

Certification Test Report

For a

Fan-Tastic Vent Ventilation Fan System for RV's

Manufacturer:

KIB Enterprises
53402 County Road 13
Elkhart, Indiana 46514
United States of America

Testing Laboratory:

F-Squared Laboratories
16740 Peters Road
Middlefield, Ohio 44062
United States of America

The Fan-Tastic Vent Ventilation Fan System model 6600R for RV's consists of hand-held control transceiver model 417 and fan unit model 6600. This certification report specifically assesses the transmitter portion of the Hand-Held Control. The Hand-Held Control was found to comply with the requirements of the Federal Communications Commission outlined in the Federal Register CFR 47, Part 15.249.

The products were received on March 21, 2006 and the testing was completed on March 24, 2006.

Evaluation Conducted By:

Kenneth P. Klann
EMC Engineer

Report Reviewed By:

John Harrington
EMC Technical Manager

F-Squared Laboratories
14333 Kinsman Road
Burton, OH 44021
(440) 834-8926
Fax: (440) 834-8914

This report shall not be duplicated except in full without the written approval of F-Squared Laboratories.

Table of Contents

Section	Title	Page
	Cover Page	1
	Table of Contents	2
1	Engineering Statement	3
2	List of Measurement Instrumentation	4
3	EUT Information and Data	5
4	EUT Configuration and Cables	7
5	FCC Part 15.249	8
6	Figures – Spectral Data Plots	10
7	Photos/Exhibits – Product Photos, Test Setups	12

1. ENGINEERING STATEMENT

This report has been prepared on behalf of KIB Enterprises to provide documentation for the testing described herein. The test results found in this test report relate only to the items tested.

1.1 Equipment Under Test: KIB Enterprises Hand-Held Control Transmitter

FCC ID: T5N417

1.2 Trade Name:

Fan-Tastic Vent

1.3 Model:

KIB Enterprises

Model: 417

1.4 Power Supply:

Batteries - 2 AA

1.5 Applicable Rules:

CFR 47, Part 15.249, subpart C

1.6 Equipment Category:

Radio Transmitter-Control

1.7 Operating Frequency:

2.405 GHz

1.8 Antenna:

Printed Circuit Board Strip Line (Internal)

1.9 Measurement Location:

F-Squared Laboratories in Middlefield, Ohio. Site description and attenuation data are on file with the FCC's Sampling and Measurement Branch at the FCC Laboratory in Columbia, MD.

1.10 Measurement Procedure:

All measurements were performed according to the 2003 version of ANSI C63.4 and recommended practices of FCC 15.35.

1.11 Uncertainty Budget:

Radiated Emissions - Combined Uncertainty \pm 2.24 dB; Extended Uncertainty \pm 4.48 dB.

1.12 Engineering Certification:

The undersigned of this report hereby state that the measurements shown in this application were made in accordance with the procedures indicated, and that the energy emitted by this equipment was found to be within the limits. The undersigned assume full responsibility for the accuracy and completeness of these measurements and further state that, on the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 15.249 of the FCC Rules under normal use and maintenance.

2. LIST OF MEASUREMENT INFORMATION

Equipment Type	Manufacturer	Model	Serial Number	Calibration Due Date
Thermohygrometer	Oakton	32230-80	001	June 7, 2006
OATS	Compliance Labs	N/A	001	Aug. 24, 2006
Receiver	Rohde & Schwarz	Display, EASI-0-804-8932-52; RF Unit, ESMI-RF 1032-5640-53	84982/015; 849152/005	Mar. 31, 2006
Antenna 2-OATS	Sunol Sciences	JB1	A101101	Apr. 15, 2006
Horn Antenna	Emco	3115	9809-5580	Apr. 6, 2006
Pre-Amplifier	Hewlett Packard	83006A	310A00500	Oct. 20, 2006

3. EQUIPMENT UNDER TEST (EUT) INFORMATION AND DATA

3.1 Test Item Condition:

The equipment to be tested was received in good condition.

3.2 Testing Algorithm:

The Hand-Held Control is designed for operation on a single frequency (2.405 GHz). The unit normally transmits only four pulse groups spaced at approximately 450mS intervals when the control is operated (see Spectral Plot in Figure 1). The control is based on the Freescale (Motorola) MC13191 chip.

For testing purposes, modified controls were supplied that transmit a continuous pulse train spaced at intervals of approximately 100mS (see Spectral Plot in Figure 2). Two modified controls were supplied:

- 3.2.a. A control equipped with a BNC connector for direct connection to the measuring receiver (used to determine the significant harmonic and spurious frequencies for examination on the Open Area Test Site).
- 3.2.b. A control using the standard Printed Circuit Strip Line Antenna for final measurements on the Open Area Test Site (OATS).

