAM	high	1	5	22.17	1	1	7.83	7.83
eFDD 26 64QAM	high	25	5	20.73	1	1	9.27	9.27
eFDD 26 256QAM	low	1	5	18.02	1	1	11.98	11.98

İ	i	İ	Ì	İ	Ī	Ī	1	ī
eFDD 26 256QAM	low	25	5	17.86	1	1	12.14	12.14
eFDD 26 256QAM	mid	1	5	18.07	1	1	11.93	11.93
eFDD 26 256QAM	mid	25	5	17.88	1	1	12.12	12.12
eFDD 26 256QAM	high	1	5	18.04	1	1	11.96	11.96
eFDD 26 256QAM	high	25	5	17.84	1	1	12.16	12.16
eFDD 26 QPSK	mid	1	10	24.52	1	1	5.48	5.48
eFDD 26 QPSK	mid	50	10	23.29	1	1	6.71	6.71
eFDD 26 16QAM	mid	1	10	23.59	1	1	6.41	6.41
eFDD 26 16QAM	mid	50	10	22.25	1	1	7.75	7.75
eFDD 26 64QAM	mid	1	10	22.34	1	1	7.66	7.66
eFDD 26 64QAM	mid	50	10	20.99	1	1	9.01	9.01
eFDD 26 256QAM	mid	1	10	18.10	1	1	11.90	11.90
eFDD 26 256QAM	mid	50	10	18.02	1	1	11.98	11.98

Remark: Please see next sub-clause for the measurement plot.

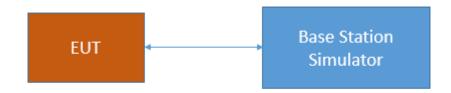
5.22.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

5.22.5 TEST EQUIPMENT USED

- Radio Lab

5.23 FREQUENCY STABILITY

Standard FCC PART 90 Subpart S


The test was performed according to:

ANSI C63.26: 2015

5.23.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable frequency stability test case per § 2.1055 and RSS-GEN 6.11. The limit and the requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:

Test Setup FCC Part 22/24/27/90 Cellular; Frequency stability

The attenuation of the measuring / stimulus path is known for each measured frequency and are considered.

5.23.2 TEST REQUIREMENTS / LIMITS

FCC Part 90,

§ 90.213

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

Table Minimum Frequency Stability

[Parts per million (ppm)]

Evaguanay ranga	Mobile stations				
Frequency range (MHz)	Over 2 watts output power	2 watts or less output power			
809-824	2.5	2.5			
851-854	1.5	1.5			

TEST REPORT REFERENCE: MDE_HARMAN_1914_FCC_01_REV02 Page 360 of 392

5.23.3TEST PROTOCOL

LTE eFDD26 QPSK

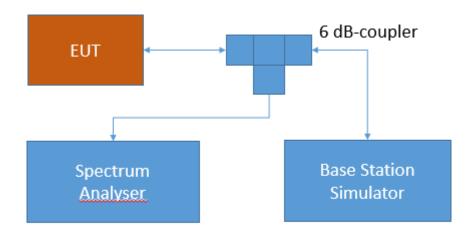
LTE eFDD	26 QPSK					
Temp. °C	Duration min	Voltage	Limit Hz	Freq. error Average (Hz)	Freq. error Max. (Hz)	Verdict
-30	0			2	8	passed
-30	5	normal	2047.5	1	8	passed
-30	10			2	7	passed
-20	0			2	9	passed
-20	5	normal	2047.5	3	8	passed
-20	10			2	8	passed
-10	0			2	7	passed
-10	5	normal	2047.5	3	7	passed
-10	10			3	8	passed
0	0			1	9	passed
0	5	normal	2047.5	1	9	passed
0	10			2	7	passed
10	0			2	8	passed
10	5	normal	2047.5	1	7	passed
10	10			1	7	passed
20	0			2	7	passed
20	5	low	2047.5	-1	6	passed
20	10			-1	7	passed
20	0			-1	8	passed
20	5	normal	2047.5	1	8	passed
20	10			1	9	passed
20	0			-2	9	passed
20	5	high	2047.5	-1	9	passed
20	10			2	8	passed
30	0			2	8	passed
30	5	normal	2047.5	2	7	passed
30	10			1	7	passed
40	0			2	9	passed
40	5	normal	2047.5	1	8	passed
40	10			1	9	passed
50	0			1	9	passed
50	5	normal	2047.5	2	8	passed
50	10			2	8	passed

