

-1

RFID CF Type Reader User’s Guide

Model Name: SLC-10100

Version: 1.0

Date: 2007.04.09

-2

Content

No. Item Page

1 Hardware 3

2 Demo software 6

3 API user’s guide 15

4 Source code of demo program 36

5 Disk information 42

6 Package list 42

7 How to contact us 42

Notice:

In order to avoid misuse or any unexpected damage, please read this
guide first.

This device complies with Part 15 of FCC Rules. Operation is subject to
the following two conditions:
(1)This device may not cause harmful interference, and
(2)This device must accept any interference received, including

interference that may cause undesired operation

-3

1. Hardware environment
(1) Product introduction
 Sunlit’s RFID CF type reader is based on Hitachi µ-solution to develop.
 It was operated at microwave 2.45GHz frequency band.

This is small and light, can be easily install to PDA, tablet PC.

(2) Specification
Power Supply DC 3V from PDA or PC

Operating Environment 0°C ~40°C

Storage Environment 0°C ~60°C

Power Consumption Max. 0.6 W

Dimensions 56 x 43 x 6.1 (mm x mm x mm)

RF Output Power 36.307 mW

Frequency Range 2.402GHZ~2.477GHZ

Baud Rate 4800 b/s

Reading Distance About 5 cm

-4

(3) Hardware structure

CF interface

PDA or other
compatible device

RFID CF reader

Tag

WindowCE
Platform

(4) Hardware appearance introduction

(5) System requirement

Item Condition Quantity
Hardware requirement PDA support CF interface 1
Platform requirement Windows Pocket PC 2003 1

Antenna inside

CF interface connecter

-5

(6) How to install reader
Face the side with LED up, and insert it into PDA CF slot as shown in picture.

Normally always insert CF reader by put LED side up, but some PDA put CF slot at
reverse side, it means user needs to insert CF reader at back side. (LED down)

-6

2. Demo software environment
(1) Demo software introduction

 This demo program can build a database include TAG ID、TAG information and
picture. It can be use to demo ex. material manager、In/out control for people… etc.

(2) Block diagram

Main Program Tag ID

Data base

Picture Information

(3) Demo program operation

System requirement

Item Condition Quantity
PDA Support CF interface

64MB Flash ROM
64 MB RAM

1

System platform Windows Pocket PC 2003 1
RFID CF reader 1
Tag Include Hitachi µ-chip inlet 1

-7

Demo software contents
Item Description

Development
tool

Microsoft Visual Studio 2005 Traditional Edition

WinceDEMO.exe Main program
sunlitrfidppc.dll Dynamic Link Library file
Database.txt ID database file after ID saved File contents

PIC [Folder]
A picture file includes different pictures
which correlated with each individual ID

Main Program Window

Function Description Function Description

ID
Display Tag ID when Tag be
read.

Delete Delete registered database

Information Edit information about Tag ID Mode Select scan mode
Open Open/Close comport of reader Picture Select picture correct with ID

Mute ON/Off reading sound Clear
Clear text of ID & Message
window

Read Trigger reader to scan
Tag

DataBase
Display registered database

Updata Save registered database Message Display status of reader

-8

Demo program operation
(a) Copy demo program files “WinceDEMO.exe” & “sunlitrfidppc.dll” to PDA and

store at same directory.

About the file ※ transmissions please refer to PDA user’s manual.

(b) Plug reader in CF slot of PDA

-9

(c) Click file “WinceDEMO.exe” and click “Open” to open device(Reader)

(d) Create a ID data base
Be sure the Mode is “Passive”
Put the tag on front side of reader, click “Read” to scan Tag ID and checking ID number
is showing on ID window. Mark the ID number in Tag DataBase field .
Click “Picture”→ “Folder” to open location of picture that you want to correct with Tag
ID.Click ”Type” to select file type that you want than click picture file

※ Operation mode:

Passive: Click Read once and reader will scan once.
Active: Click Read once and reader will scan continuously.

It mean open device

successful

1

2

Cancel
Folder
File type

3

4

5

Mark this field

3

-10

(e) Editing information about the ID number on “Information” window.
Click “Updata” and check “Tag DataBase” window to complete the data base
created procedure.

(f) You can follow the step (d) (e) to create some data base that you want.