3.3 Radiated Emission Testing on Open Area Test Site (OATS):

The EUT was tested at a distance of 1.0 or 3.0 meters. The emissions were maximized by rotating the table and raising/lowering the antenna mounted on a 4.0 meter mast.* Both horizontal and vertical field components were measured. The output of the antenna was connected to the input of the receiver and emissions were measured in the range 30MHz to 25 GHz. At frequencies below 1GHz, a resolution bandwidth of 120 kHz was used employing quasi-peak and peak detector functions. At frequencies 1 GHz and beyond, a 1 MHz resolution bandwidth was used with average and peak detector functions. The raw measurements were corrected for antenna factor, cable loss and preamplifier gain. Peak readings above 1 GHz for devices employing pulsed operation were also corrected to read the average value of the emission within the 20dB peak to average limits per FCC Part 15.35(b).

**The Hand-Held Control was examined in three orthogonal positions to ensure maximization of emissions.*

3.4 Determination of Average Field Strength from Peak Readings:

Per FCC Part 15.35(b), any frequency or frequencies above 1000 MHz, the radiated limits are based on measurements employing an average detector function. Additionally, there is a limit on the radiated emissions measured using a peak detector function of 20dB above the maximum permitted average limit specified in FCC Part 15.249(a).

To determine the maximum peak to average correction factor allowed for the Hand-Held Control, the recommendations of FCC Part 15.35(c) are used:

The Hand-Held Control, under normal operation, transmits four RF pulse groups when the control is operated (see Figure 1). The pulses are separated by at least 400mS. The pulse group consists of two pulses (see Figure 3) having a total transmit time of 1.324mS (0.662mS each pulse). Hence, over any 100mS time period of maximum transmitted field strength, the peak to average ratio is:

$$\text{Peak to Average Ratio} = \frac{1.324\text{mS}}{100\text{mS}} = 0.01324$$

Thus, the average field strength is reduced from the peak value by:

$$\text{Peak to Average Correction Factor (dB)} = 20 \log (0.01324) = -37.6\text{dB}$$

This result indicates that direct measurement of the emitted field strength of the Hand-Held Control using an average detector would yield field intensities 37.6dB below that found using a peak detector. Since FCC Part 15.35(b) limits peak to average excursions to 20dB, average measurements cannot be employed to determine compliance to FCC Part 15.249.

Compliance measurements to FCC Part 15.249 made on the Hand-Held Control will be based on peak measurements less a 20dB peak to average correction factor per FCC Part 15.35(b).

4. EUT CONFIGURATION AND CABLES

4.1 Equipment Under Test (EUT):

Device	Manufacturer	Model Number	Serial Number
Hand-Held Control	KIB Enterprises	417	Sample 01*
Hand-Held Control	KIB Enterprises	417	Sample 05**
Hand-Held Control	KIB Enterprises	417	Sample 08***

* Normally (unmodified) operating control, used for pulse modulation analysis.

** Modified control for continuous transmission, used on OATS, using internal Printed Circuit Strip Line Antenna.

***Modified control for continuous transmission supplied with BNC connection to antenna port for frequency identification.

4.2 Accessories (Support Equipment):

Device	Manufacturer	Model Number	Serial Number
Batteries (2)	Duracell	AA (MN1500)	Not Specified

4.3 Cables: None

5. FCC PART 15.249

5.1. Determination of Emission Frequencies

The Hand-Held Control (Sample 08) was supplied with a BNC connector to permit direct (conducted) connection to the Rohde & Schwarz receiver.

All significant emissions generated by the control were measured between 30 MHz to 25 GHz. All harmonics and spurs were measured from the authorized band (2.4-2.4835 GHz) through the tenth harmonic, using a 100 kHz impulse bandwidth (video bandwidth set at 3 MHz). The occupied bandwidth was checked to investigate band edge compliance.

5.1.1. Results

The direct (conducted antenna port) measurements yielded the following significant emissions from the control:

Frequency (GHz)	Harmonic Order
2.406	f_0
4.811	f_2
7.215	f_3

The occupied bandwidth measurements (see Figure 4) exhibit good engineering design. The 20dB down points are at 2.4032 and 2.4067 GHz.

5.2. Radiated Emissions Measurements on Open Area Test Site (OATS)

The Hand-Held Control with the Printed Circuit Strip Line Antenna (Sample 05) was examined on the Open Area Test Site (OATS). All emissions, including the fundamental were measured to the limits of FCC Part 15.249(a) and (d) and FCC Part 15.205/15.209(a) (Restricted Bands).

