SAR Test Report

Product Name : Handset

Model No. : A1536,PCD1361EC,PCD1361ECR,CL1361ECR,PCD1361,

CL1361EN,CL1361,TE1361,PCD1361PE,PCD1361AL,PCD1361,CL,

PCD1361PO,PCD1361MV,PCD1361OM,PCD1361MX,TE1361PE,

AL1361AL,CL1361CL,CL1361PO,MV1361MV,TE1361MX; CL1361CA;

PCD1361BR;PCD1361AR;PCD1361CP

FCC ID : T38PCD1536

Prepared By: : Inventec Appliances(Pudong) Corporation

Address: : No.789 Pu Xing Road, Shanghai, PRC

Date of Receipt : 2012.08.17

Date of Test : 2012.08.29-2012.09.14

Report No. : 20120817SAR

Page: 1 of 50 Version:1.0

Test Report Certification

Date of Issue : Sep.14.2012

Report No. : 20120817SAR

Product Name : Handset

Model No. : A1536,PCD1361EC,PCD1361ECR,CL1361ECR,PCD1361,

CL1361EN,CL1361,TE1361,PCD1361PE,PCD1361AL,PCD1361,CL,

PCD1361PO,PCD1361MV,PCD1361OM,PCD1361MX,TE1361PE,

AL1361AL,CL1361CL,CL1361PO,MV1361MV,TE1361MX; CL1361CA;

PCD1361BR;PCD1361AR;PCD1361CP

Trade Name : CLARO\PCD

Applicant : Cellon Communications Technology (Shenzhen) Co.,Ltd.

Address : 13/F, Skyworth C Building, Gaoxin S.Ave1, Hi-Tech Industrial Park, Nanshan District,

Standard : FCC 47 CFR Part2 (2.1093)

IEEE C95.1-1999 IEEE 1528-2003

FCC OET Bulletin 65 supplement C

Body: 0.744W/kg(1g); 0.488W/kg(10g)

The Test Results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of Inventec Appliances(Pudong) Corporation

Documented By : Assignment of Sep.14.2012

Judy Ge/Engineer

Tested By : , Sep.14.2012

Alice Lee/Engineer

Approved By : , Sep.14.2012

Jeff Huang/Director of Operations

TABLE OF CONTENTS

	Description	Page
1. (GENERAL INFORMATION	4
1.1	. APPLICANT	4
1.2	. Manufacturer	4
1.3	TEST ENVIRONMENT	4
2. 8	SAR MEASUREMENT SYSTEM	5
2.1	. ALSAS-10U System Description	5
2.2	. ISOTROPIC E-FIELD PROBE	7
2.3	BOUNDARY DETECTION UNIT AND PROBE MOUNTING DEVICE	8
2.4	. DAQ-PAQ (ANALOG TO DIGITAL ELECTRONICS)	9
2.5	. Axis Articulated Robot	9
2.6	ALSAS Universal Workstation	10
2.7	. Universal Device Positioner	10
2.8	PHONTOM TYPES	11
3. 1	TISSUE SIMULATING LIQUID	12
3.1	. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	12
3.2	TISSUE CALIBRATION RESULT	13
3.3	. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	15
4. \$	SAR MEASUREMENT PROCEDURE	16
4.1	. SAR System Validation	16
4.2	ARRANGEMENT ASSESSMENT SETUP	22
4.3	SAR MEASUREMENT PROCEDURE	25
5. \$	SAR EXPOSURE LIMITS	26
6.]	TEST EQUIPMENT LIST	27
7. I	MEASUREMENT UNCERTAINTY	28
8.]	TEST RESULTS	30
8.1	. SAR Test Results Summary	30
8.2		
8.3	SAR Measurement Data	35

1. GENERAL INFORMATION

1.1. Applicant

Company Name: Cellon Communications Technology (Shenzhen) Co.,Ltd.

Address: 13/F, Skyworth C Building, Gaoxin S.Ave1, Hi-Tech Industrial Park, Nanshan District,

1.2. Manufacturer

Company Name: Cellon Communications Technology (Shenzhen) Co.,Ltd.

Address: 13/F, Skyworth C Building, Gaoxin S.Ave1, Hi-Tech Industrial Park, Nanshan District,

1.3. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actural
Temperature(°C)	15~30	21.4
Humidity(%RH)	30~70	46

Page: 4 of 50 Version:1.0

2. SAR Measurement System

2.1. ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller.

ALSAS-10U uses the latest methodologies and FDTD order to provide a platform which is repeatable with minimum uncertainty.

2.1.1. Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently is available up to 6 GHz in simulated tissue.

Page: 5 of 50 Version: 1.0

2.1.2. Area Scans

Area Scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm^2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

2.1.3. Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1g or 10g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000Kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube 21.5mm.

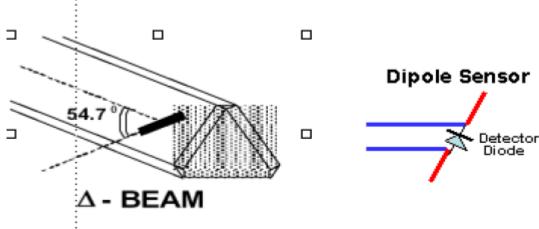
When the cube intersects with the surFront of the phantom, it is oriented so that 3 vertices touch the surFront of the shell or the center of a Front is tangent to the surFront.

The zoom Scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5× 5×8 (8mm×8mm×5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

2.1.4. ALSAS-10U Interpolation and Extrapolation Uncertainty

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$


Page: 6 of 50 Version:1.0

2.2. Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropic, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change. A number of methods is used for calibrating probes, and these are outlined in the table below:

Calibration Frequency	Air Calibration	Tissue Calibration
900MHz	TEM Cell	Temperature
1800MHz	TEM Cell	Temperature

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surFront (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surFront.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Page: 7 of 50 Version: 1.0

2.2.1. Isotropic E-Field Probe Specification

Calibration in Air	Frequency Dependent
	Below 2GHz Calibration in air performed in a TEM Cell
	Above 2GHz Calibration in air performed in waveguide
Sensitivity	0.70 μ V/(V/m) 2 to 0.85 μ V/(V/m) 2
Dynamic Range	0.0005 W/kg to 100W/kg
Isotropic Response	Better than 0.2dB
Diode Compression point	Calibration for Specific Frequency
(DCP)	
Probe Tip Radius	< 5mm
Sensor Offset	1.56 (+/- 0.02mm)
Probe Length	290mm
Video Bandwidth	@ 500 Hz: 1dB
	@1.02 KHz: 3dB
Boundary Effect	Less than 2% for distance greater than 2.4mm
Spatial Resolution	Diameter less than 5mm Compliant with Standards

Probe model no: ALS-E-020, S/N:500-00273

2.3. Boundary detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surFronts. The robust design allows for detecting during probe tilt (probe normalize) exercises, and utilizes a second stage emergency sTop. The signal electronics are directly into the robot controller for high accuracy surFront detection in lateral and axial detection modes (X, Y, &Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connected to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Page: 8 of 50 Version:1.0

2.4. Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from 5 μ V to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via a RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit
Amplifier Range	20m∨ to 200m∨ and 150m∨ to 800m∨
Field Integration	Local Co-Processor utilizing proprietary integration
	algorithms
Number of Input Channels	4 in total 3 dedicated and 1 spare
Communication	Packet data via RS232

2.5. Axis Articulated Robot

ALSAS-10U utilizes a six articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelop. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot/Controller Manufacturer	Thermo CRS
Number of Axis	Six independently controlled axis
Positioning Repeatability	0.05mm
Controller Type	Single phase Pentium based C500C
Robot Reach	710mm
Communication	RS232 and LAN compatible

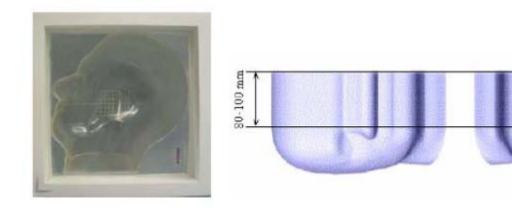
Page: 9 of 50 Version:1.0

2.6. ALSAS Universal Workstation

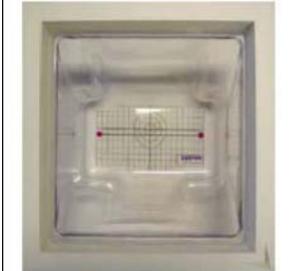
ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurement using different types of phantoms with one set up, which significantly speeds up the measurement process.