(g) When you created the data base, the system was created 1 folder and 1 text file:

Item Description
SDB [text file] ID database file after ID saved

SDB [Folder]
A picture file storage folder about correlate
with ID database after picture saved.

Caution: Every PDA are different resolution so the picture is showed different size. If
you want it to be matched, you should modify the source code of the project. And
showing picture is Windows API,but it is not stable. Showing picture seveval times
may cause the Demo AP crashes.

1

2

It mean

database

created

successful

-11

(h) Set Mute function
Follow the figure click the” Mute” function check box, the mute function will enable.

When you created the data base, the
system was created 1 folder and 1
text file

-12

(i) Set Operation mode
Mode: Active
Click the “Mode” combo box and select “Active” item to enable active function
Click “Read”, if tag scanned by reader and the scan procedures will continuously.

 Mode: Passive
 Click “Mode” combo box select “Passive” item to enable passive function
 Click “Read” and the reader scanning just only once.

Continue

Scanning

1

2

-13

(j) Delete data base
Click data you want to delete on Tag DataBase window
Click “Delete” and select “Yes” to delete data.

(k) Clear function

If click “Clear” than the text message on the Message window will be clear.

1

2
3

-14

(l) Disable device(Reader)
To confirm device is open.
Click “Close” to disable device.

-15

3. API user’s guide

ONE：Structure of Sunlit RFID DLL for PPC

TWO：Program Declaration

THREE：FUNCTION Introduction

FOUR：EVENTS Introduction

APPENDIX：Development Environment

-16

ONE、Structure of Sunlit RFID DLL for PPC

 The Sunlit RFID DLL has 18 functions. They can separate into 3 groups：Comport operation、Device operation and Device

information：

 Comport operation functions includes following 5 functions：

SUNLITRFID_CFExist

SUNLITRFID_Open

SUNLITRFID_OpenII

SUNLITRFID_IsOpen

SUNLITRFID_Close.

 Most functions of SUNLITRFID_Open and SUNLITRFID_OpenII are the same, except using different parameters.

 Device operation functions includes following 9 functions：

SUNLITRFID_Echo

SUNLITRFID_SoftwareReset

SUNLITRFID_HardwareReset〈Depend on device〉

SUNLITRFID_Pause

SUNLITRFID_OpModeSet

SUNLITRFID_OpModeGet

SUNLITRFID_ActiveScanIntervalSet

SUNLITRFID_ActiveScanIntervalGet

SUNLITRFID_ScanTag

 Device information functions includes following 4 functions：

SUNLITRFID_ProductNameGet

SUNLITRFID_ModelNameGet

SUNLITRFID_HardwareVersionGet

SUNLITRFID_FirmwareVersionGet

-17

The following table lists all DLL FUNCTION and FUNCTION parameter. For more information, Please see FUNCTION Introduction.

Comport operation functions

SUNLITRFID_CFExist(TCHAR *CFName)

SUNLITRFID_Open(HWND hWnd,LPCWSTR PortName,

DWORD BaudRate,SUNLITRFID_ENVIRONMENT *Environment)

SUNLITRFID_OpenII(HWND hWnd,LPCWSTR PortName,

DWORD BaudRate,HANDLE *haEvent,SUNLITRFID_TAGID *ActiveTagID)

SUNLITRFID_IsOpen(void)

SUNLITRFID_Close(void)

Device operation functions

SUNLITRFID_Echo(void)

SUNLITRFID_SoftwareReset(void)

SUNLITRFID_HardwareReset(void)〈Depend on device〉

SUNLITRFID_Pause(void)

SUNLITRFID_OpModeSet(BYTE Data)

SUNLITRFID_OpModeGet(BYTE *Data)

SUNLITRFID_ActiveScanIntervalSet(BYTE Data)

SUNLITRFID_ActiveScanIntervalGet(BYTE *Data)

SUNLITRFID_ScanTag(SUNLITRFID_TAGID *TagID)

Device information functions

SUNLITRFID_ProductNameGet(SUNLITRFID_PRODUCT_NAME *ProductName)

SUNLITRFID_ModelNameGet(SUNLITRFID_MODEL_NAME *ModelName)

SUNLITRFID_HardwareVersionGet(SUNLITRFID_HARDWARE_VER *HardwareVer)

SUNLITRFID_FirmwareVersionGet(SUNLITRFID_FIRMWARE_VER *FirmwareVer)

 Currently, there are only 3 different EVENTS in Sunlit RFID DLL：

 Environment.haEvent[ENVIRONMENT_EVENT_ACTIVE_READ_TAG]

 Environment.haEvent[ENVIRONMENT_EVENT_COMPORT_ERROR]

 Environment.haEvent[ENVIRONMENT_EVENT_PORT_CLOSE]

 For more information, Please see EVENTS Introduction.