5.2.1. Requirements

All emissions shall not exceed the maximum field strength specified in FCC Part 15.249(a) and FCC Part 15.209(a).

5.2.2. Results

The measurement results are contained in the table on the following page.

The Hand-Held Control meets FCC Part 15.249(a) and FCC Part 15.209(a) restrictions on field intensity. Hence, the control satisfied FCC Part 15.249(a) and (d) and FCC Part 15.209(a) requirements regarding radiated emissions.

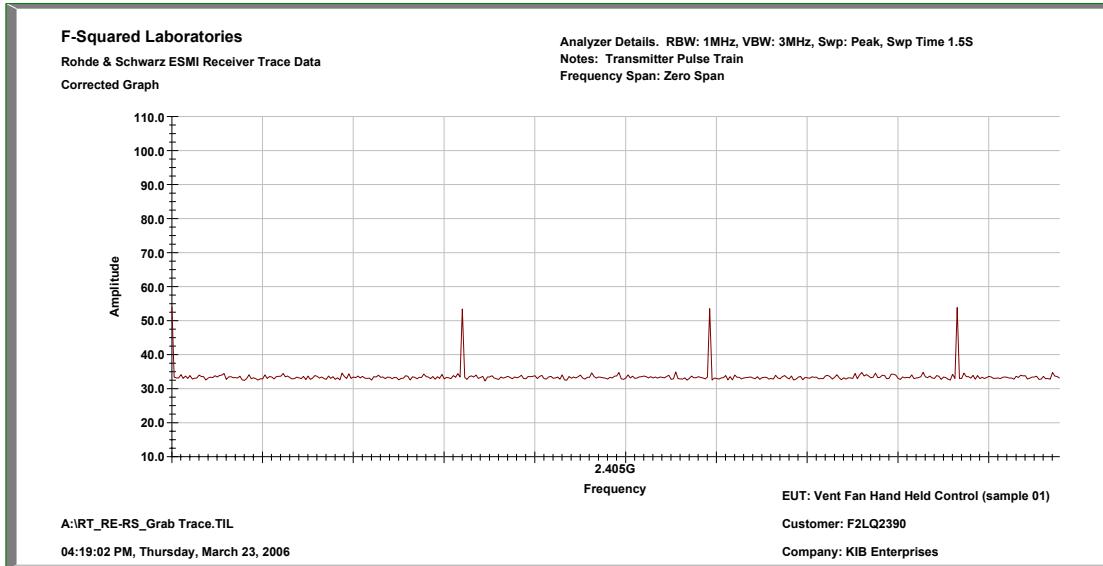
Hand-Held Control
Harmonics & Spurious Emissions: Operating Frequency – 2.405 GHz

Frequency (GHz)	Antenna Polarization	Reading (dB μ V)	Antenna Factor (dB) (+)	Coax Factor (dB) (+)	Preamp Gain (dB) (-)	Peak to Avg Correction Factor (dB) (-)	Measurement Distance Correction Factor (dB) (-)	Emission Level @ 3m (dB μ V/m)	3m Limit (dB μ V/m)	Margin (dB)
2.400	H	41.3	28.2	5.0	27.3	20	0.0	27.2	54.0	-26.8
		23.6	28.2	5.0	27.3		0.0	27.3		
2.405	H	74.5	28.2	5.0	27.3	20	0.0	60.4	94.0	-33.6
		34.3	28.2	5.0	27.3		0.0	40.2		
4.809	H	56.8	32.1	7.6	28.6	20	0.0	47.9	54.0	-6.1
		25.8	32.1	7.6	28.6		0.0	36.9		
7.213	H	41.7	37.8	10.2	27.9	20	9.5	32.3	54.0	-21.7
		24.3	37.8	10.2	27.9		9.5	34.9		