5.23.4 TEST EQUIPMENT USED

- Radio Lab

5.24 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Standard FCC PART 90 Subpart S


The test was performed according to:

ANSI C63.26: 2015

5.24.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per § 2.1051 and RSS-GEN 6.13. The limit comes from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:

Test Setup FCC Part 22/24/27/90 Cellular; Spurious Emissions at antenna terminal

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.24.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

TEST REPORT REFERENCE: MDE_HARMAN_1914_FCC_01_REV02 Page 362 of 392

Part 90; PRIVATE LAND MOBILE RADIO SERVICES

Subpart R—Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands

§90.543 - Emission limitations.

(a) The adjacent channel power (ACP) requirements for transmitters designed for various channel sizes are shown in the following tables. Mobile station requirements apply to handheld, car mounted and control station units. The tables specify a value for the ACP as a function of the displacement from the channel center frequency and measurement bandwidth. In the following tables, "(s)" indicates a swept measurement may be used.

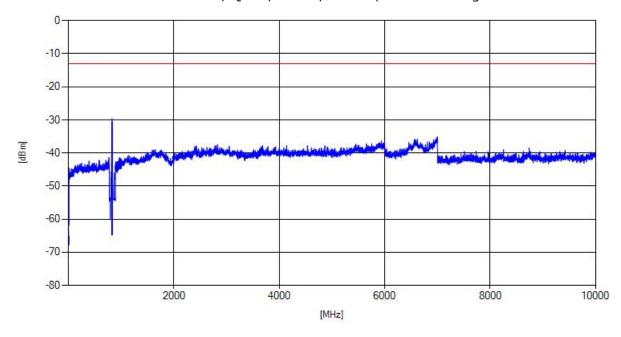
Subpart S—Regulations Governing the Licensing and Use of Frequencies in the 806-824, 851-869, 869-901 and 935-940 MHz Bands

§90.543 - Emission limitations.

(a) On any frequency in an MTA licensee's spectrum block that is adjacent to a non-MTA frequency, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 plus 10 log10(P) decibels or 80 decibels, whichever is the lesser attenuation.

Note: The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

(b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.


5.24.3 TEST PROTOCOL

Ambient temperature: 24 °C Relative humidity: 38 %

Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Peak Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD26	low	rms	maxhold	5	814	-31.91	-23	8.91
eFDD26	mid	rms	maxhold	ı	-	-	-13	>20
eFDD26	high	rms	maxhold	5	824	-30.62	-23	7.62

Remark: Please see next sub-clause for the measurement plot.

5.24.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") LTE eFDD26, QPSK, 5 MHz, RB = 1, Channel = high

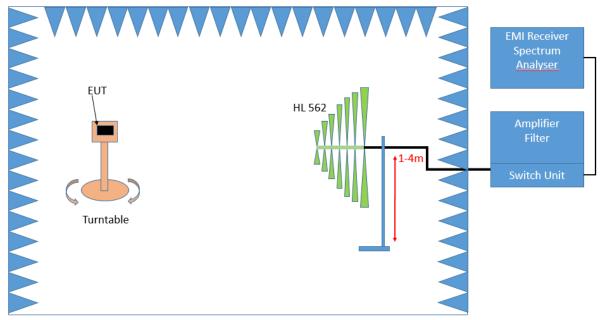
5.24.5 TEST EQUIPMENT USED

- Radio Lab

5.25 FIELD STRENGTH OF SPURIOUS RADIATION

Standard FCC PART 90 Subpart S

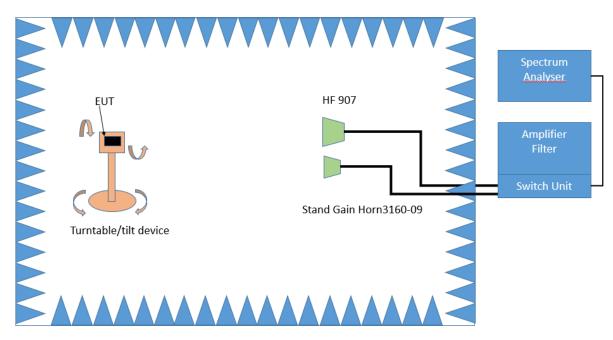
The test was performed according to:


ANSI C63.26: 2015

5.25.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:


Frequency Range: 30 MHz - 1 GHz:

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Frequency Range: 1 GHz - 26.5 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak

Detector: PeakRBW: 100 kHzVBW: 300 kHzSweep time: coupled

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360° . During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by 1-4 m.

During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak

- Measured frequencies: in step 1 determined frequencies

- RBW: 100 kHz - VBW: 300 kHz

- Sweep time: coupled

Turntable angle range: 360°
Height variation range: 1 – 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with RMS detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: RMS

- Measured frequencies: in step 1 determined frequencies

- RBW: 100 kHz - VBW: 300 kHz - Sweep time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 45 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$.

- Antenna distance: 3 m

Detector: PeakRBW: 1 MHzVBW: 3 MHz

- Sweep time: coupled

- Turntable angle range: -180° to 135°

- Turntable step size: 45°

- Polarisation: Horizontal + Vertical

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

Detector: Peak,RBW: 1 MHzVBW: 3 MHz

- Sweep time: coupled

Step 3:

Spectrum analyser settings for step 3:

- Detector: RMS

- Measured frequencies: in step 1 determined frequencies

- RBW: 1 MHz - VBW: 3 MHz - Sweep Time: 1 s

5.25.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Part 90; PRIVATE LAND MOBILE RADIO SERVICES

Subpart R—Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands

§90.543 – Emission limitations.

(a) The adjacent channel power (ACP) requirements for transmitters designed for various channel sizes are shown in the following tables. Mobile station requirements apply to handheld, car mounted and control station units. The tables specify a value for the ACP as a function of the displacement from the channel center frequency and measurement bandwidth. In the following tables, "(s)" indicates a swept measurement may be used.

Subpart S—Regulations Governing the Licensing and Use of Frequencies in the 806-824, 851-869, 869-901 and 935-940 MHz Bands

§90.543 – Emission limitations.

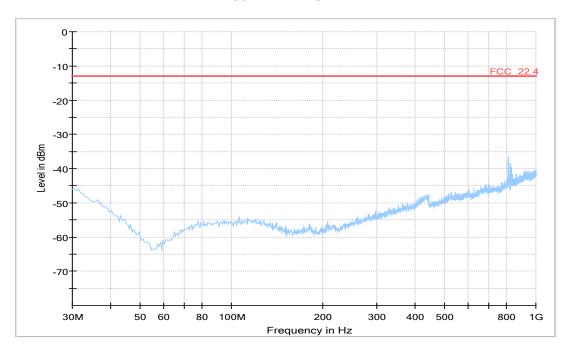
(a) On any frequency in an MTA licensee's spectrum block that is adjacent to a non-MTA frequency, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 plus 10 log10(P) decibels or 80 decibels, whichever is the lesser attenuation.

Note: The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

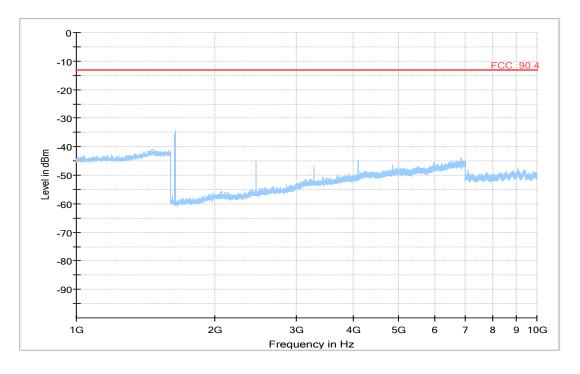
(b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

5.25.3 TEST PROTOCOL

Ambient temperature: 24 °C Relative humidity: 38 %


Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Peak Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD26	low	rms	maxhold	-	-	-	-13	>20
eFDD26	mid	rms	maxhold	-	-	ı	-13	>20
eFDD26	high	rms	maxhold	-	-	-	-13	>20

Remark: Please see next sub-clause for the measurement plot.