2.7. Universal Device Positioner

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt movements for head SAR analysis. Overall uncertainty for measurements has been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.


Page: 10 of 50 Version:1.0

2.8. Phontom Types


The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

2.8.1. APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

2.8.2. APREL Laboratories Universal Phantom The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal has Phantom been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software. The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

Page: 11 of 50 Version:1.0

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT (% Weight)	850MHz	1900MHZ	850MHZ	1900MHz
	Head	Head	Body	Body
Water	40.45%	54.9%	45.0%	70.17%
Salt	1.45%	0.18%	52.4%	0.39%
Sugar	57.6%	0%	1.4%	0%
HEC	0.4%	0%	1.0%	0%
Preventol	0.1%	0%	0.1%	0%
DGBE	0%	44.92%	0%	29.44%

Page: 12 of 50 Version: 1.0

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to SAR evaluation using APREL Dielectric Probe Kit and Agilent E5071B Vector Network Analyzer.

	Head T	issue Simulate N	1easurement	
Frequency	Dogarintian	Dielectric P	arameters	Tr. Tr. (°C)
(MHz)	Description	E 7	σ (s/m)	Tissue Temp.(°C)
	Reference result	41.5	0.90	NIA
850MHz	+/-5% window	39.425to43.575	0.855to0.945	NA
	13-Sep-12	40.27	0.94	20.7
	Reference result	40.0	1.40	NIA
1900MHz	+/-5% window	38to42	1.33 to 1.47	NA
	13-Sep-12	41.54	1.44	20.7

Page: 13 of 50 Version:1.0

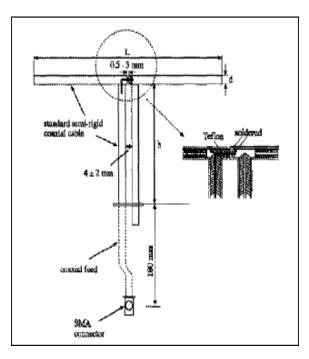
	Body T	issue Simulate N	/leasurement	
Frequency	Description	Dielectric Parameters		Tissue Temp.(°C)
(MHz)	Description	€ 7	σ (s/m)	Tissue Temp.(C)
	Reference result	55.2	0.97	NA
850MHz	+/-5% window	52.44to57.96	0.922to1.019	NA NA
	13-Sep-12	53.37	0.95	20.7
	Reference result	53.3	1.52	NA
1900MHz	+/-5% window	50.635to55.965	1.444to1.596	NA
	13-Sep-12	52.93	1.55	20.7

Page: 14 of 50 Version:1.0

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in PP1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1428 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	ody
(MHz)	εΓ	σ (S/m)	εΓ	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00


(ε_{γ} =relative permittivity, σ =conductivity and ρ =1000 Kg/m³)

Page: 15 of 50 Version: 1.0

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used are based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. The table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L(mm)	h(mm)	d(mm)
850MHz	161	89.8	3.6
1900MHz	67.1	38.9	3.6

Page: 16 of 50 Version:1.0

4.1.2. Validation Result

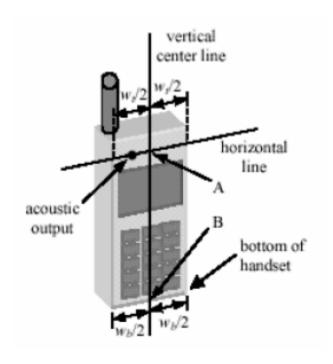
Performance Ch	eck at 850MH	Z&1900MHz		
ASL-D-850-S-2				
Description	SAR(W/Kg) 1g	SAR(W/Kg) 10g	Tissue Temp.(°C)	
Reference result	9.590	6.003	N/A	
+/-5%window	9.110to10.07	5.702to6.303		
13-Sep-12(1W)	9.472	5.857	20.7	
13-3cp-12(1 w)	7.412	3.037	20.7	
ASL-D-1900-S-2		3.637	20.7	
	2	SAR(W/Kg) 10g	Tissue Temp.(°C)	
ASL-D-1900-S-2	2		Tissue Temp.(℃)	
ASL-D-1900-S-2 Description	SAR(W/Kg) 1g	SAR(W/Kg) 10g		
	ASL-D-850-S-2 Description Reference result +/-5%window	ASL-D-850-S-2 Description SAR(W/Kg) 1g Reference result 9.590 +/-5%window 9.110to10.07	Description SAR(W/Kg) 1g SAR(W/Kg) 10g Reference result 9.590 6.003 +/-5%window 9.110to10.07 5.702to6.303	

Validation Kit: ASL-D-850-S-2								
Frequency(MHz)	Grequency(MHz) Description SAR(W/Kg) 1g SAR(W/Kg) 10g Tissue Temp.(°C)							
	Reference result	9.981	6.006	NT/A				
850MHz	+/-5%window	9.482to10.48	5.706to6.306	N/A				
13-Sep-12(1W) 9.574 5.829 20.7								
	10 000 12(1 11)	,	3.023	20.7				
	ASL-D-1900-S-2		3.025	2017				
Validation Kit:	ASL-D-1900-S-2	2	SAR(W/Kg) 10g	Tissue Temp.(°C)				
	ASL-D-1900-S-2	2		Tissue Temp.(℃)				
Validation Kit:	ASL-D-1900-S-2	SAR(W/Kg) 1g	SAR(W/Kg) 10g					

Page: 17 of 50 Version: 1.0

T 0711	050
Frequency(MHz)	850
Relative permittivity(real part)	40.27
Conductivity(S/m)	0.94
Variation(%)	0.546
Duty Cycle Factor	1
Crest factor	1
Conversion Fator	6.5
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	SAR-Z Axis at Hotopet x-10.03 y-0.08
Are from the state of the state	12- 10- 10- 2- 0 5 10 15 20 25 30 Z Distance (mm)
SAR 1g(W/Kg)	9.472
SAR 10g(W/Kg)	5.857

Frequency(MHz)	850
Relative permittivity(real part)	53.37
Conductivity(S/m)	0.95
Variation(%)	0.389
Duty Cycle Factor	1
Crest factor	1
Conversion Fator	6.4
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-08-14
Alta line Alta line	14 12 10 15 20 25 30 25 30 Z Distance (mm)
SAR 1g(W/Kg)	9.574
SAR 10g(W/Kg)	5.829


Frequency(MHz)	1900
Relative permittivity(real part)	41.54
Conductivity(S/m)	1.44
Variation(%)	-1.267
Duty Cycle Factor	1
Crest factor	1
Conversion Fator	5.7
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
## Service 100	SAR-Z Axis at Hotspor x-10.01 y-0.013 70 60 50 50 30 20 10 10 15 20 25 30 25 30
SAR 1g(W/Kg)	38.668
SAR 10g(W/Kg)	19.257

Frequency(MHz)	1900
Relative permittivity(real part)	52.93
Conductivity(S/m)	1.55
Variation(%)	0.295
Duty Cycle Factor	1
Crest factor	1
Conversion Fator	5.4
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
11 (1990) 2 (1990) 3 (1990) 4 (1990) 4 (1990) 4 (1990)	SAR-Z Axis at Hotopot x-9.97 y-0.10 70 60 50 10 10 15 20 20 10 5 10 15 20 25 30
SAR 1g(W/Kg)	39.644
SAR 10g(W/Kg)	19.726

4.2. Arrangement Assessment Setup

4.2.1. Test Positions of Device Relative to Head

This specifies exactly two test positions for the handset against the head phantom, the "cheek" position and the "tilted" position. The handset should be tested in both positions on the left and right sides of the SAM phantom. If the handset construction is such that it cannot be positioned using the handset positioning procedures described in 4.2.2.1 and 4.2.2.2 to represent normal use conditions (e.g. asymmetric handset), alternative alignment procedures should be considered with details provided in the test report.