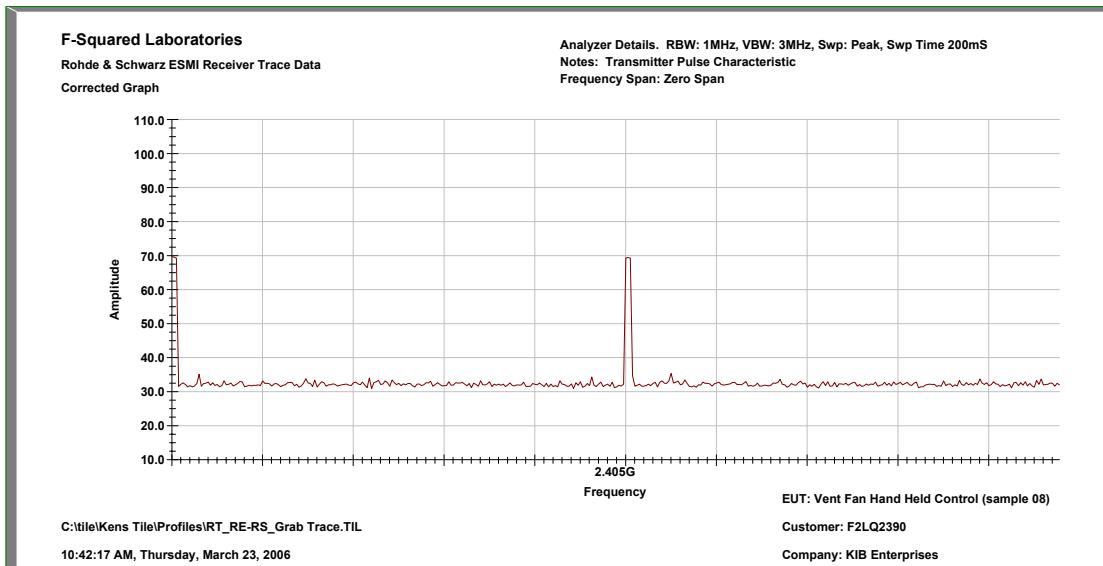
¹Lower band edge.

²Maximum emissions level found on upright orthogonal position.

³Maximum emissions level found on side orthogonal position.


⁴Measurement distance of 1 meter.

Noise Floors:


Frequency (GHz)	Level (dB μ V)
2.400	35.3 Pk/23.6 Avg
2.405	36.5 Pk/23.9 Avg
4.809	36.0 Pk/24.3 Avg
7.213	35.6 Pk/24.1 Avg

