

Report on the FCC and IC Testing of the LDL Technology 17109

In accordance with FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN

Prepared for: LDL Technology
Parc Technologique du canal 3, rue Giotto
31520 Ramonville Saint-Agne
France

FCC ID: T4517109
IC: 6450A-17109

Product Service

Choose certainty.
Add value.

COMMERCIAL-IN-CONFIDENCE

Date: 2019-05-22

Document Number: TR-55559-55182-05 | Issue: 01

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Alex Fink	2019-05-22	
Authorised Signatory	Matthias Stumpe	2019-05-22	

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Alex Fink	2019-05-22	

Laboratory Accreditation
DAkkS Reg. No. D-PL-11321-11-02 Laboratory recognition
Registration No. BNetzA-CAB-16/21-15 ISED Canada test site registration
3050A-2

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN:2016, Issue 09 (08-2016), Issue 04 (11-2014).

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2019 TÜV SÜD Product Service.

ACCREDITATION

Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation. Results of tests not covered by our BNetzA Accreditation Schedule are marked NBA (Not BNetzA Accredited).

Trade Register Munich
HRB 85742
VAT ID No. DE129484267
Information pursuant to Section 2(1)
DL-InfoV (Germany) at
www.tuev-sued.com/imprint

Managing Directors:
Dr. Peter Havel (CEO)
Dr. Jens Butenandt

Phone: +49 (0) 9421 55 22-0
Fax: +49 (0) 9421 55 22-99
www.tuev-sued.de

TÜV SÜD Product Service GmbH
Äußere Frühlingstraße 45
94315 Straubing
Germany

Contents

1	Report Summary	2
1.1	Report Modification Record.....	2
1.2	Introduction.....	2
1.3	Brief Summary of Results	3
1.4	Product Information	4
1.5	EUT Modification Record	4
1.6	Test Location.....	4
2	Test Details	5
2.1	Bandwidth Requirement.....	5
2.2	Field Strength of Emissions	8
2.3	Transmitter Frequency stability	13
2.4	Restricted Band Edges.....	15
2.5	Exposure of Humans to RF Fields	17
3	Photographs	22
3.1	Equipment Under Test (EUT).....	22
4	Measurement Uncertainty	24

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2019-05-22

Table 1

1.2 Introduction

Applicant	LDL Technology
Manufacturer	LDL Technology
Model Number(s)	17109
Serial Number(s)	C5A3F065
Hardware Version(s)	---
Software Version(s)	---
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN:2016, Issue 09 (08-2016), Issue 04 (11-2014)
Test Plan/Issue/Date	---
Order Number	CD-19170
Date	2019-03-11
Date of Receipt of EUT	2019-04-25
Start of Test	2019-05-13
Finish of Test	2019-05-20
Name of Engineer(s)	Alex Fink
Related Document(s)	ANSI C63.10 (2013) ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN is shown below.

Section	Specification Clause	Test Description	Result	Comments/Base Standard
Configuration and Mode: Transmitting continuously on 433.92 MHz - Transmit-every-second test mode				
2.1	15.231 (c), A1.3 and N/A	Bandwidth Requirement	Pass	ANSI C63.10 (2013)
2.2	15.231 (e), A.1.4 and 6.13	Field Strength of Emissions	Pass	ANSI C63.10 (2013)
2.4	N/A, N/A and 6.11	Transmitter Frequency stability	Pass	---
2.3	15.205, 4.1 and 8.10	Restricted Band Edges	Pass	ANSI C63.10 (2013)
2.5	2.1091, 2.1093, N/A and 3.2	Exposure of Humans to RF Fields	Pass	ANSI C63.4: 2014

Table 2

1.4 Product Information

1.4.1 Technical Description

Tire Pressure Monitoring System (TPMS)

For radio testing relevant information:

Value	Notes
Nominal Operating Frequency or Frequencies	433.92 MHz
Operating Channel Width(s)	100 kHz
Duty Cycle	< 10 %
Temperature range	min. - 20°C, max. + 105°C
Voltage range	min. 1.9 V DC, max. 3.6 V DC
Transmitting on 433,92 MHz; Receiving on 125 kHz	

1.5 EUT Modification Record

The table below details modifications made to the EUT during the test programme.
The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer, S/N: C5A3F065	Not Applicable	Not Applicable

Table 3

1.6 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

Test Name	Name of Engineer(s)
Configuration and Mode: Transmitting continuously on 433.92 MHz - Transmit-every-second test mode	
Bandwidth Requirement	Alex Fink
Field Strength of Emissions	Alex Fink
Transmitter Frequency stability	Alex Fink
Restricted Band Edges	Alex Fink
Exposure of Humans to RF Fields	Alex Fink