5.25.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") LTE eFDD26, QPSK, 5 MHz, RB = 1, Channel = mid

30 MHz - 1 GHz

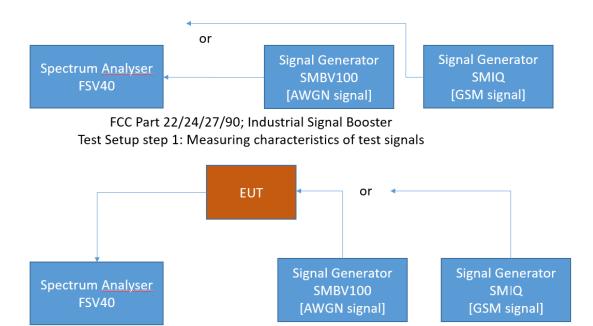
1 GHz - 10 GHz

5.25.5 TEST EQUIPMENT USED

- Radiated Emissions

5.26 EMISSION AND OCCUPIED BANDWIDTH

Standard FCC PART 90 Subpart S


The test was performed according to:

ANSI C63.26: 2015

5.26.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per FCC §2.1049 and RSS-GEN 6.7. The limit and the requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setups according to the following diagram:

FCC Part 22/24/27/90; Industrial Signal Booster
Test Setup step 2; Occupied Bandwidth/Input-versus-output spectrum

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.26.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1049; Occupied Bandwidth:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

- (h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.
- (i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

RSS-GEN; 6.7 Occupied Bandwidth

The emission bandwidth (\times dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated \times dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3 \times the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3×RBW.

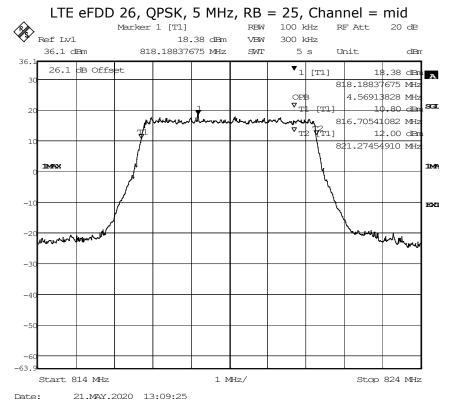
Note: Video averaging is not permitted.

A peak, or peak hold, may be used in place of the sampling detector as this may produce a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold may be necessary to determine the occupied bandwidth if the device is not transmitting continuously.

The trace data points are recovered and are directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded.

The difference between the two recorded frequencies is the 99% occupied bandwidth.