-18

 The following picture represents how the DLL works with your program.

-19

TWO、Program Declaration

(1) Constant Definition
 The following table lists all constant definition that TYPE definition used.

Definition Introduction

#define PRODUCT_NAME_LENGTH 32 Define the length of product name information.

(Unit：byte)

#define MODEL_NAME_LENGTH 16 Define the length of model name information.

(Unit：byte)

#define HARDWARE_LENGTH 8 Define the length of hardware version

information. (Unit：byte)

#define FIRMWARE_LENGTH 8 Define the length of firmware version

information. (Unit：byte)

#define TAG_LENGTH 16 Define the length of Tag ID data. (Unit : byte)

#define ENVIRONMENT_EVENT_NUMBER 3 Define the number of events happened.

#define ENVIRONMENT_EVENT_COMPORT_ERROR 0 For more information, Please see EVENTS

Introduction.

#define ENVIRONMENT_EVENT_PORT_CLOSE 1 For more information, Please see EVENTS

Introduction.

#define ENVIRONMENT_EVENT_ACTIVE_READ_TAG 2 For more information, Please see EVENTS

Introduction.

-20

(2) TYPE Definition
 The following table lists all TYPE definition that function used.

Definition Introduction

typedef struct {

 unsigned char data[TAG_LENGTH];

} SUNLITRFID_TAGID;

Type definition of tag ID

Since Mu-ID data is represented by 128 bits

format, so we condense this 128 bit information

by byte format. And every 8 bits data is

respectively each byte, for example, data[0]

represents bit120~bit127; data[1] represents

bit112~bit119; data[TAG_LENGTH-1]

represents bit0~bit7.

typedef struct {

HANDLE haEvent[ENVIRONMENT_EVENT_NUMBER];

SUNLITRFID_TAGID ActiveTagID;

} SUNLITRFID_ENVIRONMENT;

Type definition of enviroment status.

The type has two elements: haEvent and

ActiveTagID.

haEvent is HANDLE array that use for wait

events. For more information, Please see

EVENTS Introduction.

ActiveTagID was introduced at above definition.

typedef struct {

 char data[PRODUCT_NAME _LENGTH+1];

} SUNLITRFID_PRODUCT_NAME;

Type definition of product name information.

After function executed successfully. The char

array will be added the end of string character

‘0x00’

typedef struct {

 char data[MODEL_NAME_LENGTH+1];

} SUNLITRFID_MODEL_NAME;

Type definition of Model Name

After function executed successfully. The char

array will be added the end of string character

‘0x00’

typedef struct {

 char data[HARDWARE_LENGTH+1];

} SUNLITRFID_HARDWARE_VER;

Type definition of hardware version

After function executed successfully. The char

array will be added the end of string character

‘0x00’

typedef struct {

 char data[FIRMWARE_LENGTH+1];

} SUNLITRFID_FIRMWARE_VER;

Type definition of firmware version

After function executed successfully. The char

array will be added the end of string character

‘0x00’

-21

(3) MESSAGE Definition
 The following table lists all DLL function message and how to solve it.

No. Name Value Introduction

1 HANDLE_SUCCESS 0x00 This message will happen when the function

you called was executed successfully.

2 HANDLE_ERR_TAG_PASSIVE 0x20 This message will happen when you call

“SUNLITRFID_ScanTag” in passive mode,and

device found a tag.

3 HANDLE_ERR_TAG_NOT_FOUND 0x22 This message will happen when you call

“SUNLITRFID_ScanTag” in passive mode,but

device does’t found a tag.

4 HANDLE_ERR_NO_RESPONSE 0x80 This message will happen when you call

function,but device has no response. To solve

this problem, please check hardware power or

connection.