Table 4

Office Address:

Äußere Frühlingstraße 45
94315 Straubing
Germany

2 Test Details

2.1 Bandwidth Requirement

2.1.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN, Clause 15.231(c), N/A and 6.11

2.1.2 Equipment Under Test and Modification State

17109, S/N: C5A3F065 - Modification State 0

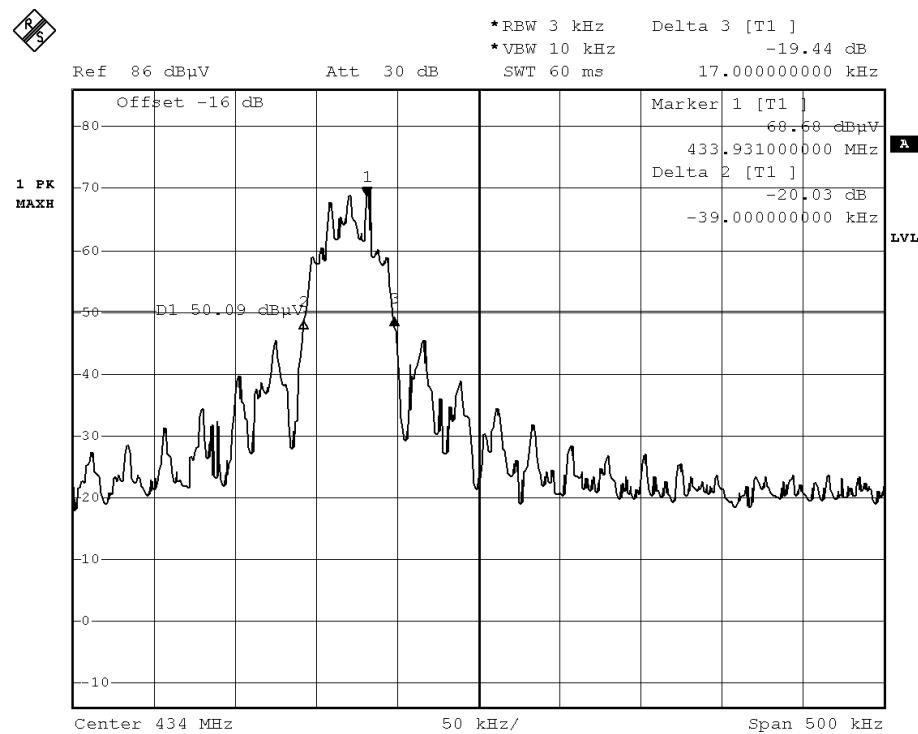
2.1.3 Date of Test

2019-05-15

2.1.4 Test Method

Test according to FCC title 47 part 15 §15.231(c) and ANSI C63.10-2013

2.1.5 Environmental Conditions


Ambient Temperature 21.0 °C
Relative Humidity 37.0 %

2.1.6 Test Results

Transmitting continuously on 433.92 MHz - Transmit-every-second test mode

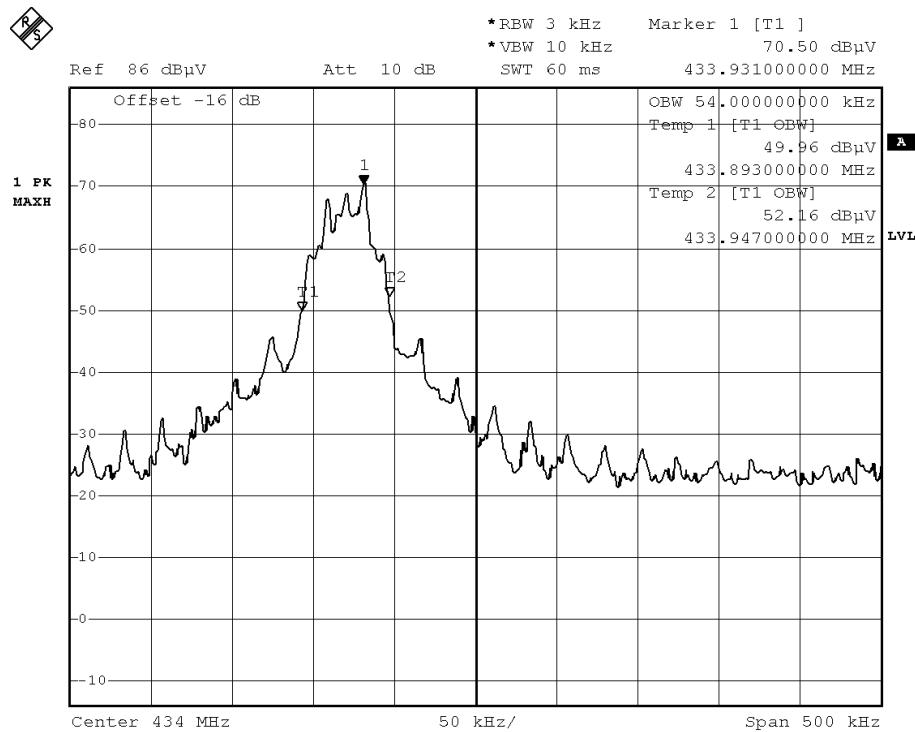

Test Conditions	433.92 MHz		
	F _{Lower} (MHz)	F _{Upper} (MHz)	Occupied Bandwidth (kHz)
20 dB Bandwidth	433.892	433.948	56
99 % Bandwidth	433.893	433.947	54

Table 5

Date: 15.MAY.2019 10:01:10

Figure 1: 20 dB Occupied Bandwidth