5.26.3 TEST PROTOCOL


Ambient temperature: 24 °C Relative humidity: 38 %

Radio Technology	Channel	Ressource Blocks	Bandwidth (MHz)	Nominal BW [MHz]	99 % BW [kHz]
eFDD 26 QPSK	low	6	1.4	1.4	1106.21
eFDD 26 QPSK	mid	6	1.4	1.4	1112.22
eFDD 26 QPSK	high	6	1.4	1.4	1106.21
eFDD 26 16QAM	low	6	1.4	1.4	1112.22
eFDD 26 16QAM	mid	6	1.4	1.4	1112.22
eFDD 26 16QAM	high	6	1.4	1.4	1106.21
eFDD 26 64QAM	low	6	1.4	1.4	1106.21
eFDD 26 64QAM	mid	6	1.4	1.4	1106.21
eFDD 26 64QAM	high	6	1.4	1.4	1112.22
eFDD 26 QPSK	low	15	3	3	2785.57
eFDD 26 QPSK	mid	15	3	3	2785.57
eFDD 26 QPSK	high	15	3	3	2785.57
eFDD 26 16QAM	low	15	3	3	2785.57
eFDD 26 16QAM	mid	15	3	3	2785.57
eFDD 26 16QAM	high	15	3	3	2765.53
eFDD 26 64QAM	low	15	3	3	2805.61
eFDD 26 64QAM	mid	15	3	3	2785.57
eFDD 26 64QAM	high	15	3	3	2765.53
eFDD 26 QPSK	low	25	5	5	4589.18
eFDD 26 QPSK	mid	25	5	5	4569.14
eFDD 26 QPSK	high	25	5	5	4569.14
eFDD 26 16QAM	low	25	5	5	4549.10
eFDD 26 16QAM	mid	25	5	5	4549.10
eFDD 26 16QAM	high	25	5	5	4569.14
eFDD 26 64QAM	low	25	5	5	4569.14
eFDD 26 64QAM	mid	25	5	5	4569.14
eFDD 26 64QAM	high	25	5	5	4569.14
eFDD 26 QPSK	mid	50	10	10	9058.12
eFDD 26 16QAM	mid	50	10	10	9058.12
eFDD 26 64QAM	mid	50	10	10	9058.12

Remark: Please see next sub-clause for the measurement plot.

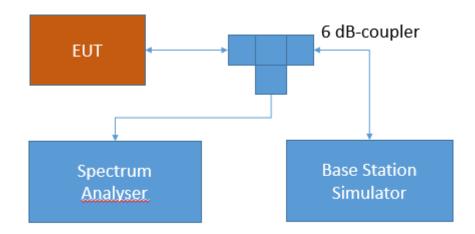
5.26.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

5.26.5 TEST EQUIPMENT USED

- Radio Lab

5.27 BAND EDGE

Standard FCC PART 90 Subpart S


The test was performed according to:

ANSI C63.26: 2015

5.27.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per § 2. 1051 and RSS-GEN 6.13. The limit comes from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:

Test Setup FCC Part 22/24/27/90 Cellular; Band edge compliance

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.27.2TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

TEST REPORT REFERENCE: MDE_HARMAN_1914_FCC_01_REV02 Page 375 of 392

Part 90; PRIVATE LAND MOBILE RADIO SERVICES

Subpart R—Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands

§90.543 - Emission limitations.

(a) The adjacent channel power (ACP) requirements for transmitters designed for various channel sizes are shown in the following tables. Mobile station requirements apply to handheld, car mounted and control station units. The tables specify a value for the ACP as a function of the displacement from the channel center frequency and measurement bandwidth. In the following tables, "(s)" indicates a swept measurement may be used.

RSS-140; 4.4 Transmitter unwanted emission limits

The power of any unwanted emission outside the bands 758-768 MHz and 788-798 MHz shall be attenuated below the transmitter output power P in dBW as follows, where p is the transmitter output power in watts:

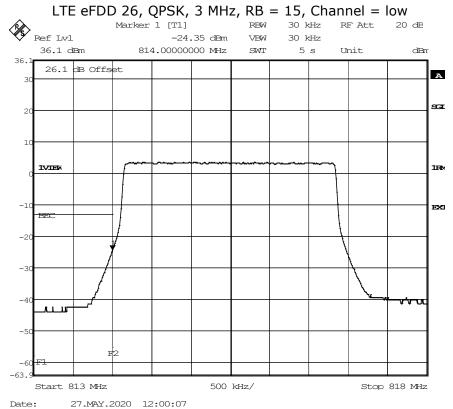
For any frequency between 769-775 MHz and 799-806 MHz:

65 + 10 log (p), dB in a 6.25 kHz band for mobile and portable/hand-held equipment

For any frequency between 775-788 MHz, above 806 MHz, and below 758 MHz: $43 + 10 \log (p)$, dB in a bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency bands 758-768 MHz and 788-798 MHz, a resolution bandwidth of 30 kHz may be employed.

In addition, the equivalent isotropically radiated power (e.i.r.p.) of all emissions, including harmonics in the band 1559-1610 MHz, shall not exceed -70 dBW/MHz for wideband emissions, and -80 dBW/kHz for discrete emissions of less than 700 Hz bandwidth.