6. FIGURES – SPECTRAL DATA PLOTS

Figure 1: RF Pulse Train of Normally Operating Control

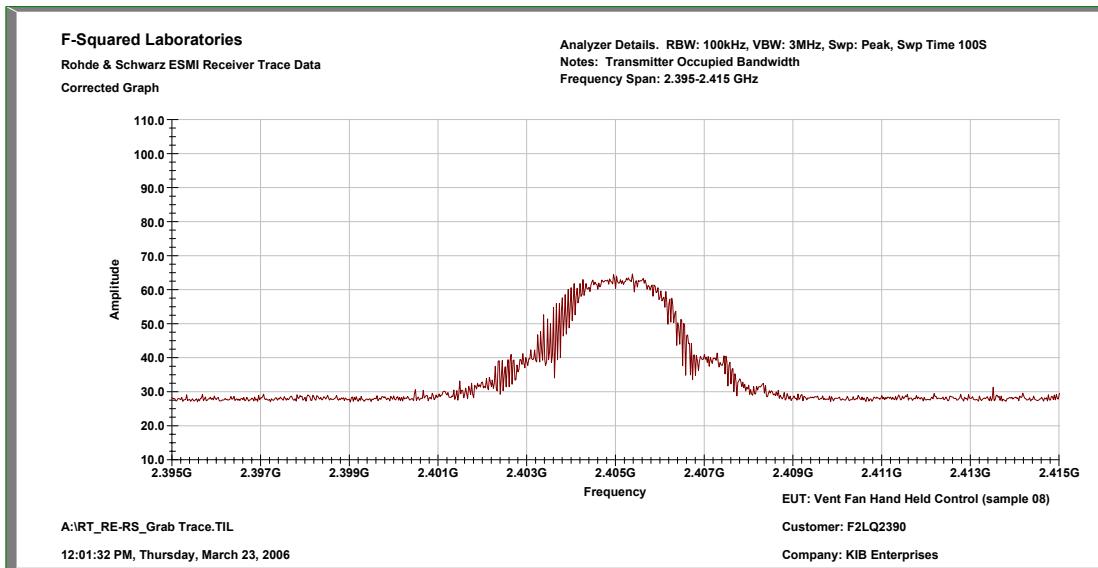

Figure 2: RF Pulse Train of Modified Control

Figure 3: RF Pulse Group Characteristic of Normally or Modified Control

Figure 4: Occupied Bandwidth Characteristic

Client: KIB Enterprises

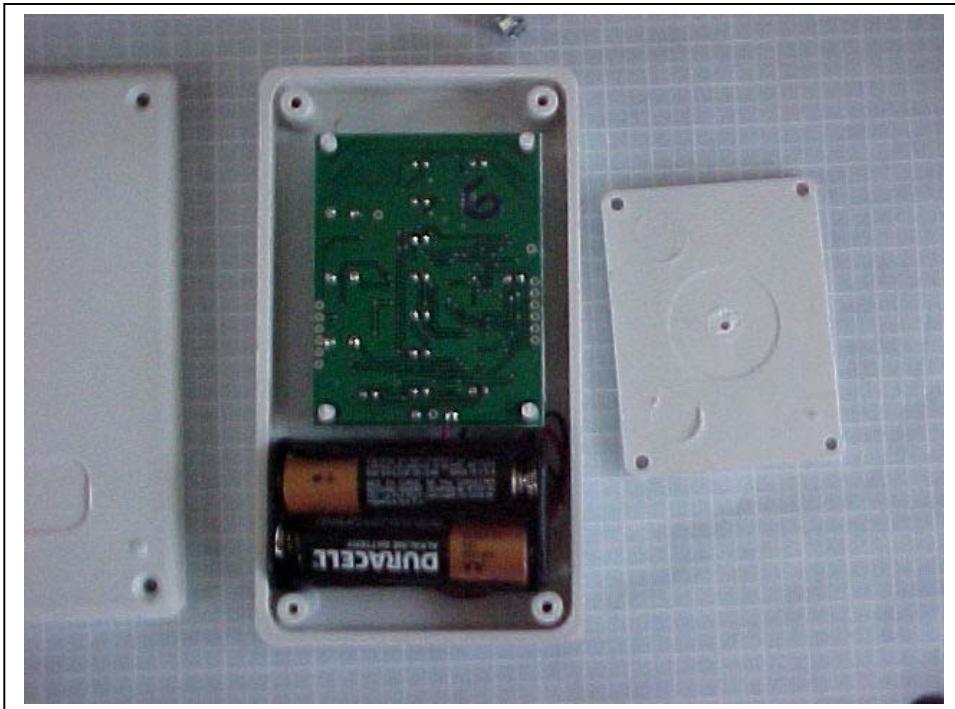
EUT: Fan-Tastic Vent Ventilation Fan System for RV's