5 HANDLE_ERR_COMPORT 0x81 This message will happen when you call

“SUNLITRFID_ScanTag” in passive mode,but

comport failed with some error. To solve this

problem, please check hardware power or

connection.

6 HANDLE_ERR_CREATE_EVENT 0x88 This message will happen when you call

“SUNLITRFID_Open” or

“SUNLITRFID_OpenII”, but DLL create event

fail. To solve this problem, please try again.

7 HANDLE_ERR_CREATE_THREAD 0x89 This message will happen when you call

“SUNLITRFID_Open” or

“SUNLITRFID_OpenII”, but DLL create thread

fail. To solve this problem, please try again.

8 HANDLE_ERR_ILLEGAL_RETURN_DATA 0x8b This message will happen when you call

function,but device return incorrect data.

To solve this problem, please try again the

function you called.

9 HANDLE_ERR_UNSUPPORTED_FUNCTIO

N

0x8c This message will happen when device does’t

support this function.

10 HANDLE_ERR_ILLEGAL_DATA 0xfd This message will happen when the parameter

of function that you called was illegal. To solve

this problem, please send legal data to function.

-22

11 HANDLE_ERR_UNKNOW 0xff Undefined error. Please record how this

message happened and contact with us

〈www.sunlitcorp.com〉.

12 Others ? Unknow message. Please record how this

message happened and contact with us

〈www.sunlitcorp.com〉.

-23

THREE、FUNCTION Introduction

1. bool SUNLITRFID_CFExist (

TCHAR *CFName

);

SUNLITRFID_ComportNumGet is used to find the CF card in your PPC.

Parameters：

CFName：The parameter is shown as TCHAR array format, when this function is executed successfully, the array will show each

COMPORT name that inserted CF card. For example, your PPC has 2 different CF card, insert into COM 1 and COM 4, then

CFName will show as “COM1\0x00COM4\0x00”.

Return Values：

 We need to judge whether we find COMPORT or not, so we define Return Value “TRUE” for successfully find, “False” for failed.

For example：

TCHAR CFName[1024];

if(SUNLITRFID_CFExist(CFName))

{}//Found CF card successfully

else //Not found CF card

{}

-24

2. BYTE SUNLITRFID_Open (

HWND hWnd,

LPCWSTR PortName,

DWORD BaudRate,

SUNLITRFID_ENVIRONMENT *Environment

);

SUNLITRFID_Open is used to open the comport

Parameters：

hWnd：The program’s HANDLE as a parameter that send thru the Function. If you don’t know what’s your program’s HANDLE, use

NULL.

PortName：The comport name you want to open.

BaudRate：The comport baud rate that you want to open with.

Environment：Please see 「TYPE」 definition.

Return Values：

 The function will return byte value that indicate the execution result.Please see 「MESSAGE」 definition for byte value.

For example：

SUNLITRFID_ENVIRONMENT Environment;

WCHAR wcaPortName[]={‘C’,’O’,’M’,’1’,0x00};

if(SUNLITRFID_Open(NULL,wcaPortName,19200,&Environment)==HANDLE_SUCCESS)

{}//Open comport successfully

else //Open comport failed

{}

-25

3. BYTE SUNLITRFID_OpenII(

HWND hWnd,

LPCWSTR PortName,

DWORD BaudRate,

HANDLE *haEvent,

SUNLITRFID_TAGID *ActiveTagID

);

SUNLITRFID_OpenII is used to open the comport.

Parameters：

hWnd：The program’s HANDLE as a parameter that send thru the Function. If you don’t know what’s your program’s HANDLE, use

NULL.

PortName：The comport name you want to open.

BaudRate：The comport baud rate that you want to open with.

haEvent：Please see 「TYPE」 definition.

ActiveTagID：Please see 「TYPE」 definition.

Return Values：

 The function will return byte value that indicate the execution result.Please see 「MESSAGE」 definition for byte value.

For example：

HANDLE haEvent[ENVIRONMENT_EVENT_NUMBER];

SUNLITRFID_TAGID ActiveTagID;

WCHAR wcaPortName[]={‘C’,’O’,’M’,’1’,0x00};

if(SUNLITRFID_Open(NULL,wcaPortName,19200,haEvent, &ActiveTagID)==HANDLE_SUCCESS)

{}//Open comport successfully

else//Open comport failed

{}

-26

4. bool SUNLITRFID_IsOpen(void);

SUNLITRFID_IsOpen can check the comport status that is opened or not.