5.27.3TEST PROTOCOL


Ambient temperature: 24 °C Relative humidity: 38 %

Radio Technology	Channel	Ressource Blocks	Bandwidth (MHz)	Peak [dBm]	Average [dBm]	RMS [dBm]	Limit /dBm	Margin to Limit /dB
eFDD 26 QPSK	low	6	1.4	-17.78	-29.36	-27.64	-13	14.64
eFDD 26 QPSK	high	6	1.4	-18.13	-30.22	-28.34	-13	15.34
eFDD 26 16QAM	low	6	1.4	-16.73	-29.10	-27.87	-13	14.87
eFDD 26 16QAM	high	6	1.4	-16.29	-30.84	-29.64	-13	16.64
eFDD 26 64QAM	low	6	1.4	-16.92	-29.92	-28.58	-13	15.58
eFDD 26 64QAM	high	6	1.4	-17.52	-30.84	-29.10	-13	16.10
eFDD 26 QPSK	low	15	3	-12.49	-28.34	-24.35	-13	11.35
eFDD 26 QPSK	high	15	3	-13.12	-29.36	-25.66	-13	12.66
eFDD 26 16QAM	low	15	3	-11.69	-28.34	-25.31	-13	12.31
eFDD 26 16QAM	high	15	3	-14.36	-30.22	-26.80	-13	13.80
eFDD 26 64QAM	low	15	3	-14.08	-28.84	-25.49	-13	12.49
eFDD 26 64QAM	high	15	3	-14.62	-30.22	-27.00	-13	14.00
eFDD 26 QPSK	low	25	5	-11.48	-29.64	-25.15	-13	12.15
eFDD 26 QPSK	high	25	5	-12.61	-29.36	-25.84	-13	12.84
eFDD 26 16QAM	low	25	5	-11.16	-30.52	-26.21	-13	13.21
eFDD 26 16QAM	high	25	5	-12.26	-29.64	-26.02	-13	13.02
eFDD 26 64QAM	low	25	5	-10.04	-30.22	-26.40	-13	13.40
eFDD 26 64QAM	high	25	5	-13.50	-30.22	-26.80	-13	13.80
eFDD 26 QPSK	low	50	10	-12.40	-31.51	-27.87	-13	14.87
eFDD 26 QPSK	high	50	10	-10.44	-10.44	-29.92	-13	16.92
eFDD 26 16QAM	low	50	10	-13.29	-32.23	-28.84	-13	15.84
eFDD 26 16QAM	high	50	10	-14.32	-30.84	-29.36	-13	16.36
eFDD 26 64QAM	low	50	10	-13.26	-33.02	-29.64	-13	16.64
eFDD 26 64QAM	high	50	10	-14.35	-31.17	-28.84	-13	15.84

Remark: Please see next sub-clause for the measurement plot.

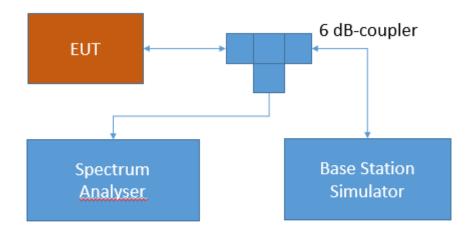
5.27.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

5.27.5TEST EQUIPMENT USED

- Radio Lab

5.28 PEAK TO AVERAGE RATIO

Standard FCC PART 90 Subpart S


The test was performed according to:

ANSI C63.26: 2015

5.28.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance of the EUT to the peak-to-average limits and requirements of the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:

Test Setup FCC Part 22/24/27/90 Cellular; Peak-average ratio

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams. The internal CCDF (complementary cumulative distribution function) of the spectrum analyser is used for this measurement

5.28.2 TEST REQUIREMENTS / LIMITS

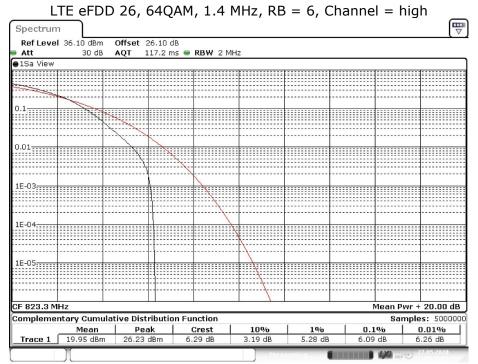
Part 90; PRIVATE LAND MOBILE RADIO SERVICES

Subpart S—Regulations Governing Licensing and Use of Frequencies in the 806-824, 851-869, 896-901, and 935-940 MHz Bands

§90.635 Limitations on power and antenna height.