Order Number: F2LQ2390

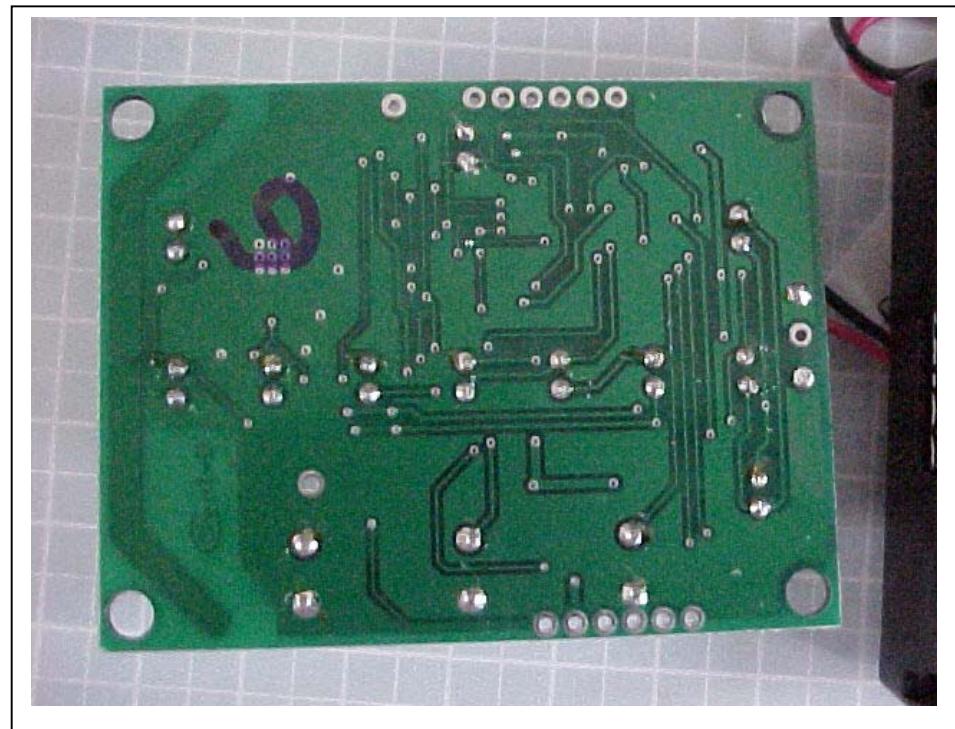
7. PHOTOGRAPHS/EXHIBITS – PRODUCT PHOTOS, TEST SETUPS

Hand-Held Control: External View of Control

Hand-Held Control: Internal View – Rear Cover Removed



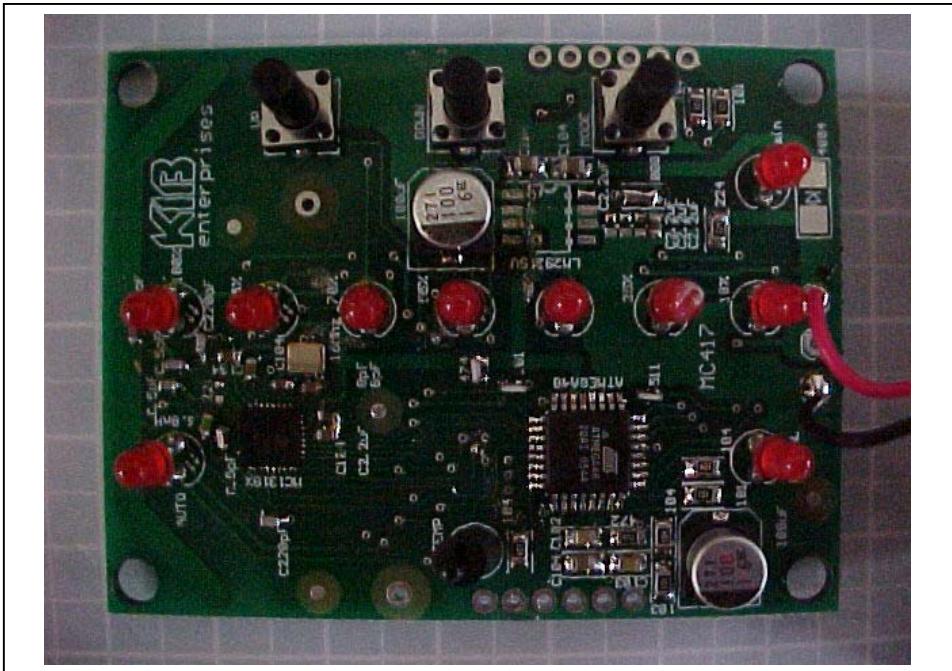
Client: KIB Enterprises


EUT: Fan-Tastic Vent Ventilation Fan System for RV's

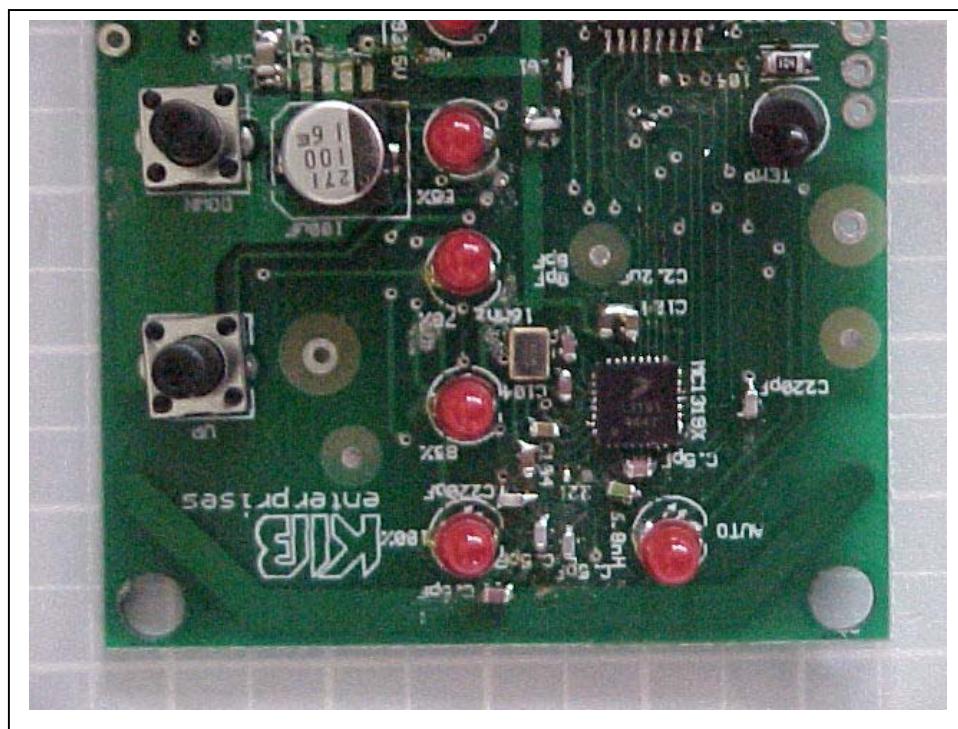
Order Number: F2LQ2390