Parameters：

No parameter needed.

Return Values：

 The function will return a boolean value. If comport was opened,it will return true,otherwise false.

For example：

if(SUNLITRFID_IsOpen())

{} //Comport is open

else //Comport is closed

{}

5. bool SUNLITRFID_Close(void);

SUNLITRFID_Close is used for close comport.

Parameters：

No parameter needed.

Return Values：

 The function will return a boolean value,If the function executed successfully, it will return true,otherwise false.

For example：

if(SUNLITRFID_Close())

{} //Comport was closed successfully

else //Close comport fail

{}

-27

6. BYTE SUNLITRFID_Echo(void);

SUNLITRFID_Echo request device to reply message.

Parameters：

No parameter needed.

Return Values：

 The function will return byte value that indicate the execution result.Please see 「MESSAGE」 definition for byte value

For example：

if(SUNLITRFID_Echo()==HANDLE_SUCCESS)

{} //The device was reply message successfully

else

{}

7. BYTE SUNLITRFID_SoftwareReset(void);

SUNLITRFID_SoftwareReset reset device by software.

Parameters：

No parameter needed.

Return Values：

 The function will return byte value that indicate the execution result.Please see 「MESSAGE」 definition for byte value

For example：

if(SUNLITRFID_SoftwareReset()==HANDLE_SUCCESS)

{} //The device was reset by software successfully

else

{}

-28

8. BYTE SUNLITRFID_HardwareReset(void);

SUNLITRFID_HardwareReset reset device by hardware.〈Depend on device〉

Parameters：

No parameter needed.

Return Values：

 The function will return byte value that indicate the execution result.Please see 「MESSAGE」 definition for byte value

For example：

if(SUNLITRFID_HardwareReset()==HANDLE_SUCCESS)

{} //The device was reset by hardware successfully

else

{}

9. BYTE SUNLITRFID_Pause(void);

SUNLITRFID_Pause pauses the device from any operation mode.

Parameters：

No parameter needed.

Return Values：

 The function will return byte value that indicate the execution result.Please see 「MESSAGE」 definition for byte value

For example：

if(SUNLITRFID_Pause()==HANDLE_SUCCESS)

{} //The device was paused successfully

else

{}

-29

10. BYTE SUNLITRFID_OpModeSet(

BYTE Data

);

SUNLITRFID_OpModeSet is used to set dvice’s operation mode, “Active Mode” or “Passive Mode”.

Parameters：

Data：The value 0x00 represents passive mode,other values represent active mode

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value

For example：

BYTE byData;

byData=0x00;//passive mode

if(SUNLITRFID_OpModeSet(byData)==HANDLE_SUCCESS)

{} //The device was set in passive mode successfully

else

{}

-30

11. BYTE SUNLITRFID_OpModeGet(

BYTE *Data

);

SUNLITRFID_OpModeGet is used to get dvice’s operation mode.

Parameters：

Data：After executing the function ,The value 0x00 represents that the device was in passive

 mode,other values represent that the device was in active mode.

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value.

For example：

BYTE byData;

if(SUNLITRFID_OpModeGet(&byData)==HANDLE_SUCCESS)

{

 if(byData==0x00){} //The device was in passive mode

 else {} //The device was in active mode

}

else

{}

-31

12. BYTE SUNLITRFID_ActiveScanIntervalSet(

BYTE Data

);

SUNLITRFID_ActiveScanIntervalSet is used to set the scan interval time for active mode.

Parameters：

Data：The value represents scan interval time,bwtween 5 ~ 255 (Uint：10mS)

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value.

For example：

BYTE byData;

byData=10;//scan interval=100ms

if(SUNLITRFID_ ActiveScanIntervalSet(byData)==HANDLE_SUCCESS)

{} //Set scan interval successfully

else

{}

13. BYTE SUNLITRFID_ActiveScanIntervalGet(

BYTE *Data

);

SUNLITRFID_ActiveScanIntervalGet is used to get the current scan interval time for active mode.

Parameters：

Data：After executing the function ,The value represents the scan interval time that in active mode.