(b) The maximum output power of the transmitter for mobile stations is 100 watts (20 dBw).

5.28.3 TEST PROTOCOL


Ambient temperature: 24 °C Relative humidity: 38 %

Radio Technology	Channel	Ressource Blocks	Bandwidth (MHz)	Peak to Average Ratio	Limit (IC) (dB)
eFDD 26 QPSK	low	6	1.4	5.71	13
eFDD 26 QPSK	mid	6	1.4	5.91	13
eFDD 26 QPSK	high	6	1.4	6.00	13
eFDD 26 16QAM	low	6	1.4	6.06	13
eFDD 26 16QAM	mid	6	1.4	6.12	13
eFDD 26 16QAM	high	6	1.4	6.20	13
eFDD 26 64QAM	low	6	1.4	6.26	13
eFDD 26 64QAM	mid	6	1.4	6.14	13
eFDD 26 64QAM	high	6	1.4	6.26	13

Remark: Please see next sub-clause for the measurement plot.

5.28.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Date: 27.MAY.2020 10:45:59

5.28.5 TEST EQUIPMENT USED

- Radio Lab

6 TEST EQUIPMENT

1 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
1.2	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
1.3	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
1.4	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
1.5	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
1.6	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
1.7	AMF- 7D00101800- 30-10P-R		Miteq			
1.8	5HC2700/12750 -1.5-KK		Trilithic	9942012		
1.9	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.10	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB		
1.11	SMBV100A	Vector Signal Generator 9 kHz - 3.2 GHz (GNSS / Broadcast Signalling Unit)	Rohde & Schwarz GmbH & Co. KG	260001	2018-01	2021-01
1.12	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
1.13	WRD1920/1980- 5/22-5EESD		Wainwright Instruments GmbH	11		
1.14	TDS 784C	Digital Oscilloscope [SA2] (Aux)	Tektronix	B021311		
1.15	foRS232 Unit 2	Fibre optic link RS232	PONTIS Messtechnik GmbH	4031516037		
1.16	PONTIS Con4101	PONTIS Camera Controller		6061510370		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.17		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.18	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02
1.19		Standard Gain	EMCO Elektronic GmbH	00083069		
1.20	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		
1.21	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
1.22	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.23	WRCD1879.8- 0.2/40-10EE	Notch Filter Ultra Stable	Wainwright Instruments GmbH	16		
1.24	JS4-00102600-	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.25		Turn Table	Maturo GmbH	-		
1.26	HL 562 ULTRALOG	Biconical-log- per Antenna (30 MHz - 3 GHz)	Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05
1.27	CMW 500	2	Rohde & Schwarz GmbH & Co. KG	155999-Ei	2019-09	2022-09
1.28		"CMU1" Universal Radio Communicatio n Tester	Rohde & Schwarz GmbH & Co. KG	102366	2017-12	2020-12
1.29			EMCO Elektronic GmbH	00086675		
1.30		Bore Sight Antenna Mast	innco systems GmbH	none		
1.31		4 Way Power Divider (SMA)		-		
1.32	JUN-AIR Mod. 6- 15	Air Compressor	JUN-AIR Deutschland GmbH	612582		
1.33	5HC3500/18000		Trilithic	200035008		
1.34	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12482	2019-06	2021-06
1.35	UNI-T UT195E	True RMS Digital Multimeter	UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561		
1.36	35-5P	Broadband Amplifier 30 MHz - 18 GHz		896037		
1.37	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
1.38		EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.39	CO3000		innco systems GmbH	CO3000/967/393 71016/L		
1.40	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2019-04	2022-04
1.41	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1	00101800-25-S-		Miteq	2035324		
1.43	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
1.44	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