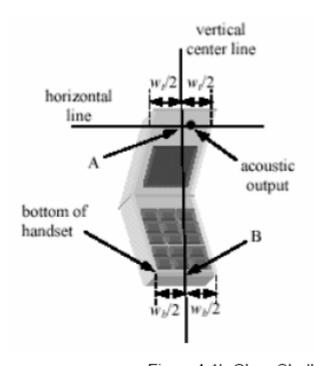


Figure 4.1a Internal Case

Figure 4.1b Clam Shell

4.2.2.1. Definition of the "Cheek" Position

The "cheek" position is defined as follows:

- a. Ready the handset for talk operation, if necessary. For example, for hand sets with a cover piece, open the cover. (If the handset can also be used with the cover closed both configurations must be tested.)
- b. Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 4.1 a and 4.1 b), and the midpoint of the width wb of the

Page: 22 of 50 Version: 1.0

Back of the handset through the center of the acoustic output (see Figure 4.1 a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front Front of the handset (see Figure 4.1 b), especially for clamshell handsets, handsets with flip pieces, and other irregularly-shaped handsets.

- c. Position the handset close to the surFront of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see 4.2), such that the plan defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- d. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the pinna.
- e. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- f. Rotate the handset around the vertical centerline until the handset (horizontal line) is symmetrical with respect to the line NF.

While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the pinna (cheek). See Figure 4.2 the physical angles of rotation should be noted.

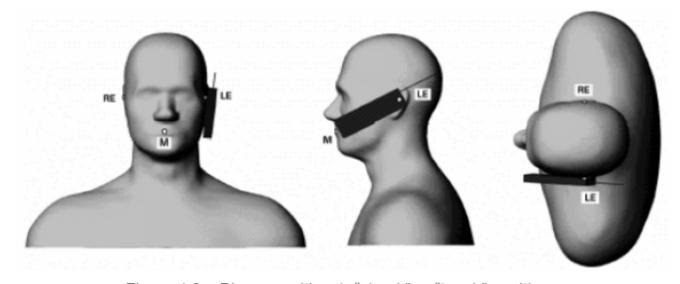


Figure 4.2 – Phone position 1, "cheek" or "touch" position.

4.2.1.2 Definition of the "Tilted" Position

The "tilted" position is defined as follows:

- a. Repeat steps (a) (g) of 4.2.1.1 to place the device in the "cheek position".
- b. While maintaining the orientation of the handset move the handset away from the

Page: 23 of 50 Version:1.0

pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees.

- c. Rotate the handset around the horizontal line by 15 degrees.
- d. While maintaining the orientation of the handset, move the handset towards the phantom on a line passing through RE and LE until any part of the handset touches the ear. The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna (e.g. the antenna with the Back of the phantom head), the angle of the handset should be reduced. In this case, the tilted position is obtained if any part of the handset is in contact with the pinna as well as a second part of the handset is contact with the phantom (e.g. the antenna with Back of the head).

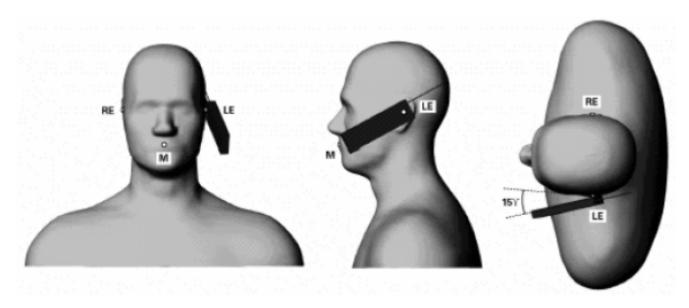


Figure 4.3 – Phone position 2, "tilted" position.

4.2.2. Test Positions for body-worn

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. A separation distance of 1.5 cm between the Back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distance may be use, but not exceed 2.5cm.

Page: 24 of 50 Version:1.0

4.3. SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ :represents the simulated tissue conductivity

p :represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are large than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1 mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1 mm³).

Page: 25 of 50 Version:1.0

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE C95.1-1999, IEEE 1528-2003, FCC OET Bulletin 65 supplement C.

Type Exposure (W/kg)	Uncontrolled Environment Limit
Spatial Peak SAR (10g cube tissue for head and trunk)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for limb)	4.00 W/kg

Page: 26 of 50 Version:1.0

6. Test Equipment List

Instrument	Manufacture	Model No.	Serial No.	Last Calibration
Universal Work Station	Aprel	ALS-UWS	100-00154	NCR
Data Acquisition Package	Aprel	ALS-DAQ-PAQ-3	110-00215	NCR
Probe Mounting Device and				
Boundary Detection Sensor	Aprel	ALS-PMDPS-3	120-00265	NCR
System				
Miniature E-Field Probe	Aprel	ALS-E-020	500-00282	Oct.01,2011
Left ear SAM Phantom	Aprel	ALS-P-SAM-L	130-00312	NCR
Right ear SAM Phantom	Aprel	ALS-P-SAM-R	140-00362	NCR
Universal SAM Phantom	Aprel	ALS-P-SU-1	150-00410	NCR
Reference Validation Dipole 850MHz	Aprel	ALS-D-850-S-2	180-00556	May.19,2011
Reference Validation Dipole 1900MHz	Aprel	ALS-D-1900-S-2	210-00707	May.16,2011
Dielectric Probe Kit	Aprel	ALS-PR-DIEL	260-00955	NCR
Device Holder 2.0	Aprel	ALS-H-E-SET-2	170-00506	NCR
SAR software	Aprel	ALS-SAR-AL-10	Ver.2.3.8	NCR
CRS C500C Controller	Thermo	ALS-C500	RCF0504291	NCR
CRS F3 Robot	Aprel	ALS-F3-SW	N/A	NCR
Power Amplifier	Mini-Circuit	ZHL- 42	040306	Jul.13,2012
Directional Coupler	Agilent	778D-012	51011	Jul.13,2012
Universal Radio Communication Tester	Agilent	E5515C	104845	Mar.1,2012
Vector Network	Agilent	E5071B	MY4230146	Jul.18,2012
Signal Generator	Agilent	E8257D	N/A	Dec.05,2011
Power Meter	Rohde&Schwarz	NRP	N/A	Dec.05,2011

Note: All equipment upon which need to be calibrated are with calibration period of 1 year, except validation dipole antenna of every 3 years.