 (Uint：10mS)

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value

For example：

BYTE byData;

if(SUNLITRFID_ ActiveScanIntervalGet(&byData)==HANDLE_SUCCESS)

{} //Get scan interval successfully

else

{}

-32

14. BYTE SUNLITRFID_ScanTag(

SUNLITRFID_TAGID *TagID

);

SUNLITRFID_ScanTag for scan tag. When it passive mode, reader will read tag once, when it is active mode, reader will start to read

tag continuously.

Parameters：

TagID：Please see 「TYPE」 definition.

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value.

For example：

SUNLITRFID_TAGID TagID;

switch(SUNLITRFID_ SUNLITRFID_ScanTag(&TagID))

{

case HANDLE_SUCCESS: //Start scan tag in active mode

break;

 case HANDLE_ERR_TAG_PASSIVE://Found Tag in passive mode

break;

 case HANDLE_ERR_TAG_NOT_FOUND://Not Found Tag in passive mode

break;

dfault://Please see「MESSAGE」 definition

break;

}

-33

15. BYTE SUNLITRFID_ProductNameGet(

SUNLITRFID_PRODUCT_NAME *ProductName

);

SUNLITRFID_ProductNameGet is used to get the product name information form the device.

Parameters：

ProductName：Please see 「TYPE」 definition.

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value.

For example：

SUNLITRFID_PRODUCT_NAME ProductName;

if(SUNLITRFID_ProductNameGet(&ProductName)==HANDLE_SUCCESS)

{} //Get product name information successfully

else

{}

16. BYTE SUNLITRFID_ModelNameGet(

SUNLITRFID_MODEL_NAME *ModelName

);

SUNLITRFID_ModelNameGet is used to get the model name information form the device.

Parameters：

ModelName：Please see 「TYPE」 definition.

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value.

For example：

SUNLITRFID_MODEL_NAME ModelName;

if(SUNLITRFID_ModelNameGet(&ModelName)==HANDLE_SUCCESS)

{} //Get model name information successfully

else

{}

-34

17. BYTE SUNLITRFID_HardwareVersionGet(

SUNLITRFID_HARDWARE_VER *HardwareVer

);

SUNLITRFID_HardwareVersionGet is used to get the hardware version from the device.

Parameters：

HardwareVer：Please see 「TYPE」 definition.

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value.

For example：

SUNLITRFID_HARDWARE_VER HardwareVer;

if(SUNLITRFID_HardwareVersionGet(&HardwareVer)==HANDLE_SUCCESS)

{} //Get hardware version successfully

else

{}

18. BYTE SUNLITRFID_FirmwareVersionGet(

SUNLITRFID_FIRMWARE_VER *FirmwareVer

);

SUNLITRFID_FirmwareVersionGet is used to get the firmware version from the device.

Parameters：

FirmwareVer：Please see 「TYPE」 definition.

Return Values：

 The function will return byte value that indicate the execution result, please see 「MESSAGE」 definition for byte value.

For example：

SUNLITRFID_FIRMWARE_VER FirmwareVer;

if(SUNLITRFID_FirmwareVersionGet(&FirmwareVer)==HANDLE_SUCCESS)

{} //Get firmware version successfully

else

{}

-35

FOUR、EVENTS Introduction

1. Environment.haEvent[ENVIRONMENT_EVENT_ACTIVE_READ_TAG]

The event happened when the device read a tag in active mode.

2. Environment.haEvent[ENVIRONMENT_EVENT_COMPORT_ERROR]

The event happened when comport or hardware error that DLL can’t communicate with device.

3. Environment.haEvent[ENVIRONMENT_EVENT_PORT_CLOSE]

 The event happened when comport closed. The event’s purpose is let your thread or timer to escape form the waiting function

“WaitForSingleObject” or “WaitForMultipleObjects”.

 You may need to use Windows API function “WaitForSingleObject” or “WaitForMultipleObjects” to wait events. For more information,

Please see Microsoft MSDN Library.

 If you use function “WaitForSingleObject” or “WaitForMultipleObjects” to wait events in timer. We recommend that the 2nd

parameter of function “WaitForSingleObject” or the 4th parameter of function “WaitForMultipleObjects” must be a limited value. For

example:50.