Date: 15.MAY.2019 10:06:50

Figure 2: 99% Occupied Bandwidth

FCC 47 CFR Part 15, Limit Clause 15.231(c) and ISED Canada RSS-210, Clause A.1.3

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

2.1.7 Test Location and Test Equipment Used

This test was carried out in Fully anechoic room - cabin no. 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
ULTRALOG Antenna	Rohde & Schwarz	HL562E	38401	36	2021-05-31
Spectrum Analyzer	Rohde & Schwarz	FSP30	19533	18	2020-08-31

Table 6

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

2.2 Field Strength of Emissions

2.2.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN, Clause 15.231(b), 4.3 and 6.13

2.2.2 Equipment Under Test and Modification State

17109, S/N: C5A3F065 - Modification State 0

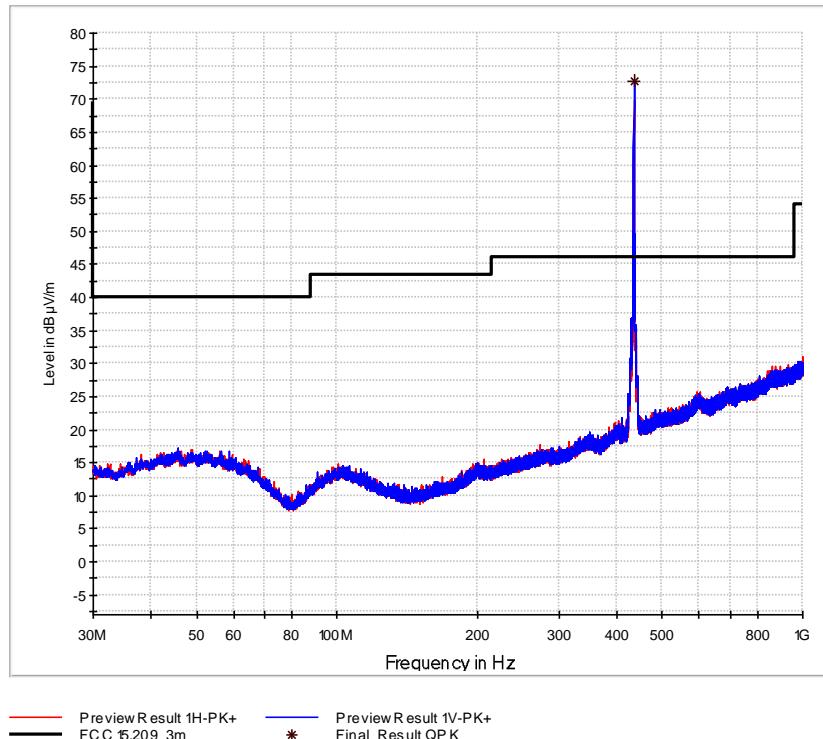
2.2.3 Date of Test

2019-05-13

2.2.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.3, 6.4 and 6.5. and ISED Canada RSS-Gen clause 6.13.