Page: 27 of 50 Version:1.0

7. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Uncertainty Value Distribution (1-g) (10-g) Uncertainty Uncertain								
Probe Calibration 3.5 normal 1 1 1 1 1 3.5 3.5 Axial Isotropy 3.7 rectangular √3 (1-cp)¹¹² (1-cp)¹¹² 1.5 1.5 Hemispherical Isotropy 10.9 rectangular √3 √cp √cp 4.4 4.4 Boundary Effect 1.0 rectangular √3 1 1 0.6 0.6 Linearity 4.7 rectangular √3 1 1 2.7 2.7 Detection Limit 1.0 rectangular √3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular √3 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular √3 1 1 1.7 1.7 Probe Positioning with respect to Phantom Shell 2.9 rectangular √3 1			_	Divisor			Uncertainty	Standard Uncertainty (10-g) %
Axial Isotropy 3.7 rectangular $\sqrt{3}$ $(1-cp)^{1/2}$ $(1-cp)^{1/2}$ 1.5 1.5 Hemispherical Isotropy 10.9 rectangular $\sqrt{3}$ \sqrt{cp} \sqrt{cp} 4.4 4.4 4.4 Boundary Effect 1.0 rectangular $\sqrt{3}$ 1 1 0.6 0.6 1.6 Linearity 4.7 rectangular $\sqrt{3}$ 1 1 1 2.7 2.7 2.7 Detection Limit 1.0 rectangular $\sqrt{3}$ 1 1 1 0.6 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1 1.0 1.0 1.0 Response Time 0.8 rectangular $\sqrt{3}$ 1 1 1 0.5 0.5 1.5 Integration Time 1.7 rectangular $\sqrt{3}$ 1 1 1 1.0 1.0 1.0 RF Ambient Condition 3.0 rectangular $\sqrt{3}$ 1 1 1 0.2 0.2 0.2 Restriction	Measurement System							
Hemispherical Isotropy 10.9 rectangular √3 √cp √cp 4.4 4.4 Boundary Effect 1.0 rectangular √3 1 1 0.6 0.6 Linearity 4.7 rectangular √3 1 1 2.7 2.7 Detection Limit 1.0 rectangular √3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular √3 1 1 1.0 1.0 Response Time 1.7 rectangular √3 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular √3 1 1 1.7 1.7 Probe Positioner Mech. 0.4 rectangular √3 1 1 1.7 1.7 Restriction	Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Boundary Effect 1.0 rectangular √3 1 1 0.6 0.6 Linearity 4.7 rectangular √3 1 1 2.7 2.7 Detection Limit 1.0 rectangular √3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular √3 1 1 0.5 0.5 Integration Time 1.7 rectangular √3 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular √3 1 1 1.7 1.7 Probe Positioner Mech. 0.4 rectangular √3 1 1 0.2 0.2 Restriction	Axial Isotropy	3.7	rectangular	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.5	1.5
Linearity 4.7 rectangular $\sqrt{3}$ 1 1 2.7 2.7 Detection Limit 1.0 rectangular $\sqrt{3}$ 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1 1.0 1.0 Response Time 0.8 rectangular $\sqrt{3}$ 1 1 0.5 0.5 Integration Time 1.7 rectangular $\sqrt{3}$ 1 1 1 0.5 0.5 The Probe Positioner Mech. 0.4 rectangular $\sqrt{3}$ 1 1 1 0.2 0.2 Restriction	Hemispherical Isotropy	10.9	rectangular	√3	√ср	√cp	4.4	4.4
Detection Limit 1.0 rectangular $\sqrt{3}$ 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular $\sqrt{3}$ 1 1 0.5 0.5 Integration Time 1.7 rectangular $\sqrt{3}$ 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular $\sqrt{3}$ 1 1 1.7 1.7 Probe Positioner Mech. 0.4 rectangular $\sqrt{3}$ 1 1 0.2 0.2 Restriction	Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6
Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular $\sqrt{3}$ 1 1 0.5 0.5 Integration Time 1.7 rectangular $\sqrt{3}$ 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular $\sqrt{3}$ 1 1 1.7 1.7 Probe Positioner Mech. 0.4 rectangular $\sqrt{3}$ 1 1 0.2 0.2 Restriction	Linearity	4.7	rectangular	√3	1	1	2.7	2.7
Response Time 0.8 rectangular $\sqrt{3}$ 1 1 0.5 0.5 Integration Time 1.7 rectangular $\sqrt{3}$ 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular $\sqrt{3}$ 1 1 1.7 1.7 Probe Positioner Mech. 0.4 rectangular $\sqrt{3}$ 1 1 0.2 0.2 Restriction Probe Positioning with respect to Phantom Shell 2.9 rectangular $\sqrt{3}$ 1 1 1.7 1.7 Integration	Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6
Integration Time 1.7 rectangular $\sqrt{3}$ 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular $\sqrt{3}$ 1 1 1.7 1.7 Probe Positioner Mech. 0.4 rectangular $\sqrt{3}$ 1 1 0.2 0.2 Restriction	Readout Electronics	1.0	normal	1	1	1	1.0	1.0
RF Ambient Condition 3.0 rectangular $\sqrt{3}$ 1 1 1 0.2 0.2 Probe Positioner Mech. 0.4 rectangular $\sqrt{3}$ 1 1 1 0.2 0.2 Restriction	Response Time	0.8	rectangular	√3	1	1	0.5	0.5
Probe Positioner Mech. 0.4 rectangular $\sqrt{3}$ 1 1 0.2 0.2 Restriction	Integration Time	1.7	rectangular	√3	1	1	1.0	1.0
Restriction	RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7
Probe Positioning with respect to Phantom Shell 2.9 rectangular √3 1 1 1.7 1.7 Extrapolation and Integration 3.7 rectangular √3 1 1 2.1 2.1 Test Sample Positioning 4.0 normal 1 1 1 4.0 4.0 Device Holder 2.0 normal 1 1 1 2.0 2.0 Uncertainty 1 <td>Probe Positioner Mech.</td> <td>0.4</td> <td>rectangular</td> <td>√3</td> <td>1</td> <td>1</td> <td>0.2</td> <td>0.2</td>	Probe Positioner Mech.	0.4	rectangular	√3	1	1	0.2	0.2
Probe Positioning with respect to Phantom Shell 2.9 rectangular √3 1 1 1.7 1.7 Extrapolation and Integration 3.7 rectangular √3 1 1 2.1 2.1 Test Sample Positioning 4.0 normal 1 1 1 4.0 4.0 Device Holder 2.0 normal 1 1 1 2.0 2.0 Uncertainty 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
respect to Phantom Shell Image: Control of the property of the proper	Restriction							
respect to Phantom Shell Image: Control of the property of the proper	Probe Positioning with	2.9	rectangular	√3	1	1	1.7	1.7
Extrapolation and Integration 3.7 rectangular value √3 1 1 2.1 2.1 Integration Test Sample Positioning value 4.0 normal 1 1 1 4.0 4.0 Device Holder 2.0 normal 1 1 1 1 2.0 2.0 Uncertainty 0 <td></td> <td></td> <td>3</td> <td>,</td> <td></td> <td></td> <td></td> <td></td>			3	,				
Integration Test Sample Positioning 4.0 normal 1 1 1 4.0 4.0 Device Holder 2.0 normal 1 1 1 2.0 2.0 Uncertainty		3.7	rectangular	√3	1	1	2.1	2.1
Test Sample Positioning 4.0 normal 1 1 1 4.0 4.0 Device Holder 2.0 normal 1 1 1 2.0 2.0 Uncertainty 0	Integration							
Device Holder 2.0 normal 1 1 1 2.0 2.0 Uncertainty		4.0	normal	1	1	1	4.0	4.0
Uncertainty				1				
		0.6	rectangular	√3	1	1	0.3	0.3
	<u>.</u>		3 1 11					
Phantom and Setup	Phantom and Setup							
Phantom 3.4 rectangular $\sqrt{3}$ 1 1 2.0 2.0		3.4	rectangular	√3	1	1	2.0	2.0
Uncertainty(shape &								
thickness tolerance)								
Liquid 5.0 rectangular $\sqrt{3}$ 0.7 0.5 2.0 1.4	·	5.0	rectangular	√3	0.7	0.5	2.0	1.4
Conductivity(target)	_							