Hand-Held Control: Internal View – Circuit Board Exposed

Hand-Held Control: Printed Circuit Board – Solder Side



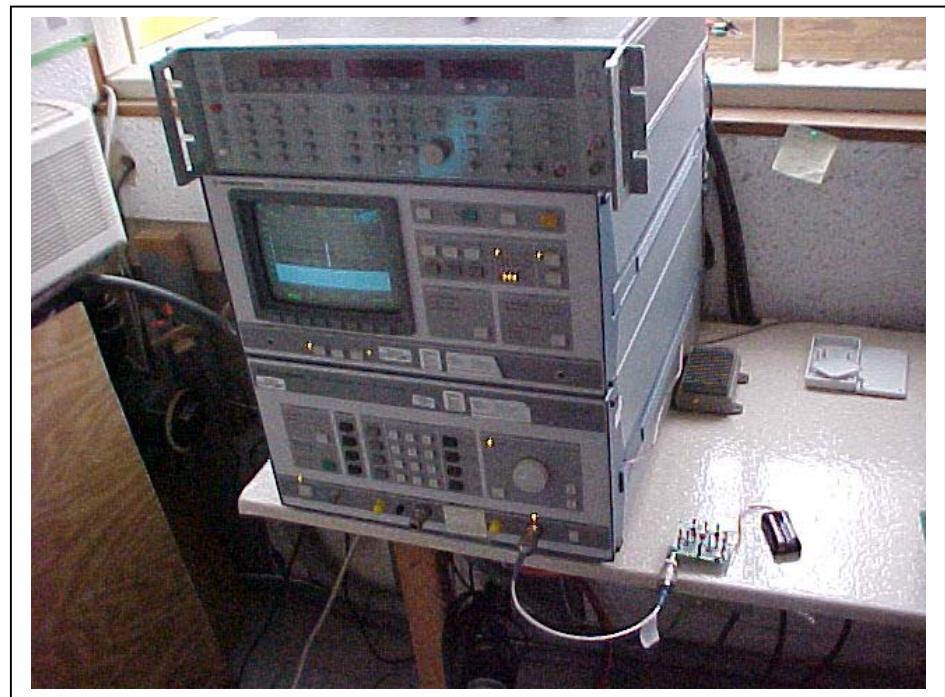
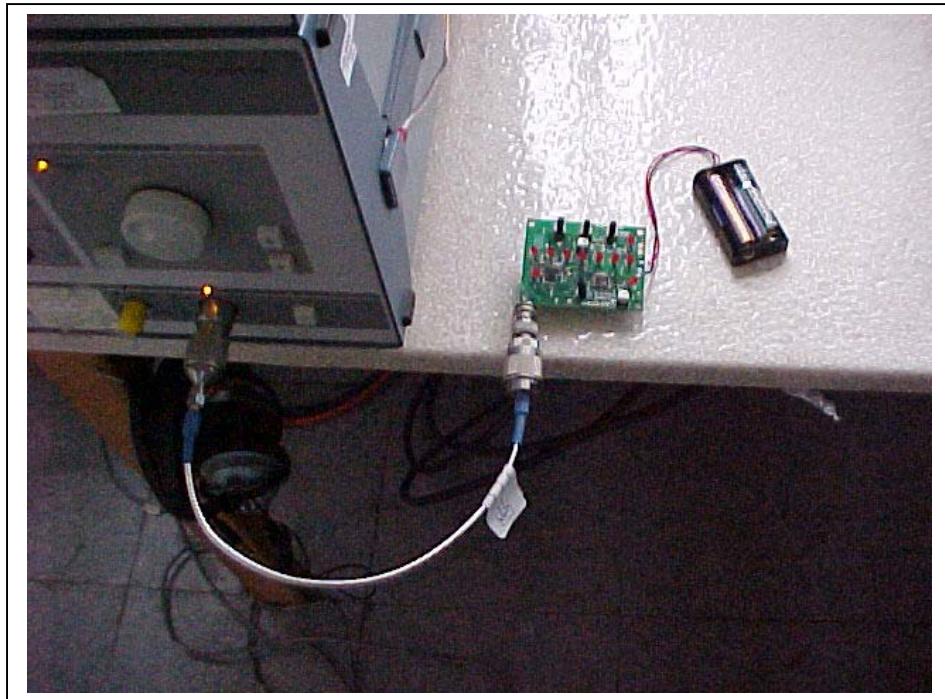
Client: KIB Enterprises


EUT: Fan-Tastic Vent Ventilation Fan System for RV's

Order Number: F2LQ2390

Hand-Held Control: Printed Circuit Board – Component Side

Hand-Held Control: Printed Circuit Board – Component Side, Close-up of RF Section