2 Radio Lab Conducted Radio Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	1575	Broadband Resistive Power Divider DC to 40 GHz	API Weinschel, Inc.	4070		
2.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
2.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
2.4	WRD1920/1980- 5/22-5EESD		Wainwright Instruments GmbH	11		
2.5	WRCD1879.8- 0.2/40-10EE	Notch Filter Ultra Stable	Wainwright Instruments GmbH	16		
2.6	FSIQ26		Rohde & Schwarz GmbH & Co. KG	840061/005	2019-06	2021-06
2.7	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
2.8	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
2.9	A8455-4	4 Way Power Divider (SMA)		-		
2.10	Opus10 THI (8152.00)	T/H Logger 03	Lufft Mess- und Regeltechnik GmbH	7482	2019-06	2021-06
2.11	WRCA800/960- 0.2/40-6EEK	Tunable Notch Filter	Wainwright Instruments GmbH	20		
2.12	CMW 500	CMW 500 Flex 2	Rohde & Schwarz GmbH & Co. KG	155999-Ei	2019-09	2022-09
2.13	CMU 200	"CMU1" Universal Radio Communicatio n Tester	Rohde & Schwarz GmbH & Co. KG	102366	2017-12	2020-12

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.	
MHz	dB	
0.15	10.1	
5	10.3	
7	10.5	
10	10.5	
12	10.7	
14	10.7	
16	10.8	
18	10.9	
20	10.9	
22	11.1	
24	11.1	
26	11.2	
28	11.2	
30	11.3	

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

Г		
	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

\ -	(5 1 1 1 2 5 1 1 1 2)								
cable	cable	cable	cable	distance	d_{Limit}	d_{used}			
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.			
(inside	(outside	(switch	(to	(-40 dB/	distance	distance			
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)			
dB	dB	dB	dB	dB	m	m			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.3	0.1	-40	30	3			
0.4	0.1	0.3	0.1	-40	30	3			

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 \text{ m}$					
	AF R&S				
Frequency	HL562	Corr.			
MHz	dB (1/m)	dB			
30	18.6	0.6			
50	6.0	0.9			
100	9.7	1.2			
150	7.9	1.6			
200	7.6	1.9			
250	9.5	2.1			
300	11.0	2.3			
350	12.4	2.6			
400	13.6	2.9			
450	14.7	3.1			
500	15.6	3.2			
550	16.3	3.5			
600	17.2	3.5			
650	18.1	3.6			
700	18.5	3.6			
750	19.1	4.1			
800	19.6	4.1			
850	20.1	4.4			
900	20.8	4.7			
950	21.1	4.8			
1000	21.6	4.9			

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

$(d_{Limit} = 10 \text{ m})$	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15,247
dB	dB	dB	dB	dB	13.247
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF	
	EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

(10 0		O,		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

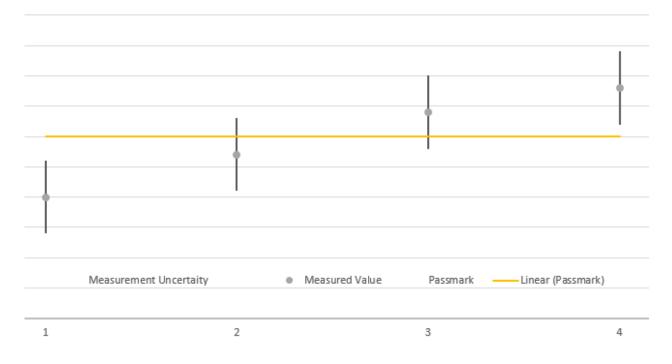
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
- Field strength of spurious radiation	Field Strength	± 5.5 dB
- Emission and Occupied Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
RF Output PowerPeak to Average Ratio	Power	± 2.2 dB
Band Edge ComplianceSpurious Emissions at Antenna Terminal	Power Frequency	± 2.2 dB ± 11.2 kHz
- Frequency Stability	Frequency	± 25 Hz

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.