Page: 28 of 50 Version: 1.0

IAC

Report No.:20120817SAR

Liquid	0.0	normal	1	0.7	0.5	0.0	0.0
Conductivity(meas.)							
Liquid	5.0	rectangular	√3	0.6	0.5	1.7	1.4
Permittivity(target)							
Liquid	2.4	normal	1	0.6	0.5	1.4	1.2
Permittivity(meas.)							
Combined Uncertainty		RSS				9.3	9.2
Combined Uncertainty		Normal(k=2)				18.7	18.3
(coverage factor=2)							

Page: 29 of 50 Version:1.0

8. Test Results

8.1. SAR Test Results Summary

SAR MEASUREMENT								
Ambient Temperature (°C): 21.2 ± 2 Relative Humidity (%): 46								
Liquid Temperature (°C	Liquid Temperature (°C): 20.5 ± 2 Depth of Liquid (cm):>15							
Product: GSM Mobile	Phone							
Test Mode: GSM850								
Test Position Head	Frequer			SAR 1g	Limit (W/kg)			
Test Position Head	Antenna Position	Channel	MHz	(W/kg)	Lillit (W/Kg)			
Left-Cheek	Internal	251	848.8	0.638	1.6			
Left-Tilted	Internal	251	848.8	0.509	1.6			
Right- Cheek	Internal	251	848.8	0.753	1.6			
Right - Tilted	Internal	251	848.8	0.531	1.6			
Right- Cheek	Internal	128	824.2	0.786	1.6			
Right- Cheek	Internal	190	836.6	0.759	1.6			

SAR MEASUREMENT							
Ambient Temperature (°C	C): 21.2 ± 2	R	Relative Humidity (%): 46				
Liquid Temperature (°C): 20.5 ± 2 Depth of Liquid (cm):>15							
Product: GSM Mobile Phone							
Test Mode: PCS 1900							
Test Position Head	A D W II I A A D W			SAR 1g	Limit (W/low)		
Test Position flead	Antenna Position	Channel	MHz	(W/kg)	Limit (W/kg)		
Left-Cheek	Internal	810	1909.8	0.803	1.6		
Left- Tilted	Internal	810	1909.8	0.353	1.6		
Right-Cheek	Internal	810	1909.8	0.716	1.6		
Right -Tilted	Internal	810	1909.8	0.364	1.6		
Left-Cheek	Internal	512	1850.2	0.863	1.6		
Left-Cheek	Internal	661	1880.0	0.993	1.6		

Page: 30 of 50 Version: 1.0

DUT with Flat Phantom 1.5cm Gap

SAR MEASUREMENT							
Ambient Temperature (°C): 21.2 ± 2 Relative Humidity (%): 46							
Liquid Temperature (°C): 20.5 ± 2 Depth of Liquid (cm):>15							
Product: GSM Mobile Phone							
Test Mode: GPRS850(GPRS12)							
m , D ;; D 1	Frequency SAR 1g						
Test Position Body	Antenna Position	Channel	MHz	(W/kg)	Limit (W/kg)		
Body Front	Internal	251	848.8	0.546	1.6		
Body Back	Internal	251	848.8	0.744	1.6		

DUT with Flat Phantom 1.5cm Gap

DOT with that thantom 1.5cm Gap						
SAR MEASUREMENT						
Ambient Temperature (°C	C): 21.2 ± 2	Relative Humidity (%): 46				
Liquid Temperature (°C)	: 20.5 ± 2	Depth of Liquid (cm):>15				
Product: GSM Mobile Pl	hone					
Test Mode: GPRS 1900(GPRS12)						
Test Desition Dedy	A	Frequency		SAR 10g	Limit (W//ra)	
Test Position Body Antenna Position		Channel	MHz	(W/kg)	Limit (W/kg)	
Body Front	Internal	810	1909.8	0.209	1.6	
Body Back	Internal	810	1909.8	0.737	1.6	

Page: 31 of 50 Version: 1.0

8.2. Conducted Power(Unit:dBm)

Band	GSM850			GSM1900		
Channel	128	189	251	512	661	810
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8
GSM	31.94	31.99	32.01	28.87	29.13	29.34

Band	Conducted Power (dBm)		Factor	Aver	age Power (e Power (dBm)	
Channel	128	189	251	(dB)	128	189	251
Frequency(MHz)	824.2	836.4	848.8		824.2	836.4	848.8
GPRS8(1up)	31.93	31.98	32.00	-9.03	22.90	22.95	22.97
GPRS10(2up)	30.26	30.38	30.41	-6.02	24.24	24.36	24.39
GPRS12(4up)	28.05	28.12	28.17	-3.01	25.04	25.11	25.16

Band	Conducted Power (dBm)		Factor	Average Power (dBm)			
Channel	512	661	810	(dB)	512	661	810
Frequency(MHz)	1850.2	1880.0	1909.8		1850.2	1880.0	1909.8
GPRS8(1up)	28.86	29.12	29.31	-9.03	19.83	20.09	20.28
GPRS10(2up)	27.17	27.25	27.36	-6.02	21.15	21.23	21.34
GPRS12(4up)	25.22	25.14	25.37	-3.01	22.21	22.13	22.36

NOTES:

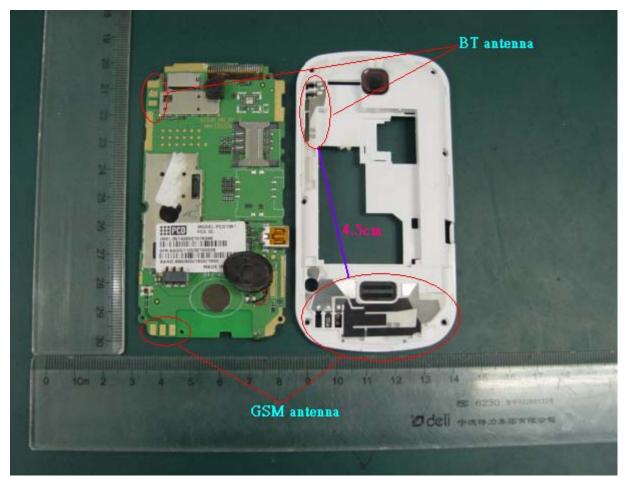
Division Factors:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) = > -6.02 dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB


4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with

Page: 32 of 50 Version:1.0

Bluetooth Function:

The distance between BT antenna and GSM antenna is 4.5cm.

The conducted power for BT antenna is as following:

		Bluetooth RF Output Power (dBm)					
Channel	Frequency	Data Rate / Modulation					
		GFSK π /4-DQPSK		8-DPSK			
		1Mbps	2Mbps	3Mbps			
Ch00	2402MHz	8.28	8.62	9.11			
Ch39	2441MHz	7.67	7.90	8.47			
Ch78	2480MHz	7.66	8.07	8.29			

The BT Max conduct Power is 9.11dB< 10.8dB(PRef) and its antenna is >2. 5 cm from other GSM antenna. According to KDB 648474, stand-alone SAR evaluation is also not required for BT transmitter.