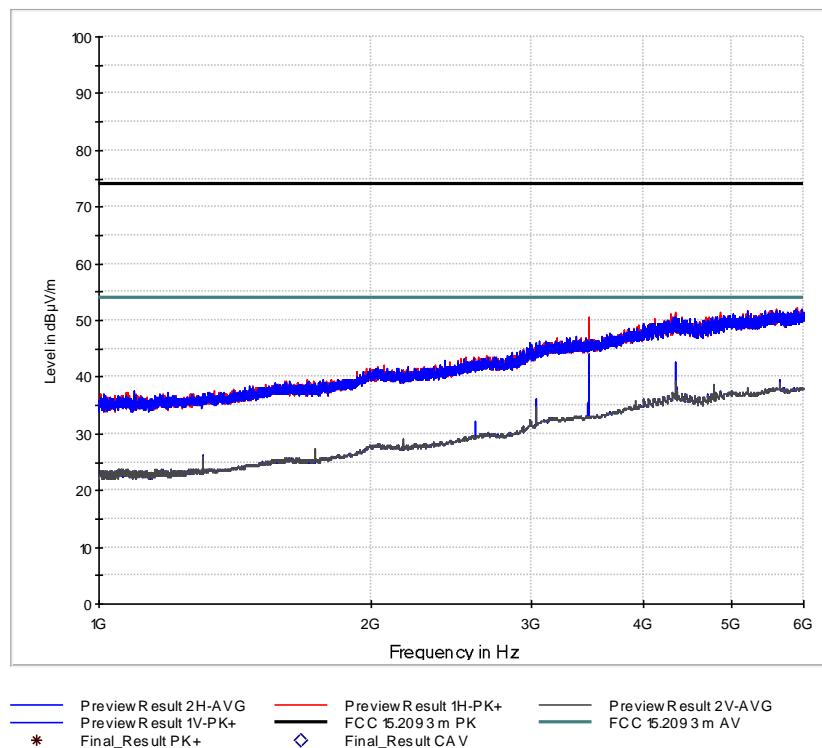
Measurements were made at a distance of 3 m. The limit lines shown on the plot were extrapolated from either 300 m or 30 m to the measurement distance of 3 m in accordance with ANSI C63.10 Clause 6.4.4.2.


For any emissions detected within 20 dB of the limit, a final measurement was made and recorded in the table below. The detector used for these measurements was a quasi-peak detector except for emissions within the bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where a CISPR average detector was used.

2.2.5 Environmental Conditions

Ambient Temperature	22.0 °C
Relative Humidity	25.0 %

2.2.6 Test Results


Transmitting continuously on 433.92 MHz - Transmit-every-second test mode

Final Results:

Frequency MHz	QuasiPeak dB μ V/m	Limit dB μ V/m	Margin dB	Meas. Time ms	Bandwidth kHz	Height cm	Pol	Azimuth deg	Corr. dB
433.920000	72.64	#1	#1	1000.0	120.000	114.0	V	132.0	18.4

Note: 1. Intentional radiation

FCC 47 CFR Part 15, Limit Clause 15.209

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 to 0.490	2400/F (kHz)	300
0.490 to 1.705	24000/F (kHz)	30
1.705 to 30	30	30
30 to 88	100**	3
88 to 216	150**	3
216 to 960	200**	3
Above 960	500	3

Table 7 - FCC Limit

NOTE: The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission.

ISED Canada RSS-210, Limit Clause 4.4

Under no circumstance shall the level of any unwanted emissions exceed the level of the fundamental emissions.

ISED Canada RSS-Gen, Limit Clause 8.9

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 to 0.490	2400/F (kHz)	300
0.490 to 1.705	24000/F (kHz)	30
1705 to 30	30	30

Table 8 - IC Limit, Below 30 MHz

Frequency (MHz)	Field Strength (μ V/m at 3 metres)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 9 - IC Limit, Above 30 MHz

2.2.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Double ridged horn antenna	Rohde & Schwarz	HF907	19933	24	2019-06-30
TRILOG Antenna	Schwarzbeck	VULB 9163	19691	24	2020-12-31
EMI test receiver	Rohde & Schwarz	ESW26	28268	12	2019-05-31
EMC measurement software	Rohde & Schwarz	EMC32-ME+	19719	N/A	N/A

Table 10

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

2.3 Transmitter Frequency stability

2.3.1 Specification Reference

RSS-Gen, Issue 5, April 2018 (General Requirements for Compliance of Radio Apparatus)

2.3.2 Equipment Under Test and Modification State

17109, S/N: C5A3F065 - Modification State 0

2.3.3 Date of Test

2019-05-20

2.3.4 Test Method

RSS-Gen, Issue 5, April 2018, chapter 6.11.

2.3.5 Environmental Conditions

Ambient Temperature 21.0 °C
Relative Humidity 49.0 %

2.3.6 Test Results

Temperature (°C)	Voltage (V)	Tested Centre Frequency (MHz)	Frequency Error (kHz)
+ 20.0	3.0	433.9221330	+ 2.1330
+ 20.0	1.9	433.9221330	+ 2.1330
+ 20.0	3.6	433.9221330	+ 2.1330
- 20.0	3.0	433.9220490	+ 0.0490
+ 105.0	3.0	433.9217060	+ 1.7060

Note: - Measured Frequency Error does not affect any band edge requirements.