Hardware Environment：
Product Name：RFID CF Type Reader V3.0

Model Name：SLC-10200

Firmware Version：V1.0 or later

Hardware Version：V1.0 or later

Software Environment：
Development Environment：Microsoft Visual C++ 2005 Professional〈Chinese Traditional〉

-36

4. Demo program source code

ONE、The Main Framework of the Demo Program

 The following picture represents the main framework of the demo program.

-37

TWO、Program Code Explanation

There are many subroutines, following are the source code of to subroutines.※
The explanation is in accordance with user interface.

(1) Open Comport
Click “Open” button to open comport.

The “Open” button executes the following code.

void CWinceDEMODlg::OnBnClickedButtonOpen()

{

 // TODO: 在此加入控制項告知處理常式程式碼

 CString sTemp;

 TCHAR CFName[1024];

 ZeroMemory(CFName, sizeof(CFName));

 ButtonOpen.EnableWindow(false);

 if(!SUNLITRFID_IsOpen())

 {

 ListMsg.ResetContent();

 if(SUNLITRFID_CFExist(CFName))

 {

 ListMsg.InsertString(0,CString("Open Comport..."));

 ListMsg.UpdateWindow ();

-38

 if(SUNLITRFID_Open(this->m_hWnd ,CFName,4800,&Environment)==HANDLE_SUCCESS)

 {

 Sleep(10);

 SUNLITRFID_Pause();

 ButtonOpen.SetWindowTextW(CString("Close"));

 DrawEnvironment.ClearPicture();

 sTemp.Format(CString("Open Comport <%s> Successed!!!"),CFName);

 ListMsg.InsertString(0,sTemp);

 if(ButtonMute.GetCheck()==BST_UNCHECKED)

 MessageBeep(MB_ICONASTERISK);

 }

 else

 {

 sTemp.Format(CString("Open Comport <%s> Fail..."),CFName);

 ListMsg.InsertString(0,sTemp);

 }

 }

 else ListMsg.InsertString(0,CString("Can't Find CF Card..."));

 }

 else

 {

 SUNLITRFID_Close();

 DrawEnvironment.ClearPicture();

 ListMsg.InsertString(0,CString("Close Comport~~~"));

 ButtonOpen.SetWindowTextW(CString("Open"));

 if(ButtonMute.GetCheck()==BST_UNCHECKED)

 MessageBeep(MB_ICONHAND);

 if(ComboBoxOPMode.GetCount()>0)

 ComboBoxOPMode.SetCurSel(0);

 }

SetEvent(hEventFlip);

ListMsg.UpdateWindow();

ButtonOpen.EnableWindow(true);

}

-39

(2) Select Operation Mode
“Operation Mode:” selects “passive” or “active”. Then click “Apply” button to apply setting.

“Mode:” selects “passive” or “active”, it executes the following code.

void CWinceDEMODlg::OnCbnSelchangeComboOpmode()
{
 // TODO: 在此加入控制項告知處理常式程式碼
 CString sTemp,sTemp2;
 BYTE byTemp=0;

 if(SUNLITRFID_IsOpen())
 {
 SUNLITRFID_Pause();
 ListMsg.InsertString(0,CString("Pause Device!!!")) ;
 SUNLITRFID_ActiveScanIntervalSet(DEFAULT_SCAN_INTERVAL_10MS);
 //---
 //Set Operation Mode
 if(ComboBoxOPMode.GetCurSel()==0) byTemp=0;//Passive Mode
 else byTemp=0xff;//Active Mode

 if(SUNLITRFID_OpModeSet(byTemp)==HANDLE_SUCCESS)
 ListMsg.InsertString(0,CString("Set Operation Mode Successed!!!")) ;

 else ListMsg.InsertString(0,CString("Set Operation Mode Fail...")) ;
 //---
 if(ButtonMute.GetCheck()==BST_UNCHECKED)
 MessageBeep(MB_ICONASTERISK);
 }
 else
 {
 ListMsg.InsertString(0,CString("Comport Error...")) ;
 if(ButtonMute.GetCheck()==BST_UNCHECKED)
 MessageBeep(MB_OK);
 }
}

-40

(3) Read Tag
Click “Read” button to read tag. When it passive mode, reader will read tag once, when it is active mode, reader will start to read tag

continuously.