Page: 33 of 50 Version:1.0

References:

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [7] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009
- [8] FCC KDB 447498 D02 v02, "SAR Measurement Procedures for USB Dongle Transmitters", November 2009
- [9] FCC KDB 616217 D01 v01r01, "SAR Evaluation Considerations for LapTop Computers with Antennas Built-in on Display Screens", November 2009
- [10] FCC KDB 616217 D03 v01, "SAR Evaluation Considerations for LapTop/Notebook/Netbook and Tablet Computers", November 2009
- [11] FCC KDB 648474 D01 v01r05, "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", September 2008
- [12] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [13] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS /EDGE", December 2008
- [14] KDB 941225 D04 SAR for GSM E GPRS Dual Xfer Mode v01
- [15] 941225 D06 Hot Spot SAR v01

Page: 34 of 50 Version:1.0

8.3. SAR Measurement Data

GSM850) left cheek ch251
Frequency(MHz)	848.8
Relative permittivity(real part)	40.27
Conductivity(S/m)	0.94
Variation(%)	2.017
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	6.5
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	0.9 0.8 0.7 0.6 0.6 0.6 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
SAR 1g(W/Kg)	0.638
SAR 10g(W/Kg)	0.414

Page: 35 of 50 Version: 1.0

GSM850 le	eft tilt ch251
Frequency(MHz)	848.8
Relative permittivity(real part)	40.27
Conductivity(S/m)	0.94
Variation(%)	-3.537
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	6.5
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	SAR-Z Axis at Hotspot x 10.06 y:-10.16
	0.7 0.6 0.5 0.0 0.3 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1
SAR 1g(W/Kg)	0.509
SAR 10g(W/Kg)	0.329

GSM8.	50 Right cheek ch251
Frequency(MHz)	848.8
Relative permittivity(real part)	40.27
Conductivity(S/m)	0.94
Variation(%)	1.108
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	6.5
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	at Hotspot x 10.06 y-10.16 1.6 1.4 1.2 (a) 1.0 (b) 1.0 (c) 0.8 (c) 0.8 (c) 0.8 (c) 0.8 (c) 0.9 (c) 0
SAR 1g(W/Kg)	0.753
SAR 10g(W/Kg)	0.496

GS	M850 Right tilt CH251
Frequency(MHz)	848.8
Relative permittivity(real part)	40.27
Conductivity(S/m)	0.94
Variation(%)	-1.453
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	6.5
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	SAR-Z Axis at Hotspot x 10.06 y-10.16 0.9 0.8 0.7 0.6 0.9 0.4 0.3 0.2 0.1 0.0 5 10 15 20 25 30 Z Distance (mm)
SAR 1g(W/Kg)	0.531
SAR 10g(W/Kg)	0.335

GSM850 Right cheek ch128	
Frequency(MHz)	824.2
Relative permittivity(real part)	40.27
Conductivity(S/m)	0.94
Variation(%)	4.637
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	6.5
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	at Hotspot x 10.06 y-10.16 1.4 1.2 1.0 0.8 0.4 0.2 0.0 0 5 10 15 20 25 30 Z Distance (mm)
SAR 1g(W/Kg)	0.786
SAR 10g(W/Kg)	0.497

GSM8	50 Right cheek ch190
Frequency(MHz)	836.6
Relative permittivity(real part)	40.27
Conductivity(S/m)	0.94
Variation(%)	-1.808
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	6.5
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	1.1 1.0 0.9 0.8 0.5 0.4 0.3 0.2 0.1 0.0 0.5 0.1 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
SAR 1g(W/Kg)	0.759
SAR 10g(W/Kg)	0.506

GSM1900 Let	ft cheek CH810
Frequency(MHz)	1909.8
Relative permittivity(real part)	41.54
Conductivity(S/m)	1.44
Variation(%)	1.632
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	5.7
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	SAR-Z Axis at Hotspot x 48.09 y-13.04
	1.4 1.2 1.0 0.6 0.4 0.2 0.0 0.5 10 15 20 25 30 Z Distance (mm)
SAR 1g(W/Kg)	0.803
SAR 10g(W/Kg)	0.496

GSM190	00 Left tilt CH810
Frequency(MHz)	1909.8
Relative permittivity(real part)	41.54
Conductivity(S/m)	1.44
Variation(%)	1.707
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	5.7
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	SAR-Z Axis at Hotspot x 38.10 y.14.95
	0.55 0.50 0.45 0.40 0.35 0.25 0.20 0.15 0.10 0.05 0.00 0 5 10 15 20 25 30 Z Distance (mm)
SAR 1g(W/Kg)	0.353
SAR 10g(W/Kg)	0.208

GSM1900	Right cheek CH810
Frequency(MHz)	1909.8
Relative permittivity(real part)	41.54
Conductivity(S/m)	1.44
Variation(%)	-1.366
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	5.7
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	at Hotspot x40.06 y.15.01 1.1 1.0 0.9 0.8 0.7 0.9 0.5 0.4 0.3 0.2 0.1 0.0 0.5 10 15 20 25 30
SAR $1g(W/Kg)$	0.716
SAR $10g(W/Kg)$	0.411

GSM19	900 Right tilt CH810
Frequency(MHz)	1909.8
Relative permittivity(real part)	41.54
Conductivity(S/m)	1.44
Variation(%)	1.200
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	5.7
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	SAR-Z Axis at Hotspot x48.06 y.13.01 0.8 0.7 0.6 0.5 0.9 0.04 0.3 0.2 0.1 0.0 0.5 10 15 20 25 30 Z Distance (mm)
SAR 1g(W/Kg)	0.364
SAR 10g(W/Kg)	0.229

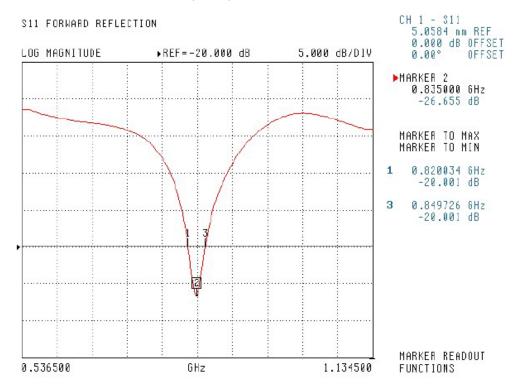
GSM1900 L	Left cheek CH512
Frequency(MHz)	1850.2
Relative permittivity(real part)	41.54
Conductivity(S/m)	1.44
Variation(%)	-1.869
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	5.7
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
	SAR-Z Axis at Hotspot x:48.09 y-13.04 1.6 1.4 1.2 1.0 0.6 0.4 0.2 0.0 5 10 15 20 25 30 Z Distance (mm)
SAR 1g(W/Kg)	0.863
SAR 10g(W/Kg)	0.448

GSM1900 Left cheek CH661	
Frequency(MHz)	1860.0
Relative permittivity(real part)	41.54
Conductivity(S/m)	1.44
Variation(%)	-1.584
Duty Cycle Factor	8
Crest factor	8
Conversion Fator	5.7
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13 SAR-Z Axis
	1.6 1.4 1.2 (b) 1.0 (c) 0.8 0.6 0.4 0.2 0.0 0 5 10 15 20 25 30 Z Distance (mm)
SAR 1g(W/Kg)	0.993
SAR 10g(W/Kg)	0.561