- Measurement was performed with modulated transmitter signal

2.3.7 Test Location and Test Equipment Used

Conducted test was carried out in Non-shielded room with Test system TS8997.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Spectrum Analyzer	Rohde&Schwarz	FSV40	20219	12	2020-01-31
Vector Signal Generator	Rohde&Schwarz	SMBV100A	20238	24	2019-10-31
Signal Generator	Rohde&Schwarz	SMB100A	20215	36	2021-03-31
Switching Device	Rohde&Schwarz	OSP120 I	20248	24	2020-01-31
Switching Device	Rohde&Schwarz	OSP120 II	38807	24	2020-09-30
Radio Communication Tester	Rohde&Schwarz	CMW500	38845	12	2019-09-30
EMC Measurement Software	Rohde&Schwarz	EMC32	19719	---	---

Table 11

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

2.4 Restricted Band Edges

2.4.1 Specification Reference

FCC 47 CFR Part 15C, ISED Canada RSS-210 and ISED Canada RSS-GEN, Clause 15.205, 4.1 and 8.10

2.4.2 Equipment Under Test and Modification State

17109, S/N: C5A3F065 - Modification State 0

2.4.3 Date of Test

2019-05-13

2.4.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.13.1.

Plots for average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.3.

Final average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.2.

2.4.5 Environmental Conditions

Ambient Temperature 22.0 °C
Relative Humidity 25.0 %

2.4.6 Test Results

See chapter 2.2 for results.

FCC 47 CFR Part 15, Limit Clause 15.205

	Peak (dB μ V/m)	Average (dB μ V/m)
Restricted Bands of Operation	74	54

Table 12

ISED Canada RSS-GEN, Limit Clause 8.9

Frequency (MHz)	Field Strength (μ V/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960*	500

Table 13

*Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

2.4.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Double ridged horn antenna	Rohde & Schwarz	HF907	19933	24	2019-06-30
TRILOG Antenna	Schwarzbeck	VULB 9163	19691	24	2020-12-31
EMI test receiver	Rohde & Schwarz	ESW26	28268	12	2019-05-31
EMC measurement software	Rohde & Schwarz	EMC32-ME+	19719	N/A	N/A

Table 14

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

N/A - Not Applicable

2.5 Exposure of Humans to RF Fields

2.5.1 Specification Reference

IC RSS-GEN Issue 4, section 3.2 and
IC RSS-102, Issue 5, section 2.5
KDB 447498 D01 General RF Exposure Guidance v06, chapter 4.3.1

2.5.2 Guide

IC RSS-102 Issue 5, section 2.5

2.5.3 Equipment Under Test and Modification State

17109, S/N: C5A3F065 - Modification State 0

2.5.4 Date of Test

2019-05-13

2.5.5 Test Results

Exposure of Humans to RF Fields		Applicable	Declared by applicant	Measured	Exemption
The antenna is					
<input type="checkbox"/> detachable					
The conducted output power (CP in watts) is measured at the antenna connector: $CP = \dots \text{ W}$				<input type="checkbox"/>	
The effective isotropic radiated power (EIRP in watts) is calculated using <input type="checkbox"/> the numerical antenna gain: $G = \dots$ $EIRP = G \cdot CP \Rightarrow EIRP = \dots \text{ W}$		<input type="checkbox"/>			
<input type="checkbox"/> the field strength ¹ in V/m: $FS = \dots \text{ V/m}$ $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots \text{ W}$			<input type="checkbox"/>		
with: Distance between the antennas in m: $D = \dots \text{ m}$				<input type="checkbox"/>	
<input checked="" type="checkbox"/> not detachable					

¹ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by: $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = 5.510 \mu\text{W}$ with: Field strength in V/m: $FS = 72.64 \text{ dB}\mu\text{V/m} = 4.29 \text{ mV/m}$ Distance between the two antennas in m: $D = 3$				
Selection of output power				
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.): $TP = 5.510 \mu\text{W}$				

Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption
Separation distance between the user and the transmitting device is	<input checked="" type="checkbox"/> less than or equal to 20 cm <input type="checkbox"/> greater than 20 cm			
Transmitting device is	<input type="checkbox"/> in the vicinity of the human head <input type="checkbox"/> body-worn			

SAR evaluation										
Frequency (MHz)	Exemption limits (mW) ² at separation distance of									
	≤5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm
≤300 ³	71	101	132	162	193	223	254	284	315	345
450	52	70	88	106	123	141	159	177	195	213
835	17	30	42	55	67	80	92	105	117	130
1900	7	10	18	34	60	99	153	225	316	431
2450	4	7	15	30	52	83	123	173	235	309
3500	2	6	16	32	55	86	124	170	225	290
5800	1	6	15	27	41	56	71	85	97	106
Carrier frequency:	$f = 433.92 \text{ MHz}$									
Distance:	$d = 5 \text{ mm}$									
Transmitter output power:	$TP = 5.510 \mu\text{W}$									
Limit:	$TP_{\text{limit}} = 71 \text{ mW}$									
<input type="checkbox"/> SAR evaluation is documented in test report no. ...										