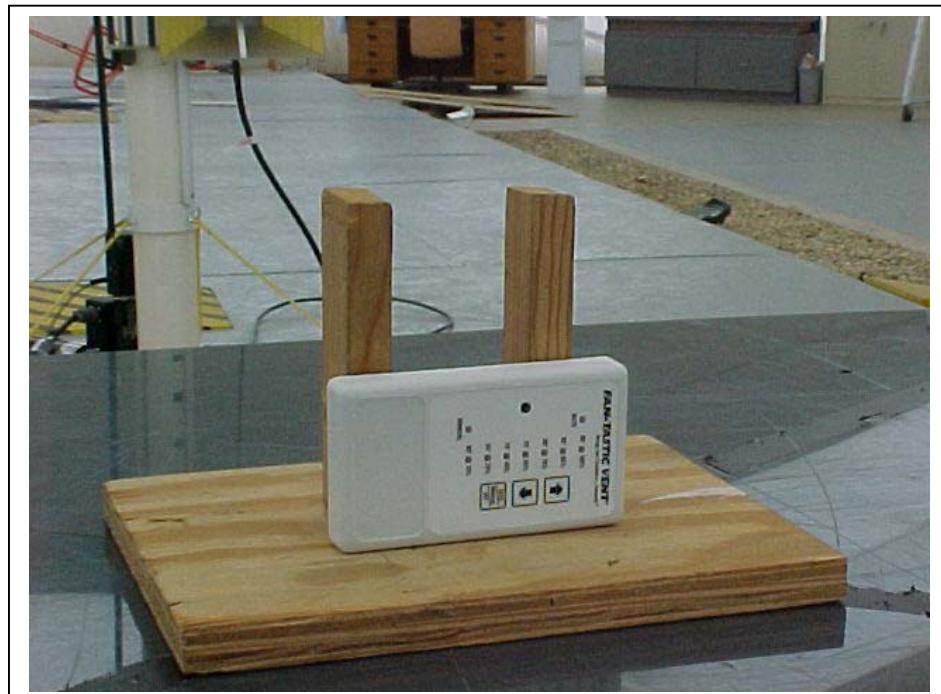
Client: KIB Enterprises

EUT: Fan-Tastic Vent Ventilation Fan System for RV's

Order Number: F2LQ2390

Hand-Held Control: Direct Connection to Receiver (RF Antenna Conducted)

Client: KIB Enterprises

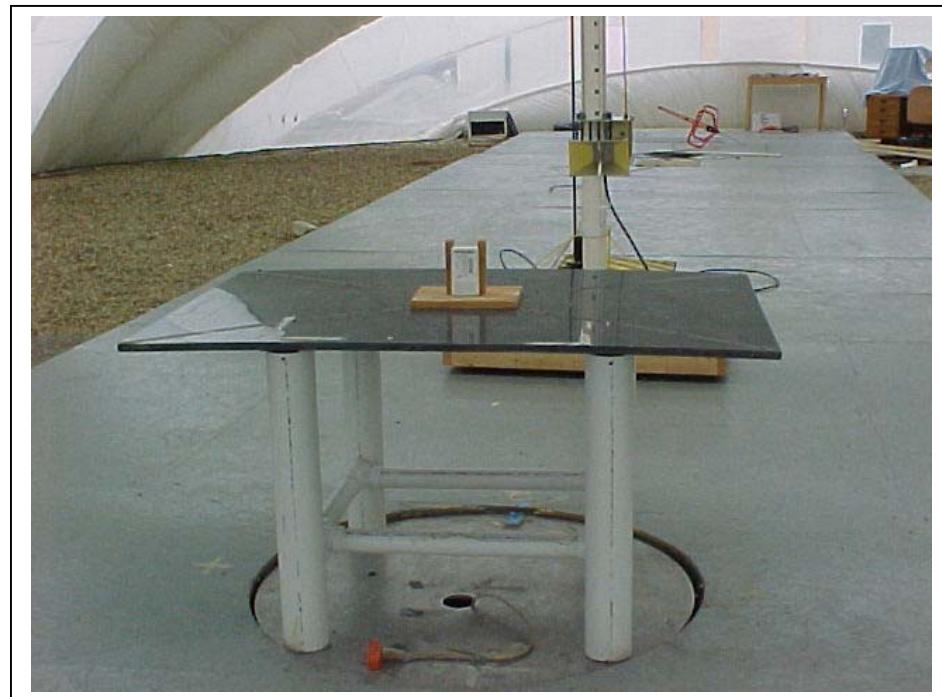

EUT: Fan-Tastic Vent Ventilation Fan System for RV's

Order Number: F2LQ2390

Orthogonal Positions of Hand-Held Control – Control Upright

Orthogonal Positions of Hand-Held Control – Control on Side

Client: KIB Enterprises


EUT: Fan-Tastic Vent Ventilation Fan System for RV's

Order Number: F2LQ2390

Orthogonal Positions of Hand-Held Control – Control on Back

Overall Test Setup on OATS