The “Read” button executes the following code.

void CWinceDEMODlg::OnBnClickedButtonRead()
{
 // TODO: 在此加入控制項告知處理常式程式碼
 CString sTemp,sTemp2;
 BYTE byTemp=0;
 SUNLITRFID_TAGID TagID;

 ButtonRead.EnableWindow(false);

 SUNLITRFID_Pause();

 byTemp=SUNLITRFID_ScanTag(&TagID);

 DrawEnvironment.ClearPicture();

 switch(byTemp)
 {
 case HANDLE_SUCCESS://Only in Active Mode
 ListMsg.InsertString(0,CString("(A)Read~~~"));
 break;

 case HANDLE_ERR_TAG_PASSIVE://Read Tag in Passive Mode

 if(SDB.IsExists(&TagID)==-1)
 {
 if(ButtonMute.GetCheck()==BST_UNCHECKED)
 MessageBeep(MB_ICONASTERISK);

 AddNewTagToDB(&TagID);//Add New Tag Dialog
 }
 else if(ButtonMute.GetCheck()==BST_UNCHECKED)
 MessageBeep(MB_OK);

 ShowTagInfo(&TagID,true);

 break;

 case HANDLE_ERR_TAG_NOT_FOUND://Did't Read Tag in Passive Mode
 ListMsg.InsertString(0,CString("(P)Not Found Tag..."));
 break;

 case HANDLE_ERR_COMPORT:
 ListMsg.InsertString(0,CString("Comport Error..."));

-41

 break;

 case HANDLE_ERR_NO_RESPONSE:
 ListMsg.InsertString(0,CString("Device has no response???"));
 break;

 default:
 sTemp.Format(CString("Undefined value:%d..."),byTemp);
 ListMsg.InsertString(0,sTemp);
 break;
 }
 SetEvent(hEventFlip);
 ButtonRead.EnableWindow(true);
}

APPENDIX：Development Environment

Hardware Environment：
Product Name：RFID CF Type Reader V3.0

Model Name：SLC-10200

Firmware Version：V1.0 or later

Hardware Version：V1.0 or later

Software Environment：
Development Environment：Microsoft Visual C++ 2005 Professional〈Chinese Traditional〉

-42

5. Disk information
Folder File Description

sunlitrfidppc.dll.(V1.1.0.1)2006-12-22 Include API
 sunlitrfidppc.h Header file
 sunlitrfidppc.dll Dynamic Link Library file
 sunlitrfidppc.lib Library file
Demo software(V1.1.0.1) Demo Software
 WinceDEMO.exe Main program file
 sunlitrfidppc.dll Dynamic Link Library file
 CFR_SLC-10100_ User

Guide_V1_ENG.pdf
PDF file of user guide

6. Package list
Item Quantity

CF type reader 1
Application CD 1

7. How to contact us

For further information or in case of difficulties please contact

Sunlit System Technology Corp.
www.sunlitcorp.com

8F1, NO19, LANE.120, SEC.1, Neihu Rd., Neihu Chiu Taipei Taiwan 114 R.O.C.
webmaster@sunlitcorp.com

TEL: 886-2-6600-6351
FAX: 886-2-6600-6765

-43

Warning: In order to avoid misuse or any unexpected
damage, please read this guide first.

FCC Statement
Regulatory Approvals
This equipment has been tested and found to comply with the limits for a Class B digital device,

pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection

against harmful interference in a residential installation.

This equipment generates uses and can radiate radio frequency energy and, if not installed and

used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this

equipment does cause harmful interference to radio or television reception, which can be

determined by turning the equipment off and on, the user is encouraged to try to correct the

interference by one of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is

connected.

Consult the dealer or an experienced radio/TV technician for help.

To assure continued compliance, any changes or modifications not expressly approved by the

party responsible for compliance could void the user's authority to operate this equipment.

(Example - use only shielded interface cables when connecting to computer or peripheral

devices).

FCC Radiation Exposure Statement
This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled

environment. This equipment should be installed and operated with a minimum distance of 20

centimeters between the radiator and your body.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two

conditions:

(1) This device may not cause harmful interference, and

(2) This device must accept any interference received, including interference that may cause

undesired operation.

This transmitter must not be co-located or operating in conjunction with any other antenna or

transmitter.

The antennas used for this transmitter must be installed to provide a separation distance of at

least 20 cm from all persons and must not be co-located or operating in conjunction with any

other antenna or transmitter.