² The exemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

³ Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in IC RSS-102, issue 5, section 4.

Rules and specifications:	KDB 447498 D1 V06, section 4.3.1			
Guide:	47 CFR Sections 2.1091 and 2.1093			

Exposure of Humans to RF Fields		Applicable	Declared by applicant	Measured	Exemption
The antenna is					
<input type="checkbox"/> detachable					
The conducted output power (CP in watts) is measured at the antenna connector: $CP = \dots \text{ W}$					
The effective isotropic radiated power (EIRP in watts) is calculated using					
<input type="checkbox"/> the numerical antenna gain: $G = \dots$	$EIRP = G \cdot CP \Rightarrow EIRP = \dots \text{ W}$	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
<input type="checkbox"/> the field strength ⁴ in V/m: $FS = \dots \text{ V/m}$	$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots \text{ W}$	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
with: Distance between the antennas in m: $D = \dots \text{ m}$					
<input checked="" type="checkbox"/> not detachable					
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by1: $EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = 5.510 \mu\text{W}$					
with: Field strength in V/m: $FS = 72.64 \text{ dB}\mu\text{V/m} = 0.0042855$ Distance between the two antennas in m: $D = 3 \text{ m}$					
Selection of output power					
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.): $TP = 5.510 \mu\text{W}$					

General standalone SAR evaluation				
Unless specified otherwise, standalone 1 g head or body and 10 g extremity SAR evaluation for general population exposure conditions is not required when the corresponding SAR Test Exclusion Threshold condition(s) is (are) satisfied:				

⁴ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

<input checked="" type="checkbox"/> a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1 g and 10 g SAR test exclusion thresholds are determined by the following: $\frac{\text{max power of channel,incl.tune-up tolerance [mW]}}{\text{min.test separation distance [mm]}} \times \sqrt{f \text{ [GHz]}} \leq 3.0 \text{ for 1 g SAR and } \leq 7.5 \text{ for 10 g SAR.}$	<input checked="" type="checkbox"/>		
<input type="checkbox"/> b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1 g and 10 g SAR test exclusion thresholds are determined by the following:	<input type="checkbox"/>		
<input type="checkbox"/> For 100 MHz to 1500 MHz: $\left((\text{Power allowed at numeric threshold for } 50 \text{ mm}) + (\text{test separation distance} - 50 \text{ mm}) \times \left(\frac{f[\text{MHz}]}{150} \right) \right) [\text{mW}]$	<input type="checkbox"/>		
<input type="checkbox"/> For 1500 MHz to 6 GHz: $\left((\text{Power allowed at numeric threshold for } 50 \text{ mm}) + (\text{test separation distance} - 50 \text{ mm}) \times 10 \right) [\text{mW}]$	<input type="checkbox"/>		
<input type="checkbox"/> c) For frequencies below 100 MHz			
<input type="checkbox"/> 1) For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by $1 + \log(100/f[\text{MHz}])$	<input type="checkbox"/>		
<input type="checkbox"/> 2) For test separation distances ≤ 50 mm, the power threshold determined by the equation in c)1) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$.	<input type="checkbox"/>		
<input type="checkbox"/> 3)	<input type="checkbox"/>		
Carrier frequency: $f = 433.92 \text{ MHz} = 0.43392 \text{ GHz}$			<input checked="" type="checkbox"/>
Distance: $d = 5 \text{ mm}$		<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Transmitter output power: $TP = 0.00551 \text{ mW}$			
	$STET = (0.00551 \text{ [mW]} / 5 \text{ [mm]}) \sqrt{0.43392 \text{ [GHz]}}$		
	$= 0.000478$		
Limit: $STET_{\text{limit}} = 3.0$			<input checked="" type="checkbox"/>
<input type="checkbox"/> SAR evaluation is documented in test report no.			