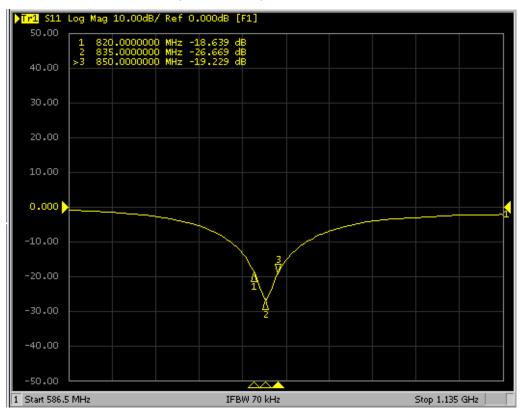
GPRS850 bod	y Front CH251
Frequency(MHz)	848.8
Relative permittivity(real part)	53.37
Conductivity(S/m)	0.95
Variation(%)	0.489
Duty Cycle Factor	2
Crest factor	2
Conversion Fator	6.4
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
Area Scan O.784 O.995 O.995	1.1 1.0 0.9 0.8 0.7 0.7 0.8 0.5 0.4 0.3 0.2 0.1 0.0 0.5 10 15 20 25 30 25 30
SAR 1g(W/Kg)	0.546
SAR 10g(W/Kg)	0.394

GPRS850 I	body Back CH251
Frequency(MHz)	848.8
Relative permittivity(real part)	53.37
Conductivity(S/m)	0.95
Variation(%)	-2.622
Duty Cycle Factor	2
Crest factor	2
Conversion Fator	6.4
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2
Data	2012-09-13
Are 5 cm O272 O300 O440 O4	SAR-Z Axis at Hotspet x 8 02 y 7 90 12 1.1 1.0 0.9 0.8 0.5 0.4 0.3 0.2 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2.5 2.Distance (mm)
SAR 1g(W/Kg)	0.744
SAR 10g(W/Kg)	0.488

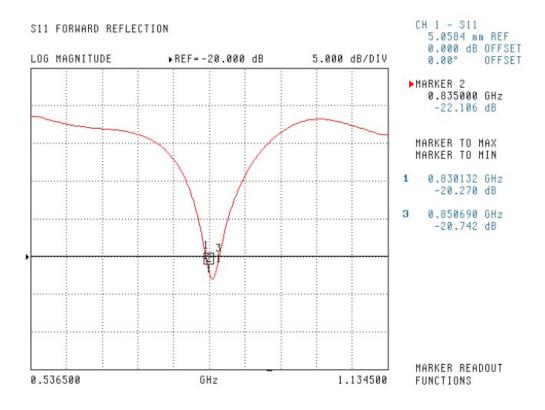
GPRS1900 body Front CH810			
Frequency(MHz)	1909.8		
Relative permittivity(real part)	52.93		
Conductivity(S/m)	1.55		
Variation(%)	-1.621		
Duty Cycle Factor	2		
Crest factor	2		
Conversion Fator	5.4		
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2		
Data	2012-09-13		
Area Scan. 20 10 0 10 30 30 30 30 30 30 30 30 30 30 30 30 30	SAR-Z Axis at Hotspot x 20 00 y -0.11 0.35 0.30 0.25 0.15 0.10 0.05 0.15 0.00 5 10 15 20 25 30		
SAR 1g(W/Kg)	0.209		
SAR 10g(W/Kg)	0.123		

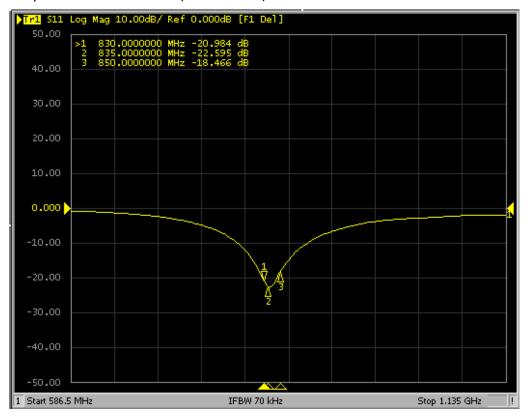

GPRS1900 body Back CH810				
Frequency(MHz)	1909.8			
Relative permittivity(real part)	52.93			
Conductivity(S/m)	1.55			
Variation(%)	-2.024			
Duty Cycle Factor	2			
Crest factor	2			
Conversion Fator	5.4			
Probe Sensitivity	1.20 1.20 1.20 µ V/(V/m)2			
Data	2012-09-13			
	SAR-Z Axis at Hotspot x:10.06 y:-10.16			
	1.3			
	1.2			
	1.1			
	1.0			
Atrea Scien	0,9			
20 P 30 - 10 Q 10 P 30 P 20 P 20 P 20 P 20 P 20 P 20 P 2				
0.584	0.7			
0.50 0.45 0.142 0.111 0.000 0.500 0.7 Add (mm)	0.8 WE 0.7 W 0.6			
	0.5			
	0.4			
	0.3			
	0.2			
	0.1			
	0.0			
	0 5 10 15 20 25 30 Z Distance (mm)			
SAR 1g(W/Kg)	0.737			
SAR $10g(W/Kg)$	0.398			

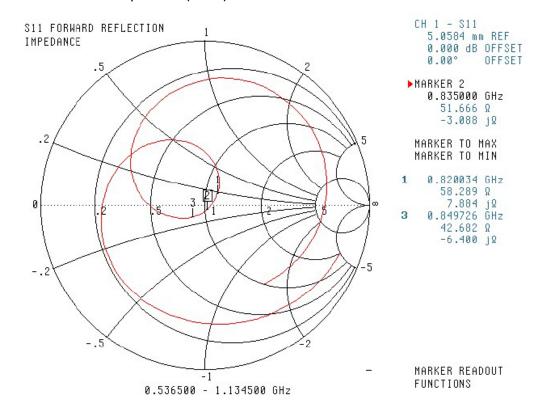
ValidationDipole Calibration

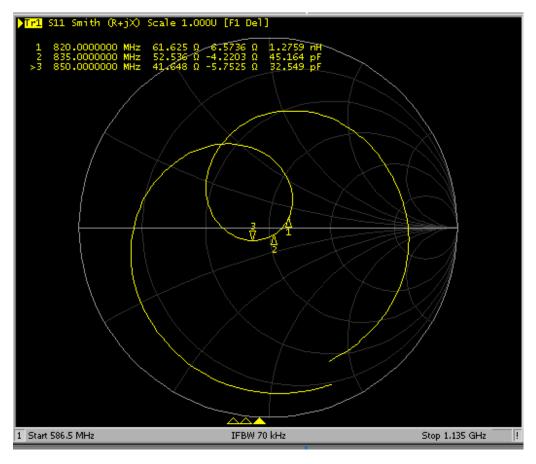

Electrical Specification 835MHz

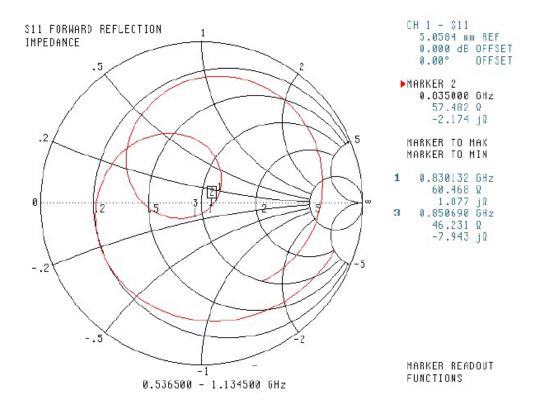
Tissue Type	Return Loss(dB)	Impedance(ohm)
Head(2011)	-26.655	51.666
Head(2012 recent)	-26.669	52.536
Body(2011)	-22.106	57.482
Body(2012 recent)	-22.595	54.711

