Correspondence Reference Number 31699
731 Confirmation Number EA951917
FCC ID T8E-E1000

RF Exposure Statement rule: FCC part 15.247(i), part 1.1307(b)

This device is a fixed device used for unlicensed networks which doesn't belong to neither table 1 of 1.1307(b)(1) nor 1.1307 (b)(2). The unit qualifies to categorically excluded from making a routine environmental evaluation. Calculations prove that the RF exposure caused by the unit is within the limit of $1mW/cm^2$ required for general population (uncontrolled exposure). Detailed calculations follow below.

Maximum Standard: FCC part 1.1310 table 1 [B] General Population/Uncontrolled Exposure

Frequency range: 1500-100000 MHz values: 2400-2483MHz (Tx freq range) Power Density 1 mW/cm2 0.0000265 mW/cm 2

The exposure does not exceed 1mW/cm^2

Regards, Constantin Pintilei, Eng Certification Adviser Linear Hertz Inc cpintilei@linearhertz.com 514-836-3987

RF radiation exposure evaluation calculations:

A copy of an RF exposure evaluation provided to Industry Canada is submitted along with this answer (Annex A "Technical Brief" - pages 8-9).

duty cycle = 0.004% (8ms every 200sec)
maximum EIRP = 4mW - value measured in radiated mode, any antenna gain included

General expression of worst case (reflected from nearby ground) power density S as shown in Bulletin 65 eq 6 page 25

Smax=EIRP/(pi*R^2)

Where

Smax = maximum power density
R = distance between subject and the radiating element
 (worst-case, minimum distance for far field)

This device is a fixed device used for unlicensed networks. The RF exposure will therefore be calculated for far-field, at the beginning of the far-field for small antenna

beginning of far field distance Rff=lambda/(2*pi)

Antenna diameter D = 3cm (tuned quarterlength) $Tx \ frequency 2400MHz 2450MHz$ wavelength lambda = 12.5cm 12.1cm start far field Rff = 1.99cm 1.92cm

considering minimum distance for worst case R above should be 1.92cm

 $Smax=4/(pi*1.92)=0.66 \text{ mW/cm}^2$

Average over 30min, as required by general public category

Save=(duty cycle) *Smax

Save=0.00004*0.66=0.0000265 mW/cm^2