2.5.6 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

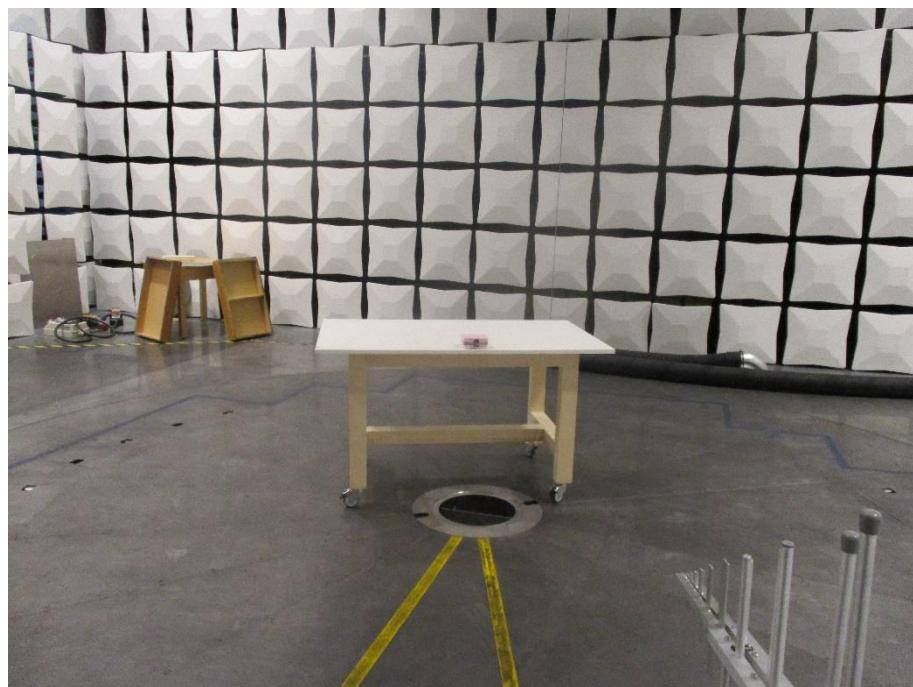
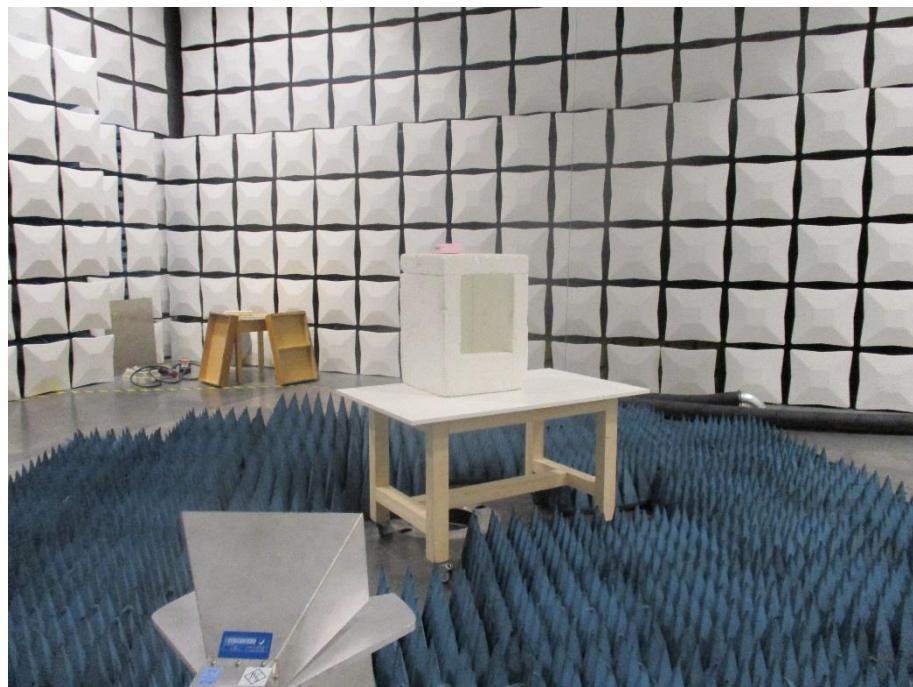


Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Double ridged horn antenna	Rohde & Schwarz	HF907	19933	24	2019-06-30
TRILOG Antenna	Schwarzbeck	VULB 9163	19691	24	2020-12-31
EMI test receiver	Rohde & Schwarz	ESW26	28268	12	2019-05-31
EMC measurement software	Rohde & Schwarz	EMC32-ME+	19719	N/A	N/A