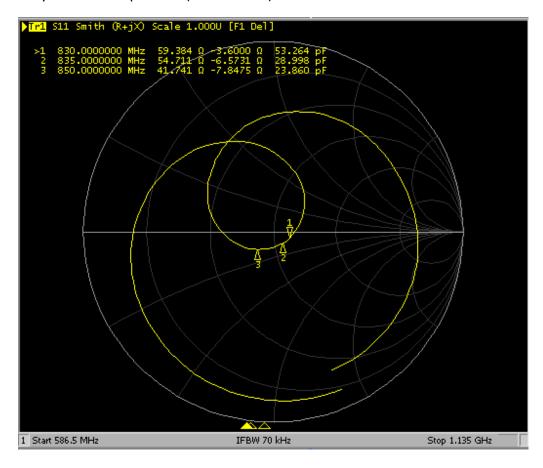

Head Tissue of Return Loss(2011)


Head Tissue of Return Loss(2012 recent)


Body Tissue of Return Loss(2011)

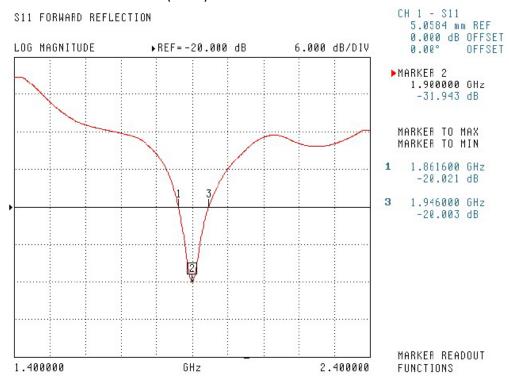

Body Tissue of Return Loss(2012 recent)

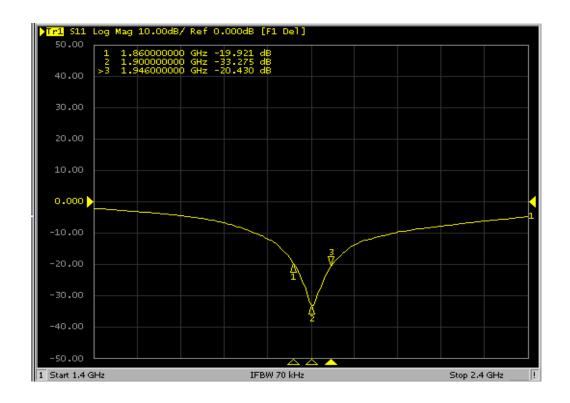

Head Tissue of Impedance(2011)


Head Tissue of Impedance(2012 recent)

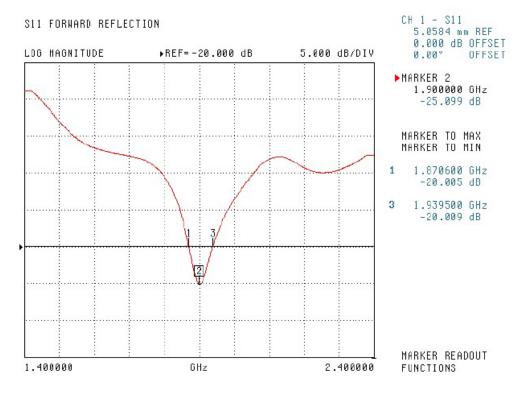
Body Tissue of Impedance (2011)

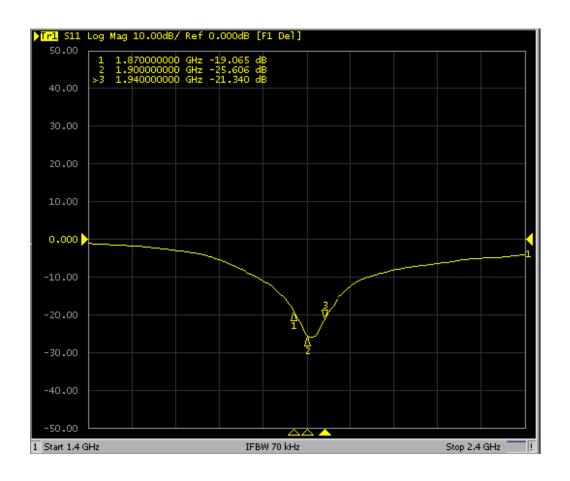
Body Tissue of Impedance(2012 recent)

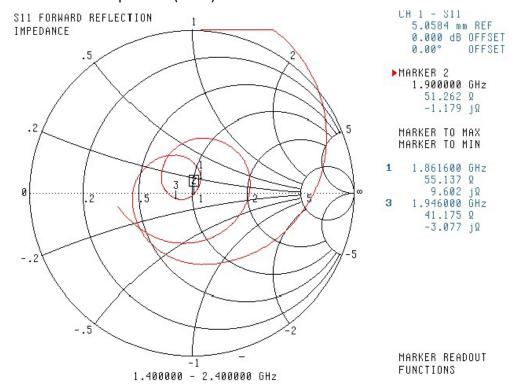



ValidationDipole Calibration

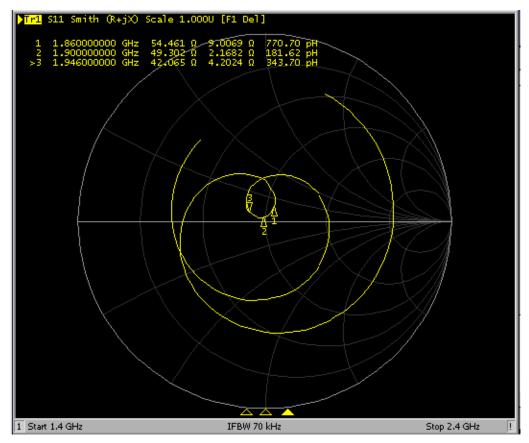
Electrical Specification 1900MHz

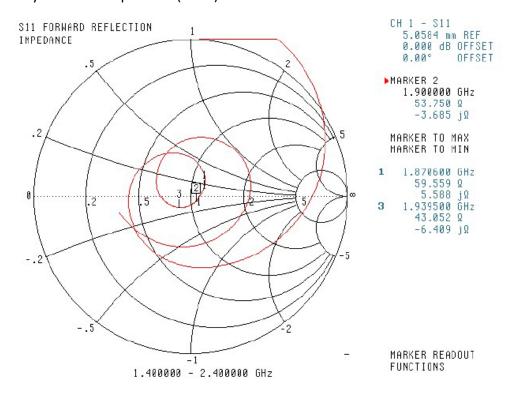

Tissue Type	Return	Impedance(ohm)
	Loss(dB)	
Head(2011)	-31.943	51.262
Head(2012 recent)	-33.275	49.302
Body(2011)	-25.099	53.750
Body(2012 recent)	-25.606	50.197

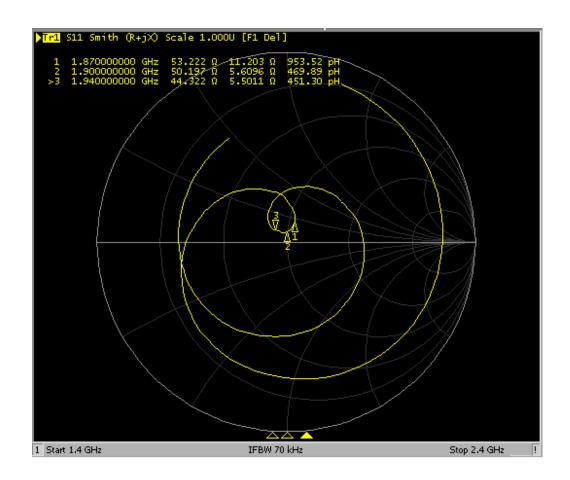

Head Tissue of Return Loss(2011)



Body Tissue of Return Loss(2011)




Head Tissue of Impedance(2011)


Head Tissue of Impedance(2012 recent)

Body Tissue of Impedance (2011)

Body Tissue of Impedance (2012 recent)