Table 15

3 Photographs

3.1 Equipment Under Test (EUT)

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Radio Testing			
Test Name	kp	Expanded Uncertainty	Note
Occupied Bandwidth	2.0	$\pm 1.14 \%$	2
RF-Frequency error	1.96	$\pm 1 \cdot 10^{-7}$	7
RF-Power, conducted carrier	2	$\pm 0.079 \text{ dB}$	2
RF-Power uncertainty for given BER	1.96	$+0.94 \text{ dB} / -1.05$	7
RF power, conducted, spurious emissions	1.96	$+1.4 \text{ dB} / -1.6 \text{ dB}$	7
RF power, radiated			
25 MHz – 4 GHz	1.96	$+3.6 \text{ dB} / -5.2 \text{ dB}$	8
1 GHz – 18 GHz	1.96	$+3.8 \text{ dB} / -5.6 \text{ dB}$	8
18 GHz – 26.5 GHz	1.96	$+3.4 \text{ dB} / -4.5 \text{ dB}$	8
40 GHz – 170 GHz	1.96	$+4.2 \text{ dB} / -7.1 \text{ dB}$	8
Spectral Power Density, conducted	2.0	$\pm 0.53 \text{ dB}$	2
Maximum frequency deviation			
300 Hz – 6 kHz	2	$\pm 2.89 \%$	2
6 kHz – 25 kHz	2	$\pm 0.2 \text{ dB}$	2
Maximum frequency deviation for FM	2	$\pm 2.89 \%$	2
Adjacent channel power 25 MHz – 1 GHz	2	$\pm 2.31 \%$	2
Temperature	2	$\pm 0.39 \text{ K}$	4
(Relative) Humidity	2	$\pm 2.28 \%$	2
DC- and low frequency AC voltage			
DC voltage	2	$\pm 0.01 \%$	2
AC voltage up to 1 kHz	2	$\pm 1.2 \%$	2
Time	2	$\pm 0.6 \%$	2

Table 16

Radio Interference Emission Testing			
Test Name	kp	Expanded Uncertainty	Note
Conducted Voltage Emission			
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB	1
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB	1
100 kHz to 200 MHz (50Ω/5µH AMN)	2	± 3.6 dB	1
Discontinuous Conducted Emission			
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB	1
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB	1
Conducted Current Emission			
9 kHz to 200 MHz	2	± 3.5 dB	1
Magnetic Fieldstrength			
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB	1
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB	1
Radiated Emission			
Test distance 1 m (ALSE)			
9 kHz to 150 kHz	2	± 4.6 dB	1
150 kHz to 30 MHz	2	± 4.1 dB	1
30 MHz to 200 MHz	2	± 5.2 dB	1
200 MHz to 2 GHz	2	± 4.4 dB	1
2 GHz to 3 GHz	2	± 4.6 dB	1
Test distance 3 m			
30 MHz to 300 MHz	2	± 4.9 dB	1
300 MHz to 1 GHz	2	± 5.0 dB	1
1 GHz to 6 GHz	2	± 4.6 dB	1
Test distance 10 m			
30 MHz to 300 MHz	2	± 4.9 dB	1
300 MHz to 1 GHz	2	± 4.9 dB	1
Radio Interference Power			
30 MHz to 300 MHz	2	± 3.5 dB	1
Harmonic Current Emissions			4
Voltage Changes, Voltage Fluctuations and Flicker			4

Table 17

Immunity Testing			
Test Name	kp	Expanded Uncertainty	Note
Electrostatic Discharges			4
Radiated RF-Field			
Pre-calibrated field level	2	+32.2 / -24.3 %	5
Dynamic feedback field level	2.05	+21.2 / -17.5 %	3
Electrical Fast Transients (EFT) / Bursts			4
Surges			4
Conducted Disturbances, induced by RF-Fields			
via CDN	2	+15.1 / -13.1 %	6
via EM clamp	2	+42.6 / -29.9 %	6
via current clamp	2	+43.9 / -30.5 %	6
Power Frequency Magnetic Field	2	+20.7 / -17.1 %	2
Pulse Magnetic Field			4
Voltage Dips, Short Interruptions and Voltage Variations			4
Oscillatory Waves			4
Conducted Low Frequency Disturbances			
Voltage setting	2	± 0.9 %	2
Frequency setting	2	± 0.1 %	2
Electrical Transient Transmission in Road Vehicles			4

Table 18

Note 1:

The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Note 2:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Note 3:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of $kp = 2.05$, providing a level of confidence of $p = 95.45\%$

Note 4:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95% confidence.

Note 5:

The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Note 6:

The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Note 7:

The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of $kp = 1.96$, providing a level of confidence of $p = 95.45\%$

Note 8:

The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of $kp = 1.96$, providing a level of confidence of $p = 95.45\%$